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Chapter 1

Introduction

In this thesis we consider the eigenvalue problem

Hx = λx , x 6= 0 ,

where H is a real symmetric matrix of order n. Our aim is the following:

if the matrix is ”well–behaved”, that is, if small relative changes of
the matrix elements cause small relative changes in the eigenvalues,
then perform the eigenreduction accurately in this sense.

Our work generalizes the works by Barlow and Demmel [2] who considered scaled
diagonally dominant matrices (which are described later), and by Demmel and Veselić
[13] who considered positive definite matrices. Our results are, however, less definite
than in the positive definite case. This is due to the fact that the structure of the set
of all well–behaved indefinite matrices is more complicated than the structure of the
set of all well–behaved positive definite matrices, and is not simply characterized as
yet. Demmel and Veselić’s [13] algorithm of choice was the Jacobi method. One of the
versions of the algorithm that they used consists of two steps. First step is to calculate
the Cholesky decomposition of a starting positive definite matrix. Second step is to
apply the implicit (one–sided) version of the Jacobi method to the Cholesky factor
as described by Veselić and Hari [31]. We use the algorithm which is an immediate
generalization of this two–step algorithm, and was proposed by Veselić [28, 29].

The algorithm consists of two steps.

1. Decompose H as

H = GJGT , J = Inpos ⊕ (−Ir−npos) , (1.1)

where G is a n× r matrix of a full column rank, rank (H) = r, and npos
is the number of the positive eigenvalues of H.
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This decomposition is an extension of the known symmetric indefinite decomposition
of Bunch and Parlett [6]. The eigensolutions of the matrix H and the pair GTG, J are
simply related. There always exists a matrix F which diagonalizes the pair GTG, J
such that

F TGTGF = ∆ , F TJF = J .

where ∆ is diagonal and positive definite. The matrices for which F TJF = J are
called J−orthogonal. The non–zero eigenvalues of H are the diagonal elements of
∆J , and the corresponding eigenvectors are the columns of GF∆−1/2.

2. Apply the implicit (one–sided) J−orthogonal Jacobi method to the pair
G, J to find the non–zero eigenvalues and the corresponding eigenvectors
of H.

The implicit J−orthogonal Jacobi method consists of an iterative application of the
transformation

Gm+1 = GmJm ,

where G ≡ G0 and Jm is a J−orthogonal Jacobi plane rotation. The J−orthogonality
of Jm means that Jm performs a hyperbolic rotation if 1 ≤ i ≤ npos < j ≤ r, and a
trigonometric rotation otherwise. Since the implicit Jacobi works only on the columns
of G, it is suitable for parallel computing. The symmetric indefinite decomposition
(1.1) is, however, not suitable for parallelization. The transition from the matrix
H to the pair GTG, J is, in fact, one step of the LR algorithm and usually has a
diagonalizing effect. This reduces the number of iterative steps in our algorithm, and
makes it faster than the standard Jacobi.

The algorithm has very favourable accuracy properties. For most well–behaved
matrices we were able to prove relative error bounds for the eigenvalues and the norm
error bounds for the eigenvectors similar to those in [13]. These errors are uniformly
better than those for QR or the standard Jacobi algorithm applied directly to H.

Now we present our error bounds. They depend on new perturbation theory for
eigenvalues and eigenvectors, error analysis of the symmetric indefinite decomposition,
and error analysis of the J−orthogonal Jacobi methods. The statement that our
algorithm is more accurate than QR or the standard Jacobi algorithm depends also on
some empirical observations for which we have overwhelming numerical evidence, but
somewhat weaker theoretical understanding. Our perturbation theory is an extension
of those of Barlow and Demmel [2] and Demmel and Veselić [13].

We first consider known results. Let H be a real non–singular symmetric matrix.
Let δH be a small symmetric perturbation of H such that

|δHij| ≤ ε|Hij| . (1.2)

Let λi and λ′i be the i−th eigenvalues of H and H + δH, respectively, numbered so
that λ1 ≤ · · · ≤ λn. The standard perturbation theory [33] says that (1.2) implies

|λi − λ′i|
λi

≤ ‖δH‖2

λi
≤ ε
√
n‖H‖2 · ‖H−1‖2 = ε

√
nκ(H) , (1.3)

4



where κ(H) ≡ ‖H‖2 · ‖H−1‖2 is the condition number of H. For the positive definite
H, Demmel and Veselić [13] proved the following stronger result: write H = DAD
where D = (diag (H))1/2 is a scaling so that Aii = 1. Then (1.2) implies

|λi − λ′i|
λi

≤ εn

λmin(A)
≤ εnκ(A) . (1.4)

By a theorem of Van der Sluis [27]

κ(A) ≤ nmin
D

κ(DHD) , (1.5)

i.e. κ(A) nearly minimizes the condition number of positive definite H over all possible
diagonal scalings. Clearly, it is possible that κ(A)� κ(H) and it is always true that
κ(A) ≤ nκ(H), so the bound (1.4) is always at least about as good and can be much
better than the bound (1.3). Demmel and Veselić [13] showed that (1.4) also holds
under a more general perturbation of the type

|δHij| ≤ ε(HiiHjj)
1/2 , (1.6)

and that the standard Jacobi method computes the eigenvalues with nearly this ac-
curacy. Barlow and Demmel [2] considered scaled diagonally dominant matrices, i.e.
matrices of the form

H = DAD , A = E +M ,

where D is diagonal and non–singular, E is diagonal with elements ±1, diag (M) = 0,
and ‖M‖2 = ζ < 1. They showed that for such matrices (1.2) implies

|λi − λ′i|
λi

≤ εn2

1− ζ , (1.7)

and that a version of bisection without previous tridiagonalization computes the eigen-
values with nearly this accuracy.

Our perturbation bound for the non–singular but possibly indefinite matrix H is
the following: set

H = DÂD , (1.8)

where · is the spectral absolute value (H is symmetric square root of H2), and
D = (diag (H ))1/2. Then

|λi − λ′i|
|λi|

≤ εn

λmin(Â)
(1.9)

holds under the perturbations of types (1.2) and under

|δHij| ≤ εDiiDjj . (1.10)

This bound is actually derived in the more general setting of positive definite Her-
mitian matrix pairs. By (1.5) it is always true that κ(Â) ≤ nκ(H ) = nκ(H), and it
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is possible that κ(Â) � κ(H). Therefore, our bound (1.9) is always at least about
as good and can be much better than the bound (1.3). If H is positive definite, our
bound reduces to the bound (1.4). If H is scaled diagonally dominant, our bound is
similar to the bound (1.7) (see Chap. 2).

Since the implicit J−orthogonal Jacobi method works on the pair G, J , we also
need the perturbation theory in the case when H is perturbed by its factors. Let λ′i be
the i−th eigenvalue of a perturbed matrix (G+ δG)J(G+ δG)T . Set G = BD where
D is diagonal positive definite, and columns of B have unit norms. Set δG = δBD.
If ‖δB‖ ≤ ε and ε/σmin(B) < 1 , where σmin(B) is the smallest singular value of B,
then

(1− ε/σmin(B))2 ≤ λ′i
λi
≤ (1 + ε/σmin(B))2 . (1.11)

Here H needs not to be non–singular, but G must have full column rank.
Error bounds for the eigenvalues computed by our algorithm follow from (1.9),

(1.11), and the error analysis of our algorithm. Let H be non–singular. Suppose
that both steps of our algorithm are performed in a floating–point arithmetic with
precision ε. Let G, J be the output of the symmetric indefinite decomposition. Write
G = DGBG, where DG is diagonal positive definite, and rows of BG have unit norms.
For the matrices Gm obtained by the implicit J−orthogonal Jacobi method write
Gm = BmDm, where Dm is diagonal and positive definite, and columns of Bm have
unit norms. Let GM , J be the last pair obtained by the implicit Jacobi, and let GM

satisfy the stopping criterion,

|(BT
MBM)ij| ≤ tol , for all i 6= j .

tol is a small constant, usually n times machine precision. This relative stopping
criterion is a natural consequence of (1.11) and it has been used before [13, 29, 31].
Let λ′i be the i−th calculated eigenvalue. Then

|λi − λ′i|
|λi|

≤ 272n2ε

λmin(D−1
G GJGT D−1

G )
+ 2ε

M−1∑

m=0

Cm
σmin(Bm)

+ n · tol + n2ε (1.12)

holds with the relative error of O(ε). Here GJGT denotes the exact product of the
calculated factors of H, and Cm are moderate constants. Throughout the thesis the
formulation ”with the relative error of O(ε)” means that ε is replaced by ε(1 +Kε),
where 0 < K � 1/ε. The first quotient on the right hand side of (1.12) comes from
(1.9) and the error analysis of the symmetric indefinite decomposition, and the rest
comes from (1.11) and the error analysis of the implicit Jacobi. The bound (1.12)
has the same order of magnitude as predicted by the perturbation theory of (1.9)
and (1.11) if λmin(D−1

G GJGT D−1
G ) is not much smaller than λmin(Â) of (1.9), and if

the quantity 1/σmin(Bm) does not grow much during the implicit Jacobi (note that
in exact arithmetic limm→∞ σmin(Bm) = 1). We have strong numerical evidence for
both these facts, but our theoretical understanding is weaker. Moreover, we have
observed that 1/σmin(B0) is usually very small. This means that:
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• the error induced by symmetric indefinite decomposition is usually larger than
the error induced by implicit Jacobi,

• our method becomes even more accurate if the (almost) exact factor G is readily
supplied,

• our algorithm is usually faster than the standard Jacobi.

Similar observations were made by Demmel and Veselić [13] for the positive definite
H. Moreover, since the theoretical results about the behaviour of 1/σmin(Bm) are
independent of the type of rotations used, we conclude that there is no reason to
avoid hyperbolic rotations. Deichmöller [8] considered the solving of the generalized
singular value problem with Jacobi–type methods, and obtained similar results about
the growth of the condition of scaled matrices and a good error analysis for non–
orthogonal rotations used there.

Our approach to the eigenvector perturbation theory is that of [20] which deals
with the norm–estimates of the eigenprojections and thus allows the treatment of
multiple and clustered eigenvalues. Our error bound holds, however, only for the
eigenvectors corresponding to single eigenvalues. Let, as above, H and G both be
non–singular. Let vi and v′i be the eigenvectors of λi and λ′i, respectively. Let λG,i be
the i−th eigenvalue of GJGT . Then, less formally stated,

‖v′i − vi‖2 ≤
√

2η

rg(λi)
+

4
√

2η̄

rgG(λG,i)
+O(n2ε) . (1.13)

Here η is the first quotient of the right hand side of (1.12), and η̄ is approximately
1.5 times the rest of the right hand side of (1.12). rg(λ) and rgG(λ) are two kinds of
relative gaps between the eigenvalues, e.g. for λ > 0 we set

rgG(λ) = min

{
1,
λR − λ
λR + λ

,
λ− λL
λ+ λL

}
.

Here λL and λR are the left and right neighbours of λ in the spectrum, and the quo-
tients containing them are defined only if λL, λR exist and are positive, respectively.
This result applied to positive definite or scaled diagonally dominant H is similar to
the corresponding results of [13, 2], although with a different definition of relative
gap. The bound (1.13) compares favourably to the standard eigenvector result [22]
which, for the perturbation of the type (1.2), says

‖v′i − vi‖ ≤
nε‖H‖2

mini6=j |λi − λj|
+O(ε2).

In fact, if H has two or more tiny eigenvalues, then the above minimum is necessarily
small for some i’s, but the relative gaps may be large.
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To illustrate our theory consider the matrix

H =




1600 −300 14 300000
−300 43.5 −4.75 −423212

14 −4.75 0.1875 19800
300000 −423212 19800 3207938 · 103




whose all elements are sums of powers of 2, and are exactly stored in IEEE single
precision, ε ≈ 10−8. We have

1

λmin(D−1
G GJGT D−1

G )
≈ 18 ,

1

σmin(B)
≈ 1.1 ,

so we expect that the single precision version of our algorithm (ε ≈ 10−8) returns six
or seven correct decimal digits. The eigenvalues of H are

λ1 = −54.043364

λ2 = −0.0283096849

λ3 = 1613.74866

λ4 = 3207938084.0105

Here the digits which are common to our algorithm and the LAPACK routine DSYEV
which implements tridiagonalization followed by QR iteration (all performed in IEEE
double precision, ε ≈ 10−16) are displayed. Our algorithm, QR algorithm from the
LAPACK routine SSYEV, and the standard Jacobi, all in single precision, computed
the following eigenvalues:

OUR ALG. SSY EV JACOBI

λ1 −54.043369 −55.990593 −54.043369
λ2 −0.02830968 −0.0326757 −0.02830995
λ3 1613.7487 1651.6652 1613.7486
λ4 3207938000 3207938000 3207938000

Therefore, our algorithm computed the eigenvalues with the predicted relative ac-
curacy, QR has totally missed the absolutely smallest eigenvalue (and two more are
very inaccurate), and the standard Jacobi computed the absolutely smallest eigen-
value somewhat less accurately than our algorithm. Note that H is far from being
scaled diagonally dominant which shows that our results are a non–trivial generaliza-
tion of those of [2]. The algorithms behaved similarly on all such matrices for which
the bound (1.12) is small and κ(H) is large.

To explain the loss of accuracy in QR and the standard Jacobi algorithm note that
both algorithms do all of their work on an indefinite matrix. Let Hm be the sequence of
matrices generated in floating–point arithmetic by either of those algorithms. Further,
let Âm be obtained from Hm according to (1.8). In both algorithms it frequently
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happens that maxm κ(Âm)� κ(Â), which can, in turn, result in the loss of accuracy.
In QR algorithm accuracy can be lost during the tridiagonalization, as well as during
the iterative part. To illustrate the loss of accuracy during the tridiagonalization
consider the matrix

H =




1020 1 1
1 1 1
1 1 1020


 ,

for which κ(Â) ≈ 1 and κ(H) ≈ 1020. The tridiagonalization, which consists of one
Givens rotation, yields the matrix

H1 =




1020
√

2 0√
2 1020 + 3

2
1020 − 1

2

0 1020 − 1
2

1020 − 1
2


 ,

for which κ(Â1) ≈ κ(H). In floating–point arithmetic with precision ε = 10−16 the
computed matrix H1 is exactly singular indicating total loss of accuracy. Demmel [10]
gives an example of a well–behaved tridiagonal matrix where κ(Âm) almost reaches
κ(H) during QR iterations, which, in turn, results in the total loss of accuracy.

The main difference between indefinite non–singular and positive definite matrices
is the following: for positive definite H the perturbations of the types (1.2) and (1.6)
are equivalent in the sense that if H is insensitive to the one type, it is insensitive to
the other type, and vice versa [13]. For indefinite H this is not the case. Indeed, let

H =




1 1 1
1 0 0
1 0 ε


 ,

where ε is small (this matrix is considered in Sections 2.3, 4.3). H is obviously
very sensitive to perturbations of the type (1.10) so the bound (1.9) must necessarily
be large. On the other side, H is insensitive to small relative componentwise per-
turbations (1.2). This shows that we are still unable to completely characterize all
well–behaved symmetric matrices. Due to large errors in the symmetric indefinite de-
composition, our algorithm computes the eigenvalues with large relative errors. We
can, however, easily obtain an almost exact factorization of H (one way is to change
the choice of pivots in the symmetric indefinite decomposition), and then the implicit
Jacobi computes the eigensolution to nearly full working accuracy. This shows that
we have not completely reached our ideal: if the matrix is well behaved, our algorithm
should compute the eigenvalues with nearly this accuracy.

The thesis is organized as follows: Chapter 2 presents the new perturbation theory.
This chapter, except Subsection 2.3.1, is due to Veselić and Slapničar [32]. The results
of Veselić and Slapničar are included mainly for the sake of completeness. In Chapter
3 we first describe the J−orthogonal Jacobi method for the pair H, J , where H is
positive definite, and give its error analysis. Although this explicit method is rarely
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used, its error analysis is the basis for the later analysis of the implicit method. The
error analysis consists of two steps. We first show that one step of J−orthogonal
Jacobi method satisfies the perturbation bounds of Chapter 2. Then we combine
one–step error analysis with the perturbation bounds to obtain overall error bounds
for the eigensolution computed by J−orthogonal Jacobi method. In Subsection 3.2.2
we give known and new results concerning the upper bound for 1/σmin(Bm). Then
we describe and analyse the implicit J−orthogonal Jacobi method, and do the same
for the implicit method with fast and fast self–scaling rotations. The latter are used
to suppress possible underflow/overflow when accumulating the diagonal of the fast
rotations. In Chapter 4 we define the symmetric indefinite decomposition (1.1) and
give its error analysis. In Section 4.3 we combine the error analysis of the symmetric
indefinite decomposition, error analysis of the implicit J−orthogonal Jacobi method,
and the perturbation bounds of Chap. 2, to obtain the final error bounds for the
computed eigensolution of the real symmetric eigenvalue problem. There we also
shortly refer to the singular case, and state some open problems. In Section 4.4 we give
an interesting theoretical result saying that the condition of the scaled matrix GTG,
κ(BTB), is bounded by a function of n irrespective of the condition of the starting
matrix H. In Chapter 5 we present results of our numerical experiments. Main
tests were performed by comparing QR algorithms from LAPACK, standard Jacobi,
and our algorithms in single and double precision. We also tested the behaviour of
λmin(D−1

G GJGT D−1
G ) and σmin(Bm), and compared computation times.

æ
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Chapter 2

Floating–point perturbations of
Hermitian matrices1

2.1 Introduction and preliminaries

The standard perturbation result for the eigenvalue problem of a Hermitian matrix
H of order n, Hx = λx, reads [16]

|δλi| ≤ ‖δH‖2 , (2.1.1)

where

λ1 ≤ λ2 ≤ . . . ≤ λn ,

λ′1 = λ1 + δλ1 ≤ . . . ≤ λ′n = λn + δλn ,

are the eigenvalues of H and H + δH, respectively. The perturbation matrix δH is
again Hermitian, and ‖·‖2 is the spectral norm. The backward error analysis of various
eigenvalue algorithms initiated by Wilkinson [33] follows the same pattern, i.e. the
round–off error estimates are given in terms of norms. A more realistic perturbation
theory starts from the fact that both the input entries of the matrix H and the output
eigenvalues are given in the floating–point form. Thus, a desirable estimate would
read

max
i

∣∣∣∣∣
δλi
λi

∣∣∣∣∣ ≤ C max
i,j

∣∣∣∣∣
δHij

Hij

∣∣∣∣∣ , (2.1.2)

where we define 0/0 = 0. Colloquially, ”floating–point” perturbations are those with
|δHij| ≤ ε|Hij|, ε small. Similarly, we call a matrix ”well–behaved” if (2.1.2) holds
with a ”reasonable” C, i.e. if the small relative changes in the matrix elements cause
small relative changes in the eigenvalues. For the floating–point perturbations (2.1.1)

1Sections 2.1, 2.2 and 2.3 of this chapter are due to Veselić and Slapničar [32]. Subsection 2.3.1
is new.
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implies (2.1.2) with C =
√
n · κ(H) ≡ √n · ‖H‖2‖H−1‖2, and this bound is almost

attainable. This is illustrated by the positive definite matrix

H =

[
1 1
1 1 + ε

]
, 0 < ε� 1 .

The small eigenvalue of H is very sensitive to small relative changes in the matrix
elements.

Our results generalize the results obtained in [12, 2, 13]. Demmel and Veselić [13]
showed that for a positive definite matrix H (2.1.2) holds with

C =
n

λmin(A)
,

where
A = (diag (H))−1/2H(diag (H))−1/2 (2.1.3)

is the standard scaled matrix. The condition of A can be much smaller and is never
much larger than that of H. Indeed, since Aii = 1 it follows

1

λmin(A)
≤ κ(A) ≤ n

λmin(A)
,

whereas (1.5) implies
κ(A) ≤ n · κ(H) . (2.1.4)

Similar results hold for the singular value problem [13].
The aim of this paper is to extend the above result to general non–singular Hermi-

tian matrices. The nature of the estimate (2.1.2) shows that the non-singularity is a
natural condition to require. We show (Th. 2.2.3) that (2.1.2) holds for a non–singular
Hermitian matrix H with

C = ‖|A|‖2‖Â−1‖2 ,

where
H = DAD , Â = D−1HD−1 .

Here D is any scaling matrix, i.e. a positive definite diagonal matrix, and | · |, ·
denote the two kinds of absolute value functions, ”pointwise” and ”spectral”:

|A|ij = |Aij| , H =
√
H2 ,

respectively. Note that ‖A‖2 ≤ ‖|A|‖2 ≤
√
n‖A‖2 holds for any matrix A. The scaling

D is typically, but not necessarily of the standard form D = (diag H )1/2. This result
is stated and proved in a more general setting, namely that of a matrix pair H,K with
K positive definite, thus properly generalizing corresponding results of [2, 13]. Our
eigenvector result, stated in Subsect. 2.2.1, concerns the case of a single non–singular
Hermitian matrix and it essentially generalizes the norm–estimates from [2, 13]. An
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unpleasant point of our theory is that the matrix H , which has to be scaled, is not
easy to compute. Moreover, the set of well-behaved indefinite Hermitian matrices is
not scaling-invariant.

Barlow and Demmel [2] showed that for matrices of the type

H = D(E +N)D , (2.1.5)

where D,E are diagonal, E2 = I, diag (N) = 0 and ‖N‖2 < 1, (2.1.2) holds with

C =
n

1− ‖N‖2

. (2.1.6)

The matrices (2.1.5) are called scaled diagonally dominant (s.d.d.). We show that for
a s.d.d. matrix

‖|A|‖2‖Â−1‖2 ≤ n
1 + ‖|N |‖2

1− ‖N‖2
.

Although this does not reproduce the constant C in (2.1.6) (there is an extra factor
1 + ‖|N |‖2 ≤ 1 +

√
n), we see that s.d.d. matrices are included in our theory.

In the positive definite case the only well–behaved matrices are those which can be
well scaled, i.e. for which the scaled matrix A from (2.1.3) is ”reasonably” conditioned.
More precisely, if (2.1.2) holds for sufficiently small δH, then λmin(A) ≥ 2/(1+C) for
A from (2.1.3). This, rather sharp result is proved in [32]. It improves a related result
of [13] and also yields a slight improvement of the van der Sluis estimate (2.1.4).

In contrast to this, the choice of well–behaved indefinite matrices is, in a sense,
richer. Writing

H = GJG∗

with G∗G positive definite (G need not be square) and J non-singular, the eigenvalue
problem Hx = λx converts into the problem

Ĥy = λJ−1y , Ĥ = G∗G . (2.1.7)

In Sect. 2.3 we prove the estimate of the type (2.1.2) for the problem (2.1.7) under
the perturbations of the factor |δGij| ≤ ε|Gij|. The latter is a generalization of the
singular value problem known as hyperbolic singular value problem [21]. The estimates
again depend on the condition number of the matrix obtained by scaling G∗G. As an
interesting application, we obtain floating-point perturbation estimates for matrices
of the type

H =

[
H11 H12

H∗12 0

]
, (2.1.8)

where H12H
∗
12 is positive definite. Note that this H may be singular. As could be

expected, the only well-behaved singular matrices are those where the rank defect
can be read-off from the zero pattern.

Similarly as in [2], [13] we note the remarkable fact that our eigenvalue estimates
are independent of the condition number of the corresponding eigenvector matrices
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- in generalized Hermitian eigenvalue problems they are not unitary and there is
no upper bound for their condition. This phenomenon seems to be typical for the
”floating-point” perturbation theory.

æ
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2.2 Well–conditioned scalings

In this section we present perturbation results which are natural extensions of those
from [2] and [13]. We first give a general perturbation result for the eigenvalues of
the pair H,K with K positive definite. (An eigenvalue of the pair H,K is a scalar
λ for which det (H − λK) = 0.) For this purpose we introduce a new absolute value
of H relative to K denoted by H K. We then apply our general perturbation result
to the floating–point perturbations of the matrices H and K. Theorems 2.2.3 and
2.2.4 give two simplifications of the perturbation bounds and Th. 2.2.5 gives bounds
for another, more general, type of perturbation where perturbing the zero elements is
also allowed. Our theory applied to a single positive definite matrix slightly improves
the corresponding results of [13]. It also improves the van der Sluis estimate (2.1.4) in
some cases [32]. Then we apply our theory to a single non–singular indefinite matrix.
We prove that our theory includes scaled diagonally dominant matrices [2]. We also
characterize the class of matrices with the best perturbation bounds. At the end we
give some examples, and also consider some singular matrices. In Subsect. 2.2.1 we
consider the perturbation of the eigenvectors of a single non–singular matrix H.

Theorem 2.2.1 Let H, K be Hermitian and K positive definite. Set K = ZZ∗ and

H K = Z Z−1HZ−∗Z∗ . (2.2.1)

H K is independent of the freedom of choice in Z.2 Let δH, δK be Hermitian pertur-
bations such that for all x ∈ Cn

|x∗δHx| ≤ ηHx
∗H Kx , |x∗δKx| ≤ ηKx

∗Kx , ηH , ηK < 1 (2.2.2)

holds. Let λi and λ′i be the increasingly ordered eigenvalues of the matrix pairs H,K
and H ′ ≡ H + δH,K ′ ≡ K + δK, respectively. Then λ′i = 0 if and only if λi = 0, and
for non–vanishing λi’s we have

1− ηH
1 + ηK

≤ λ′i
λi
≤ 1 + ηH

1− ηK
. (2.2.3)

Proof. Let K = ZZ∗ = FF ∗. Then Z = FU , where U is a unitary matrix, and

Z Z−1HZ−∗Z∗ = FU U∗F−1HF−∗U U∗F ∗ = F F−1HF−∗F ∗ .

Thus, H K is independent of the freedom of choice in Z. From (2.2.2) it follows

x∗(H − ηHH K)x ≤ x∗(H + δH)x ≤ x∗(H + ηHH K)x , (2.2.4)

(1− ηK)x∗Kx ≤ x∗(K + δK)x ≤ (1 + ηK)x∗Kx . (2.2.5)

2For H positive definite we obviously have H K = H .
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Now note that the pair H±ηHH K , K has the same eigenvectors as the pair H,K with

the (again increasingly ordered) eigenvalues λi ± ηH |λi|. Let λ̂i be the increasingly
ordered eigenvalues of the pair H ′, K. The monotonicity property of the eigenvalues
together with (2.2.4) yields immediately

1− ηH ≤
λ̂i
λi
≤ 1 + ηH . (2.2.6)

It is also clear that H and H ′ have the same inertia.3 The transition form H ′, K to
H ′, K ′ is similar. Note that both pairs have again the same inertia. If e.g. λ̂i ≤ 0,
then λ′i ≤ 0 and (2.2.5) implies

min
Si

max
x∈Si

x∗H ′x

(1− ηK)x∗Kx
≤ min

Si
max
x∈Si

x∗H ′x

x∗K ′x
≤ min

Si
max
x∈Si

x∗H ′x

(1 + ηK)x∗Kx
,

where Si is any i−dimensional subspace of Cn. In other words,

λ̂i
1− ηK

≤ λ′i ≤
λ̂i

1 + ηK
. (2.2.7)

Similarly, if λ̂i ≥ 0, then λ′i ≥ 0, and we obtain

λ̂i
1 + ηK

≤ λ′i ≤
λ̂i

1− ηK
. (2.2.8)

Now (2.2.7) and (2.2.8) combined with (2.2.6) give (2.2.3). Q.E.D.

We now apply this result to the floating–point perturbations of matrix entries.
Set

C̃(H,K) = sup
x6=0

|x|T |H||x|
x∗H Kx

and

C̃(H) = C̃(H, I) .

Obviously, C̃(H,K) is finite if and only if H is non–singular. For every H,K with K
positive definite, we have

C̃(H,K) ≥ 1 . (2.2.9)

Indeed, if C̃(H,K) were less than one, then the matrices H, K, δH = −H and
δK = 0 would satisfy the assumptions of Th. 2.2.1 and this would, in turn, imply
that H + δH is non–singular — a contradiction.

3In fact, H and H ′ have the same null–spaces.
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Theorem 2.2.2 Let H,K be Hermitian matrices with H non–singular and K posi-
tive definite. Let Hermitian perturbations δH and δK satisfy

|δHij| ≤ ε|Hij| , |δKij| ≤ ε|Kij| , (2.2.10)

such that
ηH = εC̃(H,K) < 1 , ηK = εC̃(K) < 1 .

Then the assumption (2.2.2) of Th. 2.2.1 is fulfilled, hence its assertion holds.

Proof. We have

|x∗δHx| ≤ |x|T |δH||x| ≤ ε|x|T |H||x| ≤ εC̃(H,K)x∗H Kx ,

and similarly
|x∗δKx| ≤ εC̃(K)x∗Kx .

Q.E.D.

Th. 2.2.1 is a significant improvement over Lemma 1 and Th. 4 from [2] which
require a more restrictive condition

|x∗δHx| ≤ ηH |x∗Hx|

which has non–trivial applications only for positive definite H.
The values C̃(H,K) and C̃(K) are not readily computable and we now exhibit a

chain of simpler upper bounds for them.

Theorem 2.2.3 Let H,K be as in Th. 2.2.2, and let A, Â and B be defined by

H = DAD , H K = DÂD , K = D1BD1 , (2.2.11)

where D and D1 are scaling matrices. Then

C̃(H,K) ≤ ‖|A|‖2‖Â−1‖2 ≡ C(A, Â) ,

C̃(K) ≤ ‖|B|‖2‖B−1‖2 ≡ C(B) , (2.2.12)

and ηH = εC(A, Â) < 1, ηK = εC(B) < 1 implies the assertion of Th. 2.2.1.

Proof. We have

|x|T |H||x| = |x|TD|A|D|x| ≤ ‖|A|‖2x
∗D2x

≤ C(A, Â)x∗DÂDx = C(A, Â)x∗H Kx ,

and similarly

|x|T |K||x| ≤ C(B)x∗D1BD1x = C(B)x∗Kx . Q.E.D
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The constant C(A, Â) cannot be uniformly improved. Indeed, take H as diagonal
with H2 = I and let H ′ = H + δH be obtained by setting to zero any of the diagonal
elements of H. Then the assertion of the above theorem, applied to the pair H,K = I
with δK = 0, is obviously not true and we have ηH = 1, ηK = 0.

Of course, all this does not mean that Th. 2.2.3 covers all well behaved matrices.
Next sections will show the contrary.

The constants C(A, Â), C(B) are further estimated as follows:

Theorem 2.2.4 Let H,K be as in Th. 2.2.2, and let A, Â and B be defined by
(2.2.11), where D, D1 are scalings. Then

C(A, Â) ≤ Tr Â‖Â−1‖2 , C(B) ≤ Tr B‖B−1‖2 ,

and ηH = εTr Â‖Â−1‖2 < 1, ηK = εTr B‖B−1‖2 < 1 implies the assertion of Th.
2.2.1.

Proof. Let

Z−1HZ−∗ = UΛU∗

be an eigenvalue decomposition of Z−1HZ−∗ with U unitary and Λ diagonal. Then
Z−1HZ−∗ = U |Λ|U∗ and from (2.2.1) it follows

H K = ZU |Λ|U∗Z∗ = GG∗ ,

where G = ZU
√
|Λ|. Furthermore,

H = Z(Z−1HZ−∗)Z∗ = ZUΛU∗Z∗ = GJG∗ ,

where J is diagonal with ±1’s on the diagonal. Setting F = D−1G for some positive
definite diagonal D and using the obvious estimate

|(FJF ∗)ij| ≤
√

(FF ∗)ii(FF ∗)jj ,

we obtain |Aij|2 ≤ ÂiiÂjj, and hence ‖|A|‖2 ≤ Tr Â. Similarly, ‖|B|‖2 ≤ Tr B, and
the theorem now follows from the definitions of C(A, Â) and C(B). Q.E.D.

For the standard scalings D = (diag H K)1/2, D1 = (diag K)1/2, Th. 2.2.4 yields

C(A, Â) ≤ n‖Â−1‖2 , C(B) ≤ n‖B−1‖2 .

In addition, the above upper bounds can accomodate another class of perturbations
where perturbing the zero elements is also allowed.
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Theorem 2.2.5 Let H,K be Hermitian matrices with H non–singular and K posi-
tive definite. Let Hermitian perturbations δH and δK satisfy

|δHij| ≤ εDiiDjj , |δKij| ≤ εD1,iiD1,jj , (2.2.13)

such that
ηH = εn‖Â−1‖2 < 1 , ηK = εn‖B−1‖2 < 1 .

Then the assumption (2.2.2) of Th. 2.2.1 is fulfilled, hence its assertion holds.

Proof. Let us define the matrix E with Eij = 1. We have

|x∗δHx| ≤ |x|T |δH||x| ≤ ε|x|TDED|x| ≤ ε‖E‖2x
∗D2x ≤ εn‖Â−1‖2x

∗H Kx ,

and similarly
|x∗δKx| ≤ εn‖B−1‖2x

∗Kx .

Q.E.D.

æ
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Remark 2.2.6 Note that for the standard scaling the bounds of Theorems 2.2.3 and
2.2.5 differ by at most a factor n. Therefore, the relative error bounds which use
C(A, Â) and C(B) actually allow both kinds of perturbations, (2.2.10) and (2.2.13),
which makes them inappropriate in some cases (see Rem. 2.2.11 below).

When we apply our general theory to a single positive definite matrix H (K = I),
Th. 2.2.4 reproduces the main floating-point perturbation result of Th. 2.3 from [13],
while Th. 2.2.2 is even sharper. The perturbations allowed by Th. 2.2.5 are of the
form

|δHij| ≤ ε
√
HiiHjj . (2.2.14)

We now turn to the case of the single non-singular indefinite matrix H. We first
prove that the class of matrices H with well-behaved C(A, Â) includes the already
known class of scaled diagonally dominant matrices. We have

Theorem 2.2.7 Let
H = DAD , A = E +N ,

with E = E∗ = E−1, ED = DE, and ‖N‖2 < 1. If Â is defined by H = DÂD, then

C(A, Â) ≤ n
1 + ‖|N |‖2

1− ‖N‖2

. (2.2.15)

Proof. Since D commutes with E, there exists a unitary matrix U which simulta-
neously diagonalizes D and E, i.e.

U∗DU = ∆ , U∗EU = diag (±1) .

Since ∆ is only a permuted version of the matrix D, there exists a permutation matrix
P such that ∆ = PDP T . Setting V = UP , we have

V ∗DV = D , V ∗EV = E1 ,

where E1 is diagonal with ±1’s on the diagonal. Now perform the unitary transfor-
mation

H1 = V ∗HV = D(V ∗EV + V ∗NV )D = D(E1 +N1)D .

Here we used the fact that D and V commute. Also, ‖N1‖2 = ‖N‖2.
By Lemma 3 of [2] for any eigenpair λ, y of H1 we have

(1− ‖N1‖2)‖Dy‖2
2 ≤ |λ|‖y‖2

2 ≤ (1 + ‖N1‖2)‖Dy‖2
2 . (2.2.16)

Note that formally [2] needs that N1 have a zero diagonal. It is easily seen that this
condition is not necessary. For any eigenpair λ, y of H, (2.2.16) implies

(1− ‖N‖2)‖Dy‖2
2 ≤ |λ|‖y‖2

2 ≤ (1 + ‖N‖2)‖Dy‖2
2 . (2.2.17)
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Now let H = Y ΛY ∗, Y ∗Y = I, Λ = diag (λ1, · · · , λn), be an eigenvalue decomposition
of H. Then H = Y |Λ|Y ∗ and

Â−1 = DH
−1
D = DY |Λ|−1/2|Λ|−1/2Y ∗D .

Therefore,

‖Â−1‖2 = ‖DY |Λ|−1/2‖2
2 ≤ nmax

i
‖Dyi‖2

2

1

|λi|
≤ n

1− ‖N‖2
.

Here we have set Y = [y1, · · · , yn] and used (2.2.17) for every pair λi, yi. The theorem
now follows from4

‖|A|‖2 ≤ ‖I + |N |‖2 ≤ 1 + ‖|N |‖2 .

Q.E.D.

The s.d.d. matrices are a special case of the matrices considered in Th. 2.2.7, that
is, we do not require the diagonality of E. Note that the argument of [2] leading to
the estimate (2.1.6) can be easily modified to hold under the conditions of Th. 2.2.7
as well.

Even though we could only bound our measure C(A, Â) by (2.2.15) which is
somewhat weaker than (2.1.6), we expect that C(A, Â) is actually much better. The
following example illustrates the power of our theory. Set

Â =




1 0.9 0.9
0.9 1 0.9
0.9 0.9 1


 , D =




1
d

d2


 , d ≥ 1 .

Then ‖Â−1‖2 = 10. For d = 102 the spectrum of H = DÂD is, properly rounded,
1.47 · 10−1, 1.90 · 103, 1.00 · 108. Now H is obtained from H by just turning the
smallest eigenvalue into its negative. We obtain

H =




0.705 9.00 · 101 9.00 · 103

9.00 · 101 1.00 · 104 9.00 · 105

9.00 · 103 9.00 · 105 1.00 · 108




with

A =




0.705 0.9 0.9
0.9 1 0.9
0.9 0.9 1


 , ‖A‖ ≤ 3 .

Thus, C(A, Â) ≤ 30 and H is far from being s.d.d.

4The case of the pair H,K of s.d.d. matrices is not covered by this result (cf. a similar claim in
[2]), although it seems highly probable that such a generalization holds.
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A natural question is to ask which matrix pairs or single non-singular matrices
have the smallest ηH , ηK in Th. 2.2.3. Obviously, C(B) ≥ 1 and the equality is
attained, if and only if K is diagonal. In this case we can take K = I and the whole
problem reduces to the case of the single matrix H.

We first derive some useful inequalities. Set x = K−1/2y = D−1z. Then

|x∗Hx| = |y∗K−1/2HK−1/2y| ≤ y∗K−1/2HK−1/2 y = x∗H Kx , (2.2.18)

and thus

|z∗Az| ≤ z∗Âz . (2.2.19)

Similarly, |x∗H−1x| ≤ x∗H
−1
K x, and

|z∗A−1z| ≤ z∗Â−1z . (2.2.20)

Now we have ‖A−1‖2 ≤ ‖Â−1‖2, and

C(A, Â) ≥ ‖A‖2‖Â−1‖2 ≥ ‖A‖2‖A−1‖2 ≥ 1 . (2.2.21)

Theorem 2.2.8 Let H = DAD be Hermitian and non-singular and let H = DÂD.
Then

C(A, Â) = ‖|A|‖2‖Â−1‖2 = 1 (2.2.22)

if and only if A is proportional to P diag (A1, · · · , Ap)P T , where each of the blocks Ai

has one of the forms

1 , − 1 ,

[
0 eiϕ

e−iϕ 0

]
,

A and D commute, and P is a permutation matrix.

Proof. If H has the form described above, then H = D2A = D2, i.e. Â = I and
(2.2.22) holds.

Conversely, if (2.2.22) holds, then all inequalities in (2.2.21) go into equalities.
Without loss of generality we can assume that

Â11 = 1 . (2.2.23)

Now the equality ‖A‖2‖A−1‖2 = 1 means that

A = cV , c > 0 , V = V −1 = V ∗ . (2.2.24)

From H
2

= H2 it follows that

c2V D2V = ÂD2Â . (2.2.25)
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This is equivalent to the unitarity of the matrix

W = cD−1Â−1V D .

This, in turn, implies that W is similar to cÂ−1/2V Â−1/2. Since the latter matrix is
also Hermitian, it must be unitary, i.e.

c2Â−1/2V Â−1V Â−1/2 = I .

This is equivalent to

V

(
Â

c

)−1

V =
Â

c
. (2.2.26)

We now use ‖A‖2‖Â−1‖2 = ‖(Â/c)−1‖2 = 1 which, together with (2.2.26) and (2.2.23),
implies Â = I, c = 1. Now we can write (2.2.25) as D2A = AD2, i.e. A and D
commute. Finally, we use ‖|A|‖2‖Â−1‖2 = ‖|A|‖2 = 1. By c = 1, the relation (2.2.24)
gives

A = A−1 = A∗ .

Here we need the following

Lemma 2.2.9 Let U∗U = I and ‖|U |‖2 = 1. Then |U |T |U | = I, i.e. each row of
U contains at most one non–vanishing element. If, in addition, U is square, then U
is a (one sided) permutation of a diagonal matrix. Conversely, |U |T |U | = I implies
U∗U = I and ‖|U |‖2 = 1.

Proof. From U ∗U = I it follows (|U |T |U |)ii ≡ 1. If aij = (|U |T |U |)ij 6= 0 for some
pair i 6= j, then the submatrix [

1 aij
aij 1

]

of |U |T |U | has an eigenvalue greater than one – a contradiction to the assumption
‖|U |‖2 = 1. The rest of the assertion is trivial. Q.E.D.

To finish the proof of the theorem just use the lemma above and the hermiticity
of A. Thus, up to a simultaneous permutation of rows and columns, A is a direct
sum of

Ai ∈
{

1,−1,

[
0 eiϕ

e−iϕ 0

]}
, i = 1, · · · , p .

Q.E.D.

æ
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The simple upper bounds in Th. 2.2.4 take their minimum n on a much larger
class of matrices, namely those with A unitary and commuting with D. Indeed, from
the proof of Th. 2.2.8 we immediately obtain

Corollary 2.2.10 Let H, D, A, and Â be as in Th. 2.2.8 such that Â11 = 1. Then
the following assertions are equivalent:

(i) Tr Â‖Â−1‖2 = n,

(ii) Â = I,

(iii) A is unitary and commutes with D.

An example of such matrix is given by

A =



c s 0
s −c 0
0 0 1


 , D =



d1

d1

d3


 ,

where s2 + c2 = 1 and d1, d3 > 0. Note that Th. 2.2.7 concerns a certain sort of small
perturbations of such matrices. Also note that the only positive definite matrices
satisfying Cor. 2.2.10 are again diagonal ones.

The next natural question is: how good are the matrices H = DAD with A
unitary, but not necessarily commuting with D? As an example take the matrix
H = DAD with

A =
1

2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 , D =




d
1

1
d


 , (2.2.27)

where d > 0. Here A is unitary, but it does not commute with D. The eigenvalues of
H are λ1 = d2, λ2 = d, λ3 = −d, λ4 = 1, and the corresponding eigenvectors are

U =




1/
√

2 1/2 1/2 0

0 −1/2 1/2 1/
√

2

0 −1/2 1/2 −1/
√

2

−1/
√

2 1/2 1/2 0



.

If we choose a relative perturbation of the form

δH = εd2wwT , w =
[

1 0 0 1
]T

,

and set H ′ = H + δH, we have |δHij| ≤ 2ε|Hij| and

UTH ′U = diag (d2, d,−d, 1) + εd2UTwwTU =




d2 0 0 0
0 d+ εd2 εd2 0
0 εd2 −d+ εd2 0
0 0 0 1


 .

24



Therefore, λ′2 = d(εd+
√

1 + ε2d2) and |δλ2|/|λ2| > εd, so H is not well–behaved for
large d. Since the matrix

HA =
1

2




d2 + d 0 0 −d2 + d
0 d+ 1 d− 1 0
0 d− 1 d+ 1 0

−d2 + d 0 0 d2 + d




is symmetric and positive definite, we conclude that H = HA. For x =
[

1 0 0 1
]T

we have
|x|T |H||x|
x∗H x

= d ,

and thus C̃(H) → ∞ as d → ∞. This example shows that the properties of the
matrix A alone are in general not enough for the good behaviour of the indefinite
matrix H = DAD. In other words, contrary to the positive definite case, an additional
scaling H1 = D1HD1 of a well–behaved H need not produce a well–behaved H1.

Remark 2.2.11 Contrary to the positive definite case, for the indefinite matrices we
do not have the result telling us that the matrix behaves well under the perturbations
of the type (2.2.10) if and only if C̃(H) is small. Moreover, estimating C̃(H) with
C(A, Â) is in some cases not appropriate. For example, matrices of the type (2.1.8)
behave well under the perturbations of the type (2.2.10) (see the following sections),
but are very sensitive to the perturbations of the type (2.2.13) for the standard scaling.
Therefore, ηH from Th. 2.2.5 and then, in turn, ηH from Th. 2.2.4 must neccessarily
be large and some other kind of analysis is required.

Remark 2.2.12 (Some singular matrices). Although Th. 2.2.1 does not require the
non–singularity of the unperturbed matrix H, the subsequent theory, as it stands,
cannot handle singular matrices. However, for a single matrix of the type

H =

[
H̃ 0
0 0

]
, H̃ non–singular , (2.2.28)

the condition |δHij| ≤ ε|Hij| obviously preserves the zero structure and the problem

trivially reduces to the perturbation of H̃ to which our theory can be applied. For a
pair H,K with H as above and K positive definite of the form

K =

[
K11 K∗12

K12 K22

]

we proceed as follows: from the proof of Th. 2.2.2 we see that the perturbation on
K does not need the non–singularity of H. Furthermore, the non–zero eigenvalues
of the pair H,K coincide with the eigenvalues of the pair H̃, K̃, where K̃ = K11 −
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K12K
−1
22 K

∗
12. Thus, in perturbing H the zero eigenvalues do not change and we can

apply Th. 2.2.2 to the pair H̃, K̃. We obtain the full assertion of Th. 2.2.2 with
C̃(H̃, K̃) instead of C̃(H,K).

Similarly, Th. 2.2.3 holds where A, Â and B are obtained by scaling H̃, H̃
K̃

and

K, respectively. If, in addition, H is positive semidefinite, then H̃
K̃

= H̃, and Th.

2.2.3 and the subsequent theory hold with A = Â and B obtained by scaling H̃ and
K, respectively.

It is readily seen that (2.2.28) is the only form (up to a permutation) of a positive
semidefinite matrix whose eigenvalues behave well under the floating–point perturba-
tions. As we shall see later, the indefinite case is more complicated in this aspect.

æ
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2.2.1 Perturbation of the eigenvectors

In this subsection we consider the behaviour of the eigenvectors under the perturba-
tions as in Th. 2.2.1. We consider the case of a single non–singular Hermitian matrix
H (i.e. K = I, δK = 0). Like in [2, 13], this behaviour is influenced by a relative gap
between the neighbouring eigenvalues. Our definition of relative gap is similar but
not identical with the ones from [2, 13] which makes an exact comparison of (actually
similar) results difficult. Our approach – in contrast to the one from [2, 13] – is that of
[20] which deals with the norm–estimates of the spectral projections and thus allows
the treatment of multiple and clustered eigenvalues. We also expect our bounds to
be better than those of [2, 13], since they do not depend on n.

We now define the relative gap, rg(λ), for the possibly multiple eigenvalue λ of
H. To simplify the notation, as well as the statement and the proof of the following
theorem, we shall assume that λ is positive. Negative eigenvalues of H are considered
as the positive eigenvalues of the matrix −H. By λL and λR we denote the left and
the right neighbour of λ in the spectrum σ(H) of H, respectively. We set

rg(λ) =





min

{√
λ−√λL√

λ
,

√
λR −

√
λ√

λR

}
if λL > 0 ,

min

{
2(
√

2− 1),
λR − λ
λR + λ

}
otherwise .

(2.2.29)

Theorem 2.2.13 Let λ be a positive (possibly multiple) eigenvalue of a non–singular
Hermitian matrix H, and let

P =
1

2πi

∫

Γ
Rµdµ , Rµ = (µI −H)−1 , (2.2.30)

be the corresponding eigenprojection. Here Γ is a curve around λ which separates λ
from the rest of the spectrum. Let P + δP be the corresponding spectral projection of
the matrix H + δH with |x∗δHx| ≤ ηx∗H x. Then

‖δP‖2 ≤





η

rg(λ)
· 1

1−
(

1 +
1

rg(λ)

)
η

for λL > 0, 2
√
λ−

√
λL <

√
λR ,

η

rg(λ)
· 1

1− η

rg(λ)

otherwise ,

(2.2.31)
provided that the right hand side is positive.

Proof. By setting

∆ = H
−1/2

δH H
−1/2

, zµ = RµH
1/2
, wµ = H

1/2
RµH

1/2
,
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we obtain ‖∆‖2 ≤ η and

δP =
1

2πi

∫

Γ
zµ∆

∞∑

k=0

(wµ∆)kzµdµ .

Choosing Γ as a circle around λ with the radius r, we obtain

‖δP‖2 ≤ rz2η
1

1− wη
with

z2 = max
µ∈Γ
‖zµ‖2

2 = max
µ∈Γ

max
ν∈σ(H)

|ν|
|µ− ν|2

w = max
µ∈Γ
‖wµ‖2 = max

µ∈Γ
max
ν∈σ(H)

|ν|
|µ− ν| ,

provided that η < 1/w. We obviously have

z2 = max

{
|λL|

(λ− r − λL)2
,
λ

r2
,

λR
(λR − λ− r)2

}

w = max

{
|λL|

λ− r − λL
,
λ

r
,

λR
λR − λ− r

}
. (2.2.32)

We first consider the case λL > 0. If 2
√
λ−√λL <

√
λR, then by setting

r =
√
λ(
√
λ−

√
λL) (2.2.33)

we obtain

z2 =
1

(
√
λ−√λL)2

, w ≤
√
λ√

λ−√λL
+ 1 .

Here we used our assumption and the fact that both rightmost terms in (2.2.32) are
decreasing functions of λR. Therefore,

‖δP‖2 ≤
√
λ√

λ−√λL
η

1

1−
(

1 +

√
λ√

λ−√λL

)
η

,

and (2.2.31) holds. Positivity of the right hand side of (2.2.31) justifies, in turn, our
choice of the same Γ in the definitions of P and P + δP as follows: perturbation
theorem for the eigenvalues implies that λL can increase to at most λL(1 + η), λR
can decrease to at least λR(1− η), and the eigenvalues of H + δH which correspond
to λ remain in the interval [λ(1 − η), λ(1 + η)]. Positivity of the right hand side of
(2.2.31) always implies rg(λ) > η. This, together with our choice of r, implies that
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Γ contains no points of the spectrum of H + δH and that the interior of Γ contains
exactly those eigenvalues of H + δH which correspond to λ. This remark holds for
the subsequent cases, as well.

If 2
√
λ−√λL ≥

√
λR, then by setting

r =
√
λ(
√
λR −

√
λ)

we obtain

z2 =
1

(
√
λR −

√
λ)2

, w =

√
λR√

λR −
√
λ
.

Here we used our assumption and the fact that both leftmost terms in the right hand
side of (2.2.32) are increasing functions of λL > 0. Therefore,

‖δP‖2 ≤
√
λ√

λR −
√
λ
η

1

1−
√
λR√

λR −
√
λ
η

,

and (2.2.31) holds. If λ is the largest positive eigenvalue (i.e. λR does not exist), then
by setting r as in (2.2.33) we obtain

z2 =
1

(
√
λ−√λL)2

, w =

√
λ√

λ−√λL
,

and (2.2.31) holds again.
If λL < 0 or if λL does not exist, we proceed as follows: if rg(λ) = 2(

√
2− 1) (if

λR exists, this implies λ(4
√

2 + 5) ≤ λR), then by setting

r = 2(
√

2− 1)λ

we obtain

z2 =
1

4(
√

2− 1)2λ
, w =

1

2(
√

2− 1)
,

so (2.2.31) holds. Finally, if rg(λ) = (λR − λ)/(λR + λ), then by setting

r = λ
λR − λ
λR + λ

we obtain

z2 =
1

λ

(
λR + λ

λR − λ

)2

, w =
λR + λ

λR − λ
,

and (2.2.31) holds again. Q.E.D.

æ
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2.3 Perturbations by factors

In this section we consider perturbations of the eigenvalues of a single Hermitian
matrix H given in a factorized form

H = GJG∗ , (2.3.1)

where G need not to be square but must have full column rank, whereas J is Hermitian
and non-singular. A typical J is

J1 =

[
I 0
0 −I

]
. (2.3.2)

Here the unit blocks need not have the same dimension and one of them may be
void. Such factorization is obtained e.g. by the symmetric indefinite decomposition
of Chap. 4. We consider the changes of the eigenvalues and eigenvectors of H under
perturbation of G while J remains unchanged. Here it is natural to use the one–sided
scaling G = BD.

For J = I the problem reduces to considering singular values of G. We reproduce
the result of [13] with somewhat better constants. The same technique allows an
interesting floating–point estimate for the eigenvalues of G (see [32]).

The section is organized as follows. Th. 2.3.1 gives a general perturbation theory,
while Th. 2.3.2 applies this theory to the floating–point perturbations. In the following
discussion we simplify the perturbation bounds analogously to the previous section.
As an application we derive floating–point perturbation estimates for some classes of
matrices not covered by Sect. 2.2.

Theorem 2.3.1 Let H = GJG∗ be as above and let H ′ = G′JG′∗ with

G′ = G+ δG , ‖δGx‖2 ≤ η‖Gx‖2 , (2.3.3)

for all x ∈ Cn and some η < 1. Then H and H ′ have the same inertia and their
non–vanishing eigenvalues λk, λ′k, respectively, satisfy the inequalities

(1− η)2 ≤ λ′k
λk
≤ (1 + η)2 . (2.3.4)

Proof. We first show that the non–vanishing eigenvalues of H coincide with the
eigenvalues of the pair G∗G, J−1. Indeed, since G∗G is positive definite, there exists
a non–singular F such that

F ∗G∗GF = ∆ (2.3.5)

and

F ∗J−1F = J1 (2.3.6)
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are diagonal matrices, and J1 is from (2.3.2). Then the eigenvalues of the pair
G∗G, J−1 are found on the diagonal of ∆J1 = J1∆. Set U = GF∆−1/2. By (2.3.5) we
have U∗U = I (but not necessarily UU ∗ = I). Using (2.3.5) and (2.3.6) we obtain

HU = GJG∗GF∆−1/2 = GJF−∗F ∗G∗GF∆−1/2

= GJF−∗∆1/2 = GFF−1JF−∗∆1/2

= GF (F ∗J−1F )−1∆1/2 = UJ1∆ .

Thus, the columns of U are eigenvectors of H and the eigenvalues of H coincide with
those of G∗G, J−1. Furthermore, U∗x = 0 implies Hx = 0, so the eigenvalues of
G∗G, J−1 are exactly all non–vanishing eigenvalues of H. By (2.3.3) we have

(1− η)‖Gx‖2 ≤ ‖G′x‖2 ≤ (1 + η)‖Gx‖2 , (2.3.7)

so that everything said for H holds for H ′ as well. In particular, H and H ′ have the
same inertia. Now square (2.3.7), use the monotonicity property from the proof of
Th. 2.2.1 for the pairs J−1, G∗G and J−1, G′∗G′, and take reciprocals in (2.2.7) and
(2.2.8). Q.E.D.

We now consider floating–point perturbations and scalings.

Theorem 2.3.2 Let H = GJG∗ be as in (2.3.1) and (2.3.2). Let H ′ = G′JG′∗ where
G′ = G+ δG, and for all i, j and some ε > 0 holds

|δGij| ≤ ε|Gij| . (2.3.8)

Set

η ≡ ε‖|B|‖2

σmin(B)
,

where B = GD−1, D is diagonal and positive definite, and σmin(B) is the smallest
singular value of B. If η < 1 then the assumptions of Th. 2.3.1 are fulfilled, hence its
assertion holds.

Proof. For x ∈ Cn we have

‖δGx‖2 ≤ ε‖|B|D|x|‖2 ≤ ε‖|B|‖2‖Dx‖2

≤ ε‖|B|‖2‖BDx‖2

σmin(B)
=
ε‖|B|‖2‖Gx‖2

σmin(B)
.

Q.E.D.

By ‖|B|‖2 ≥ ‖B‖2 we have

‖|B|‖2

σmin(B)
≥ σmax(B)

σmin(B)
≥ 1 .
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Here both inequalities go over into equalities, if and only if B has the property

B∗B = γ2I , γ > 0 , ‖|B|‖2 = γ ,

or, equivalently (Lemma 2.2.9), if and only if |B|T |B| = γ2I. Similarly as in Sect. 2.2
we can make a simplifying estimate

‖|B|‖2

σmin(B)
≤ (Tr (B∗B))1/2

σmin(B)
,

so that

η =
ε(Tr (B∗B))1/2

σmin(B)
< 1 (2.3.9)

again implies (2.3.3) and therefore (2.3.4). This yields a new ”condition number”

(Tr (B∗B))1/2

σmin(B)
≥ √n ,

where the equality is attained if and only if B∗B = γ2I. For the standard scaling
where (B∗B)ii = 1 the relation (2.3.4) is implied by

η =
ε
√
n

σmin(B)
< 1 . (2.3.10)

This is a slight improvement over [13] for the case J = I (our constant is
√
n times

better).
æ
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For J = I (or J = −I) we can handle the matrix H = GG∗ in two ways. If G has
full column rank, then we apply our theory as described in Theorems 2.3.1 and 2.3.2.
If G∗ has full column rank, then we apply our theory to the matrix Ĥ = G∗G, whose
non–vanishing eigenvalues are the eigenvalues of H. In the indefinite case (J 6= ±I)
the situation is different. The following simple example illustrates this important
asymmetry. Take

G = [a, b] , δG = [δa, δb] .

Our theory cannot be applied to

H = GG∗ = |a|2 + |b|2 ,

but it works on

H = G∗G ,

where G∗ = B̃D̃, B̃ =
[

1/
√

2 1/
√

2
]T

, D̃ = (|a|2 + |b|2)1/2, thus giving η = ε
independently of a and b. On the contrary, no theory can ”save” the matrix

H = G

[
1 0
0 −1

]
G∗ = |a|2 − |b|2

since
|a+ δa|2 − |b+ δb|2

|a|2 − |b|2

cannot be made small uniformly in a, b if |δa/a| and |δb/b| are sufficiently small.5

Similarly as in Th. 2.2.5 we can show that a perturbation result holds under
perturbations δG defined by

|δGij| ≤ εDj for all i, j,

where D is a scaling. The above type of perturbation is less restrictive than (2.3.8),
e.g. it allows us to change zero elements. We have

‖δGx‖2
2 =

∑

i,j,k

x̄iδḠjiδGjkxk ≤ n


ε

∑

j

|Djxj|



2

≤ n2ε2‖Dx‖2
2 ≤

n2ε2‖Gx‖2
2

λmin(B∗B)
,

hence (2.3.4) is implied by

η =
nε

σmin(B)
< 1 . (2.3.11)

5In the indefinite case the values µk =
√
|λk|sign λk are called the hyperbolic singular values [21].
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Similarly one shows that the estimate (2.3.4) is obtained under the perturbation

δG = δBD , η =
‖δB‖2

σmin(B)
< 1 . (2.3.12)

The following two examples show how Th. 2.3.2 can accomodate floating–point
perturbations of some matrices which, in spite of Rem. 2.1, cannot be handled by
the theory from Sect. 2.2. For the first example set

H =

[
A F ∗

F 0

]
, (2.3.13)

where A is of order m and m ≤ n−m. Then H = GJG∗ with

G =

[
1
2
A I
F 0

]
, J =

[
0 I
I 0

]
,

where the unit blocks have the order m. Now the perturbation δH of H with |Hij| ≤
ε|Hij| gives rise to a perturbation δG of G with |δGij| ≤ ε|Gij|, and Th. 2.3.2 holds
e.g. with

B =

[
1
2
A I
F 0

] [
D−1 0

0 I

]
,

where D is the standard scaling

D2
ii =

(
1

4
A2 + F ∗F

)

ii
.

The requirement that G have full column rank is equivalent to the same requirement
on F . Note that this allows singular matrices H.

An even simpler case is the one with A = 0. Then we can apply the theory to

H =

[
0 F ∗

F 0

]
=

[
0 I
F 0

] [
0 I
I 0

] [
0 F ∗

I 0

]
, (2.3.14)

as well as to

H =

[
0 F
F ∗ 0

]
=

[
0 F
I 0

] [
0 I
I 0

] [
0 I
F ∗ 0

]
.

In any case, the non–vanishing eigenvalues of H coincide with the singular values of
F taken with both signs. Now |δGij| ≤ ε|Gij| means |δFij| ≤ ε|Fij| and we can apply
our theory in two ways:

(i) take e.g. (2.3.14) and use Th. 2.3.2 to obtain (2.3.4) with

η =
‖|B|‖2

σmin(B)
,
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where B = FD−1, (B∗B)ii = 1, or
(ii) apply Th. 2.3.2 to the factorized matrix FF ∗ (with the same B) which yields

a slightly better estimate

(1− η)2 ≤ λ
′2
k

λ2
k

≤ (1 + η)2 .

In both cases the theory from Sect. 2 would require both BB∗ and B∗B to scale well,
which is certainly a further unnecessary restriction.

As a second example set

H =



a b c
b 0 0
c 0 α2


 .

We can e.g. decompose H as

H =



a/2 1 0
b 0 0
c 0 α







0 1 0
1 0 0
0 0 1






a/2 b c
1 0 0
0 0 α


 . (2.3.15)

Now |δHij| ≤ ε|Hij| again implies |δGij| ≤ ε|Gij| and we can apply our theory
as in the previous example. For e.g. a = b = c = 1 we obtain ‖|B|‖2‖B−1‖2 =
2+
√

3, independently of α. Especially, if α is small then even the absolutely smallest
eigenvalue α2/2 + O(α4) is well defined by the matrix elements of H. On the other
side, the theory from Sect. 2 applied to H, I gives nothing useful here. Indeed, as
α→ 0 we have

H =
1

3




5 1 1
1 2 2
1 2 2


 +O(α2) , (2.3.16)

so that C(A, Â) = O(1/α2). Moreover, numerical experiments show that C̃(H) >
1/|α|. Another very interesting approach to matrices of the above type is given by
Demmel and Gragg [11].

æ
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2.3.1 Perturbation of the eigenvectors

In this subsection we give the perturbation bounds for the eigenvectors of the non–
singular Hermitian matrix

H = GJG∗ ,

under the perturbations as in Th. 2.3.1, i.e.

‖δGx‖2 ≤ η‖Gx‖2 ,

for every x.

As in [2, 13] and Subsect. 2.2.1, the behaviour of the eigenvectors is influenced
by a relative gap between the neighbouring eigenvalues. Our definition of relative
gap is similar but not identical with the one from [2, 13] and Subsect. 2.2.1, and our
approach is again that of [20].

We now define the relative gap, rgG(λ), and the eigenprojection P for the possibly
multiple eigenvalue λ of H. To simplify the notation, as well as the statement and
the proof of the following theorem, we shall assume that λ is positive. Negative
eigenvalues of H are considered as the positive eigenvalues of the matrix −H. By λL
and λR we denote the left and the right neighbour of λ in the spectrum σ(H) of H,
respectively. We set

rgG(λ) = min

{
1,
λR − λ
λR + λ

,
λ− λL
λ+ λL

}
,

P =
1

2πi

∫

Γ
Rµdµ , Rµ = (µI −H)−1 , (2.3.1)

where Γ is a curve around λ which separates λ from the rest of the spectrum of H.
Here, as well as throughout the section, the terms containing λL, λR are defined if
λL, λR exist and are positive, respectively.

Theorem 2.3.3 Let λ be a positive (possibly multiple) eigenvalue of a non–singular
Hermitian matrix H = GJG∗, and let P be the corresponding eigenprojection. Let
P ′ be the corresponding spectral projection of the matrix H ′ = G′J(G′)∗, where G′ =
G+ δG and ‖δGx‖2 ≤ η‖Gx‖2 for every x.

Then

‖P ′ − P‖2 ≤
4η̄

rgG(λ)
· 1

1− 3η̄

rgG(λ)

, (2.3.2)

where

η̄ = η(2 + η) ,

provided that the right hand side in (2.3.2) is positive.
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Proof. Since H and H−1 have the same eigenvectors, we can define P as

P =
1

2πi

∫

Γ
Sµdµ , Sµ = (µI −H−1)−1 ,

where Γ is now a curve around 1/λ which separates 1/λ from the rest of the spectrum
of H−1. Therefore,

P ′ − P =
1

2πi

∫

Γ
(S ′µ − Sµ)dµ , (2.3.3)

where

S ′µ = (µI −H ′−1)−1 .

We can write

Sµ = (µI −G−∗JG−1)−1 = G(µG∗G− J)−1G∗ ≡ GTµG
∗ , (2.3.4)

and analogously

S ′µ = G′T ′µ(G′)∗ , T ′µ = (µ(G′)∗G′ − J)−1 .

Now

S ′µ − Sµ = G(T ′µ − Tµ)G∗ + Φ , (2.3.5)

where

Φ = δGT ′µG
∗ +GT ′µδG

∗ + δGT ′µδG
∗ . (2.3.6)

Further,

G(T ′µ − Tµ)G∗ = GTµ(T−1
µ − (T ′µ)−1)T ′µG

∗ = GTµµγT
′
µG
∗ , (2.3.7)

where

γ = −δG∗G−G∗δG− δG∗δG .

Inserting

γ = G∗∆G (2.3.8)

and (2.3.4) into (2.3.7), we obtain

G(T ′µ − Tµ)G∗ = Sµµ∆GT ′µG
∗ . (2.3.9)

Using (2.3.4) and (2.3.8), we obtain

GT ′µG
∗ = G(T−1

µ − µG∗∆G)−1G∗

= G(I − µTµG∗∆G)−1TµG
∗

= G((TµG
∗)−1 − µ∆G)−1

= Sµ(I − µ∆Sµ)−1 . (2.3.10)
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Inserting (2.3.10), (2.3.9), (2.3.6) and (2.3.5) into (2.3.3), we obtain

P ′ − P =
1

2πi

∫

Γ
[µSµ∆Sµ(I − µ∆Sµ)−1

+δGG−1Sµ(I − µ∆Sµ)−1 + Sµ(I − µ∆Sµ)−1G−∗δG∗

+δGG−1Sµ(I − µ∆Sµ)−1G−∗δG∗]dµ . (2.3.11)

Our assumption on δG and the definition of ∆ in (2.3.8) imply

‖δGG−1‖2 ≤ η ,

‖∆‖2 ≤ 2‖δGG−1‖2 + ‖δGG−1‖2
2 ≤ η̄ .

Choosing Γ as a circle around 1/λ with radius r, taking norms in (2.3.11), and using
the above relations, we obtain

‖P ′ − P‖2 ≤ rz(w + 1)η̄
1

1− η̄w , (2.3.12)

where

w = max
µ∈Γ
‖µSµ‖2 = max

µ∈Γ
max

ν∈σ(H−1)

|µ|
|µ− ν| ,

z = max
µ∈Γ
‖Sµ‖2 = max

µ∈Γ
max

ν∈σ(H−1)

1

|µ− ν| .

Since Γ is a circle, the maxima in the above relations are attained for µ’s which lie
on the real axis.

If λR exists, then we choose r as

r =
1

2
min

{
1

λ
− 1

λR
,

1

λL
− 1

λ

}
,

and if λR does not exist, then we choose r as

r =
1

2
min

{
1

λ
,

1

λL
− 1

λ

}
.

It is easy to see that we always have

z =
1

r
.

Since µ = 1/λ± r, we have

w = max

{
1/λ− r

1/λ− r − 1/λR
,

1/λ+ r

r
,

1/λ+ r

1/λL − 1/λ− r

}
.

38



Now if r = (1/λ− 1/λR)/2, then

w = 1 +
2

λR − λ
λR

≤ 1 +
2

rgG(λ)
≤ 3

rgG(λ)
,

and (2.3.2) follows by inserting this and z = 1/r into (2.3.12).
If r = (1/λL − 1/λ)/2, then

w =
λ− λL
λ+ λL

≤ 1

rgG(λ)
,

and (2.3.2) follows by inserting this and z = 1/r into (2.3.12).
Finally, if r = 1/(2λ) (λR does not exist), then w = 3 and (2.3.2) follows by

inserting this and z = 1/r into (2.3.12).
Positivity of the right hand side of (2.3.2) justifies, in turn, our choice of the same

Γ in the definitions of P and P ′ in (2.3.3) as follows: perturbation theorem for the
eigenvalues implies that 1/λR can increase to at most 1/(λR(1 − η)2), 1/λL can de-
crease to at least 1/(λL(1 + η)2) and the eigenvalues of H ′−1 which correspond to 1/λ
remain in the interval [1/(λ(1 + η)2), 1/(λ(1− η)2)]. Positivity of the right hand side
of (2.3.2) always implies rgG(λ) > 6η. This, together with our choice of r, implies
that Γ contains no points of the spectrum of H ′−1 and that the interior of Γ contains
exactly those eigenvalues of H ′−1 which correspond to 1/λ. Q.E.D.

Remark 2.3.4 It is possible to prove theorem similar to Th. 2.3.3 for a cluster
of eigenvalues, as well. All eigenvalues of the cluster must be either positive or
negative. The relative gap for the cluster is then defined using λL (λR) and the
leftmost (rightmost) member of the cluster, respectively. The r · z term of (2.3.12) is
then larger than 1, and smaller than the inverse of the relative gap of the cluster.

Note that we can in some cases actually prove better bounds than (2.3.2), but the
differences are small, so we have decided to state and to prove the simpler version.
Th. 2.3.3 is a generalization of the corresponding results from [13] since it allows
J 6= I and multiple eigenvalues.

Now suppose that λ and λ′ are both simple. Let v and v′ = v + δv be the
corresponding unit eigenvectors, and let φ be the angle between them. Then P = vv∗,
P ′ = v′(v′)∗, and P ′ − P is a matrix of rank 2 with the non–trivial eigenvalues, say,
γ1 and γ2. Since Tr (P ′ − P ) = 0, we have |γ1| = |γ2| ≡ γ. Now

2γ2 = Tr [(P ′ − P )(P ′ − P )] = 2 sin2 φ ,

so that
‖P ′ − P‖2 = | sinφ| .
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This finally implies

‖δv‖2 = 2| sin(φ/2)| ≤
√

2‖P ′ − P‖2 . (2.3.13)

Combining the above relation with Th. 2.3.3 we obtain the bound on ‖δv‖2. We
expect this bound to compare favourably to the corresponding bounds from [2, 13]
since it does not contain the factors (n− 1) or (n− 1)1/2, respectively.

æ
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Chapter 3

Error analysis of the J−orthogonal
Jacobi methods

3.1 J−orthogonal Jacobi method

The J−orthogonal Jacobi method solves the problem

Hx = λJx, x 6= 0, (3.1.1)

where H = (Hij) is a positive definite matrix,

J = Inpos ⊕ (−In−npos) ,
npos is the number of the positive, and n − npos is the number of the negative
eigenvalues of the pair H, J . The algorithm, including the convergence theory, was
proposed by Veselić [29]. For the sake of completeness we give the algorithm of the
method and state the known convergence results.

In Chap. 2, we showed that there exists a nonsingular matrix V which simultane-
ously diagonalizes H and J in the manner that

V THV = D, V TJV = J, (3.1.2)

where D = (Di) is a positive definite diagonal matrix. The eigenvalues of the pair
H, J are the values Di · Ji and the eigenvectors are the corresponding columns of
V . The matrices for which V TJV = J are called J–orthogonal and they form a
multiplicative group. (For a fixed J , of course.)

The J−orthogonal Jacobi method consists of an iterative application of the con-
gruence transformation

H ′ = CTHC ,

where C is the J−orthogonal plane rotation. From now on let Â denote the 2 × 2
pivot submatrix of the square matrix A. The matrix C is defined as

Ĉ =

[
cii cij
cji cjj

]
,
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and the non–displayed elements are those of the identity matrix. The pair (i, j) is
the pivot pair. The J−orthogonality of the matrix C implies that

[
cii cij
cji cjj

]
=





[
ch sh
sh ch

]
, for 1 ≤ i ≤ npos < j ≤ n,

[
cs sn
−sn cs

]
, otherwise .

Here ch = cosh y, sh = sinh y, cs = cos x and sn = sin x for some y and x, respec-
tively. These two types of rotations are called the hyperbolic and the trigonometric
rotation, respectively. The parametar x or y is chosen so that the i, j−element of the
transformed matrix is annihilated. Let

Ĥ =

[
a c
c b

]
.

Then

tan 2x =
2c

b− a, − π

4
≤ x ≤ π

4
,

or

tanh 2y = − 2c

a+ b
.

We obtain the following algorithm (in the notation of [13]):
æ

42



Algorithm 3.1.1 Two-sided J−orthogonal Jacobi method for the problem (3.1.1).
tol is a user defined stopping criterion. The matrix V whose columns return the
computed eigenvectors initially contains the identity.

repeat
for all pairs i < j
/* compute the parameter hyp: hyp = 1 for the hyperbolic and

hyp = −1 for the trigonometric rotation, respectively */
if 1 ≤ i ≤ npos < j ≤ n then

hyp = 1
else

hyp = −1
endif
/* compute the J−orthogonal Jacobi rotation which diagonalizes[

Hii Hij

Hji Hjj

]
≡
[
a c
c b

]
*/

ζ = −hyp ∗ (b+ hyp ∗ a)/(2c)
t = sign(ζ)/(|ζ|+√ζ2 − hyp)
h =
√

1− hyp ∗ t2
cs = 1/h
sn = t/h
sn1 = hyp ∗ sn
/* update the 2 by 2 pivot submatrix */
Hii = a+ hyp ∗ c ∗ t
Hjj = b + c ∗ t
Hij = Hji = 0
/* update the rest of rows and columns i and j */
for k = 1 to n except i and j

tmp = Hik

Hik = cs ∗ tmp+ sn1 ∗Hjk

Hjk = sn ∗ tmp + cs ∗Hjk

Hki = Hik

Hkj = Hjk

endfor
/* update the eigenvector matrix V */
for k = 1 to n

tmp = Vki
Vki = cs ∗ tmp+ sn1 ∗ Vkj
Vkj = sn ∗ tmp + cs ∗ Vkj

endfor
endfor

until convergence (all |Hij|/(HiiHjj)
1/2 ≤ tol )

/* the computed eigenvalues of the pair H, J are λj = HjjJjj */

43



/* the computed eigenvectors of the pair H, J are the columns
of the final matrix V */

Our algorithm is essentially the standard one introduced by Rutishauser [22].
The formulae for the hyperbolic case are derived in the same manner as for the
trigonometric one [29]. In the following section we analyse this (simple) version of
the algorithm. We omitt enhancements like delayed updates of the diagonals and
fast rotations, to make the analysis clearer. Analysis of the fast rotations is given for
the implicit method in Sect. 3.4. One of the differences between our algorithm and
the standard one is the stopping criterion. This criterion is also used in [13, 29, 31].
Our justification of this criterion is the same as in [13]: according to Th. 2.2.1, the
accuracy of the eigenvalues depends on 1/λmin(A) (or κ(A)) and not on κ(H), so that
we set Hij to zero only if |Hij|/(HiiHjj)

1/2 is small, not just if |Hij|/maxkl |Hkl| is
small.

One difference between trigonometric and hyperbolic rotations is that Tr (H ′) =
Tr (H) after trigonometric, and Tr (H ′) < Tr (H) after hyperbolic rotation. Using this
trace reduction argument Veselić [29] proved that the hyperbolic parameter t tends
to zero. The second difference is that the condition of the transformation matrix is
in the trigonometric case one, while in the hyperbolic case it can be large. Note,
however, that

| tanh y| ≤
√
κ(A)− 1

√
κ(A) + 1

,

where A is the scaled matrix, i.e. H = DAD, diag (A) = I. Moreover, if G, J is the
output of the symmetric indefinite decomposition, then the scaled condition of the
matrix GTG is generally small (see Sect. 4.4, Chap. 5), and it does not grow much
during the Jacobi process (see Sect. 3.2.2, Chap. 5), so the hyperbolic parameters are
generally moderate. In Subsect. 3.2.1 we show how to modify hyperbolic rotations
in order to bound the condition of the transformation matrix. This modification
improves the theoretical bounds, but it does not seem to be of importance in practice.

Veselić [29] proved that the J−orthogonal Jacobi method is globally convergent for
the optimal strategy, threshold strategies, row–cyclic strategy, and all other strategies
which are equivalent to the row–cyclic one (for example, the modulus parallel strategy
[18]). He also proved a very interesting fact that all J−orthogonal matrices V which
satisfy (3.1.2) have the same condition number. Moreover, if V1 and V2 are two such
matrices, then

V2 = V1U, U =

[
U1 0
0 U2

]
,

where U1, U2 are othogonal matrices of order m, n−m, respectively.
Drmač and Hari [15] proved that the J−orthogonal Jacobi method is quadratically

convergent.
æ
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3.2 Error bounds for the eigenvalues

In this section we prove that the two-sided J−orthogonal Jacobi method in floating–
point arithmetic applied to the problem (3.1.1) computes eigenvalues with the error
bounds of Chap. 2. Since the computed eigenvector matrix is not orthogonal and
is not needed when applying our algorithm to a single indefinite matrix, we do not
investigate the accuracy of the computed eigenvectors.

Let H0 = D0A0D0 be the initial matrix, and Hm = DmAmDm where Hm is ob-
tained from Hm−1 by applying a single J−orthogonal Jacobi rotation. Here Dm is
diagonal and Am has unit diagonal as before. All the error bounds in this section
contain the quantities 1/λmin(A) (or κ(Am)), whereas the perturbation bounds of
Chap. 2 are proportional to κ(A0). Therefore, our claim that J−orthogonal Jacobi
method solves the eigenproblem as accurately as predicted in Chap. 2 depends, as in
[13], on the ratios maxm λmin(A0)/λmin(Am) (or maxm κ(Am)/κ(A0)) being modest
in size. Note that the convergence of Hm to diagonal form is equivalent to the con-
vergence of Am to the identity, or κ(Am) to 1. Thus we expect κ(Am) to be less than
κ(A0) eventually. Demmel and Veselić [13] have overwhelming numerical evidence
that in the positive definite case (J = I) the above ratios are modest in size. Our
experiments of Chap. 5 reveal the same for J 6= I. Our theoretical understanding of
why these ratios are so small is somewhat weaker; we present our theoretical bounds
in Subsect. 3.2.2.

The section is organized as follows: we first show that one step of the method satis-
fies the perturbation bounds of Chap. 2, and that we can extend this result to an over-
all error bound (modulo the assumption that the quotients maxm λmin(A0)/λmin(Am)
are modest). In Subsect. 3.2.1 we show how to modify the method in order to bound
potentially large hyperbolic angles, which, in turn, results in better error bounds.

We now present our model of the finite precision floating–point arithmetic. The
floating–point result fl(·) of the operation (·) is given by [33, 13]

fl(a± b) = a(1 + ε1)± b(1 + ε2)

fl(a× b) = (a× b)(1 + ε3) (3.2.1)

fl(a/b) = (a/b)(1 + ε4)

fl(
√
a) =

√
a(1 + ε5)

where |εi| ≤ ε, and ε � 1 is the machine precision. This is somewhat more general
than the usual model which uses fl(a ± b) = (a ± b)(1 + ε1) and includes machines
like the Cray which do not have a guard digit. This does not greatly complicate
the error analysis, but it is possible that the computed rotation angle may be less
accurate. This may adversely affect convergence, but as we will see it does not affect
the one-step error analysis.

Numerically subscripted ε’s will denote independent quantities bounded in mag-
nitude by ε. As usual (e.g. [13]), we will make approximations like (1+ iε1)(1+jε2) =
1 + (i + j)ε3 and (1 + iε1)/(1 + jε2) = 1 + (i+ j)ε3.
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The next theorem and its corollary justify our accuracy claims for eigenvalues
computed by two-sided J−orthogonal Jacobi method .

Theorem 3.2.1 Let Hm be the sequence of matrices generated by Algorithm 3.1.1
in floating–point arithmetic with precision ε; that is, Hm+1 is obtained from Hm by
applying a single J–orthogonal Jacobi rotation. Then the following diagram commutes.

Hm + δHm

Hm Hm+1

?

-floating

�
�
���
exact

The top arrow indicates that Hm+1 is obtained from Hm by applying one J–orthogonal
Jacobi rotation in floating–point arithmetic. The diagonal arrow indicates that Hm+1

is obtained from Hm + δHm by applying one J–orthogonal Jacobi rotation in exact
arithmetic; thus Hm+1 amd Hm+δHm are exactly similar. δHm is bounded as follows.
Let κ = κ(Am), and write δHm = DmδAmDm. Then, with the relative error of order
ε,1

‖δAm‖2 ≤ Cm ε , (3.2.2)

where

Cm =





60 + 58
√
n− 2 in trigon. case ,

35.5 + (
√
κ+ 3)(30.93 + 8.24

√
n− 2) in hyperb. case , |ζ| ≤ 3

2
√

2
,

222.42 + 46.77
√
n− 2 in hyperb. case , |ζ| > 3

2
√

2
,

b ≥ 1

2
a ,

225.5 + 62.45
√
n− 2 in hyperb. case , |ζ| > 3

2
√

2
,

b <
1

2
a .

In other words, one step of Jacobi satisfies the assumptions needed for the perturbation
bounds of Sect. 2.2.

The bound (3.2.2) seems to be highly discontinuous at |ζ| = 3/(2
√

2). This disconti-
nuity can be removed as decribed in Rem. 3.2.4, or by using the modified method of
Subsect. 3.2.1.

1This formulation is explained after the relation (1.12).
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Proof. The proof of the commuting diagram is a tedious computation. We shall
prove the diagram separately for the trigonometric and for the hyperbolic case. We
assume that multiplications with the parameter hyp in Alg. 3.1.1 have no errors.
Write the 2 by 2 submatrix of the current matrix Hm as

Ĥm =

[
a c
c b

]
≡
[

d2
i zdidj

zdidj d2
j

]
(3.2.3)

In both cases we can assume without loss of generality that a ≥ b. By positive
definiteness we have

0 < |z| ≤ z̄ ≡ (κ− 1)/(κ+ 1) < 1 . (3.2.4)

Let a′ and b′ be the new values of Hii and Hjj computed by the algorithm, respectively.
Trigonometric case. This case was analysed by Demmel and Veselić [13]. Our

proof is essentially the same as theirs, and we repeat it for the sake of completeness.
Small differences in the proof lead to a somewhat better bound for ‖δAm‖2.

Systematic application of the formulae (3.2.1) shows that

ζ = fl((b− a)/(2 ∗ c))
= (1 + ε4)(((1 + ε1)b− (1 + ε2)a)/((1 + ε3)2c))

=
(1 + ε4)(1 + ε2)

1 + ε3

(
b̃− a

2c

)

where

b̃ ≡ 1 + ε1

1 + ε2

b ≡ (1 + εb)b , |εb| ≤ 2ε .

Thus

ζ = (1 + εζ)
b̃− a

2c
, |εζ| ≤ 3ε .

Let t̃, c̃s, s̃n and −s̃n denote the true values of t, cs, sn and sn1 = −sn (i.e.
without rounding error) as a function of a, b̃ and c. Using (3.2.1) again one can show
that

t = (1 + εt)t̃, cs = (1 + εcs)c̃s, sn = (1 + εsn)s̃n,

where2

|εt| ≤ 7ε, |εcs| ≤ 10ε, |εsn| ≤ 17ε.

c̃s and s̃n define the exact trigonometric Jacobi rotation

Jm ≡
[

c̃s s̃n
−s̃n c̃s

]

2Calculating sn as sn = t/h instead of sn = t · cs [13] saves one ε in bounding εsn. This was
noticed by Drmač [14].
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which transforms Hm+δHm to Hm+1 in the diagram in the statement of the theorem:

JTm(Hm + δHm)Jm = Hm+1 .

Now we begin constructing δHm. δHm will be nonzero only in the rows and
columns i and j. We first compute its entries outside the 2 by 2 pivot submatrix. Let
H ′ik and H ′jk denote the updated quantities computed by the algorithm. Then

H ′ik = fl(cs ∗Hik − sn ∗Hjk)

= (1 + ε4)(1 + ε5)csHik − (1 + ε6)(1 + ε7)snHjk

= (1 + ε4)(1 + ε5)(1 + εcs)c̃sHik − (1 + ε6)(1 + ε7)(1 + εsn)s̃nHjk

≡ c̃sHik − s̃nHjk + ε(H ′ik),

where
ε(H ′ik) = ε′1c̃sHik − ε′2s̃nHjk, |ε′1| ≤ 12ε, |ε′2| ≤ 19ε.

Similarly,

H ′jk = fl(sn ∗Hik + cs ∗Hjk)

= s̃nHik + c̃sHjk + ε(H ′jk),

where
ε(H ′jk) = ε′3c̃sHjk + ε′4s̃nHik, |ε′3| ≤ 12ε, |ε′4| ≤ 19ε.

Thus
[
H ′ik
H ′jk

]
= JTm

[
Hik

Hjk

]
+

[
ε(Hik)
ε(Hjk)

]

= JTm

([
Hik

Hjk

]
+ Jm

[
ε(Hik)
ε(Hjk)

])

≡ JTm

([
Hik

Hjk

]
+

[
δHik

δHjk

])
,

where

δHik = ε′1c̃s
2Hik − ε′2c̃ss̃nHjk + ε′3c̃ss̃nHjk + ε′4s̃n

2Hik

δHjk = −ε′1c̃ss̃nHik + ε′2s̃n
2Hjk + ε′3c̃s

2Hjk + ε′4c̃ss̃nHik .

Using

|Hij| ≤ didj, c̃s =
1√

1 + t̃2
, s̃n =

t̃√
1 + t̃2

,

we have

|δAik| ≤
1

1 + t̃2

(
12 + 31|t̃|dj

di
+ 19t̃2

)
ε , (3.2.5)

49



which is an increasing function for |t̃| ∈ [0, 1].
Set x ≡ dj/di. Note that x ≤ 1. In estimating |δAjk| we consider two cases:

x < x̄ ≡ .48, and x ≥ x̄. If x < x̄, then, with the relative error of O(ε), we have

|t̃| = 1

1− x2

2|z|x +


1 +

(
1− x2

2|z|x

)2



1/2
≤ x

1− x̄2
.

Since we want to bound |δAjk| with a bound of order ε, we neglect the relative error
of O(ε) in the above inequality. Therefore,

|δAjk| ≤
1

1 + t̃2

(
12 + 31

1

1− x̄2
+ 19t̃2

)
ε , (3.2.6)

which is a decreasing function of t̃2. Substituting 1 for t̃ and x̄ for dj/di in (3.2.5),
and 0 for t̃ in (3.2.6), we obtain

√
δA2

ik + δA2
jk ≤ 57.3ε . (3.2.7)

If x ≥ x̄, then

|δAjk| ≤
1

1 + t̃2

(
12 + 31|t̃|1

x̄
+ 19t̃2

)
ε , (3.2.8)

which is an increasing function of |t̃| ∈ [0, 1]. Substituting 1 for t̃ and dj/di in (3.2.5)
and (3.2.8), we obtain √

δA2
ik + δA2

jk ≤ 57.4ε . (3.2.9)

Note that our choice of x̄ makes bounds in relations (3.2.7) and (3.2.9) almost equal.
Now we construct the 2 by 2 submatrix δĤm of δHm at the intersection of the

rows and columns i and j. We will construct it of three components

δĤm = ∆1 + ∆2 + ∆3 .

Applying the relations (3.2.1), we obtain

b′ = fl(b+ c t) =
1 + ε2

1 + ε1

(1 + ε8)b̃ + (1 + ε9)(1 + ε10)(1 + εt) c t̃

= (1 + ε9)(1 + ε10)(1 + εt)

(
(1 + ε2)(1 + ε8)

(1 + ε1)(1 + ε9)(1 + ε10)(1 + εt)
b̃ + c t̃

)

≡ (1 + εb′)(b̃ + c t̃ + ε′b b̃) ,

where |εb′| ≤ 9ε and |ε′b| ≤ 12ε. Similarly,

a′ = fl(a− c t) = (1 + ε11)a− (1 + ε12)(1 + ε13)(1 + εt) c t̃

= (1 + εa′)(a− c t̃) ,
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where |εa′| ≤ 9ε. Here we used the fact that c t̃ < 0.
Now let

∆1 =

[
0 0
0 εbb

]
+ Jm

[
0 0

0 ε′bb̃

]
JTm .

From earlier discussion we see that

JTm

([
a c
c b

]
+ ∆1

)
Jm =

[
a− ct̃ 0

0 b+ ct̃ + ε′bb̃

]
.

Next let

∆2 = εa′

([
a c
c b

]
+ ∆1

)
.

Thus

JTm

([
a c
c b

]
+ ∆1 + ∆2

)
Jm = (1 + εa′)

[
a− ct̃ 0

0 b+ ct̃ + ε′bb̃

]

=



a′ 0

0 b′
1 + εa′

1 + εb′


 .

Now let

∆3 = Jm




0 0

0 b′
(

1− 1 + εa′

1 + εb′

)

 JTm ≡

[
s̃n2εb′′b

′ c̃ss̃nεb′′b
′

c̃ss̃nεb′′b
′ c̃s2εb′′b

′

]
,

where |εb′′| ≤ |εa′|+ |εb′| ≤ 18ε. Then

JTm

([
a c
c b

]
+ ∆1 + ∆2 + ∆3

)
Jm =

[
a′ 0
0 b′

]

as desired. This completes the construction of δĤm. Since b̃ = b(1 + εb) and b′ < b,

‖δÂm‖2 ≤ |εb|+ |ε′b|+ 2 · |εa′|+ |εb′′| ≤ 60ε

holds with the relative error of O(ε). From (3.2.7), (3.2.9), and the above relation, it
finally follows

‖δAm‖2 ≤ (60 + 58
√
n− 2) ε . (3.2.10)

This bound improves the bound ‖δAm‖2 ≤ (257
√
n− 2 + 104)ε from [13].

æ
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Hyperbolic case. To avoid the confusion with the trigonometric case, we denote the
quantities cs, sn and sn1 = sn computed by Alg. 3.1.1 with ch and sh, respectively.
We first compute t̃, h̃, c̃h and s̃h as the exact values of the parameters computed
without rounding errors from a, b and some c̃ ≡ (1 + εc)c. Generally, the following
bounds hold:

|ζ| ≥ κ+ 1

κ− 1
> 1 ,

|t| ≤
√
κ− 1√
κ+ 1

< 1 , (3.2.11)

|sh| < ch ≤ 1

2

(
4
√
κ+

1
4
√
κ

)
.

Let ζ0 ≡ (a + b)/(−2c) be the exact value of (a + b)/(−2c). Systematic application
of (3.2.1) gives

ζ1 = fl

(
a+ b

−2c

)
= (1 + εζ1)ζ0 ,

where |εζ1| ≤ 3ε, and

t1 = fl


 sign (ζ1)

|ζ1|+
√
ζ2

1 − 1




=
(1 + ε1)sign (ζ1)

(1 + ε2)(|ζ1|+ (1 + ε3)
√
ζ2

1 (1 + ε4)(1 + ε5)− (1 + ε6)

=
1 + ε1

1 + ε2
· sign (ζ1)

|ζ1|+ (1 + ε3)
√

1 + ε6

√
ζ2

1

(1 + ε4)(1 + ε5)

1 + ε6

− 1

.

Now let

ζ2
2 ≡ ζ2

1

(1 + ε4)(1 + ε5)

1 + ε6
.

Then ζ2 ≡ (1 + εζ2)ζ1, where |εζ2| ≤ 1.5ε. This implies that

t1 =
1 + ε1

1 + ε2
· sign (ζ1)

|ζ2
1

1 + εζ2
|+ (1 + ε3)

√
1 + ε6

√
ζ2

2 − 1

≡ (1 + εt1)
sign (ζ2)

|ζ2|+
√
ζ2

2 − 1
,

where |εt1| ≤ 3.5ε. Furthermore,

h = fl(
√

1− t21) = (1 + ε7)
√

(1 + ε8)− (1 + ε9)(1 + ε10)t21
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= (1 + ε7)
√

1 + ε8

√
1− (1 + ε9)(1 + ε10)

1 + ε8
t21

≡ (1 + εh)
√

1− t22 , (3.2.12)

where

|εh| ≤ 1.5ε , t22 ≡
(1 + ε9)(1 + ε10)

1 + ε8

t21 ,

i.e.
t2 = (1 + εt2)t1 , |εt2 | ≤ 1.5ε . (3.2.13)

Therefore,

sign (ζ2)

|ζ2|+
√
ζ2

2 − 1
=

1

1 + εt1
t1 =

1

(1 + εt1)(1 + εt2)
t2 ≡ (1 + ε′t2)t2 ,

where |ε′t2 | ≤ |εt1 |+ |εt2| ≤ 5ε. In exact arithmetic

t =
sign (ζ)

|ζ|+√ζ2 − 1

implies

ζ =
1

2

(
t+

1

t

)
.

Therefore, in exact arithmetic for ζ2 we have

ζ2 =
1

2

(
(1 + ε′t2)t2 +

1

(1 + ε′t2)t2

)
,

which, in turn, implies

1

2

(
t2 +

1

t2

)
= (1 + ε′ζ2)ζ2 = (1 + ε′ζ2)(1 + εζ2)ζ0 ≡ (1 + ε′′ζ2)ζ0 , (3.2.14)

where
|ε′ζ2| ≤ |ε′t2| ≤ 5ε , |ε′′ζ2 | ≤ |ε′ζ2|+ |εζ2| ≤ 9.5ε .

Therefore, we can choose εc,

|εc| ≤ |ε′′ζ2| ≤ 9.5ε ,

such that for c̃ = (1 + εc)c in exact arithmetic3

a + b

−2c̃
= (1 + ε′′ζ2)ζ0 . (3.2.15)

3In the trigonometric case we had to perturb b. Here we can perturb either a or c, and we perturb
c since it is absolutely smaller.
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From (3.2.14) and (3.2.15) it follows that t̃ = t2 is the exact value of the parameter t
computed without rounding errors from a, b and c̃. Set

h̃ =
√

1− t̃2, c̃h =
1

h̃
, s̃h =

t̃

h̃
.

For the computed quantities we have

t = t1 = (1 + εt)t̃ , |εt| ≤ |εt2| ≤ 1.5ε ,

h = (1 + εh)h̃ , |εh| ≤ 1.5ε ,

ch = fl(1/h) = (1 + εch)c̃h , |εch| ≤ ε+ |εh| ≤ 2.5ε ,

sh = fl(t/h) = (1 + εsh)s̃h , |εsh| ≤ ε+ |εt|+ |εh| ≤ 4ε .

Here the first line follows from t̃ = t2 and (3.2.12), the second line follows from
(3.2.13), and the last two lines follow from the first two lines and the formulae (3.2.1).

c̃h and s̃h define the exact hyperbolic rotation

Jm ≡
[
c̃h s̃h

s̃h c̃h

]

which transforms Hm+δHm to Hm+1 in the diagram in the statement of the theorem:

Jm(Hm + δHm)Jm = Hm+1 .

Now we begin constructing δHm. δHm will be nonzero only in the rows and
columns i and j. First we compute its entries outside the 2 by 2 (i, j) submatrix.
Let H ′ik and H ′jk denote the updated quantities computed by the algorithm. Then,
similarly to the trigonometric case, we have

H ′ik = fl(ch ∗Hik + sh ∗Hjk) = c̃hHik + s̃hHjk + ε(H ′ik),

where
ε(H ′ik) = ε′1c̃hHik + ε′2s̃hHjk, |ε′1| ≤ 4.5ε, |ε′2| ≤ 6ε ,

and
H ′jk = fl(sh ∗Hik + ch ∗Hjk) = s̃hHik + c̃hHjk + ε(H ′jk),

where
ε(H ′jk) = ε′3c̃hHjk + ε′4s̃hHik, |ε′3| ≤ 4.5ε, |ε′4| ≤ 6ε.

Thus
[
H ′ik
H ′jk

]
= JTm

[
Hik

Hjk

]
+

[
ε(Hik)
ε(Hjk)

]

= JTm

([
Hik

Hjk

]
+ J−1

m

[
ε(Hik)
ε(Hjk)

])

≡ Jm

([
Hik

Hjk

]
+

[
δHik

δHjk

])
,

54



where

δHik = ε′1c̃h
2
Hik + ε′2c̃hs̃hHjk − ε′3c̃hs̃hHjk − ε′4s̃h

2
Hik ,

δHjk = −ε′1c̃hs̃hHik − ε′2s̃h
2
Hjk + ε′3c̃h

2
Hjk + ε′4c̃hs̃hHik . (3.2.16)
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Contrary to the trigonometric case, we analyse two cases. The first case is when
|ζ| is near the bound (3.2.11), and the second case is when |ζ| is bounded away from
(3.2.11). Set, as in the trigonometric case, x ≡ dj/di. Set4

α =
3

2
√

2
, β ≡ 1

α +
√
α2 − 1

=
1√
2
. (3.2.17)

Case I. |ζ| ≤ α.
From our assumption, the definition of ζ, and |c| ≤

√
ab it follows

a+ b ≤ α · 2
√
ab,

i.e.
1

x
+ x ≤ 2α .

This implies

x ≥ 1

α +
√
α2 − 1

≡ β =
1√
2
,

dj ≤ di ≤
1

β
dj , b ≤ a ≤ 1

β2
b , (3.2.18)

i.e. when |ζ| is near its lower bound, then a and b do not differ much. We now show
that

c̃h ≤ 1

2

(
4
√
κ+

1
4
√
κ

)
(3.2.19)

holds with the relative error of O(ε). Indeed, c = zdidj implies c̃ = z̃didj = z(1 +
εc)didj. Set

κ1 ≡ (1 + z(1 + εc))/(1− z(1 + εc)) .

Then

c̃h ≤ ( 4
√
κ1 +

1
4
√
κ1

)/2 .

A simple calculation shows that

1− z(1 + εc) = (1 + ε′)(1− z) , |ε′| ≤ |εc|(κ+ 1)/2 .

Therefore,

κ1 ≡
1 + z(1 + εc)

1− z(1 + εc)
=

1 + z

1− z (1 + εc)(1 + ε′) ≤ κ(1 + |εc|+ |ε′|) ,

and (3.2.19) holds. We neglect the relative error of O(ε) since it adds only the relative
error of O(ε) in the final estimate. Therefore,

s̃h
2 ≤ |s̃h|c̃h ≤ c̃h

2 ≤ 1

4
(
√
κ+ 3) . (3.2.20)

4Note that we can choose some other α, as well. This choice is explained in Rem. 3.2.4 below.
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Using the fact that |Hij| ≤ didj, and inserting (3.2.18) and (3.2.20) into (3.2.16),
we obtain

|δHik| ≤
1

4
(
√
κ+ 3)(|ε′1|+ |ε′2|+ |ε′3|+ |ε′4|)didk

≤ 5.25(
√
κ+ 3)didkε

|δHjk| ≤
1

4
(
√
κ+ 3)(|ε′2|+ |ε′3|+

1

β
(|ε′1|+ |ε′4|))djdk (3.2.21)

≤ 6.34(
√
κ+ 3)djdkε .

Now we construct the 2 by 2 submatrix δĤm of δHm at the intersection of the rows
and columns i and j. We will construct it of three components, δĤm = ∆1 +∆2 +∆3.
The analysis is somewhat different from the analysis in the trigonometric case because
a′ < a, b′ < b, so that, due to subtraction, a′ and b′ can both have large relative errors.
We have

a′ = fl(a + c t) = (1 + ε12)a+ (1 + ε13)(1 + ε14)(1 + εc)(1 + εt) c̃ t̃

= (1 + ε13)(1 + ε14)(1 + εc)(1 + εt)

(
1 + ε12

(1 + ε13)(1 + ε14)(1 + εc)(1 + εt)
a+ c̃ t̃

)

= (1 + εa′)(a+ c̃ t̃+ εaa) ,

where

|εa′ | ≤ 2ε+ |εc|+ |εt| ≤ 13ε ,

|εa| ≤ 3ε+ |εc|+ |εt| ≤ 14ε .

Similarly,
b′ = fl(b + c t) = (1 + εb′)(b+ c̃ t̃+ εbb) ,

where
|εb′| ≤ 13ε , |εb| ≤ 14ε .

Let

∆1 =

[
0 εcc
εcc 0

]
+ J−1

m

[
εaa 0
0 εbb

]
J−1
m

=

[
0 εcc
εcc 0

]
+


 c̃h

2
εaa+ s̃h

2
εbb −c̃h s̃h(εaa+ εbb)

−c̃h s̃h(εaa + εbb) s̃h
2
εaa + c̃h

2
εbb


 ,

and

∆2 = εa′

([
a c
c b

]
+ ∆1

)
.

From earlier discussion we see that

Jm

([
a c
c b

]
+ ∆1 + ∆2

)
Jm =



a′ 0

0 b′
1 + εa′

1 + εb′


 .
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Now let

∆3 = J−1
m




0 0

0 b′
(

1− 1 + εa′

1 + εb′

)

 J−1

m =


 s̃h

2
εb′′b

′ −c̃h s̃hεb′′b′
−c̃h s̃hεb′′b′ c̃h

2
εb′′b

′


 ,

where |εb′′| ≤ |εa′ |+ |εb′| ≤ 26ε. Then

Jm

([
a c
c b

]
+ ∆1 + ∆2 + ∆3

)
Jm =

[
a′ 0
0 b′

]

to the first order of ε, as desired. This completes the construction of δĤm and we
have

‖δÂm‖2 ≤ |εc|+
1

4
(
√
κ + 3) max{|εa|, |εb|}(2α+ 1 +

1

β2
) + 2|εa′ |+

1

2
(
√
κ+ 3)|εb′′|

≤ (35.5 + (
√
κ + 3) 30.93) ε .

Here we used (3.2.18), (3.2.20), and b′ < b. Combining (3.2.21) with the above
relation, we finally obtain

‖δAm‖2 ≤ (35.5 + (
√
κ+ 3)(30.93 + 8.24

√
n− 2)) ε . (3.2.22)
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Case II. |ζ| > α.
Our assumption implies

|t| ≤ β =
1√
2
,

ch ≤ 1√
1− β2

=
√

2 , (3.2.23)

|sh| ≤ β√
1− β2

= 1 .

These bounds hold with the relative error of O(ε) for t̃, s̃h and c̃h, as well. We split
this case into two subcases.

Subcase IIa. x ≡ dj/di ≥ β.
The analysis is identical to the analysis in the first case; only the upper bounds for

s̃h
2
, |s̃h|c̃h and c̃h

2
are now obtained from (3.2.23) and not from (3.2.20). Therefore,

|δHik| ≤ (2|ε′1|+
√

2|ε′2|+
√

2|ε′3|+ |ε′4|)didk ≤ 29.85didk ε ,

|δHjk| ≤ (
√

2
√

2|ε′1|+ |ε′2|+ 2|ε′3|+
√

2
√

2|ε′4|)djdk ≤ 36djdk ε ,

‖δÂm‖2 ≤ |εc|+ max{|εa|, |εb|}
∥∥∥∥∥

[
3 3

√
2

3
√

2 4

]∥∥∥∥∥
2

+ 2|εa′|+ |εb′′|
∥∥∥∥∥

[
1
√

2√
2 2

]∥∥∥∥∥
2

≤ 222.42 ε ,

and, altogether,
‖δAm‖2 ≤ (222.42 + 46.77

√
n− 2) ε . (3.2.24)

Subcase IIb. x ≡ dj/di < β.
The above assumption implies |c| < βa. From

ζ̃ = −(1 + x2)/(2z̃x) , z̃ = z(1 + εc) ,

it follows
|t̃| ≤ 2|z̃|x/(1 + x2) ≤ 2x .

Here we ignored the relative error of O(ε) in z and and used the fact that |z̃| < 1.
Therefore,

c̃h|s̃h| = c̃h
2|t̃| ≤ 2c̃h

2dj
di
. (3.2.25)

From (3.2.16), (3.2.23), (3.2.25), and our assumption, it follows

|δHik| ≤ (2|ε′1|+
√

2|ε′2|
1√
2

+
√

2|ε′3|
1√
2

+ |ε′4|)didk ≤ 25.5didk ε ,

|δHjk| ≤ (
√

2
√

2|ε′1|+ |ε′2|+ 2|ε′3|+
√

2
√

2|ε′4|)djdk ≤ 57djdk ε . (3.2.26)
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Now we construct the 2 by 2 submatrix δĤm. The analysis is similar to the
analysis in the trigonometric case because a′ can be computed with small relative
error. We have

a′ = fl(a+ c t) = (1 + εa′)((1 + εa)a+ c̃ t̃) ,

where
|εa′| ≤ 13ε , |εa| ≤ 14ε .

Since |t| ≤ β and |c| < βa, we can write (with the relative error of O(ε), of course)

(1 + εa)a + c̃ t̃ = (1 + ε′a)(a+ c̃ t̃) ,

where

|ε′a| =
∣∣∣∣∣εa

c̃ t̃

a+ c̃ t̃

∣∣∣∣∣ ≤ |εa|
aβ2

a(1− β2)
= |εa| .

Therefore,

a′ = (1 + ε′a′)(a+ c̃ t̃) , |ε′a′| ≤ |εa′|+ |ε′a| ≤ 27 · ε .
Also

b′ = fl(b + c t) = (1 + εb′)(b+ c̃t̃ + εbb) , |εb′| ≤ 13ε, |εb| ≤ 14ε .

Let

∆1 =

[
0 εcc
εcc 0

]
+ J−1

m

[
0 0
0 εbb

]
J−1
m ,

∆2 = ε′a′

([
a c
c b

]
+ ∆1

)
,

∆3 = J−1
m




0 0

0 b′
(

1− 1 + ε′a′

1 + εb′

)

 J−1

m =


 s̃h

2
ε′b′′b

′ −c̃h s̃hε′b′′b′
−c̃h s̃hε′b′′b′ c̃h

2
ε′b′′b

′


 ,

where |ε′b′′| ≤ |ε′a′ |+ |εb′| ≤ 40ε. Then

Jm

([
a c
c b

]
+ ∆1 + ∆2 + ∆3

)
Jm =

[
a′ 0
0 b′

]
,

and
‖δÂm‖2 ≤ |εc|+ 3|εb|+ 2|ε′a′ |+ 3|ε′b′′| ≤ 225.5 ε .

Combining (3.2.26) with the above relation, we finally obtain

‖δAm‖2 ≤ (225.5 + 62.45
√
n− 2) ε . (3.2.27)

The theorem now follows from the relations (3.2.10), (3.2.22), (3.2.24) and (3.2.27).
Q.E.D.
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Corollary 3.2.2 Assume Algorithm 3.1.1 converges, and that HM , J is the final pair.
Write Hm = DmAmDm with Dm diagonal and Am with ones on the diagonal for 0 ≤
m ≤M . Let λj be the j-th eigenvalue of the pair H, J ≡ H0, J and λ′j = (HM)jj Jjj.
Then, with the relative error of O(ε), the following error bound holds:

|λj − λ′j|
|λj|

≤ ε
M−1∑

m=0

Cm
λmin(Am)

+ n · tol . (3.2.28)

Proof. For every vector x and positive definite H we have

|x∗δHx| ≤ |x∗DδADx| ≤ ‖δA‖2|x∗DDx| ≤ ‖δA‖2
|x∗DADx|
λmin(A)

=
‖δA‖2

λmin(A)
x∗Hx .

Let λm,j denote the j−th eigenvalue of the pair Hm, J . Applying Th. 2.2.1 with
δJ = 0 and ηJ = 0, and Th. 3.2.1 to the pairs J,Hm for 0 ≤ m ≤M − 1, we obtain

1− ηm ≤
λm+1,j

λm,j
≤ 1 + ηm , (3.2.29)

where

ηm =
Cm

λmin(Am)
ε .

Applying Th. 2.2.1 and the stopping criterion to the pair J,HM , and ignoring the
O(tol2) term, we obtain

1− n · tol ≤ λ′j
λM,j

≤ 1 + n · tol . (3.2.30)

Here we also used the fact that λmin(AM) ≥ 1− n · tol. Since

λ′j
λJ

=
λ1,j

λj
· λ2,j

λ1,j

· · · λM,j

λM−1,j

· λ′j
λM,j

, (3.2.31)

the corollary follows by inserting (3.2.29) and (3.2.30) in the above relation, and ig-
noring the relative error of O(ε). Q.E.D.

Here are some remarks about Th. 3.2.1 and Cor. 3.2.2. The remarks hold for all
subsequent theorems and corollaries of the above type.

Remark 3.2.3 In the hyperbolic case for ζ ≤ α = 3/2
√

2 (Case I), the constant Cm
depends additionally on

√
κ(Am). Deichmöller [8] also obtained a similar bound for

some non–orthogonal transformations.
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Remark 3.2.4 In practical computation Case I of Th. 3.2.1 occurs rarely, and al-
most never if we transform the pair H, I ≡ GJGT , I to the pair GTG, J (due to
diagonalizing effect of this transformation). Thus, our choice of α (and its function
β) in (3.2.17) implies that the discontinuity of the bound (3.2.2) at |ζ| = 3/(2

√
2) has

little practical importance. This discontinuity can be removed by considering Case
I, |ζ| ≤ 3/(2

√
2), as Case II, |ζ| > α′, for some α′ < 3/(2

√
2). Also note that β

cannot have an optimizing function as x̄ in the trigonometric case, where the choice
of x̄ makes the bounds in the relations (3.2.7) and (3.2.9) almost equal. We can
choose another approach when analysing the hyperbolic case in Th. 3.2.1, namely
to analyse only the cases dj/di ≥ β and dj/di < β. Then the bounds (3.2.22) and
(3.2.27) hold in the first and the second case, respectively. The approach of Th. 3.2.1
is, however, more enlightening and it simplifies the analysis of the modified method
in the following subsection.

Remark 3.2.5 The
√
n− 2 part of Cm may be multiplied by maxm,i6=j |Am,ij| < 1.

Thus if the matrices Am are strongly diagonally dominant, the part of the error term
which depends on n is suppressed.

Remark 3.2.6 Numerical experiments indicate that (3.2.28) grows only slowly with
the increase of n or M .

æ
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3.2.1 The modified method

In order to avoid potentially large Cm in Th. 3.2.1 in the hyperbolic case for |ζ| ≤ α =
3/(2
√

2), we modify the J−orthogonal Jacobi method by bounding the hyperbolic
angle as suggested in [29]. Since the original method converges, large hyperbolic angles
can occur only finitely many times. We first show that the modification does not affect
convergence properties. We then prove that one step of the modified method satisfies
the assumptions needed for the error bounds of Chap. 2, i.e. that Th. 3.2.1 and Cor.
3.2.2 hold with small modifications. The algorithm of the modified J−orthogonal
Jacobi method is similar to Alg. 3.1.1. The only changes are the computation of the
hyperbolic rotation parameters and the update of the pivot submatrix Ĥ.

Algorithm 3.2.7 Modified two-sided J−orthogonal Jacobi method for the problem
(3.1.1).

/* compute the parameter hyp: hyp = 1 for the hyperbolic and
hyp = −1 for the trigonometric rotation, respectively */
if 1 ≤ i ≤ npos < j ≤ n then

hyp = 1
else

hyp = −1
endif

/* compute the hyperbolic Jacobi rotation which diagonalizes[
Hii Hij

Hji Hjj

]
≡
[
a c
c b

]
, and update the 2 by 2 pivot submatrix */

ζ = −hyp ∗ (b + hyp ∗ a)/(2c)

if hyp = 1 and |ζ| ≤ α ≡ 3/(2
√

2) then

cs =
√

2
sn = sign(ζ)
sn1 = sn

Hii = 2 ∗ a+ b− 2 ∗
√

2 ∗ |c|
Hjj = a + 2 ∗ b− 2 ∗

√
2 ∗ |c|

Hij = Hji = sn ∗
√

2 ∗ (a+ b) + 3 ∗ c
else

t = sign(ζ)/(|ζ|+√ζ2 − hyp)
h =
√

1− hyp ∗ t2
cs = 1/h
sn = t/h
sn1 = hyp ∗ sn
Hii = a+ hyp ∗ c ∗ t
Hjj = b + c ∗ t
Hij = Hji = 0

endif
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proceed as in Algorithm 3.1.1

The convergence proof for the modified method [29] rests on the trace reduction
which takes place in our case, too. Let |ζ| ≤ α and let H ′ and H ′′ denote the matrices
after an unmodified and modified step, respectively. Then

a′′ = 2a+ b− 2
√

2|c| , b′′ = a+ 2b− 2
√

2|c| ,

and

δTr′ ≡ Tr(H)− Tr(H ′) = 2|c||t| ,
δT r′′ ≡ Tr(H)− Tr(H ′′) = −2a− 2b + 4

√
2|c| .

The quotient δTr′′/δTr′ ≤ 1 is bounded below with β. For α and β from (3.2.17),
we have

δTr′′

δTr′
=

1

|t|(2
√

2− 2|ζ|) ≥ 2
√

2− 2α =
1√
2
.

This trace reduction is quite acceptable. Also, modified steps do not affect the
quadratic convergence. Indeed, Drmač and Hari [15] showed that the hyperbolic
tangent is bounded by |t| ≤

√
2/6 after the quadratic convergence starts. This, in

turn, implies |ζ| ≥ 3/
√

2, so the modified steps do not occur after the quadratic
convergence starts.

The next theorem is an analog of Th. 3.2.1 and Cor. 3.2.2 for the modified
J−orthogonal Jacobi method.

Theorem 3.2.8 Let Hm be the sequence of matrices generated by Algorithm 3.2.7 in
floating–point arithmetic with precision ε. Then Theorem 3.2.1 holds except that in
the hyperbolic case for |ζ| ≤ 3/(2

√
2) the value of Cm is reduced to

Cm = 82 + 19.63
√
n− 2 . (3.2.32)

Corollary 3.2.2 holds with this exception, too.

Proof. The technique of the proof is the same as in Th. 3.2.1. We assume without
loss of generality that sh = +1. Then sign (c) = −1. Using (3.2.1) we obtain

H ′′ik = fl(
√

2Hik + Hjk) =
√

2Hik +Hjk + ε′1Hik + ε1Hjk

H ′′jk = fl(
√

2Hjk +Hik) =
√

2Hjk +Hik + ε′2Hjk + ε2Hik ,

where |ε′1|, |ε′2| ≤ 3
√

2ε. Since dj/di ≥ β, we have

|δHik| ≤ (7 + 4
√

2)didk ε , |δHjk| ≤ 15djdk ε .
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Further,

a′′ = fl(2a+ b− 2
√

2|c|) = 2a+ b− 2
√

2|c|+ ε′3a + ε3b+ ε′4|c|
b′′ = fl(a + 2b− 2

√
2|c|) = a+ 2b− 2

√
2|c|+ ε4a + ε′5b+ ε′6|c|

c′′ = fl(
√

2(a+ b) + 3c) =
√

2(a+ b) + 3c+ ε′7(a+ b) + ε′8c

where
|ε′3|, |ε′5| ≤ 4ε , |ε′4|, |ε′6| ≤ 8

√
2ε , |ε′7| ≤ 4

√
2ε , |ε′8| ≤ 6ε .

Setting

∆ =

[
ε′3a+ ε3b + ε′4|c| ε′7(a + b) + ε′8c
ε′7(a+ b) + ε′8c ε4a + ε′5b+ ε′6|c|

]

we have

Jm

([
a c
c b

]
+ J−1

m ∆J−1
m

)
Jm =

[
a′′ c′′

c′′ b′′

]
.

Using dj/di ≥ β, we obtain
‖δÂm‖2 ≤ 82 ε ,

and finally (3.2.32). Q.E.D.

We have thus eliminated κ(Am) from Cm in the hyperbolic case for ζ ≤ 3/(2
√

2). This
makes the one–step error bounds for the modified method of the same type as the
corresponding bounds from [13], that is, the bounds depend only on

√
n− 2. For 2×2

matrices, the use of modified rotations makes obviously no improvement. For n ≥ 3,
however, numerical experiments show that the use of modified rotations generally does
not affect the convergence. Thus, the use of modified rotations generally decreases
relative error estimates.

æ
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3.2.2 Growth of the condition of the scaled matrix

As we have seen in Cor. 3.2.2, the behaviour of the quotient λmin(A0)/λmin(Am)
(or κ(Am)/κ(A0)) is essential for the overall error bound of the J−orthogonal Ja-
cobi method. In this subsection we first state known results. We then show that
κ(Am)/κ(A0) ≤ n if κ(A) ≥ κ(H). After that we give a simple pattern for the be-
haviour of the upper bound for λmin(A0)/λmin(Am). As a corollary we show that,
with the appropriate choice of pivots, we can perform n′ ≤ n−1 successive steps such
that λmin(A0)/λmin(Am) ≤ n for every 1 ≤ m ≤ n′. In the conclusion, we define an
algorithm for calculating the upper bound for λmin(A0)/λmin(Am) in Jacobi process.
Results of numerical experiments are given in Chap. 5. The results of this subsection
are partially contained in [26].

We now state the known bounds for 1/λmin(Am), which were originally proved for
the case npos = n by Demmel and Veselić [13]. Later Veselić [28] noticed that the
results also hold if the hyperbolic rotations are used, since the proofs do not require
the orthogonality of rotation matrices. Let the pair Hm, J be obtained from the pair
H0, J by applying m Jacobi rotations in pairwise nonoverlapping rows and columns
(this means m ≤ n/2), and let (ik, jk) be the pivot pair in the k−th step. We use the
standard scaling, i.e.

Hm = DmAmDm , (3.2.33)

where Dm is positive definite diagonal matrix, and Am has ones on the diagonal.
The spectrum of Am coincides with the spectrum of the pencil A0 − λA′0, where A′0
coincides with A0 on every rotated element and is the identity otherwise. This implies

1

λmin(Am)
= max

x6=0

xTA′0x

xTA0x
≤ maxx6=0,‖x‖2=1 x

TA′0x

minx6=0,‖x‖2=1 xTA0x
=

1 + max0≤k≤m−1 |A0,ikjk |
λmin(A0)

.

(3.2.34)
After m arbitrary steps we have

1

λmin(Am)
≤
∏m−1
k=0 (1 + |Ak,ikjk|)

λmin(A0)
.

The above upper bound for 1/λmin(Am) is usually a large overestimate.
The second bound is based on the Hadamard measure of a symmetric positive

definite matrix H,

H(H) ≡ det(H)
∏
iHii

It is easy to see that H(H) ≤ 1 and H(H) = 1 if and only if H is diagonal. H(H) is
independant of the scaling so that

H(H) = H(A) = detA .

Furthermore,
1

λmin(Am)
≤ e

H(Hm)
, (3.2.35)
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where e = exp(1), and

1

H(Hm+1)
=

1− A2
m,ij

H(Hm)
≤ 1

H(Hm)
, (3.2.36)

where (i, j) is the pivot pair in the m−th step. The above two relations can be used
to monitor the convergence of 1/λmin(Am) to 1, but they can be a large overestimate
in the beginning of the diagonalization process. Finally, (3.2.35) and (3.2.36) give the
guaranteed upper bound

max
m

1

λmin(Am)
≤ e

det(A0)
=

e

H(H0)
.

The following simple result seems not to have attracted attention:

Proposition 3.2.9 Let npos = n and κ(A) ≥ κ(H). Let Hm, J be the sequence of
pairs obtained by the J−orthogonal Jacobi method from the starting pair H, J . Then

κ(Am)/κ(A0) ≤ n ,

where matrices Am are defined by (3.2.33).

Proof. The assumption npos = n implies that all rotation matrices are orthogonal.
The assumption κ(A) ≥ κ(H) and (1.5) imply

κ(Am) ≤ nmin
D

κ(DAmD) ≤ nκ(Hm) = nκ(H) ≤ nκ(A).

Q.E.D.

Now we come to the central result of this subsection:

Theorem 3.2.10 Let Hm = DmAmDm be the sequence of matrices obtained by Al-
gorithm 3.1.1 from the starting matrix H ≡ H0, i.e.

Hm = JTm−1Hm−1Jm−1 .

Let us define the sequence of matrices Tm by

T0 = I

Tm = Tm−1Um

Um = D−1
m−1J

−T
m−1Dm .

Then for m ≥ 1

Am = T−1
m A0T

−T
m ,

1

λmin(Am)
≡ ‖A−1

m ‖2 ≤ ‖A−1
0 ‖2‖Tm‖2

2 ≤ ‖A−1
0 ‖2‖Tm‖2

E =
‖Tm‖2

E

λmin(A0)
,(3.2.37)
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and
‖Tm‖2

E = ‖Tm−1‖2
E + 2Am−1,ijT

T
m−1,·iTm−1,·j . (3.2.38)

Here (i, j) is the pivot pair in the m−th step, and Tm−1,·i denotes the i−th column of
Tm−1, etc.

Proof. The first two statements of the theorem are obvious. Moreover, since
Am → I as m→∞, the relation

TmAmT
T
m = A0

implies
lim
m→∞TmT

T
m = A0 ,

and
lim
k→∞

Um+1 · · · · · UkUT
k · · · · · UT

m+1 = Am .

It remains to prove the relation (3.2.38). From the definition of Um we see that only
its pivot submatrix Ûm differs from the identity matrix, and that

ÛmÛ
T
m = Âm−1 .

Also, U−1
m Am−1U

−T
m = Am. Now we show that

Um = J̄−Tm D̄mRm , (3.2.39)

where J̄m is a J−orthogonal Jacobi rotation on Am−1, D̄−1
m scales J̄TmAm−1J̄m, and

Rm is orthogonal. Indeed, set

R̂m = ̂̄Dm
̂̄J
−1

m D̂m−1Ĵm−1D̂
−1
m .

Then (3.2.39) is satisfied and Rm is orthogonal since

R̂T
mR̂m = D̂−1

m ĴTm−1D̂m−1
̂̄J
−T
m
̂̄D

2

m
̂̄J
−1

m D̂m−1Ĵm−1D̂
−1
m

= D̂−1
m ĴTm−1D̂m−1Âm−1D̂m−1Ĵm−1D̂

−1
m

= D̂−1
m ĴTm−1Ĥm−1Ĵm−1D̂

−1
m

= D̂−1
m ĤmD̂

−1
m = Î

Note that the above relation holds for trigonometric as well as for hyperbolic rotations.
In the multiplication

Tm = Tm−1 Um

only the i−th and j−th column of Tm−1 change, i.e.

[
Tm,·i Tm,·j

]
=
[
Tm−1,·i Tm−1,·j

]
Ûm . (3.2.40)
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Let a ≡ Am−1,imjm and

R̂m =

[
c s
−s c

]
.

In the trigonometric case we have

̂̄Jm =
1√
2

[
1 1
−1 1

]
, ̂̄Dm =

[ √
1− a 0
0

√
1 + a

]
.

which, together with (3.2.39) and (3.2.40), implies

[
Tm,ki Tm,kj

]
=

[
Tm−1,ki Tm−1,kj

]
·

· 1√
2

[
c
√

1− a− s
√

1 + a s
√

1− a + c
√

1 + a
−c
√

1− a− s
√

1 + a −s
√

1− a+ c
√

1 + a

]
.

After a simple but rather long calculation, we obtain

T 2
m,ki + T 2

m,kj = T 2
m−1,ki + T 2

m−1,kj + 2aTm−1,kiTm−1,kj . (3.2.41)

The relation (3.2.38) now follows by summing up (3.2.41) for k = 1, . . . , n.
In the hyperbolic case we have

̂̄Jm =

[
ch sh
sh ch

]
, ̂̄Dm =

[ √
1 + ta 0

0
√

1 + ta

]
,

where (see Alg. 3.1.1)

ζ = −1

a
, t = − a

1 +
√

1− a2
,

ch2 + sh2 =
1√

1− a2
, sh · ch = − a

2
√

1− a2
.

This, together with (3.2.39) and (3.2.40), implies

[
Tm,ki Tm,kj

]
=
[
Tm−1,ki Tm−1,kj

] √
1 + ta

[
c · ch + s · sh s · ch− c · sh
−c · sh− s · ch −s · sh+ c · ch

]
.

After a simple but rather long calculation, we obtain again (3.2.41) and the theorem
is proved. Q.E.D.

Corollary 3.2.11 Let the matrices Hm = DmAmDm, Tm, and Um be defined as in
Theorem 3.2.10. Let us perform n′ ≤ n − 1 successive steps of the J−orthogonal
Jacobi method such that for every m ∈ {1, . . . , n′} and every k ∈ {1, . . . , n} either
Tm−1,kim = 0 or Tm−1,kjm = 0. Here (im, jm) denotes the pivot pair in the m−th step.
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(These assumptions are fulfilled e.g. if we choose pivot pairs along the first row, or
along the last column, or along the first off–diagonal.) Then

1/λmin(Am) ≤ n/λmin(A0)

for every m ∈ {1, . . . , n′}.

Proof. By definition is ‖T0‖2
E = n. The corollary follows from the assumptions and

the relations (3.2.38) and (3.2.37). Q.E.D.

Now we derive an efficient algorithm for calculating the upper bound for 1/λmin(Am)
in Jacobi process. The inequality (3.2.37) implies that

1/λmin(Am) ≤ ‖Tm‖2
E/λmin(A0) .

We can calculate ‖Tm‖2
E using the recursive equation (3.2.38) in the following manner:

instead of keeping the eigenvector matrix V according to Alg. 3.1.1,

V0 = I

Vm = J0J1 · · ·Jm−1 = Vm−1Jm−1 ,

we keep the matrix S defined by

S0 = D−1
0

Sm = D−1
0 J−T0 J−T1 · · ·J−Tm−1 = Sm−1J

−T
m−1 .

In the trigonometric case we have J−Tm−1 = Jm, and in the hyperbolic case we have

Ĵ−Tm−1 = Ĵ−1
m−1 =

[
ch −sh
−sh ch

]
.

Also
V −Tm = D0Sm , Tm = SmDm . (3.2.42)

In order to apply (3.2.38), we need to calculate the scalar product of the i−th and
j−th column of Tm. From (3.2.42), we see that

T Tm,·iTm,·j = STm,·iSm,·jDm,iiDm,jj .

Therefore, the sequence ‖Tm‖2
E is given by the recursion

‖T0‖2
E = n (3.2.43)

‖Tm‖2
E = ‖Tm−1‖2

E + 2Hm−1,ijS
T
m−1,·iSm−1,·j ,

at a cost of n+ 2 multiplications and n additions in each step.
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Suppose that the algorithm converges, and that HM , J is the final pair. Then
(3.2.42) implies that

V −TM = D0SM ,

but we want to obtain the eigenvector matrix VM . Since VM is J−orthogonal, i.e.
V T
MJVM = J , we have

VM = JV −TM J .

Multiplication with D0 from left has relative error ε and multiplications with J have
no error at all.

In numerical experiments sequence ‖Tm‖2
E behaved extremely well in the sense

that it was approximately n for all m. However, the recursion (3.2.43) does not reveal
the fact that 1/λmin(Am) tends to one. This convergence can be monitored using the
monotonically decreasing upper bound (3.2.35). This bound is usually large in the
beginning of the diagonalization process, and it meets the bound given by (3.2.43)
after one or two cycles. After that point (3.2.43) is not needed any more. Updating
H(Hm) according to (3.2.36) is very simple. The only additional effort is to calculate
H(H0) (for example by using the Cholesky decomposition of H0).

Remark 3.2.12 The theoretical results of this section, as well as numerical obser-
vations, do not depend upon whether only trigonometric (J = I), or trigonometric
and hyperbolic rotations are used. This once more justifies the use of the hyperbolic
rotations.

æ
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3.3 Implicit J−orthogonal Jacobi method

In this section we present and analyse the implicit (one–sided) J−orthogonal Jacobi
method for solving the eigenvalue problem

Hx = λx , x 6= 0 , (3.3.1)

where H is a n × n real symmetric matrix of rank rank (H) = r ≤ n. Let H be
decomposed as

H = GJGT , (3.3.2)

where G is a n× r matrix (i.e. G has full column rank), J = Inpos ⊕ (−Ir−npos), and
npos is number of the positive eigenvalues of H. The symmetric indefinite decom-
position (3.3.2) is described in Chap. 4. Since J−1 = J , Th. 2.3.1 implies that the
eigenvalues of the pair GTG, J are the nonzero eigenvalues of H, and that there exists
a J−orthogonal matrix F (F TJF = J) such that the matrix

F TGTGF ≡ ∆

is diagonal and positive definite. Therefore, nonzero eigenvalues of the problem (3.3.1)
are the diagonal elements of the diagonal matrix ∆J , and the corresponding eigen-
vectors are the columns of the matrix

U = GF∆−1/2 .

Instead of forming explicitly the matrix GTG and applying Alg. 3.1.1 to the pair
GTG, J , we apply the implicit J−orthogonal Jacobi method to the pair G, J . The
method, originally proposed by Veselić [29], consists of an iterative application of the
one–sided transformation

Gm+1 = GmJm ,

where G ≡ G0 and Jm is a J−orthogonal Jacobi plane rotation.
If G is square and non–singular, the method also solves the hyperbolic singular

value problem [21] for the pair G, J .
Note that in the positive definite case [13], the implicit method can be applied

either to G or GT (since J = I, the matrices GTG and GGT have the same eigenvalues
and simply related eigenvectors). Here, even if H is non–singular (G is non–singular
and square), only one application makes sense, i.e. from the right on G or from the
left on GT (see also Sect. 2.3).

The section is organized as follows: we first present the algorithm. Then we prove
that in floating–point arithmetic the method computes the non–zero eigenvalues of
H with the error bounds of Chap. 2. We analyse the simple version of the algorithm,
omitting enhancements like keeping the diagonal in a separate vector and fast rota-
tions, to make the error analysis clearer. In Subsect. 3.3.1 we analyse the version of
the algorithm where diagonal of GTG is kept in a separate vector. In Subsect. 3.3.2
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we give the norm error bounds for the computed eigenvectors if H is non–singular
(non–singularity is neccessary since we use the eigenvector perturbation bounds from
Chap. 2). In Sect. 3.4 we analyse the fast version of the algorithm. In Subsect.
3.4.1 we analyse the fast method which uses self–scaling rotations. These rotations,
introduced and analysed by Anda and Park [1] for the trigonometric case, are used
to suppress possible underflow/overflow when accumulating the diagonal of the fast
rotations.

We now present our algorithm:
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Algorithm 3.3.1 Implicit J−orthogonal Jacobi method for the pair G, J . tol is a
user defined stopping criterion.

repeat
for all pairs i < j

/* compute

[
a c
c b

]
≡ the (i, j) submatrix of GTG */

a =
∑n
k=1G

2
ki

b =
∑n
k=1 G

2
kj

c =
∑n
k=1Gki ∗Gkj

/* compute the parameter hyp: hyp = 1 for the hyperbolic and
hyp = −1 for the trigonometric rotation, respectively */
if 1 ≤ i ≤ npos < j ≤ r then

hyp = 1
else

hyp = −1
endif

/* compute the J−orthogonal Jacobi rotation which diagonalizes[
Hii Hij

Hji Hjj

]
≡
[
a c
c b

]
*/

ζ = −hyp ∗ (b + hyp ∗ a)/(2c)
t = sign(ζ)/(|ζ|+√ζ2 − hyp)
h =
√

1− hyp ∗ t2
cs = 1/h
sn = t/h
sn1 = hyp ∗ sn

/* update columns i and j of G */
for k = 1 to n

tmp = Gki

Gki = cs ∗ tmp + sn1 ∗Gkj

Gkj = sn ∗ tmp+ cs ∗Gkj

endfor
endfor

until convergence (all |c|/
√
ab ≤ tol)

/* the computed non–zero eigenvalues of H = GJGT (and of the pair GTG, J) are
λj = (

∑n
k=1G

2
kj)Jjj */

/* the computed eigenvectors of H are the normalized columns of the final G */

Remark 3.3.2 If G is square and non–singular, then the computed hyperbolic sin-
gular values [21] of the pair G, J are

σj =

√√√√
n∑

k=1

G2
kj Jjj ,
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and the computed hyperbolic singular vectors are the normalized columns of the final
G. This remark holds for all subsequent implicit methods in this chapter.

The perturbation theory for the problem (3.3.1), as well as for the hyperbolic
singular value problem [21], is given by Theorems 2.3.1 and 2.3.2. Let Gm be the
sequence of matrices obtained by Alg. 3.3.1 from the starting matrix G ≡ G0. For
every m ≥ 0 write Gm = BmDm, where Dm is diagonal positive definite, and the
columns of Bm have unit norms. All error bounds in this section contain the quan-
tities 1/σmin(Bm), whereas the perturbation bounds in Chap. 2 are proportional
to 1/σmin(B0) (or κ(B0)). Therefore, as in Sect. 3.2, our claim that the implicit
J−orthogonal Jacobi method is as accurate as predicted in Sect. 2.3 depends on
the ratio maxm σmin(B0)/σmin(Bm) (or maxm κ(Bm)/κ(B0)) being modest. In ex-
act arithmetic, one-sided Jacobi on G = BD is identical to two-sided Jacobi on
H = GTG = DBTBD = DAD. Thus, all convergence properties of the explicit
method carry naturally over to the implicit one, and the question of the growth of
κ(Bm) = κ(Am)1/2 is essentially identical to the question of the growth of κ(Am) in
the case of two-sided Jacobi. Therefore, the results of Subsect. 3.2.2 apply here, as
well.

The following theorem and its corollary justify our accuracy claims for the non–
zero eigenvalues of the matrix H = GJGT computed by the implicit J−orthogonal
Jacobi method.

Theorem 3.3.3 Let Gm be the sequence of matrices generated by the implicit J−ortho-
gonal Jacobi algorithm in floating–point arithmetic with precision ε; that is Gm+1 is
obtained from Gm by applying a single J−orthogonal Jacobi rotation. Then the fol-
lowing diagram commutes:

Gm + δGm

Gm Gm+1

?

-floating
Jacobi

�
�
���exact
rotation

The top arrow indicates that Gm+1 is obtained from Gm by applying one J−ortho-
gonal Jacobi rotation in floating–point arithmetic. The diagonal arrow indicates that
Gm+1 is obtained from Gm + δGm by applying one J−orthogonal plane rotation in
exact arithmetic; thus Gm+1JG

T
m+1 and (Gm + δGm)J(Gm + δGm)T have identical

non–zero eigenvalues and the corresponding eigenvectors. δGm is bounded as follows:
let κ = κ2(Bm), and write δGm = δBmDm, where Dm is diagonal such that Bm in
Gm = BmDm has unit columns. Let aT and bT be the true values of

∑
kG

2
ki and∑

kG
2
kj, respectively. Then, with the relative error of order ε,

‖δBm‖2 ≤ Cm ε , (3.3.3)
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where

Cm =





26 in trigonometric case ,

κ + 13
√
κ + 29 in hyperbolic case , |ζ| ≤ 3

2
√

2
,

77 in hyperbolic case , |ζ| > 3

2
√

2
,

bT ≥
1

2
aT ,

96 in hyperbolic case , |ζ| > 3

2
√

2
,

bT <
1

2
aT .

In other words, one step of the implicit J−orthogonal Jacobi method satisfies the
assumptions needed for the perturbation bounds of Sect. 2.3.

Proof. The proof of the commuting diagram is a tedious computation. We shall
prove the diagram separately for the trigonometric and for the hyperbolic case. Let
cT be the true value of

∑
kGkiGkj. As in (3.2.3), we set

aT = d2
i , bT = d2

j , cT = zdidj .

We may assume without loss of generality that aT ≥ bT and cT > 0. As in (3.2.4),
we have

0 < z ≤ z̄ ≡ (κ2(Bm)− 1)/(κ2(Bm) + 1) < 1 . (3.3.4)

Set x ≡ dj/di. Note that x ≤ 1. Systematic application of formulae (3.2.1) shows
that

a = aT (1 + εa) where |εa| ≤ nε

b = bT (1 + εb) where |εb| ≤ nε

c = cT + εc
√
aT bT where |εc| ≤ nε .

Trigonometric case. This case was analysed by Demmel and Veselić [13] and we
present it for the sake of completeness. Small differences in the proof give here, again,
a somewhat better bound for ‖δBm‖2.

Let
c̃s ≡ 1/

√
1 + t2 , s̃n ≡ t/

√
1 + t2 .

From (3.2.1) we get

sn = (1 + εsn)s̃n , cs = (1 + εcs)c̃s , |εsn|, |εcs| ≤ 3ε .

c̃s and s̃n define the exact rotation

Jm =

[
c̃s s̃n
−s̃n c̃s

]

76



which takes Gm + δGm to Gm+1:

(Gm + δGm)Jm = Gm+1 .

Let G′ki and G′kj be the new values for these entries computed by the algorithm. Then

G′ki = fl(cs ∗Gki − sn ∗Gkj)

= (1 + ε1)(1 + ε2)csGki − (1 + ε3)(1 + ε4)snGkj

= (1 + ε1)(1 + ε2)(1 + εcs)c̃sGki − (1 + ε3)(1 + ε4)(1 + εsn)s̃nGkj

≡ c̃sGki − s̃nGkj + Eki , (3.3.5)

and, similarly,

G′kj = fl(sn ∗Gki + cs ∗Gkj) = s̃nGki + c̃sGkj + Ekj , (3.3.6)

where

‖E·i‖2 ≤ 5(c̃s‖G·i‖2 + |s̃n|‖G·j‖2)ε

‖E·j‖2 ≤ 5(|s̃n|‖G·i‖2 + c̃s‖G·j‖2)ε .

Here G·i refers to the i-th column of G, etc. Thus

[
G′·i G′·j

]
=

[
G·i G·j

] [ c̃s s̃n
−s̃n c̃s

]
+
[
E·i E·j

]

=

([
G·i G·j

]
+
[
E·i E·j

] [ c̃s −s̃n
s̃n c̃s

]) [
c̃s s̃n
−s̃n c̃s

]

≡
([

G·i G·j
]

+
[
F·i F·j

]) [ c̃s s̃n
−s̃n c̃s

]
, (3.3.7)

where

‖F·i‖2 ≤ c̃s‖E·i‖2 + |s̃n|‖E·j‖2

≤ (5‖G·i‖2 + 10c̃s|s̃n|‖G·j‖2) ε

≤ 5(1 + x)diε , (3.3.8)

and

‖F·j‖2 ≤ |s̃n| · ‖E·i‖2 + c̃s‖E·j‖2

≤ (5‖G·j‖2 + 10c̃s|s̃n|‖G·i‖2) ε

≤ 5(1 + 2c̃s|s̃n|/x)djε . (3.3.9)

We consider two cases, x < x̄ ≡ 0.48, and x ≥ x̄. First consider x < x̄. By
inserting x̄ for x in (3.3.8) we obtain

‖F·i‖2 ≤ 7.4diε .
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Our assumption further implies that the subtraction 1− x2 has a low relative error,
and that z + nε < 1 with a relative error of O(ε). Therefore

|t| ≤ |c|
|b− a| =

|cT + εc
√
aT bT |

|bT + εbbT − aT − εaaT |

=
|zx + εcx|

|x2 − 1 + εbx2 − εa|
≤ x(z + nε)

1− x̄2
(1 +O(ε)) . (3.3.10)

We can ignore the (z + nε)(1 + O(ε)) term, so that |t| ≤ x/(1 − x̄2). Inserting this
inequality into (3.3.9) we obtain

‖F·j‖2 ≤ 5(1 +
2

1− x̄2
)djε ≤ 18djε .

Here we also used c̃s|s̃n| ≤ c̃s2|t| ≤ |t|. Therefore,

‖δBm‖2 ≤
‖F·i‖2

di
+
‖F·j‖2

dj
≤ 26ε (3.3.11)

Now consider the case x ≥ x̄. Inserting 1 for x in (3.3.8) we obtain

‖F·i‖2 ≤ 10diε .

Inserting c̃s|s̃n| ≤ 1/2 and 1/x̄ for 1/x in (3.3.9), we obtain

‖F·j‖2 ≤ 15.5djε ,

so that (3.3.11) holds again, thus improving the bound ‖δBm‖2 ≤ 72ε from [13].
æ
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Hyperbolic case. For the sake of the clarity, we denote the quantities cs, sn and
sn1 = sn computed by Alg. 3.1.1 with ch and sh, respectively. Let

c̃h ≡ 1/
√

1− t2 , s̃h ≡ t/
√

1− t2 .

Using (3.2.1) we can show that the bounds (3.2.11) hold for t, c̃h and s̃h with a
relative error of O(ε). Suppose that we can write

sh = (1 + εsh)s̃h , ch = (1 + εch)c̃h .

c̃h and s̃h define the exact rotation

Jm =

[
c̃h s̃h

s̃h c̃h

]

which takes Gm + δGm to Gm+1:

(Gm + δGm)Jm = Gm+1 .

Let G′ki and G′kj be the new values for these entries computed by the algorithm. Then

G′ki = fl(ch ∗Gki + sh ∗Gkj)

= (1 + ε1)(1 + ε2)chGki + (1 + ε3)(1 + ε4)shGkj

= (1 + ε1)(1 + ε2)(1 + εch)c̃hGki + (1 + ε3)(1 + ε4)(1 + εsh)s̃hGkj

≡ c̃hGki + s̃hGkj + Eki , (3.3.12)

and, similarly,

G′kj = fl(sh ∗Gki + ch ∗Gkj) = s̃hGki + c̃hGkj + Ekj , (3.3.13)

where

‖E·i‖2 ≤ |ε′1|c̃h‖G·i‖2 + |ε′2||s̃h|‖G·j‖2

‖E·j‖2 ≤ |ε′3||s̃h|‖G·i‖2 + |ε′4|c̃h‖G·j‖2 .

Here
|ε′1|, |ε′4| = |εch|+ 2ε , |ε′2|, |ε′3| = |εsh|+ 2ε . (3.3.14)

Thus

[
G′·i G′·j

]
=

[
G·i G·j

] [ c̃h s̃h

s̃h c̃h

]
+
[
E·i E·j

]

=

([
G·i G·j

]
+
[
E·i E·j

] [ c̃h −s̃h
−s̃h c̃h

]) [
c̃h s̃h

s̃h c̃h

]

≡
([

G·i G·j
]

+
[
F·i F·j

]) [ c̃h s̃h

s̃h c̃h

]
, (3.3.15)
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where

‖F·i‖2 ≤ c̃h‖E·i‖2 + |s̃h|‖E·j‖2

≤ (|ε′1|c̃h
2

+ |ε′3|s̃h
2
)‖G·i‖2 + (|ε′2|+ |ε′4|)c̃h|s̃h|‖G·j‖2

≤ (|ε′1|c̃h
2

+ |ε′3|s̃h
2

+ (|ε′2|+ |ε′4|)c̃h|s̃h|x)di , (3.3.16)

and

‖F·j‖2 ≤ |s̃h| · ‖E·i‖2 + c̃h‖E·j‖2

≤ (|ε′4|c̃h
2

+ |ε′2|s̃h
2
)‖G·j‖2 + (|ε′1|+ |ε′3|)c̃h|s̃h|‖G·i‖2

≤
(
|ε′4|c̃h

2
+ |ε′2|s̃h

2
+ (|ε′1|+ |ε′3|)c̃h|s̃h|

1

x

)
dj . (3.3.17)

Now we have to calculate the upper bounds for |ε′i|’s, c̃h
2
, s̃h

2
and c̃h|s̃h|, and to

insert them into relations (3.3.16) and (3.3.17). We consider two cases, |ζ| ≤ α and
|ζ| > α, where α is defined by (3.2.17).

First consider |ζ| ≤ α. As in the proof of Th. 3.2.1 we can show that the relations
(3.2.18) and (3.2.20) hold. From (3.2.11) it follows that

fl(
√

1− t2) = (1 + εh)
√

1− t2 ,

where

|εh| ≤
(

3

8

√
κ+

4

3

)
ε .

Therefore,

|εsh|, |εch| ≤
(

3

8

√
κ+

7

3

)
ε ,

so that

|ε′i| ≤
(

3

8

√
κ +

13

3

)
ε , i = 1, . . . , 4 .

Inserting 1/x ≤
√

2, (3.2.20), and the above relation in (3.3.16) and (3.3.17), we
obtain

‖F·i‖2 ≤ (0.375κ+ 5.46
√
κ+ 13)diε

‖F·j‖2 ≤ (0.46κ+ 6.6
√
κ+ 15.67)djε .

This, in turn, implies ‖δBm‖2 ≤ Cm as desired.
Now consider the case |ζ| > α. As in the proof of Th. 3.2.1, we can show that the

relations (3.2.23) hold for t, c̃h and s̃h with a relative error of O(ε). Now

fl(
√

1− t2) = (1 + εh)
√

1− t2 , |εh| ≤ 3ε ,

so that
|εsh|, |εch| ≤ 4ε , |ε′i| ≤ 6ε , i = 1, . . . , 4 . (3.3.18)
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We have two subcases, x ≥ β and x < β, where β is defined by (3.2.17). If x ≥ β,
then inserting 1/x ≤

√
2, (3.3.18) and (3.2.23) into (3.3.16) and (3.3.17) yields

‖F·i‖2 ≤ 35diε , ‖F·j‖2 ≤ 42djε , ‖δBm‖2 ≤ 77ε ,

as desired.
If x < β, then

|t| ≤ 1

|ζ| =
2|c|
|a+ b| =

2|cT + εc
√
aT bT |

|aT + εaaT + bT + εbbT |

=
2|zx + εcx|

|1 + x2 + εa + εbx2| ≤ 2x(z + nε)(1 +O(ε)) . (3.3.19)

We can ignore the (z + nε)(1 +O(ε)) term, so that |t| ≤ 2x. Therefore,

c̃h|s̃h| = c̃h
2|t| ≤ 2c̃h

2
x .

Inserting this, (3.3.18) and (3.2.23) into (3.3.16) and (3.3.17), we obtain

‖F·i‖2 ≤ 30diε , ‖F·j‖2 ≤ 66djε , ‖δBm‖2 ≤ 96ε ,

and the theorem is proved. Q.E.D.

Corollary 3.3.4 Assume Algorithm 3.3.1 converges, and that GM , J is the final pair
which satisfies the stopping criterion. For 0 ≤ m ≤ M write Gm = BmDm with Dm

diagonal and Bm with unit columns. Let λj be the j-th non-zero eigenvalue of G0JG
T
0 ,

and let λ′j be the j-th computed non–zero eigenvalue. Then, with the relative error of
O(ε),

(1− γ)2 ≤ λ′j
λj
≤ (1 + γ)2 , (3.3.20)

where

γ = ε
M−1∑

m=0

Cm
σmin(Bm)

+ n · tol/2 + r · n · ε/2 .

Proof. Let λm,j denote the j−th non–zero eigenvalue of the matrix GmJG
T
m. By

substituting (3.3.3) into (2.3.12) and then applying Th. 2.3.1 for every 0 ≤ m ≤M−1,
we obtain

(1− ηm)2 ≤ λm+1,j

λm,j
≤ (1 + ηm)2 , (3.3.21)

where
ηm = εCm/σmin(Bm) .

Also,
diag (λ′j) = diag (fl(GT

MGM)) = fl(GT
MGM) + F ,
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where
|Fij| ≤ (nε+ tol)‖GM ·i‖2‖GM,·j‖2 .

Here GM,·i denotes the i−th column of GM . The tol term comes from the stopping
criterion. The nε term comes for the off–diagonal elements of F from the fact that
c/
√
ab in the stopping criterion may be underestimated by as much as nε, and for the

diagonal elements of F from computing the norms of the columns of GM . Therefore,

1− r · n · ε− n · tol ≤ λ′j
λM,j

≤ 1 + r · n · ε+ n · tol ,

and (3.3.20) follows by inserting (3.3.21) and the above relation into (3.2.31), and
ignoring the relative error of O(ε). Q.E.D.

An alternative way to prove this corollary is given in the proof of Th. 3.3.9.

Remark 3.3.5 If G is square and non–singular, then Cor. 3.3.4 can be applied to
the hyperbolic singular value problem. Let σj be the j-th hyperbolic singular value
of G0, J and σ′j the j-th computed hyperbolic singular value. Then, by taking square
roots in (3.3.20) and ignoring relative errors of O(ε), we obtain

1− γ − ε ≤ σ′j
σj
≤ 1 + γ + ε , (3.3.22)

where

γ = ε
M−1∑

m=0

Cm
σmin(Bm)

+ n · tol/2 + r · nε/2 .

Extra ε in (3.3.22) comes from the fact that σ′j = fl(
√
λ′j).

This remark holds for all subsequent implicit methods in this chapter.

æ
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As we did in Subsect. 3.2.1, we can modify the implicit J−orthogonal Jacobi
method in order to avoid potentially large Cm in Th. 3.4.2 in the hyperbolic case for
|ζ| ≤ α. The algorithm of the modified method is obtained by combining Algorithms
3.3.1 and 3.2.7 in the obvious manner. The comments from Subsect. 3.2.1 hold here,
as well. We have the following:

Theorem 3.3.6 Let Gm be the sequence of matrices generated by the modified im-
plicit J−orthogonal Jacobi method in finite precision arithmetic with precision ε.
Then Theorem 3.3.3 holds except that in the hyperbolic case for |ζ| ≤ 3/(2

√
2) the

value Cm is changed to Cm = 28. Corollary 3.3.4 holds with this exception, too.

Proof. The technique of proof is the same as in Th. 3.3.3. We assume without loss
of generality that s̃h = sh = +1. Also, c̃h =

√
2, ch = fl(

√
2), so that

|εch| ≤ ε , εsh = 0 .

Therefore,
|ε′1|, |ε′4| ≤ 3ε , |ε′2|, |ε′3| ≤ 2ε ,

and the theorem follows by inserting these values and 1/x ≤
√

2 into (3.3.16) and
(3.3.17). Q.E.D.

3.3.1 Keeping the diagonal in a separate vector

The approximate operation count for the implicit J−orthogonal Jacobi method of
Alg. 3.3.1 is the following: we need 3n multiplications and 3(n − 1) additions to
calculate a, b, and c, and 4n multiplications and 2n additions to update vectors
G.i, G.j per rotation. This gives the total of approximately 3.5n3 multiplications and
2.5n3 additions per cycle (n(n−1)/2 rotations). Keeping the diagonal elements of the
matrix GTG in a separate vector makes the calculation of the parameters a and b via
scalar product in each step unnecessary, which leaves the total of 2.5n3 multiplications
and 1.5n3 additions per cycle.

The main idea (in the notation of Alg. 3.3.1) is the following: at the beginning of
each cycle we calculate

∆i =
n∑

k=1

G2
ki .

At the beginning of each step we set

a = ∆i , b = ∆j , c =
n∑

k=1

GkiGkj .

We update ∆i and ∆j by the formulae

∆i = ∆i − c ∗ t , ∆j = ∆j + c ∗ t ,
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in the trigonometric, and

∆i = ∆i + c ∗ t , ∆j = ∆j + c ∗ t ,

in the hyperbolic case, respectively.
Due to subtractions in updating ∆i’s, they can become inaccurate, i.e. the relative

error of ∆i to ‖G·i‖2 can be larger then O(ε). Suppose that ∆i = ‖G·i‖2. After one
subtraction we have

∆′i = ‖G′·i‖2(1 + ε) , |ε| ≤ κ2(Bm) + 1

2
ε ,

where the maximum is attained when z tends to its upper bound (3.3.4) and a =
b. Therefore, the relative error of ∆i can grow considerably, which can affect the
convergence by making the rotation angles inaccurate. This is why the vector ∆
should be updated at the beginning of each cycle from the columns of the current
matrix G. We did not use the well known Rutishauser’s delayed updates of the
diagonal, since they do not guarantee high relative accuracy of the diagonal at the
beginning of each cycle.

When the pair GTG, J is obtained from the pair GJGT , I, then the probability
that the convergence is actually spoiled is very low. This is due to a non-trivial
diagonalizing effect of the above transition.

We now turn to the one–step error analysis of the method. In the notation of Th.
3.3.3 we have

∆i = d2
i , ∆j = d2

j , x =
√

∆i/∆j .

If x ≥ x̄ in the trigonometric, and x ≥ β in the hyperbolic case, then Th. 3.3.3 holds
irrespectively of the accuracy of ∆i and ∆j.

If x < x̄ in the trigonometric, and x < β in the hyperbolic case, then Th. 3.3.3
holds if the relations (3.3.10) and (3.3.19) are satisfied, respectively. This is always
the case if

c2 < ∆i∆j .

If the above inequality does not hold, then we have to refresh ∆i and ∆j. Note that
hyperbolic rotations cause no additional problems over trigonometric ones.

The following algorithm is only a slight modification of Alg. 3.3.1, so only the
parts where the two algorithms differ are stated.

Algorithm 3.3.7 Implicit J−orthogonal method for the pair G, J . The vector ∆
contains diagonal elements of the matrix GTG.

repeat
/* at the beginning of each cycle refresh the vector

∆ which contains diagonal of GTG */
for j=1 to r

84



∆j =
∑n
k=1 G

2
kj

endfor
for all pairs i < j

/* compute

[
a c
c b

]
≡ the (i, j) submatrix of GTG */

c =
∑n
k=1 Gki ∗Gkj

if c2 < ∆i∆j then
a = ∆i

b = ∆j

else
a =

∑n
k=1G

2
ki

b =
∑n
k=1 G

2
kj

endif
/* compute the parameter hyp: hyp = 1 for the hyperbolic and

hyp = −1 for the trigonometric rotation, respectively */
/* compute the J−orthogonal Jacobi rotation which diagonalizes[

Hii Hij

Hji Hjj

]
≡
[
a c
c b

]
*/

/* update columns i and j of G */
/* update ∆i and ∆j */

∆i = a + hyp ∗ c ∗ t
∆j = b+ c ∗ t

endfor

until convergence (all |c|/
√
ab ≤ tol)

/* the computed non–zero eigenvalues of H = GJGT (and of the pair GTG, J) are
λj = (

∑n
k=1 G

2
kj)Jjj */

/* the computed eigenvectors of H are the normalized columns of the final G */

Numerical experiments of Chap. 5 showed no difference in the accuracy between Alg.
3.3.7 and other implicit algorithms.

æ
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3.3.2 Error bounds for the eigenvectors

Theorems which give one–step error analysis of the implicit J−orthogonal Jacobi
methods in Sections 3.3 and 3.4 imply that one step of any of those methods satisfies
the eigenprojection perturbation bounds of Th. 2.3.3. As a consequence, the eigen
(spectral) projections computed by any of those methods also satisfy those bounds.
We prove the following theorem for the method defined by Alg. 3.3.1. The proof for
other implicit methods is similar. In the proof of the theorem we use the following
lemma due to Veselić [30]:

Lemma 3.3.8 Let
F ∗F = I + E , ‖E‖2 = ε < 1 ,

where F is any matrix with full column rank. Then there exists a matrix Q such that
Q∗Q = I and ‖F −Q‖2 ≤ ε .

Proof. We make the polar decomposition F = QP where Q∗Q = I and P is
Hermitian positive definite matrix. Since QQ∗F = F , we have P 2 = I + E, or

(P + I)(P − I) = E .

Thus
‖P − I‖2 ≤ ε/(1 +

√
1− ε) ≤ ε ,

so that
‖F −Q‖2 = ‖QP −Q‖2 = ‖P − I‖2 ,

and the lemma is proved. Q.E.D.

Theorem 3.3.9 Let G, J , where G is non–singular, be the starting pair for Alg.
3.3.1. Assume algorithm converges, and that GM , J is the final pair which satisfies
the stopping criterion. For 0 ≤ m ≤ M write Gm = BmDm, where Dm diagonal
and Bm has unit columns. Let λ be an eigenvalue of the matrix GJGT and let P be
its eigenprojection. Let P ′ be the approximation of the corresponding spectral projec-
tion, i.e. P ′ is obtained from the final eigenvectors which are obtained by dividing the
columns of GM by their norms. Then, with the relative error of O(ε),

‖P ′ − P‖2 ≤
4η̄

rgG(λ)

1

1− 3η̄

rgG(λ)

+ 2n · tol + n(3n + 4)ε , (3.3.23)

where η̄ = η(η + 2), and

η = ε
M−1∑

m=0

Cm
σmin(Bm)

+ n · tol + n2ε ,

provided 3η̄/rgG(λ) < 1. Here rgG(λ) is defined by (2.3.1) and the quantities Cm are
defined by Th. 3.3.3.
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Proof. We first show that for every 1 ≤ m ≤ M , the matrix Gm is obtained by
the sequence of exact transformations on some perturbed matrix G+ δG(m−1) in the
sense of Th. 3.3.3, i.e.

Gm = (G+ δG(m−1))R0 · · · · ·Rm−1 , (3.3.24)

where

‖δG(m−1)x‖2 ≤ ε
m−1∑

k=0

Ck
σmin(Bk)

‖Gx‖2 (3.3.25)

holds with the relative error of ε. The proof is by induction on m. For m = 1 the
statement follows from Th. 3.3.3. Now suppose that (3.3.24) holds for some m ≥ 1.
By Th. 3.3.3 and the induction assumption we have

Gm+1 = (Gm + δGm)Rm

= [(G+ δG(m−1))R0 · · · · ·Rm−1 + δGm]Rm

= (G+ δG(m))R0 · · · · ·Rm ,

where

δG(m) = δG(m−1) + δGm(R0 · · · · ·Rm−1)−1 .

Set δGm = δBmDm. Then

‖δG(m)x‖2 ≤ ‖δG(m−1)x‖2 +
‖δBm‖2

σmin(Bm)
‖BmDmG

−1
m (G+ δG(m−1))x‖2 ,

and (3.3.24) follows from (3.3.25) and Th. 3.3.3, ignoring the relative errors of O(ε).
Since the final pair satisfies the stopping criterion, we have

BT
MBM = I + E , ‖E‖2 ≤ n · tol + n2ε .

The n2ε term comes from the fact that c/
√
ab in the stopping criterion may be

underestimated by as much as nε. Lemma 3.3.8 implies that there exists an orthogonal
matrix

B′M = BM + δBM ,

where

‖δBM‖2 ≤ n · tol + n2ε .

Set G′M = B′MDM . As in the first part of the proof, we can show that

G′M = (G+ δG(M))R0 · . . . ·RM−1 ,

where ‖δG(M)x‖2 ≤ η‖Gx‖2. Since σmin(BM) ≥ 1 − (n · tol + n2ε), we ignore the
factor 1/σmin(BM) when applying Th. 3.3.3. Let P ′M denote the spectral projection
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of the matrix G′MJG
′T
M which corresponds to the eigenprojection P . Th. 2.3.3 now

implies

‖P − P ′M‖2 ≤
4η̄

rgG(λ)
· 1

1− 3η̄/rgG(λ)
. (3.3.26)

The spectral projection P ′M is obtained from columns of the matrix B ′M , while the
approximation P ′ is obtained from columns of the matrix

fl(GM · |diag (λ′j)|−1/2) = BM + F ,

where
|Fij| ≤ |BM,ij|(n+ 4)ε/2 .

Here we used |λ′j|/DM,j ≤ 1 + nε and ignored the relative error of O(ε). Using
‖BM‖2 ≤ 1 + n · tol + n2ε, and ignoring again the relative error of O(ε), we finally
have

‖P ′M − P ′‖2 ≤ ‖(BM + δBM)(BM + δBM)T − (BM + F )(BM + F )T‖2

≤ 2‖δBM‖2 + 2‖F‖2

≤ 2n · tol + n(3n+ 4)ε ,

which, together with (3.3.26), implies (3.3.23). Q.E.D.

æ
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3.4 Fast implicit method

In this section we define and analyse the fast implicit J−orthogonal Jacobi method
for the pair G, J . The remarks from Sect. 3.3 hold here as well. The section is also
organized as Sect. 3.3. We first present the algorithm. We then give one–step error
analysis and overall error bound for the eigenvalues. In Th. 3.4.4 we give one–step
error analysis of the modified method. After that we shortly discuss the version of the
algorithm where the diagonal of GTG is kept in a separate vector. In Subsect. 3.4.1 we
consider fast self–scaling rotations used in order to avoid possible underflow/overflow
when updating the scaling matrix.

The idea of fast rotations is to use transformation matrices of the form

Jm =

[
1 α
β 1

]
, (3.4.1)

instead of matrices of the form
[

cs sn
−sn cs

]
,

[
ch sh
sh ch

]
.

This saves 2n multiplications in each step, or approximately n3 multiplications in
each cycle. The use of matrices of the type (3.4.1) is possible if the matrices Gm are
stored in factorized form

Gm = ḠmD̄m ,

where D̄m is diagonal positive definite.
In the m−th step of the implicit method only the columns i and j of the matrix

Gm are changed. Let Gm ≡ G and Gm+1 ≡ G′. If we use the ordinary rotation, then
we have [

G′·i G′·j
]

=
[
G·i G·j

] [ cs sn
−sn cs

]
,

in the trigonometric, or

[
G′·i G′·j

]
=
[
G·i G·j

] [ ch sh
sh ch

]
,

in the hyperbolic case. Now suppose that G = ḠD̄, i.e.

[
G·i G·j

]
=
[
Ḡ·i Ḡ·j

] [ D̄i

D̄j

]
. (3.4.2)

Simple calculation shows that

[
G′·i G′·j

]
=
[
Ḡ′·i Ḡ′·j

] [ D̄′i
D̄′j

]
,
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where [
Ḡ′·i Ḡ′·j

]
=
[
Ḡ·i Ḡ·j

] [ 1 α
β 1

]
.

Here

α =
D̄i

D̄j

t , β = −D̄j

D̄i

t , t = sn/cs ,

D̄′i = D̄ics , D̄′j = D̄jcs , (3.4.3)

in the trigonometric, and

α =
D̄i

D̄j

t , β =
D̄j

D̄i

t , t = sh/ch ,

D̄′i = D̄ich , D̄′j = D̄jch , (3.4.4)

in the hyperbolic case.
We now state the algorithm:
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Algorithm 3.4.1 Fast implicit J−orthogonal Jacobi method for the pair G, J . tol
is a user defined stopping criterion.

for k = 1 to r
Dk = 1

endfor
repeat

for all pairs i < j

/* compute

[
a c
c b

]
≡ the (i, j) submatrix of GTG */

a = D2
i

∑n
k=1 G

2
ki

b = D2
j

∑n
k=1G

2
kj

c = DiDj
∑n
k=1Gki ∗Gkj

/* compute the parameter hyp: hyp = 1 for the hyperbolic and
hyp = −1 for the trigonometric rotation, respectively */
if 1 ≤ i ≤ npos < j ≤ r then

hyp = 1
else

hyp = −1
endif

/* compute the J−orthogonal Jacobi rotation which diagonalizes[
Hii Hij

Hji Hjj

]
≡
[
a c
c b

]
*/

ζ = −hyp ∗ (b+ hyp ∗ a)/(2c)
t = sign(ζ)/(|ζ|+√ζ2 − hyp)
cs = 1/

√
1− hyp ∗ t2

α = t ∗Di/Dj

β = hyp ∗ t ∗Dj/Di

/* update columns i and j of G */
for k = 1 to n

tmp = Gki

Gki = tmp+ α ∗Gkj

Gkj = β ∗ tmp+Gkj

endfor
/* update Di and Dj */

Di = Di ∗ cs
Dj = Dj ∗ cs

endfor

until convergence (all |c|/
√
ab ≤ tol)

/* the computed non–zero eigenvalues of H = GJGT (and of the pair GTG, J) are
λj = (

∑n
k=1 G

2
kj)D

2
jJjj */

/* the computed eigenvectors of H are the normalized columns of the final G */

91



The following theorem and its corollary justify our accuracy claims for the eigen-
values of the matrix H = GJGT computed by the fast implicit J−orthogonal Jacobi
method .

Theorem 3.4.2 Let Ḡm, D̄m be the sequences of matrices generated by the fast im-
plicit J−orthogonal Jacobi algorithm in floating–point arithmetic with precision ε;
that is Ḡm+1 is obtained from Ḡm by applying a single fast rotation, and Dm+1 is
obtained from Dm according to (3.4.3) or (3.4.4). Let Gm ≡ Ḡm · D̄m. Since Gm is
needed only for theoretical consideration, we suppose that this matrix multiplication
is exact. Then the following diagram commutes.

Gm + δGm

Ḡm ·Dm ≡ Gm Ḡm+1 · D̄m+1 ≡ Gm+1

?

-fast floating
rotation

��
��
��
��*

exact
rotation

The top arrow indicates that Gm+1 is obtained from Gm by applying one fast rota-
tion in floating–point arithmetic. The diagonal arrow indicates that Gm+1 is obtained
from Gm + δGm by applying one J−orthogonal plane rotation in exact arithmetic;
thus Gm+1JGm+1 and (Gm + δGm)J(Gm + δGm)T have identical eigenvalues. δGm is
bounded as follows. Let κ = κ2(Bm) and write δGm = δBmDm, where Dm is diagonal
such that Bm in Gm = BmDm has unit columns. Let aT and bT be the true values of∑
kG

2
ki and

∑
kG

2
kj, respectively. Then, with the relative error of order ε,

‖δBm‖2 ≤ Cm · ε , (3.4.5)

where

Cm =





33 in trigonometric case ,

κ + 16
√
κ + 39 in hyperbolic case , |ζ| ≤ 3

2
√

2
,

102 in hyperbolic case , |ζ| > 3

2
√

2
,

bT ≥
1

2
aT ,

125 in hyperbolic case , |ζ| > 3

2
√

2
,

bT <
1

2
aT .

In other words, one step of the fast implicit J−orthogonal Jacobi method satisfies the
assumptions needed for the perturbation bounds of Sect. 2.3.

Proof. The proof of the commuting diagram is a tedious computation. We shall
prove the diagram separately for the trigonometric and for the hyperbolic case. Let
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aT , bT and cT be the true values of D̄2
i

∑
k Ḡ

2
ki, D̄

2
j

∑
k Ḡ

2
kj and D̄iD̄j

∑
k ḠkiḠkj. We

may assume without loss of generality that aT ≥ bT and cT > 0. As in (3.2.3), we
have

aT = d2
i , bT = d2

j , cT = zdidj .

As in (3.2.4), we can show that (3.3.4) holds. Also let x ≡ dj/di ≤ 1. Systematic
application of formulae (3.2.1) shows that

a = aT (1 + εa) where |εa| ≤ (n+ 2)ε

b = bT (1 + εb) where |εb| ≤ (n + 2)ε

c = cT + εc
√
aT bT where |εc| ≤ (n+ 2)ε

Trigonometric case. This case was analysed by Anda and Park [1] for the Givens
rotation in the QR–algorithm. Our proof is similar to theirs.

Let

c̃s ≡ 1/
√

1 + t2 , s̃n ≡ t/
√

1 + t2

α̃ ≡ tD̄i/D̄j , β̃ ≡ −tD̄j/D̄i . (3.4.6)

For the calculated transformation parameters we have

cs = (1 + εcs)c̃s , |εcs| ≤ 3ε ,

α = (1 + εα)α̃ , β = (1 + εβ)β̃ , |εα|, |εβ| ≤ 2ε .

c̃s and s̃n define the exact rotation

Jm =

[
c̃s s̃n
−s̃n c̃s

]

which takes Gm + δGm to Gm+1:

(Gm + δGm)Jm = Gm+1 .

Let G′ki and G′kj be the new values for these entries computed by the algorithm. We
have

Ḡ′ki = fl(Ḡki + βḠkj) = (1 + ε1)Ḡki + (1 + ε2)(1 + ε3)(1 + εβ)β̃Ḡkj

= Ḡki + β̃Ḡkj + ε1Ḡki + (ε2 + ε3 + εβ)β̃Ḡkj

D̄′i = fl(D̄i c̃s) = D̄ic̃s+ (ε4 + εcs)D̄ic̃s .

Using
G·i = Ḡ·i D̄i , G′·i = Ḡ′·i D̄

′
i ,

and (3.4.6), and ignoring the relative error of O(ε), we obtain

G′·i = c̃sG·i − s̃nG·j + E·i
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where
‖E·i‖2 ≤ (5c̃s‖G·i‖2 + 8|s̃n|‖G·j‖2)ε .

Here G·i refers to the i-th column of G, etc. Similarly,

G′·j = s̃nG·i + c̃sG·j + E·j

where
‖E·j‖2 ≤ (8|s̃n|‖G·i‖2 + 5c̃s‖G·j‖2)ε .

Now (3.3.7) holds with

‖F·i‖2 ≤ c̃s‖E·i‖2 + |s̃n|‖E·j‖2

≤ 1

1 + t2
(5 + 8t2 + 13|t|x)diε (3.4.7)

‖F·j‖2 ≤ |s̃n| ‖E·i‖2 + c̃s‖E·j‖2

≤ 1

1 + t2
(5 + 8t2 + 13|t|/x)djε . (3.4.8)

We consider two cases, x < x̄ ≡ 0.51, and x ≥ x̄. First consider x < x̄. Inserting
x̄ for x in (3.4.7) we obtain

‖F·i‖2 ≤ 9.82diε .

Inserting (3.3.10) into (3.4.8) we obtain

‖F·j‖2 ≤ 22.57djε ,

and
‖Bm‖2 ≤ 33ε . (3.4.9)

Now consider the case x ≥ x̄. Inserting 1 for x in (3.4.7) we obtain

‖F·i‖2 ≤ 13diε .

Inserting 1/x̄ for 1/x in (3.4.8), we obtain

‖F·j‖2 ≤ 19.25djε ,

so that (3.4.9) holds again. æ
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Hyperbolic case. The proof is a combination of the above proof for the trigonomet-
ric case and the proof for the hyperbolic case of Th. 3.3.3. We denote the quantities
cs, sn and sn1 = sn computed by Alg. 3.4.1 with ch and sh, respectively. Let

c̃h ≡ 1/
√

1− t2 , s̃h ≡ t/
√

1− t2
α̃ ≡ tD̄i/D̄j , β̃ ≡ tD̄j/Di . (3.4.10)

For the calculated transformation parameters we have

ch = (1 + εch)c̃h ,

α = (1 + εα)α̃ , β = (1 + εβ)β̃ , |εα|, |εβ| ≤ 2ε .

c̃h and s̃h define the exact rotation

Jm =

[
c̃h s̃h

s̃h c̃h

]

which takes Gm + δGm to Gm+1:

(Gm + δGm)Jm = Gm+1 .

Let G′ki and G′kj be the new values for these entries computed by the algorithm. As
in the proof for the trigonometric case, we obtain

G′·i = c̃hG·i + s̃hG·j + E·i

where

‖E·i‖2 ≤ (2ε+ |εch|)c̃h‖G·i‖2 + (5ε+ |εch|)|s̃h|‖G·j‖2 ,

and

G′·j = s̃hG·i + c̃hG·j + E·j

where
‖E·j‖2 ≤ (5ε+ |εch|)|s̃h|‖G·i‖2 + (2ε+ |εch|)c̃h‖G·j‖2 .

Now (3.3.15) holds with

‖F·i‖2 ≤ ((2ε+ |εch|)c̃h
2

+ (5ε+ |εch|)s̃h
2

+ (7ε+ 2|εch|)c̃h|s̃h|x)di

‖F·j‖2 ≤ ((2ε+ |εch|)c̃h
2

+ (5ε+ |εch|)s̃h
2

+ (7ε+ 2|εch|)c̃h|s̃h|/x)dj .(3.4.11)

As in Th. 3.3.3 we consider two cases, |ζ| ≤ 3/(2
√

2) and |ζ| > 3/(2
√

2). First
consider |ζ| ≤ 3/(2

√
2). Then (3.2.18) and (3.2.20) hold, and

|εch| ≤
(

3

8

√
κ +

7

3

)
ε .
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The assertion of the theorem now follows by inserting 1/x ≤
√

2, (3.2.20), and the
above relation into (3.4.11).

Now consider |ζ| > 3/(2
√

2). Then the relations (3.2.23) hold for t, c̃h and s̃h
with a relative error of O(ε), and

|εch| ≤ 4ε . (3.4.12)

We have two subcases, x ≥ 1/
√

2 and x < 1/
√

2. If x ≥ 1/
√

2, then the assertion
of the theorem follows by inserting 1/x ≤

√
2, (3.4.12), and (3.2.23) into (3.4.11).

If x < 1/
√

2, then (3.3.19) holds, and the assertion of the theorem follows by
inserting (3.3.19), (3.4.12), and (3.2.23) into (3.4.11). Q.E.D.

Corollary 3.4.3 Assume Algorithm 3.4.1 converges, and that GM , J ≡ D̄M ḠM , J
is the final pair which satisfies the stopping criterion. For 0 ≤ m ≤ M write Gm =
BmDm with Dm diagonal and Bm with unit columns.

Let λj be the j-th non-zero eigenvalue of G0JG
T
0 , and let λ′j be the j-th computed

eigenvalue. Then, with the relative error of O(ε),

(1− γ)2 ≤ λ′j
λj
≤ (1 + γ)2 , (3.4.13)

where

γ = ε
M−1∑

m=0

Cm
σmin(Bm)

+ n · tol/2 + r(n+ 2)ε/2 .

Proof. See the proof of Cor. 3.3.4. The r(n+ 2)ε/2 term comes from the facts that
c/
√
ab in the stopping criterion may now be underestimated by as much as (n+ 2)ε,

and that the squares of the norms of the columns of GM are computed with a relative
error not greater than (n+ 2)ε. Q.E.D.

As in Subsect. 3.2.1, we can modify the fast implicit J−orthogonal Jacobi method
in order to avoid potentially large Cm in Th. 3.4.2 in the hyperbolic case for |ζ| ≤
3/(2
√

2). The algorithm of the modified method is obtained by combining Algorithms
3.4.1 and 3.2.7 in the obvious manner. We have the following:

Theorem 3.4.4 Let Gm be the sequence of matrices generated by the modified fast
implicit J−orthogonal Jacobi method in floating–point arithmetic with precision ε.
Then Theorem 3.4.2 holds except that in the hyperbolic case for |ζ| ≤ 3/(2

√
2) the

value Cm is changed to Cm = 55. Corollary 3.4.3 holds with this exception, too.

Proof. See the proof of Th. 3.3.6. Q.E.D.
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As in Subsect. 3.3.1, we can keep the diagonal of the matrix GTG in a separate
vector, thus saving 2(n+1) multiplications and 2(n−1) additions in every step. This
is done as in Alg. 3.3.7, except that ∆i’s are now refreshed using Ḡm and D̄m. All
remarks about Alg. 3.3.7 from Subsect. 3.3.1 hold here, as well.

æ
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3.4.1 Self–scaling rotations

Analysing the fast rotation formulae (3.4.3) and (3.4.4), we see that these rotations
make both values D̄i and D̄j smaller or larger, respectively. This can lead to un-
derflow/overflow in some D̄i during floating–point computation. As already men-
tioned, the probability that this happens is in the case of transition from the matrix
H = GJGT to the pair G, J very low. The probability of underflow/overflow can
further be reduced by using self–scaling rotations suggested by Anda and Park [1].
The main idea is to ”push” the diagonal element of D̄ which is further away from
1 towards 1. We use the ”two way branch algorithm” of [1] and generalize it to the
hyperbolic case. This adds four new fast rotations to the already existing ones (3.4.3)
and (3.4.4). In this subsection we define these rotations, give the algorithm of the
method, and present the error analysis.

The trigonometric self–scaling rotations from [1] are the following: supose that
(3.4.2) holds. Simple calculation shows that either

[
G′·i G′·j

]
=
[
Ḡ·i Ḡ·j

] [ 1 α
0 1

] [
1 0
β 1

] [
D̄′i

D̄′j

]
, (3.4.14)

where

α =
D̄i

D̄j
t , β = −D̄j

D̄i
cs · sn , t = sn/cs ,

D̄′i = D̄i/cs , D̄′j = D̄jcs , (3.4.15)

or [
G′·i G′·j

]
=
[
Ḡ·i Ḡ·j

] [ 1 0
β 1

] [
1 α
0 1

] [
D̄′i

D̄′j

]
, (3.4.16)

where

β = −D̄j

D̄i

t , α =
D̄i

D̄j

cs · sn , t = sn/cs ,

D̄′i = D̄ics , D̄′j = D̄j/cs . (3.4.17)

The hyperbolic versions of the above rotations are either (3.4.14) with

α =
D̄i

D̄j
t , β =

D̄j

D̄i
ch · sh , t = sh/ch ,

D̄′i = D̄i/ch , D̄′j = D̄jch , (3.4.18)

or (3.4.16) with

β =
D̄j

D̄i
t , α =

D̄i

D̄j
ch · sh , t = sh/ch ,

D̄′i = D̄ich , D̄′j = D̄j/ch . (3.4.19)
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The rotation (3.4.3) makes both D̄i and D̄j smaller. We use it in the trigonometric
case when D̄i, D̄j ≥ 1. The rotation (3.4.4) makes both D̄i and D̄j larger. We use it
in the hyperbolic case when D̄i, D̄j < 1.

The rotations (3.4.14), (3.4.15) and (3.4.16), (3.4.19) make D̄i larger and D̄j

smaller so they are always used when D̄i < 1 ≤ D̄j. The first is also used in the
trigonometric case when D̄i ≤ D̄j < 1 and the second is used in the hyperbolic case
when 1 ≤ D̄i ≤ D̄j.

The rotations (3.4.16), (3.4.17) and (3.4.14), (3.4.18) make D̄i smaller and D̄j

larger so they are always used when D̄i ≥ 1 > D̄j. The first is also used in the
trigonometric case when 1 > D̄i > D̄j, and the second is used in the hyperbolic case
when D̄i > D̄j ≥ 1.

Thus, we have the following

Algorithm 3.4.5 Fast implicit J−orthogonal Jacobi method with self–scaling rota-
tions for the pair G, J . tol is a user defined stopping criterion.

for k = 1 to r
Dk = 1

endfor
repeat

for all pairs i < j

/* compute

[
a c
c b

]
≡ the (i, j) submatrix of GTG */

a = D2
i

∑n
k=1 G

2
ki

b = D2
j

∑n
k=1G

2
kj

c = DiDj
∑n
k=1Gki ∗Gkj

/* compute the parameter hyp: hyp = 1 for the hyperbolic and
hyp = −1 for the trigonometric rotation, respectively */
if 1 ≤ i ≤ npos < j ≤ r then

hyp = 1
else

hyp = −1
endif

/* compute the J−orthogonal Jacobi rotation which diagonalizes[
Hii Hij

Hji Hjj

]
≡
[
a c
c b

]
*/

ζ = −hyp ∗ (b+ hyp ∗ a)/(2c)
t = sign(ζ)/(|ζ|+√ζ2 − hyp)
h =
√

1− hyp ∗ t2
cs = 1/h
sn = t/h

/* update columns i and j of G and Di and Dj */
if (hyp = 1 and Di, Dj < 1) or (hyp = −1 and Di, Dj ≥ 1) then
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α = t ∗Di/Dj

β = hyp ∗ t ∗Dj/Di

for k = 1 to n
tmp = Gki

Gki = tmp+ α ∗Gkj

Gkj = β ∗ tmp+Gkj

endfor
Di = Di ∗ cs
Dj = Dj ∗ cs

elseif (hyp = 1 and (Dj < 1 ≤ Di or Di > Dj ≥ 1)) or
(hyp = −1 and (Di < 1 ≤ Dj or Di ≤ Dj ≤ 1)) then
α = t ∗Di/Dj

β = hyp ∗ cs ∗ sn ∗Dj/Di

for k = 1 to n
Gkj = α ∗Gki +Gkj

Gki = Gki + β ∗Gkj

endfor
Di = Di/cs
Dj = Dj ∗ cs

else
β = hyp ∗ t ∗Dj/Di

α = cs ∗ sn ∗Di/Dj

for k = 1 to n
Gki = Gki + β ∗Gkj

Gkj = α ∗Gki +Gkj

endfor
Di = Di ∗ cs
Dj = Dj/cs

endif
endfor

until convergence (all |c|/
√
ab ≤ tol)

/* the computed non–zero eigenvalues of H = GJGT (and of the pair GTG, J) are
λj = (

∑n
k=1G

2
kj)D

2
j Jjj */

/* the computed eigenvectors of H are the normalized columns of the final G */

The version of the algorithm where the diagonal of GTG is kept in a separate
vector is obtained by combining Algorithms 3.4.5 and 3.3.7. The only exception from
Alg. 3.3.7 is that ∆i’s are refreshed using Ḡm and D̄m. Further, the modified method
is obtained by combining Algorithms 3.4.5 and 3.2.7. Error analysis of the self–scaling
rotations is similar to the analysis of the fast rotations from previous section. The
following theorem gives error analysis of the modified method:
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Theorem 3.4.6 Let Ḡm, D̄m be the sequences of matrices generated by the modified
fast implicit J−orthogonal Jacobi algorithm with self–scaling rotations in floating–
point arithmetic with precision ε; that is Ḡm+1 is obtained from Ḡm by applying one
of the fast rotations, and Dm+1 is obtained from Dm by one of the formulae (3.4.3),
(3.4.4), (3.4.15), (3.4.17 – 3.4.19). Then Th. 3.4.2 holds with

Cm = 191 (3.4.20)

in all cases. Corollary 3.4.3 holds as well.

Proof. For the standard fast rotations (3.4.3) and (3.4.4), the theorem follows from
Theorems 3.4.2 and 3.4.4.

Suppose that we apply the hyperbolic self–scaling rotation defined with (3.4.16)
and (3.4.19). Let the quantities cs and sn computed by Alg. 3.4.5 be denoted by ch
and sh, respectively. Let

c̃h ≡ 1/
√

1− t2 , s̃h ≡ t/
√

1− t2
β̃ ≡ tD̄j/D̄i , α̃ ≡ D̄i/D̄j c̃h · s̃h . (3.4.21)

Since we are using the modified method, the relations (3.2.23) always hold, and for
the calculated transformation parameters we have

ch = (1 + εch)c̃h , sh = (1 + εsh)s̃h , |εch|, |εsh| ≤ 4ε

β = (1 + εβ)β̃ , |εβ| ≤ 2ε .

α = (1 + εα)α̃ , |εα| ≤ 11ε ,

c̃h and s̃h define the exact rotation

Jm =

[
c̃h s̃h

s̃h c̃h

]

which takes Gm + δGm to Gm+1, i.e. (Gm + δGm)Jm = Gm+1. Let G′ki and G′kj be the
new values for these entries computed by the algorithm. From Alg. 3.4.5 we have

Ḡ′ki = fl(Ḡki + βḠkj) = (1 + ε1)Ḡki + (1 + ε2)(1 + ε3)(1 + εβ)β̃Ḡkj

= Ḡki + β̃Ḡkj + ε1Ḡki + (ε2 + ε3 + εβ)β̃Ḡkj

D̄′i = fl(D̄j ch) = D̄ic̃h+ (ε4 + εch)D̄ic̃h .

Using
G·j = Ḡ·j D̄j , G′·j = Ḡ′·j D̄

′
j ,

and (3.4.21), we obtain

G′·i = c̃hG·i + s̃hG·j + E·i
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where
‖E·i‖2 ≤ (6c̃h‖G·i‖2 + 9|s̃h|‖G·j‖2)ε .

Further,

Ḡ′kj = fl(αḠ′ki + Ḡkj) = (1 + ε5)(1 + ε6)(1 + εα)α̃Ḡ′ki + (1 + ε7)Ḡkj

D̄′j = fl(D̄j/ch) = D̄j/ch+ (ε8 + ε′ch)D̄j/ch ,

where |ε′ch| ≤ 4ε, so that

G′·j = Ḡ′·j D̄
′
j = s̃hG·i + c̃hG·j + E·j

where

‖E·j‖2 ≤

19|s̃h|‖G·i‖2 +


5c̃h+

1

c̃h
+ 17

s̃h
2

c̃h




 ε .

Now (3.3.15) holds with

‖F·i‖2 ≤ c̃h‖E·i‖2 + |s̃h|‖E·j‖2

≤ (6c̃h
2

+ 19s̃h
2

+ (14c̃h|s̃h|+ 17|t|s̃h2
+ |t|)x)εdi ,

‖F·j‖2 ≤ |s̃h| · ‖E·i‖2 + c̃h‖E·j‖2

≤ (25c̃h|s̃h|/x + 26s̃h
2

+ 5c̃h
2

+ 1)εdj . (3.4.22)

Here
‖G·i‖2 ≡ di , ‖G·j‖2 ≡ dj , , x ≡ dj/di .

We consider two cases, x ≥ 1/
√

2 and x < 1/
√

2. If x ≥ 1/
√

2, then by inserting
1/x ≤

√
2 and (3.2.23) into (3.4.22) we have

‖F·i‖2 ≤ 64diε , ‖F·j‖2 ≤ 86djε ,

‖δBm‖2 ≤ ‖F·i‖2/di + ‖F·j‖2/dj ≤ 150ε .

If x < 1/
√

2, then (3.3.19) holds, and by inserting (3.3.19), and (3.2.23) into (3.4.22)
we have

‖F·i‖2 ≤ 54diε , ‖F·j‖2 ≤ 137djε ,

‖δBm‖2 ≤ 191ε .

The analysis of the three remaining types of the self–scaling rotations is similar.
Q.E.D.

æ
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Chapter 4

Symmetric indefinite
decomposition

4.1 Introduction and algorithm

In order to solve the eigenvalue problem

Hx = λx , x 6= 0 , (4.1.1)

where H is a n × n real symmetric matrix with rank (H) = r ≤ n, by any of the
implicit (one–sided) Jacobi methods of Chap. 3 for which we have good error bounds,
we first decompose H as

PHP T = GJGT , J = Inpos ⊕−Ir−npos . (4.1.2)

Here G is a n × r matrix (i.e. G has full column rank), P is a permutation matrix,
and npos is the number of positive eigenvalues of H. The decomposition (1.1) is then
obtained by multiplying (4.1.2) by P T from the left and P from the right, that is, the
implicit Jacobi is applied to the pair P TG, J .

The chapter is organized as follows: in this section we give the algorithm of the
symmetric indefinite decomposition (4.1.2). In Sect. 4.2 we give the error analysis of
the method. In Sect. 4.3 we give the final error bounds for the computed eigensolution
of the symmetric eigenvalue problem. Finally, in Sect. 4.4 we show an interesting
fact that the scaled condition of the matrix GTG is bounded by a function of n
irrespectively of the condition of the starting matrix H.

We now give the algorithm of the symmetric indefinite decomposition (4.1.2). Our
method is essentially the method of Bunch and Parlett [6] with some modifications.
The method of Bunch and Parlett decomposes H as

PHP T = LTLT , (4.1.3)
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where L is lower triangular matrix with unit diagonal, and T is block diagonal matrix
with (1× 1) and (2 × 2) blocks. We shortly describe one step of the algorithm. Let
P̄ be a permutation matrix such that

P̄HP̄ T =

[
X CT

C Y

]
, (4.1.4)

where X is nonsingular k× k matrix, k ∈ {1, 2}, C is a (n− k)× k matrix, and Y is
a (n− k)× (n− k) matrix. Such P̄ always exists because H is nonsingular. We can
decompose P̄HP̄ T as

P̄HP̄ T = L̄

[
X 0
0 H1

]
L̄T ,

L̄ =

[
Ik 0

CX−1 In−k

]
,

H1 = Y − CX−1CT . (4.1.5)

Recursive application of (4.1.5) yields (4.1.3) in the obvious manner. We choose 1×1
or 2× 2 pivot according to the unequilibrated diagonal pivoting from [6] 1: set

α = (1 +
√

17)/8 ,

and calculate

ν0 = max
i6=j
|Hij| , ν1 = max

i
|Hii| . (4.1.6)

We choose a 1× 1 pivot if and only if ν1 ≥ αν0, and a 2 × 2 pivot otherwise. For a
1× 1 pivot, we choose P̄ in (4.1.4) to interchange row and column 1 with s, where s
is the least integer such that ν1 = |Hss|. Therefore, |X| = ν1. For a 2 × 2 pivot, we
choose P̄ to interchange rows and columns 1 with q and 2 with p, where q is the least
column integer and p is the least row integer in the q−th column such that ν0 = |Hpq|
(note that p > q). Therefore,

|(P̄HP̄ T )21| = ν0 ,

− det(X) = | detX| ≥ ν2
0 − ν2

1 . (4.1.7)

Bunch and Parlett [6] showed that the above choice of α minimizes the element
growth which can take place in transition from H to H1, and that for any pivoting
strategy which satisfies (4.1.7)

|Lij| ≤
{

1.562 if Lij is obtained after a 1× 1 pivot
2.781 otherwise .

(4.1.8)

1See Rem. 4.2.3.

104



To obtain decomposition (4.1.2), we futher decompose PHP T as

PHP T = LQQTTQQTLT ,

where Q is orthogonal block diagonal matrix with the same structure as T . The 1×1
blocks of Q are 1, and the 2× 2 blocks of Q are elementary orthogonal plane rotation
matrices of the form

[
cs sn
−sn cs

]
, cs2 + sn2 = 1 ,

chosen to diagonalize corresponding 2 × 2 blocks of T . Denoting L1 = LQ and
D1 = QTTQ we can write PHP T = L1D1L

T
1 , where L1 is lower block triangular

and D1 is diagonal matrix. Due to (4.1.7) the 2 × 2 diagonal blocks of D1 which
correspond to 2× 2 diagonal blocks of T always have one positive and one negative
element. Further we have

PHP T = L1

√
|D1|J1

√
|D1|LT1 ,

where J1 is diagonal with J1,ii ∈ {−1, 1}. Finally,

PHP T = L1

√
|D1|P1P

T
1 J1P1P

T
1

√
|D1|LT1 , (4.1.9)

where P1 is a permutation matrix chosen to sort elements of J1 according to the rela-

tion (4.1.2). Setting G = L1

√
|D1|P1 and J = P T

1 J1P1 we obtain the decomposition

(4.1.2).
If H is positive definite, the above algorithm reduces to the Cholesky decomposi-

tion with complete pivoting (see e.g. [13]), that is

PHP T = LLT . (4.1.10)

Combining (4.1.5) and (4.1.9), and using

QTXQ = D ,

where D is a 1× 1 or 2× 2 diagonal matrix, we obtain (in the notation of (4.1.5))

P̄HP̄ T = Ḡ

[
J 0
0 H1

]
ḠT ,

Ḡ =

[
B 0
Z I

]
,

B = Q|D|1/2 ,
Z = CQ|D|−1/2J ,

H1 = Y − ZJZT . (4.1.11)

Thus, we have the following:

105



Algorithm 4.1.1 Symmetric indefinite decomposition (4.1.2) of a real symmetric
matrix H. Vector P is initially defined by Pi = i, i = 1, . . . , n. The symbol ↔
denotes interchanging of two elements.

α = (1 +
√

17)/8
i = 1
npos = 0
r = 0
repeat
/* finding ν0, ν1, p, q and s */

ν0 = 0
ν1 = |Hii|
for k = i + 1 to n

if |Hkk| > ν1 then
ν1 = |Hkk|
s = k

endif
for l = i to k − 1

if |Hkl| > ν0 then
ν0 = |Hkl|
p = k
q = l

endif
endfor

endfor
if ν1 ≥ α · ν0 then
/* 1× 1 pivot; we first check for the non–singularity */

if ν1 = 0 then
r = i− 1
i = n + 1

else
/* permuting */

for k = i to n
Hki ↔ Hks

endfor
for k = 1 to n

Hik ↔ Hsk

endfor
Pi ↔ Ps

/* updating H */
Ji = sign(Hii)
if Ji = −1 then

npos = npos+ 1
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endif

temp =
√
|Hii|

Hii = temp
for k = i + 1 to n

Hki = Hki ∗ Ji/temp
Hik = 0
for l = i+ 1 to k

Hkl = Hkl −Hki ∗Hli ∗ Ji
Hlk = Hkl

endfor
endfor
i = i+ 1

endif
else
/* 2× 2 pivot; we first permute */

for k = i to n
Hki ↔ Hkq

Hk,i+1 ↔ Hkp

endfor
for k = 1 to n

Hik ↔ Hqk

Hi+1,k ↔ Hpk

endfor
Pi ↔ Pq
Pi+1 ↔ Pp

/* calculating the orthogonal matrix which diagonalizes

[
Hii Hi,i+1

Hi+1,i Hi+1,i+1

]
*/

ζ = (Hi+1,i+1 −Hii)/(2 ∗Hi+1,i)
t = sign(ζ)/(|ζ|+√ζ2 + 1)

h =
√

1 + t2

cs = 1/h
sn = t/h

/* updating H */
a = Hii −Hi+1,i ∗ t
b = Hi+1,i+1 +Hi+1,i ∗ t
Ji = sign(a)
Ji+1 = sign(b)
npos = npos + 1
a = |a|
b = |b|
Hii = cs ∗ a
Hi,i+1 = sn ∗ b
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Hi+1,i = −sn ∗ a
Hi+1,i+1 = cs ∗ b
for k = i+ 2 to n

temp = Hki

Hki = (temp ∗ cs−Hk,i+1 ∗ sn) ∗ Ji/a
Hk,i+1 = (temp ∗ sn +Hk,i+1 ∗ cs) ∗ Ji+1/b
Hik = 0
Hi+1,k = 0
for l = i + 2 to k

Hkl = Hkl −Hki ∗Hli ∗ Ji −Hk,i+1 ∗Hl,i+1 ∗ Ji+1

Hlk = Hkl

endfor
endfor
i = i + 2

endif
until i > n
/* if non–singularity did not occur, then rank equals dimension */
if r = 0 then

r = n
endif
/* permuting the columns of H to sort J */
k = npos+ 1
for l = 1 to npos

if Jl = −1 then
while Jk = −1

k = k + 1
endwhile
for m = 1 to n

Hml ↔ Hmk

endfor
k = k + 1

endif
endfor
/* r is equal to rank(H) and to the number of columns of G */
/* Matrix G is stored in the first r columns of the array H */
/* Matrix J is given implicitly by npos and r */
/* Vector P describes the pivoting which took place in the sense that H(P, P ) = GJGT */

æ
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4.2 Error analysis

In this section we give error analysis of the symmetric indefinite decomposition defined
by Alg. 4.1.1. In our proof we use the approach from Th. 3.3.1 of [16]. We compare
our result with the existing analysis of the algorithm of Bunch and Parlett [6] by
Bunch [3].

Theorem 4.2.1 Let G and J be the factors of a real symmetric matrix H computed
by Alg. 4.1.1 in floating–point arithmetic with precision ε. Then, with the relative
error of O(ε), G and J satisfy

GJGT = PHP T + E ,

|E| ≤ 136n(P |H|P T + |G||G|T )ε . (4.2.1)

Proof. The proof is by induction on n. The theorem obviously holds for all matrices
of order 1. To begin the induction, we must also analyse matrices of order 2 for a
2× 2 pivot. Let

ζ̃ = (H22 −H11)/(2H21) ,

t̃ = sign (ζ̃)/(|ζ̃|+
√

1 + ζ̃2) ,

c̃s = 1/
√

1 + t̃2 ,

s̃n = t̃/
√

1 + t̃2 ,

ã = H11 −H21t̃ ,

b̃ = H22 +H21t̃ , (4.2.2)

and G̃ij denote the exact quantities computed by Alg. 4.1.1, i.e. without rounding
errors. Since

|H21| = ν0 , max{|H11|, |H22|} ≤ ν1 , (4.2.3)

the fact that we perform a 2× 2 step implies

|ζ̃| ≤
{
α if sign (H11) = −sign (H22) ,
α/2 otherwise .

(4.2.4)

Now we show that the computed quantities t, cs, sn, a and b have small relative
errors with respect to the exact quantities from (4.2.2). Single subscribed ε’s denote
quantities of absolute value less than or equal to ε. Most of the subsequent inequalities
hold with a relative error of O(ε). Using (4.2.3) and the maximum in (4.2.4), we have

ζ = fl(
H22 −H11

2H21

) =
H22(1 + ε1)−H11(1 + ε2)

2H21(1 + ε3)
(1 + ε4)

= ζ̃ + εζ ,
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where |εζ| ≤ 3αε. This implies that the equality

fl(1 + ζ2) = (1 + ε5)(1 + (ζ̃ + εζ)
2(1 + ε6)) = (1 + ζ̃2)(1 + ε′) ,

holds for some
|ε′| ≤ 2|εζ ζ̃|+ (|ε5|+ |ε6|)ζ̃2 + |ε5| ≤ 4.3ε .

Further, the equality

fl(|ζ|+
√

1 + ζ2) = (1 + ε7)(|ζ̃ + εζ |+ (1 + ε8)(1 + ε′/2)
√

1 + ζ̃2)

= (1 + ε′′)(|ζ̃|+
√

1 + ζ̃2)

holds for some
|ε′′| ≤ |εζ|+ |ε7|(1 + |ζ̃|) + |ε8|+ |ε′|/2 ≤ 7ε ,

so that finally

t = t̃(1 + εt) , |εt| ≤ 8ε ,

cs = fl(1/
√

1 + t2) = c̃s(1 + εcs) , |εcs| ≤ 11ε ,

sn = fl(t/
√

1 + t2) = s̃n(1 + εsn) , |εsn| ≤ 19ε . (4.2.5)

Let

a = fl(H11 −H21t)

b = fl(H22 +H21t) . (4.2.6)

If sign (H11) = −sign (H22), then a and b are both calculated by addition and have
small relative errors, i.e.

a = ã(1 + εa) , b = b̃(1 + εb) , |εa|, |εb| ≤ 10ε . (4.2.7)

Let sign (H11) = sign (H22). Assume further that H11 ≥ H22 ≥ 0. Then a is again
calculated by addition and (4.2.7) holds for it. Using (4.2.4), |H21| = ν0, and |H22| ≤
ν1, we have

|b̃| = |H22 +H21t̃| ≥ |t̃||H21| − |H22|

≥ ν0


 1

α/2 +
√

1 + α2/4
− α


 ≥ 0.088ν0 .

Therefore,

b = H22(1 + ε9) + (1 + ε10)(1 + ε11)(1 + εt)H21t̃ = b̃(1 + ε′b) ,

|ε′b| ≤ (|H22ε9|+ (|ε10|+ |ε11|+ |εt|)|H21||t̃|)/b̃ ≤ 121ε .
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We conclude that in any case

a = ã(1 + εa) , b = b̃(1 + εb) , |εa|, |εb| ≤ 121ε . (4.2.8)

This implies that, e.g.

G21 = fl(−sn
√
|a|) = G̃21(1 + εG) ,

|εG| ≤ |εsn|+ |εa|/2 + 2ε ≤ 81.5ε ,

so that
B = G = G̃ + δG , |δG| ≤ 81.5|G̃|ε . (4.2.9)

Thus,

BJBT = GJGT = (G̃+ δG)J(G̃+ δG)T = H + E ,

|E| ≤ 2 · 81.5|G̃||G̃|Tε
= 163|G||G|Tε , (4.2.10)

and (4.2.1) holds.
The induction step must also be done separately for a 1× 1 and a 2× 2 pivot. We

can assume without loss of generality that P̄ from (4.1.4) is the identity. Moreover,
permuting the columns of G in order to sort the elements of J (see (4.1.9)) does not
influence the statement of the theorem. From (4.1.4) and (4.1.11) we conclude that

H =

[
X CT

C Y

]
=

[
B 0
Z I

] [
J 0
0 H1

] [
BT ZT

0 I

]
. (4.2.11)

Suppose that we do a 1×1 step, and that (4.2.1) holds for all matrices of order n−1.
Then (4.2.11) holds with

B = fl(|H11|1/2) = |H11|1/2 + δB ,

|δB| ≤ |H11|1/2ε ,
Z = fl(CJ/B) = CJ |H11|−1/2 + δZ ,

|δZ| ≤ 2ε|C||H11|−1/2 ,

H1 = fl(Y − ZJZT ) = Y − ZJZT + F1 ,

|F1| ≤ 2ε(|Y |+ |Z||Z|T ) . (4.2.12)

The induction assumption implies that

G1J1G
T
1 = P1H1P

T
1 + E1 , (4.2.13)

where
|E1| ≤ 136(n− 1)ε(P1|H1|P T

1 + |G1||G1|T ) .
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Now Alg. 4.1.1 yields

G =

[
B 0
P1Z G1

]
,

so that

G

[
J

J1

]
GT =

[
BJBT BJZTP T

1

P1ZJB
T P1ZJZ

TP T
1 +G1J1G

T
1

]
. (4.2.14)

Setting P = I ⊕ P1 and using (4.2.12), we obtain

G

[
J

J1

]
GT = P

[
H11 CT

C Y

]
P T

+

[
2δBJ |H11|1/2 δCT

δC E1 + P1F1P
T
1

]
(1 +O(ε))

≡ H + E ,

where
δC = P1(δZJ |H11|1/2 + C|H11|−1/2δB) .

Using this and (4.2.12), we obtain

|E| ≤
[

2|H11| 3|C|TP T
1

3P1|C| |E1 + P1F1P
T
1 |

]
ε . (4.2.15)

From (4.2.12) it follows that

|H1| ≤ (1 + 2ε)(|Y |+ |Z||Z|T ) .

By using (4.2.13), we have

|E1 + P1F1P
T
1 | ≤ (136(n− 1) + 2)(P1(|Y |+ |Z||Z|T )P T

1 + |G1||G1|T )ε . (4.2.16)

Inserting the above relation into (4.2.15) we obtain

|E| ≤ (136(n− 1) + 3)(P |H|P T + |G||G|T )ε ,

which, in turn, implies (4.2.1).
Now suppose that we do a 2 × 2 pivot, and that (4.2.1) holds for all matrices of

order n− 2. From the analysis of the 1× 1 step, we see that we can without loss of
generality assume that P1 equals identity. Let H be partitioned as in (4.1.4), and let
Q̃TXQ̃ = D̃ be the exact spectral decomposition of X. Let Q and D be the computed
matrices Q̃ and D̃, respectively. The analysis of the 2× 2 case for n = 2 holds for the
floating–point spectral decomposition of X, as well. Thus, (4.2.5) and (4.2.8) imply
that

Q = Q̃+ δQ , |δQ| ≤ 19|Q̃|ε ,
D = D̃ + δD , |δD| ≤ 121|D̃|ε . (4.2.17)
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Now (4.2.11) holds with H1 defined by (4.2.12), and B and Z as follows: from (4.2.9)
it follows directly that

B = fl(Q|D|1/2) = Q̃|D̃|1/2 + δB ,

|δB| ≤ 81.5|Q̃||D̃|1/2ε , (4.2.18)

and from (4.1.11) and (4.2.17) it follows that

Z = fl(CQ|D|−1/2J) = CQ̃|D̃|−1/2J + δZ ,

|δZ| ≤ 83.5|C||Q̃||D̃|−1/2ε . (4.2.19)

As in the 1× 1 case, the induction assumption (4.2.13), where now

|E1| ≤ 136(n− 2)ε(|H1|+ |G1||G1|T ) ,

implies (4.2.14). This, (4.2.18), (4.2.19), (4.2.12), and (4.2.13), imply that

G

[
J

J1

]
GT =

[
X CT

C Y

]
+

[
δX δCT

δC E1 + F1

]
≡ H + E , (4.2.20)

where
δC = δZJ |D̃|1/2Q̃T + CQ̃|D̃|−1/2JδBT .

From (4.2.10) it follows directly that

|δX| ≤ 163|B||B|Tε . (4.2.21)

As in the proof of (4.2.16), we have

|E1 + F1| ≤ (136(n− 2) + 2)(|Y |+ |Z||Z|T + |G1||G1|T )ε , (4.2.22)

and it remains to bound |δC| from above. From (4.2.18) and (4.2.19) it follows

|δC| ≤ 165|C||Q̃||Q̃|T ε .

It is easy to see that

|C||Q̃||Q̃|T ≤ |C|+
[
|C·2| |C·1|

]
,

where C·j denotes the j−th column of C. Further,

|Z||B|T = |CQ̃|D̃|−1/2 + δZ| · ||D̃|1/2Q̃T + δBT |
≥ |CQ̃||Q̃|T − 165|C||Q̃||Q̃|T ε . (4.2.23)

Now
(|CQ̃||Q̃|T )·i = |C·1c̃s− C·2s̃n|c̃s+ |C·1s̃n+ C·2c̃s||s̃n| .
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Simple checking of all possible combinations for the signs of Cij and s̃n shows that
either

|Ci1c̃s− Ci2s̃n| = |Ci1|c̃s+ |Ci2||s̃n| , (4.2.24)

or
|Ci1s̃n+ Ci2c̃s| = |Ci1||s̃n|+ |Ci2|c̃s . (4.2.25)

If (4.2.24) holds for some i, then

(|CQ̃||Q̃|T )i1 ≥ |Ci1|(c̃s2 − s̃n2) + 2|Ci2||s̃n|c̃s .

From (4.2.4) it follows that

|t̃| ≥ 1

α +
√

1 + α2
. (4.2.26)

Therefore,
2c̃s|s̃n| ≥ (1 + α2)−1/2 ≥ 0.842 ,

and
(|CQ̃||Q̃|T )i1 ≥ 0.842|Ci2| .

If (4.2.25) holds for some i, then

(|CQ̃||Q̃|T )i1 ≥ 2|Ci2||s̃n|c̃s− |Ci1|(c̃s2 − s̃n2) .

From (4.2.26) it follows that

c̃s2 − s̃n2 ≤ α(1 + α2)−1/2 ≤ 0.54 ,

so that
(|CQ̃||Q̃|T )i1 ≥ 0.842|Ci2| − 0.54|Ci1| .

The similar analysis holds for the second column of |CQ̃||Q̃|T , too, and we conclude
that

|C|+
[
|C·2| |C·1|

]
≤ 1

0.842
|CQ̃||Q̃|T +

(
1 +

0.54

0.842

)
|C|

≤ 1.642 (|CQ̃||Q̃|T + |C|) .

Using this and (4.2.23), and ignoring the relative error of O(ε), we obtain

|δC| ≤ 165 · 1.642 (|Z||B|T + |C|+ 165 |C||Q̃||Q̃|T ε)ε
≤ 271 (|Z||B|T + |C|)ε .

Finally, (4.2.1) follows by inserting this, (4.2.21) and (4.2.22) into (4.2.20), and the
theorem is proved. Q.E.D.
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Bunch [3] showed that the decomposition (4.1.3) with the unequilibrated diagonal
pivoting (which is also used in Alg. 4.1.1) is stable in the following sense: let L and
T be the factors of H computed in floating–point arithmetic with precision ε. Then

LTLT = PHP T + F ,

where
‖F‖1 ≤ max

k
ν

(k)
0 (21.6n+ 7.9n2)ε ,

and ν
(k)
0 is the value of ν0 in the k−th reduction step. The quantity maxk ν

(k)
0 is

further bounded by

max
k
ν

(k)
0 ≤ max

i,j
|Hij|3.07f(n)

√
n(n− 1)0.446 ,

where

f(n) =

(
n∏

k=2

k1/(k−1)

)1/2

≤ 2n(1/4) log n .

The bound of Th. 4.2.1 compares favourably to the above bounds, since it does not
contain the n2ε term. The quantity maxk ν

(k)
0 is implicitly included in the |G||G|T

term of (4.2.1). Note that Th. 4.2.1 holds for a singular H, as well.
From the proof of Th. 4.2.1 we see that 2× 2 steps contribute much more to the

error bound than 1 × 1 steps. If only 1 × 1 steps are performed (which is always
the case when we decompose a positive definite matrix, and is often the case when
we decompose scaled diagonally dominant matrices of [2]), then the bound (4.2.1)
reduces to

|E| ≤ 3n(P |H|P T + |G||G|T )ε .

In the positive definite case Alg. 4.1.1 reduces to the Cholesky decomposition with
complete pivoting, and only 1 × 1 steps are performed. The above inequality then
implies

|Eij| ≤ 6n((PHP T )ii(PHP
T )jj)

1/2ε ,

which is similar to the result of Demmel [9]. There the constant 6n is replaced by
(n + 1)/(1 − (n + 1)ε). Note, however, that the above bound holds for the outer
product version of the Cholesky decomposition (Alg. 4.2.2 of [16]) with the addition
of the complete pivoting, while Demmel [9] analysed the Gaxpy version (Alg. 4.2.1 of
[16]).

Remark 4.2.2 Numerical experiments of Chap. 5 indicate that the bound (4.2.1)
increases only slowly with n.

Remark 4.2.3 Other pivot strategies. Note that Th. 4.2.1 and then, in turn, Th.
4.3.1, hold for any pivot strategy for which (4.2.4) holds when we apply a 2× 2 step.
In particular, these theorems hold for the partial pivot strategy of [5] and for the
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pivot strategy given by Algorithm C of [4], which both require O(n2) search. We
have chosen the unequilibrated diagonal pivoting since it has better bounds for the
element growth, as well as the uniform upper bound for the scaled condition of the
matrix GTG (see Sect. 4.4). Moreover, since the symmetric indefinite decomposition
takes about 10% of the computing time, an O(n3) search, which is needed by the
unequilibrated diagonal pivoting, does not considerably slow down the algorithm.
However, theoretical and practical investigation of Algorithm C of [4] (for positive
definite matrices this algorithm also reduces to Cholesky decomposition with complete
pivoting), is certainly of interest.

æ
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4.3 Overall error bounds

The results of the previous parts of the thesis suggest the following procedure to solve
the real symmetric eigenvalue problem (4.1.1):

1. decompose H as H = GJGT by first using Alg. 4.1.1 to obtain the decompo-
sition (4.1.2), and then setting G = P TG as follows (in the notation of Alg.
4.1.1):

/* Back–permuting the rows of H to obtain the final factor */
for k = 1 to n

for l = k + 1 to n
if Pl = k then

Pl ↔ Pk
for m = 1 to r

Hkm ↔ Hlm

endfor
endif

endfor
endfor

2. solve the problem (4.1.1) by applying any of the implicit J−orthogonal Jacobi
methods of Chap. 3 on the pair G, J .

In this section we combine the error analysis of the symmetric indefinite decom-
position, error analysis of the implicit J−orthogonal Jacobi methods, and the pertur-
bation bounds of Chap. 2, to obtain error bounds for the computed eigensolution of
the real symmetric eigenvalue problem. Bounds hold only in the non–singular case,
since we cannot otherwise apply the perturbation theory of Sect. 2.2 to Th. 4.2.1. We
give error bounds for the case when the implicit method of Alg. 3.3.1 is used. Error
bounds for other implicit methods of Chap. 3 are obtained by simply substituting
error bounds for those methods in the final estimate. We then show that an approx-
imation for the error bounds can be obtained using only computed quantities. We
also discuss what happens in the singular case. We give an interesting example how
a change of the pivoting in the symmetric indefinite decomposition can considerably
improve the accuracy of the obtained eigensolution. In the conclusion, we summarize
some open problems.

Theorem 4.3.1 Let H be a real symmetric non–singular matrix and let λ be the i−th
eigenvalue of H. Let G, J be the decomposition of H obtained by Alg. 4.1.1 in floating–
point arithmetic with precision ε, and let G = DGBG, where DG is diagonal and the
rows of BG have unit norms. Let λG be the i−th eigenvalue of GJGT . Let Gm, J
be the sequence of pairs obtained from the pair G, J by Alg. 3.3.1 in floating–point
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arithmetic with precision ε, and let GM , J be the final pair which satisfies the stopping
criterion. For m ≥ 0 write Gm = BmDm, where Dm is diagonal and columns of Bm

have unit norms. Let λ′ be the i−th calculated eigenvalue. Then, with the relative
error of O(ε), we have

1− η − η1 ≤
λ′

λ
≤ 1 + η + η1, (4.3.1)

where

η =
272n2ε

λmin(D−1
G GJGT D−1

G )
,

η1 = 2ε
M−1∑

m=0

Cm
σmin(Bm)

+ n · tol + n2ε , (4.3.2)

· is the spectral absolute value defined in Sect. 2.1, and Cm are constants from Th.
3.3.3.

Now suppose λ is simple. Let v be the corresponding eigenvector. Let v ′ be the
eigenvector corresponding to λ′, i.e. the i−th column of GM divided by its norm. Then

‖v′ − v‖2 ≤
√

2η

rg(λ)
· 1

1−
(

1 +
1

rg(λ)

)
η

+
4
√

2η̄

rgG(λG)
· 1

1− 3η̄

rgG(λG)

+ 2n · tol + n(3n + 4)ε , (4.3.3)

provided 1 < (1 + 1/rg(λ))η and rgG(λG) < 3η̄. Here rg(λ) and rgG(λ) are defined
by (2.2.29) and (2.3.1), respectively, and

η̄ = η2(2 + η2) ,

η2 = (η1 + n · tol + n2ε)/2 ,

where η is defined by (4.3.2).

Proof. From Th. 4.2.1, by multiplying (4.2.1) by P T from the left and by P from
the right, and then setting G = P TG, it follows that

H = GJGT + δH ,

where
|δH| ≤ 136n(|H|+ |G||G|T )ε .

Also,
|H| ≤ |GJGT |+ |δH| ≤ |G||G|T + |δH| ,
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so that, by ignoring the relative error of O(ε), we have

|δH| ≤ 272n|G||G|Tε .

Further,

|xT δHx| ≤ |x|T |δH||x| ≤ 272n|x|T |DGEDG||x|ε
≤ 272n2xTD2

Gx ε

≤ 272n2ε

λmin(D−1
G GJGT D−1

G )
xT GJGT x .

Applying Th. 2.2.1 to the pair GJGT , I with

η ≡ ηH =
272n2 ε

λmin(D−1
G GJGT D−1

G )
, ηI = 0 ,

we obtain

1− η ≤ λG
λ
≤ 1 + η .

This and Cor. 3.3.4, by ignoring the relative error of O(ε), imply (4.3.1).
Let vG be the eigenvector of λG. Applying (2.3.13) and Th. 2.2.13 to the matrix

GJGT yields

‖vG − v‖2 ≤
η

rg(λ)
· 1

1−
(

1 +
1

rg(λ)

)
η

.

The relation (4.3.3) now follows from the above relation, (2.3.13), Th. 3.3.9, and the
triangle inequality. The assumptions on rg(λ) and rgG(λG) together with the proofs
of Theorems 2.2.13 and 3.3.9, implies that λ is throughout the algorithm well sepa-
rated from the rest of the spectrum. Q.E.D.

Remark 4.3.2 Th. 4.3.1 also holds if we substitute GJGT by H in (4.3.2). Indeed,
if we consider GJGT as H − δH, then

|xT δHx| ≤ 272n2ε

λmin(D−1
G HD−1

G )
xT H xε ,

and we can apply Theorems 2.2.1 and 2.2.13 directly to H. We are using GJGT

since G is the computed factor and DG its exact scaling.

Th. 4.3.1 implies that the error bounds depend on how D−1
G scales GJGT . In the

positive definite case GGT = GGT and the scaling with DG is optimal in the sense of
(2.1.4). Our numerical experiments show that in the indefinite case the scaling with
DG is also not far from the almost optimal one by (diag GJGT )−1/2.
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It is natural to want to approximate the bounds (4.3.1) and (4.3.3) by using only
computed quantities. We can substitute rg(λ) and rgG(λG) with rg(λ′) and rgG(λ′),
respectively. Although λ′ = λ(1 +O(ε)) = λG(1 +O(ε)), the above substitutions can
have large relative errors. However, in numerical tests they are shown to be realistic.
Further, we can substitute GJGT with GMG

T
M . This is justified as follows: if F is a

J−orthogonal matrix which diagonalizes some GTG as in the proof of Th. 2.3.1, then
GJGT = GFF TGT . Now consider the matrix

G′M ≡ (BM + δBM)DM ≡ GM + δBMDM ≡ (G+ δG(M))R0 · . . . ·RM−1

from the proof of Th. 3.3.9. This matrix has orthogonal columns so that

G′MG
′T
M = (G+ δG(M))J(G+ δG(M))T ,

and G′MG
′T
M is, in turn, ”not far” from GMG

T
M . We have no theoretical results about

the quality of this approximation, but its use is also justified by numerical experi-
ments. Moreover, since we observed that the actual errors increase only slowly as n
and M increase, and that the condition of the scaled matrix grows only little during
the Jacobi process, we expect that

∣∣∣∣∣
λ′ − λ
λ

∣∣∣∣∣ ≤
(

1

λmin(D−1
G GMGT

MD
−1
G )

+
2

σmin(B)

)
ε , (4.3.4)

‖v′ − v‖2 ≤
η

rg(λ′)
· 1

1−
(

1 +
1

rg(λ′)

)
η

+
4η̄

rgG(λ′)
· 1

1− 3η̄

rgG(λ′)

,

where

η =
ε

λmin(D−1
G GMGT

MD
−1
G )

,

η̄ =
3ε

σmin(B)
.

We cannot apply Th. 4.3.1 to singular matrices, since GJGT −1
is not defined.

However, if we obtain a componentwise accurate factor G, as in the example (2.3.13),
relative errors of the computed eigenvalues are bounded by Cor. 3.3.4. In this concrete
example, we first have to bring J to the form I⊕(−I). This is equivalent to performing
m trigonometric rotations for π/4 on G from the right. These rotations add m terms
to γ of (3.3.20). Since Th. 3.3.9 (Th. 2.3.3) requires the non–singularity of G, we
have no error bounds for the eigenvectors in this case.

The following example opens an interesting problem about the pivot choice in the
symmetric indefinite decomposition. The example underlines once more the impor-
tance of exact factors, and shows what difficulties we have when trying to do deflation.
Consider the matrix

H =




1 1 1
1 0 0
1 0 α2


 , (4.3.5)
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where α > 0 is small. Alg. 4.1.1 decomposes H as H = GJGT with

G =




1
1 1

1 1
√
α2 − 1 + 1


 , J = diag (1,−1, 1) .

Since H is given by (2.3.16), the error bounds of Th. 4.3.1 are large. Since in
calculating fl(

√
α2 − 1 + 1) we obtain only logα2 − log ε accurate digits, these error

bounds are almost attained. However, since 1/σmin(B) ≈ 2.5, any implicit Jacobi
method will compute the eigensolution of the pair G, J with high accuracy. This
means that when using Alg. 4.1.1, we can do deflation only if the submatrix which is
to be reduced at some stage is exactly zero.2 One way to accurately decompose H is
given by (2.3.15). Here we give another one: let us first choose 2× 2 pivot in (4.1.5).
Then we have

H =




1
0 1
0 1 α







1 1
1 0

1







1 0 0
1 1

α


 .

It is easy to see that with this pivot choice Alg. 4.1.1 returns the factor G which has
componentwise small relative errors. Therefore, the first terms of (4.3.1) and (4.3.3)
are superfluous, and, since 1/σmin(B) ≈ 2, the obtained eigensolution is accurate.
This underlines the importance of accurate factors, and shows that the unequilibrated
diagonal pivoting is not always the best choice.

Now we shortly summarize some open problems:

• finding a realistic upper bound for the growth of 1/σmin(BM),

• how well does D−1
G scale GJGT , and how well does λmin(D−1

G GMG
T
MD

−1
G ) ap-

proximate λmin(D−1
G GJGT D−1

G ),

• proving Th. 2.3.3 for the non–square full column rank G,

• improving the pivot strategy in Alg. 4.1.1, to avoid the unnecessary errors as in
the example (4.3.5).

The last problem is very difficult, and it is similar to the problem of finding the best
pivots in Gaussian elimination. It is easy to see (see also Rutishauser [23]) that Gauss’
algorithm with complete pivoting is also inaccurate when applied to (4.3.5).

æ

2In [6, 5] deflation is also performed only in this case.
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4.4 Bound for the scaled condition of GTG

The symmetric indefinite decomposition of Alg. 4.1.1 enables us to transform the
eigenvalue problem (4.1.1) to the eigenvalue problem for the pair GTG, J on which
we can use implicit methods of Chap. 3. In this section we show that the scaled
condition of the matrix GTG is bounded by a function of n irrespectively of the
condition of the starting matrix H. This bound is nearly attainable. For related
results see [19]. Numerical experiments of [13] and Chap. 5 show that the scaled
condition of GTG is generally much smaller than our bound. This has a positive
effect on the speed of the implicit methods applied on the pair GTG, J . The results
of this section are partially contained in [25].

For any positive definite matrix H we define the scaled matrix A ≡ Scal (H) by
H = DAD, where D is diagonal positive definite, and A has ones on the diagonal.

We analyse separately the positive definite and indefinite case. For H positive
definite Alg. 4.1.1 reduces to the Cholesky decomposition with complete pivoting
(4.1.10), PHP T = LLT . Complete pivoting is equivalent to the fact that

L2
ii ≥

j∑

k=i

L2
jk , i = 1, . . . , n− 1, j > i.

This implies

Lii ≥ Ljj , Lii > |Lji| , i = 1, . . . , n− 1, j > i . (4.4.1)

Set

H1 = LTL . (4.4.2)

If (λ, x) is an eigenpair of H, then (λ, L−1x) is an eigenpair of H1. Let A1 = Scal (H1),
i.e.

H1 = D1A1D1 . (4.4.3)

Demmel and Veselić [13] showed that κ(A1) is bounded by a constant depending only
on the dimension n. For example, for n = 2 it is easy to see that κ(A1) < 3 + 2

√
2.

For general n their upper bound is

κ(A1) < e · n · n! , (4.4.4)

which is, as they stated, a large overestimate. Here e = exp (1).

Now we analyse matrix A1 in more detail and give a better bound which can be
almost attained. We first illustrate the idea of the analysis on a 3× 3 example. Let
PHP T = LLT be the Cholesky decomposition with complete pivoting of a 3 × 3
positive definite matrix H. By

D1 = diag (
√
L2

11 + L2
21 + L2

31,
√
L2

22 + L2
32, L33)
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we have

A1 =




1
L21L22 + L31L32√

L2
11 + L2

21 + L2
31

√
L2

22 + L2
32

L31√
L2

11 + L2
21 + L2

31

1
L32√

L2
22 + L2

32

sym. 1



.

Now we need two monotonicity properties of the norm ‖ · ‖2,

‖A‖2 ≤ ‖|A|‖2 ≤
√
n‖A‖2 , (4.4.5)

where |A| = |Aij|, and
|Aij| ≤ Bij =⇒ ‖A‖2 ≤ ‖B‖2 . (4.4.6)

From (4.4.5) and (4.4.1) we conclude that ‖A1‖2 ≤ ‖A′‖2 where A′ = D−1|L|T |L|D−1,
i.e. the worst case is when all Lij, i 6= j, are non–negative. Treating A′23 as a
monotonically increasing function of the (positive) variable L32, from (4.4.1) it follows

A′23 <
L22√

L2
22 + L2

22

=

√
1

2
.

Treating A′13 as an increasing function of L31 we have

A′13 <
L11√

L2
11 + L2

11 + L2
21

≤
√

1

2
.

The element A′12 is an increasing function in three (positive) variables L21, L31 and
L32. Therefore,

A′12 <
L11L22 + L11L22√

L2
11 + L2

11 + L2
11

√
L2

22 + L2
22

=

√
2

3
.

Finally, from (4.4.6) we conclude that

‖A1‖2 <

∥∥∥∥∥∥∥∥∥




1
√

2/3
√

1/2√
2/3 1

√
1/2√

1/2
√

1/2 1




∥∥∥∥∥∥∥∥∥
2

≤ 1 +

√
2

3
+

√
1

2
.

Further, we have A−1
1 = D1L

−1L−TD1, where

L−1 =




1
1

1

L33







1
1

L22

−L32

L22
1







1

L11

−L21

L11

1

−L31

L11
1



.
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From (4.4.5), (4.4.6) and (4.4.1) we see that ‖A−1
1 ‖2 < ‖D′L′(L′)TD′‖2, where

L′ =




1
1

1

L33







1
1

L22

1 1







1

L11

1 1
1 1


 ,

and D′ = diag (
√

3L11,
√

2L22, L33). Therefore

D′L′(L′)TD′ = D′




1

L2
11

1

L11L22

2

L11L33
2

L2
22

3

L22L33

sym.
6

L2
33



D′ =




3
√

6 2
√

3√
6 4 3

√
2

2
√

3 3
√

2 6


 ,

and
‖A−1

1 ‖2 < Tr (A) = 13 .

Alltogether we have

κ(A1) < 13(1 +
√

2/3 +
√

1/2) ≈ 32.81.

(The bound (4.4.4) for n = 3 is 18e ≈ 48.96.)

Theorem 4.4.1 Let H be a real symmetric positive definite matrix of order n, and
let PHP T = LLT be its Cholesky decomposition with complete pivoting. Let A1 =
D−1

1 LTLD−1
1 , where

D1 = diag (D1,ii, . . . , D1,nn) = diag (LTL) , D1,ii =

(
n∑

k=i

L2
ki

)1/2

.

Then

κ(A1) <


1 +

n−1∑

i=1

√
i

i + 1




n∑

i=1

(
1 +

22(i−1) − 1

3

)
(n+ 1− i) . (4.4.7)

Proof. Reasoning as we did in the 3× 3 example, we conclude that ‖A1‖2 < ‖A′‖2

where

A′ =




1

√
n− 1

n

√
n− 2

n− 1
. . .

√
1

2

1

√
n− 2

n− 1
. . .

√
1

2

1 . . .
...

. . . 1




.
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Therefore

‖A1‖2 < 1 +
n−1∑

i=1

√
i

i+ 1
, (4.4.8)

which proves the first part of (4.4.7). As in the 3× 3 example, we also conclude that

‖A−1
1 ‖2 = ‖D1L

−1L−TD1‖2 ≤ ‖D′L′(L′)TD′‖2,

where

D′ = diag (
√
n,
√
n− 1, . . . ,

√
2, 1),

L′ = L(n)L(n−1) · . . . · L(1),

L
(i)
jk =





1, j = k ,
1, k = i, j = i + 1, . . . , n ,
0, otherwise .

For the elements of the matrix L′ we now have

L′ij =





1, i = j ,
2i−1−j, i > j ,
0, i < j .

Set B = L′(L′)T and C = D′L′(L′)TD′ = D′BD′. Then

Bii = 1 +
i−1∑

j=1

(L′ij)
2 = 1 +

i−1∑

j=1

22(i−1−j) = 1 +
i−2∑

k=0

22k

= 1 +
22(i−1) − 1

3
, i = 1, . . . , n ,

and

Bij = L′ij +
j−1∑

k=1

L′ikL
′
jk = 2i−1−j +

j−1∑

k=1

2i−1−k2j−1−k

= 2i−1−j + 2i+j−2



j−1∑

k=0

2−2k − 1




= 2i−j
(

1

2
+

22(j−1) − 1

3

)
, i = 1, . . . , n; i > j .

Of course, Bij = Bji. Furthermore,

Cij = Bij

√
n+ 1− i

√
n + 1− j .

Finally, ‖C‖2 < Tr (C) and the second part of (4.4.7) is proved. Q.E.D.
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In Th. 4.4.1 we have essentially proved that for any positive definite matrix H, the
value κ(A1) is smaller than the product ‖A′‖2‖C‖2. We must, however, emphasize
that the second (dominant) part of (4.4.7) is a very good approximation for ‖C‖2 in
the sense that for all n

(
n∑

i=1

(
1 +

22(i−1) − 1

3

)
(n+ 1− i)

)
/‖C‖2 < 1.0001 .

We can further symplify the inequality (4.4.7) by bounding ‖A′‖2 by n and ‖C‖2 by

∫ n+1

1

(
1 +

22(x−1) − 1

3

)
(n + 1− x)dx <

1

3

(
n2 +

1

ln2 4
22n
)
,

which yields

κ(A1) <
n

3

(
n2 +

1

ln2 4
22n
)
. (4.4.9)

We have experimentally observed that

1

3

(
n2 +

1

ln2 4
22n
)
/‖C‖2 < 1.1708 .

Now we show that the transition from the matrix H to the matrix LTL cannot
spoil the condition of the scaled matrix too much. We use the technique from [14].
Set A = Scal (PHP T ) = D−1LLTD−1, B = D−1L, and B1 = LD−1

1 . Then A = BBT ,
A1 = BT

1 B1 and
B−1

1 = D1L
−1 = D1B

−1D−1 .

From (4.4.1) for every 1 ≤ j ≤ i ≤ n it follows

|D1B
−1D−1|ij =

√√√√L2
ii + L2

i+1,i + · · ·+ L2
ni

L2
j1 + L2

j2 + · · ·+ L2
jj

|B−1|ij

≤
√
n− i + 1

Lii
Ljj
|B−1|ij ≤

√
n− i+ 1 |B−1|ij .

Thus, (4.4.5) and (4.4.6) imply

‖B−1
1 ‖2 ≤ ‖|D1B

−1D−1|‖2 ≤
√
n‖|B−1|‖2 ≤ n‖B−1‖2 ,

that is, ‖A−1
1 ‖2 ≤ n2‖A−1‖2.

The bound (4.4.7) is almost attained for the matrices of the form H = LLT , where

L = L0D0 ,

D0 = diag (1, s, s2, . . . , sn−1) ,

(L0)ij =





1, i = j ,
−c, i > j ,
0, i < j .

(4.4.10)

s2 + c2 = 1 .
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These matrices are due to Kahan and are described in [16]. When c → 1, then H
and Scal (H) both tend to singular matrices. Since H1 = LTL = D0L

T
0 L0D0 and L is

itself the optimal Cholesky factor of H, we conclude that

A1 = Scal (H1) = Scal (LT0 L0) = D−1
1 LT0 L0D

−1
1 ,

where

D1 = diag
(√

1 + (n− 1)c2,
√

1 + (n− 2)c2, . . . , 1
)
.

It is easy to verify that limc→1A
−1
1 = C. Therefore, the quotient between the bound

(4.4.7) and κ(A1) is in this case equal to ‖A′‖2/‖A1‖2 which is smaller than the first
part of (4.4.7) (smaller than n).

At the end we have to point out that, even though the bound of Th. 4.4.1 may
seem pessimistic, experiments from Demmel and Veselić [13] and Chap. 5 show that
κ(A1) is in practice considerably better than κ(A) and, thus, the examples like that
of Kahan are very rare. Moreover, for the matrices defined by (4.4.10) it is possible
to obtain much better κ(A1). Since Hii = 1, the optimal Cholesky decomposition
requires no pivoting. However, permuting the matrix H so that e.g. Hnn comes to
the position (1,1) does not contradict the complete pivoting and results in κ(A1) < n2.
Demmel and Veselić [13] showed that for positive definite matrix H

λmin(A) ≤ Hii

λi
≤ λmax(A) ,

where A = Scal (H), λi denotes the i−th eigenvalue of H, and Hii’s and λi’s have
the same ordering. This means that the diagonal entries of H can differ from the
eigenvalues only by factors bounded by κ(A). Applying this result to H1 = LTL,
wee see that the Cholesky decomposition usually has rank–revealing property. The
complete pivoting usually gives satisfactory results, but the choice of the optimal
pivoting as in the above example in an open problem. For related results about the
rank–revealing QR decomposition see [7].

The following theorem holds for a non–singular but possibly indefinite H:

Theorem 4.4.2 Let H be a nonsingular symmetric matrix and let PHP T = GJGT

be its decomposition. Let µ = 2.781 denote the maximal value of the quantities |Lij|
from (4.1.8), and let A1 = Scal (GTG). Then

κ(A1) < n(1 + 15n)3.7812n . (4.4.11)

Proof. From (4.1.9) it follows

‖A1‖2 = ‖Scal (GTG)‖2 = ‖Scal (P T
1

√
|D1|LT1 L1

√
|D1|P1)‖2

= ‖Scal (
√
|D1|LT1 L1

√
|D1|)‖2

= ‖Scal (LT1 L1)‖2 = ‖D−1LT1 L1D
−1‖2 ,
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where D is diagonal with elements Dii = (LT1 L1)ii = (QTLTLQ)ii. Note that in
estimating ‖A1‖2 and ‖A−1

1 ‖2 we can without loss of generality assume that P1 = I.
The matrix A1 is positive definite and has unit diagonal, so that

‖A1‖2 < n . (4.4.12)

Further,
‖A−1

1 ‖2 = ‖DL−1
1 L−T1 D‖2 = ‖DQTL−1L−TQD‖2 .

Now we shall maximize elements of the matrices D and QTL−1 and use the mono-
tonicity properties of the norm ‖ · ‖2 as we did in Th. 4.4.1. The elements of L−1 are
largest in modulus if all under–diagonal elements of L are equal to −µ. Let us denote
this ”maximal” L−1 by L̄. Then

L̄ij =





1, i = j ,
µ(1 + µ)i−1−j , i > j ,
0, i < j .

Now
|QTL−1| ≤ |QT |L̄ ≤ L′ ,

where

L′ij =





1 + µ, i = j ,
µ(2 + µ)(1 + µ)i−1−j, i > j ,
1, i = j − 1 ,
0, i < j − 1 .

Element Dii is the norm of the i–th column of LQ. It is easy to verify that

Dii =
√

1 + L2
i+1,i + . . . L2

ni ,

when the index i corresponds to a 1× 1 pivot, and

Dii =
√
cs2 + sn2 + (Li+2,ics− Li+2,i+1sn)2 + (Lnics− Ln,i+1sn)2 ,

Di+1,i+1 =
√
cs2 + sn2 + (Li+2,i+1cs+ Li+2,isn)2 + (Ln,i+1cs+ Lnisn)2 ,

when the indices i, i+1 correspond to a 2×2 pivot. Therefore, it is always Dii ≤ D′ii,
where D′ is diagonal matrix with elements

D′ii =
√

1 + 2(n− i)µ2 .

Now we have

‖A−1
1 ‖2 = ‖DQTL−1L−TQD‖2 ≤ ‖D′L′(L′)TD′‖2 ≤ Tr (D′L′(L′)TD′)

=
n∑

i=1


1 + (1 + µ)2 +

i−1∑

j=1

(
µ(1 + µ)(i−1−j)(2 + µ)

)2


 (1 + 2(n− i)µ2)
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=
n∑

i=1

[
1 + µ(2 + µ)((1 + µ)2(i−1) − 1)

]
(1 + 2(n− i)µ2)

≤ µ(2 + µ)(1 + 2nµ2)
n∑

i=1

(1 + µ)2(i−1)

≤ (1 + 2nµ2)(1 + µ)2n ,

which completes the proof of the theorem. Q.E.D.

Due to the fact that some of the worst cases assumed in the above proof are
impossible, the statement of Th. 4.4.2 is an overestimate. Numerical experiments of
Chap. 5 show that κ(Scal (GTG)) is, as in the positive definite case, generally very
small.

If H is singular, then Alg. 4.1.1 returns an n×r matrix G of the full column rank.
The nature of the proof of Th. 4.4.2 implies that (4.4.11) holds in this case, too (and
that even with better constants, since some summations have fewer terms).

æ
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Chapter 5

Numerical experiments

In this chapter, we present the results of our numerical experiments. Briefly, we
tested the algorithm of Sect. 4.3 and verified that error bounds of that section held
in all examples. The comparison of our algorithms with the QR and the standard
Jacobi algorithm showed that our algorithms are uniformly more accurate. In fact,
the performance is better than we were able to explain theoretically, both because
we could observe little or no growth in actual errors for increasing dimension, and
because of small values attained by maxm κ(Bm)/κ(B0) during the Jacobi part. The
relative errors in eigenvalues were given by (4.3.4) multiplied by small coefficients
which increased only slowly with n. The norm errors in eigenvectors were smaller
than those predicted by (4.3.4) by an order of magnitude .

Tests were performed using FORTRAN on an IBM RISC/6000. The arithmetic
is IEEE arithmetic with machine precision εS ≈ 5.9604 · 10−8 in single, and εD ≈
1.1102 · 10−16 in double precision. Overflow/underflow tresholds are approximately
10±38 in single, and 10±308 in double precision. The machine has a special multiply–
and–add function, maf, which computes a = b+ c ∗d as a single instruction. In single
precision, maf first computes c∗d in double precision, adds b, and then rounds a back
to single precision. For IEEE arithmetic with maf, the constants 272 and Cm from
(4.3.2) are somewhat, but not essentially, smaller.

In our tests we used five different algorithms:

JGJ – the symmetric indefinite decomposition of Alg. 4.1.1 followed by the standard
implicit method of Alg. 3.3.1,

JGJF – the symmetric indefinite decomposition of Alg. 4.1.1 followed by the fast
implicit method of Alg. 3.4.1,

JGJFS – the symmetric indefinite decomposition of Alg. 4.1.1 followed by the fast
implicit method with self–scaling rotations of Alg. 3.4.5,

JAC – the standard Jacobi algorithm (We used Alg. 3.1.1 with J = I. Then no
hyperbolic rotations are performed and H does not have to be positive definite.),
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SSYEV – LAPACK single precision routine which implements tridiagonalization
followed by QR iteration.

In all three implicit Jacobis the diagonal was kept separately according to Alg. 3.3.7.
We tested the accuracy as follows: we considered real symmetric non–singular

eigenproblems. We first solved every problem using JGJ and JAC in double precision.
We assumed that the digits of the computed eigenvalues which overlap in those two
algorithms are correct. We took the eigenvectors computed by JGJ as the ones of
reference. Then we solved the same problem with the single precision versions of
JGJ, JGJF and JGJFS, and compared the answers with the double precision solution
to see if they were as accurate as predicted (which they were). We also compared
the solutions obtained by SSYEV and the single precision version of JAC. Absolutely
small eigenvalues computed by SSYEV were often of the wrong sign, indicating total
loss of relative accuracy. All Jacobi algorithms used the stopping criterion tol = n · ε
and the parallel cyclic pivot strategy of [24].

The rest of the chapter is organized as follows: we first discuss the test matrix
generation. We then discuss accuracy of the computed eigensolutions. We make an
interesting remark about the sensitivity of the QR and the standard Jacobi algorithms
to the initial permutations of the input matrix. After that we discuss behaviour of
λmin(D−1

G GMG
T
MD

−1
G ), growth of 1/σmin(Bm) during the implicit Jacobi process, and

behaviour of the diagonal in fast rotations. Finally, we discuss convergence rates.

Test matrix generation. We generated two types of random matrices. The first
type is divided in several categories according to dimension n, κ(Â) (where Âii ≡ 1,
so that κ(Â) is at most factor n from C(A, Â) from (2.2.12) ), and κ(H). We first
describe the algorithm used to generate a random matrix from these parameters and
then the sets of parameters used. All steps were preformed in double precision. Given
κ(Â), we generated a positive definite diagonal matrix D whose entries’ logarithms
are uniformly distributed between [−0.5 log κ(Â), 0.5 log κ(Â)]. On D we applied five
sweeps of random trigonometric plane rotations, thus obtaining matrix A0. On A0

we applied five sweeps of the ”anti–Jacobi” method, thus obtaining matrix Ā. This
method, due to Veselić, consists of an iterative application of trigonometric plane
rotations, Am+1 = JTmAmJm, where Jm is obtained in the following manner: let

[
a c
c b

]
,

[
cs sn
−sn cs

]
,

be the pivot submatrices of Am and Jm, respectively. Then cs = 1/h and sn = −t/h,
where

ζ =
2c

b− a , t =
sign ζ

|ζ|+√1 + ζ2
, h =

√
1 + t2 .

The sequence of matrices obtained by the anti–Jacobi method converges to a matrix
A where Aii ≡ TrD/n, i.e. κ(Scal (A)) = κ(A). The convergence is very slow. It
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often required 50 or more sweeps for n = 30. However, after five sweeps κ(Ā) and
κ(A) = κ(D) differ by no more than 10 %. Given κ(H), we generated a positive defi-
nite diagonal matrix D1 whose entries’ logarithms are uniformly distributed between
[−0.5 log κ(H), 0.5 logκ(H)], and formed a positive definite matrix H̄ = D1ĀD1. We
then calculated the eigendecomposition H̄ = UT Λ̄U by our algorithm, and changed
some randomly selected eigenvalues into negative ones, thus obtaining matrix Λ. Our
random test matrix was then H = UTΛU .

The values for κ(Â) were 10, 102 and 103, the values for κ(H) were 102, 105, 109,
1014 and 1020, and the values for n were 10, 20, 50, 100 and 200. This makes a total
of 3 × 5 × 5 = 75 different classes of matrices. In each class of dimension n = 10
matrices we generated 500 random matrices, in each class of n = 20 we generated 300
random matrices, in each class of n = 50 we generated 200 random matrices, in each
class of n = 100 we generated 100 random matrices, and in each class of n = 200 we
generated 50 random matrices. This makes a total of 17250 different test matrices.

The second type of test matrices were block scaled diagonally dominant (b.s.d.d)
matrices of Th. 2.2.7 generated according to two parameters, dimension n and κ(H).
We first randomly generated number of diagonal blocks 2 ≤ nb ≤ n− 1, and the size
of the blocks. We then generated a random symmetric orthogonal matrix A with this
block structure (the elements outside blocks are 0), and formed matrix Ā = A + N ,
were N is a random symmetric matrix with ‖N‖2 ≤ 0.5. Given κ(H), we gener-
ated a positive definite diagonal matrix D whose entries’ logarithms are uniformly
distributed between [−0.5 log κ(H), 0.5 log κ(H)]. D is constant on the blocks which
correspond to the blocks of A, so that A and D commute. Finally, we formed our
test matrix H = DĀD. As above, we have chosen κ(H) ∈ {102, 105, 109, 1014, 1020}
and n ∈ {10, 20, 50, 100, 200}. In each class of dimension n = 10 and n = 20 matrices
we generated 100 random matrices, in each class of n = 50 we generated 50 random
matrices, in each class of n = 100 we generated 30 random matrices, and in each class
of n = 200 we generated 10 random matrices.

Accuracy of the computed eigensolution. For every matrix we first calculated
expected relative error in eigenvalues and expected norm error in eigenvectors accord-
ing to (4.3.4) with ε = εS = 5.9604 · 10−8. For every eigenvalue we calculated relative
error

|λD,i − λS,i|
|λD,i|

,

where λD,i denotes the i−th reference eigenvalue, and λS,i denotes the i−th single
precision eigenvalue. For every eigenvector we calculated the error ‖vD,i − vS,i‖2,
where vD,i and vS,i are the eigenvectors corresponding to λD,i and λS,i, respectively.
Table 1 shows quotients of the maximum of the relative errors in single precision
eigenvalues and the expected relative error of (4.3.4). For all quantities we give
mean value, standard deviation, maximum and minimum attained on the respective
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Table 1:
maxi{|λD,i − λS,i|/|λD,i|}
expected relative error

n MEAN STD MAX MIN
10 JGJ 1.551 1.342 6.710 .0676

JGJF 1.562 1.372 7.658 .0554
JGJFS 1.225 1.024 6.347 .0565

20 JGJ 2.267 2.137 10.53 .1105
JGJF 2.330 2.199 10.32 .1231

JGJFS 1.618 1.509 8.216 .0984
50 JGJ 4.282 4.165 17.01 .2256

JGJF 4.355 4.282 18.34 .2332
JGJFS 2.737 2.625 11.14 .1872

100 JGJ 6.653 6.528 26.56 .3609
JGJF 6.803 6.721 27.45 .3595

JGJFS 4.191 4.168 20.06 .2357
200 JGJ 12.13 11.53 38.97 .9087

JGJF 12.26 11.60 39.11 .9693
JGJFS 7.546 7.239 25.62 .5904

class of test matrices. We see that the expectations were fulfilled up to a slowly
growing constant, thus the statements of Remarks 3.2.6 and 4.2.2 that the actual
errors increase only slowly as n or M increases. Note that the quotients in Table 1
increase at most linearly in n, which is still far below the theoretical growth of O(n2)
from (4.3.2). Comparing the data for JGJ and JGJF indicates that the use of maf
makes no difference in practice (maf is theoretically fully exploited by fast rotations
in JGJF, and only partially exploited in JGJ). Note that JGJFS is slightly more
accurate than JGJ and JGJF.

Table 2 shows quotients of the maximum of the norm errors in single precision
eigenvectors and the expected norm error. We see that the actual errors are consid-
erably smaller than the expected ones, for which we have no explanation. Note, also,
that the quotients are almost independent of n, and that JGJFS is now somewhat
less accurate than JGJ and JGJF.

Table 3 shows quotients between maximal relative errors in eigenvalues of SSYEV
(JAC) and JGJFS. We see that SSYEV and JAC often had no accurate digits, and
are therefore unreliable. SSYEV and JAC performed as well or even slightly better
than our algorithms on those matrices for which parameter κ(H) was small, i.e. on
the matrices where our perturbation theory and the standard one do not differ much.

Tables 1, 2 and 3 are obtained from the first type of test matrices. Data for
b.s.d.d matrices are similar, except that JAC is for those matrices as accurate as our
algorithms.
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Table 2:
maxi ‖vD,i − vS,i‖2

expected norm error
n MEAN STD MAX MIN

10 JGJ .0144 .0106 .0895 .0002
JGJF .0147 .0118 .1258 .0003

JGJFS .0149 .0111 .0945 .0003
20 JGJ .0138 .0120 .1095 .0008

JGJF .0145 .0133 .1099 .0009
JGJFS .0159 .0144 .1112 .0002

50 JGJ .0168 .0152 .1056 .0004
JGJF .0181 .0169 .1018 .0007

JGJFS .0230 .0232 .1364 .0014
100 JGJ .0177 .0175 .1397 .0008

JGJF .0195 .0197 .1356 .0010
JGJFS .0285 .0292 .1938 .0012

200 JGJ .0198 .0191 .0808 .0001
JGJF .0231 .0223 .1045 .0003

JGJFS .0365 .0349 .1467 .0011

Table 3: Quotients of maximal relative errors in eigenvalues
n MEAN STD MAX MIN

10 SSYEV/JGJFS 6.6 · 105 9.3 · 105 4.5 · 106 .1687
JAC/JGJFS 1.0 · 104 1.3 · 105 3.1 · 106 .1055

20 SSYEV/JGJFS 4.2 · 105 4.9 · 105 2.1 · 106 .1812
JAC/JGJFS 4.8 · 104 1.6 · 105 1.2 · 106 .1282

50 SSYEV/JGJFS 2.2 · 105 2.1 · 105 8.3 · 105 .1136
JAC/JGJFS 1.2 · 105 1.9 · 105 7.6 · 105 .1595

100 SSYEV/JGJFS 1.2 · 105 1.1 · 105 4.5 · 105 .0631
JAC/JGJFS 1.0 · 105 1.1 · 105 4.5 · 105 .1608

200 SSYEV/JGJFS 4.1 · 104 4.4 · 104 1.4 · 105 .0553
JAC/JGJFS 3.7 · 104 4.4 · 104 1.4 · 105 .1877
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Table 4:
λmin(Â)

λmin(D−1
G GMGT

MD
−1
G )

n MEAN STD MAX MIN
10 TYPE 1 1.216 .2970 3.076 0.9166

TYPE 2 2.742 1.249 6.000 1.100
20 TYPE 1 1.412 .1665 4.411 .9696

TYPE 2 3.816 1.505 8.300 1.100
50 TYPE 1 1.821 .6617 5.000 1.000

TYPE 2 6.944 3.318 17.00 1.100
100 TYPE 1 2.347 .9997 5.588 1.200

TYPE 2 12.12 7.186 25.00 1.500
200 TYPE 1 3.522 1.654 7.272 1.608

TYPE 2 20.85 8.900 37.00 6.500

Remark. We have observed that the QR and the standard Jacobi algorithm often
improved in accuracy when the starting matrix was permuted so that the symmetric
indefinite decomposition needs no permutations. In many cases even the accuracy of
our algorithms was achieved. This phenomenon in an interesting open problem, and
can serve as an empirical advice to someone using QR or the standard Jacobi.

Behaviour of 1/λmin(D−1
G GMG

T
MD

−1
G ). Table 4 displays values of

λmin(Â)

λmin(D−1
G GMGT

MD
−1
G )

,

where the denominator comes from (4.3.4), and Â = (diag H )−1/2 H (diag H )−1/2.
We see that the quotients are small, thus implying that the errors induced by the
symmetric indefinite decomposition satisfy the perturbation bounds of Sect. 2.2 al-
most optimally. The same values were obtained by all three of our algorithms. There
are small differences between test matrices of the first and the second type.

Behaviour of 1/σmin(Bm). Let Gm = BmDm denote the sequence of matrices
which was obtained by the implicit Jacobi from the starting pair G0, J . As usual,
the columns of Bm have unit norms. Also, let Am = D−1

m GT
mGmD

−1
m . We calculated

upper bounds for maxm σmin(B0)/σmin(Bm) in two ways. Table 5 gives four values:
SIGMA, HAD/SIGMA, BOUND and ROT. Here

SIGMA = 1/σmin(B0) , HAD = (exp (1)/det (A0))1/2 .

BOUND and ROT were computed as follows: we computed a decreasing sequence
hm as

h0 = HAD2 ,
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hm+1 = hm(1− A2
m,ij) , m ≥ 0 .

Each sweep of the parallel pivot strategy of [24] has n parallel steps each having
p = (n − 1)/2 rotations for n odd, and n − 1 parallel steps each having p = n/2
rotations for n even. We computed a non–decreasing sequence sm defined by

s0 = SIGMA2 ,

sm = sm−1 , m ≥ 1 , m mod p 6= 0 ,

sm = sm−p(1 + max
0≤k≤p−1

|Am−p+k,ij|) , m ≥ 1 , m mod p = 0 .

Recursive application of (3.2.34) implies that 1/σ2
min(Bm) ≤ sm. Recursive applica-

tion of (3.2.36), together with (3.2.35), implies that 1/σ2
min(Bm) ≤ hm. Therefore,

1/σ2
min(Bm) ≤ min{sm, hm} for every m ≥ 0. Also, s0 ≤ h0. Let m′ be the largest m

such that sm ≤ hm. Then

BOUND = (sm/s0)1/2 , ROT = m′ .

In other words, BOUND is the guaranteed upper bound for maxm σmin(B0)/σmin(Bm).
The values of 1/σmin(B0) in Table 5 are very small, thus showing the non–trivial

diagonalizing effect of the transition from matrix H to pair GTG, J . We also see that
the guaranteed upper bound is reliable only for smaller dimensions, and that sm and
hm usually meet in the first sweep. The data of Table 5 come from test matrices of
the first type. Data for b.s.d.d matrices are similar.

A much better upper bound for maxm σmin(B0)/σmin(Bm) was obtained by the
algorithm of Sect. 3.2.2 (which, however, requires additional computational effort).
This bound is by its nature always greater or equal

√
n, and the largest value attained

in all experiments was 1.05
√
n. In fact, accuracy of computed eigensolutions implies

that this is also an overestimate, that is, 1/σmin(Bm) can grow only little before
converging to 1.

Behaviour of the diagonal in fast rotations. Table 6 shows four values: MINF is
the smallest element of the diagonal of fast rotations obtained by JGJF, MINF/MINS
is the quotient of this element and the smallest element of the diagonal of fast self–
scaling rotations obtained by JGJFS, MAXF is the largest element of the diagonal of
JGJF, and MAXF/MAXS is the quotient of this element and the largest element of
the diagonal of JGJFS. We see that, even for large n, there is actually no danger of
underflow/overflow.

Convergence rates. We compared computing times of JGJF and SSYEV, com-
puting times of JGJ and JGJFS, and number of sweeps and rotations of JAC and
JGJF. The speed ratio of JGJF and SSYEV is the following: for n = 200, mean
value, standard deviation, maximum and minimum are for matrices of the first type
(4.9, 0.5, 5.8, 3.6), and for b.s.d.d matrices (4.9, 0.8, 6.4, 3.3). These ratios are realistic
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Table 5: Behaviour of 1/σmin(Bm)
n MEAN STD MAX MIN

10 SIGMA 1.940 .7408 5.193 1.032
HAD/SIGMA 2.014 1.103 10.86 1.217

BOUND 1.331 .2513 2.877 1.649
ROT 23 10 60 5

20 SIGMA 2.813 1.249 9.481 1.130
HAD/SIGMA 29.92 87.97 100.2 1.277

BOUND 2.606 1.771 14.06 1.649
ROT 85 28 170 10

50 SIGMA 4.696 2.707 14.65 1.524
HAD/SIGMA 1.0 · 1010 1.4 · 1011 2.9 · 1012 2.182

BOUND 330.1 784.8 550.5 1.649
ROT 653 223 1175 75

100 SIGMA 7.146 4.654 23.07 2.003
HAD/SIGMA 3.2 · 1031 6.9 · 1032 1.4 · 1034 57.41

BOUND 4.1 · 109 8.6 · 1010 1.8 · 1012 9.220
ROT 3247 1251 15500 105

Table 6: Behaviour of the diagonal in fast rotations
n MEAN STD MAX MIN

100 MINF .2839 .1869 .7100 .0051
MINF/MINS .4150 .2584 .9838 .0086

MAXF 1.323 .1076 1.700 1.100
MAXF/MAXS .9633 .0767 1.230 .7857

200 MINF .0876 .0855 .3300 .0005
MINF/MINS .1418 .1352 .5409 .0009

MAXF 1.439 .1158 1.900 1.300
MAXF/MAXS 1.028 .0827 1.357 .9285
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although JGJF could be made slightly faster. Namely, SSYEV uses BLAS routines
which are distributed together with RISC/6000 (and are therefore highly optimized),
while our algorithm uses some extra BLAS type routines written by us (e.g. hyperbolic
plane rotation).

Use of fast rotations, JGJFS, brought only about 5% speed up over JGJ.
We begin the comparison of sweeps and rotations needed for convergence of JAC

and JGJF with a few details. JAC stopped when the last n(n − 1)/2 stopping tests

|Hij| ≤ tol
√
|Hii||Hjj| succeeded. Since our implicit algorithms keep the diagonal in

a separate vector, JGJF stopped after an empty sweep. Since one scalar product
is needed to determine (GTG)ij even if no rotation is performed, an empty sweep in
JGJF requires approximately 1/3 of the computation time of the full sweep, which is a
slight dissadvantage. The symmetric indefinite decomposition used in JGJF amounts
to no more than 2/9 of one sweep and is neglected. Table 7 shows number of sweeps
and rotations for JAC and JGJF, and quotient of numbers of rotations for JAC and
JGJF.

We see that JAC needed averagely twice as much rotations as JGJF. Another
important phenomenon, not readily seen in this table, is that number of rotations in
JGJF is somewhat stable, that is, it did not depend much on parameters κ(Â) and
κ(H), while in JAC number of rotations grew as κ(H) grew. Data in Table 7 come
from matrices of the first type. For b.s.d.d matrices, JAC performs better, that is, it
needs averagely 1.5 times more rotations than JGJF.

æ
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Table 7: Sweeps and rotations for JAC and JGJF
n MEAN STD MAX MIN

10 SWEEP JAC 5.1 .96 9 3
ROT JAC 166 30 257 105

SWEEP JGJF 4.1 .65 6 3
ROT JGJF 107 30 191 43
JAC/JGJF 1.6 .4 4.2 .98

20 SWEEP JAC 7.2 1.7 12 4
ROT JAC 935 191 1556 530

SWEEP JGJF 4.8 .72 7 3
ROT JGJF 545 152 917 254
JAC/JGJF 1.8 .6 4.2 1.0

50 SWEEP JAC 10.7 2.7 17 4
ROT JAC 8305 1740 12719 4089

SWEEP JGJF 5.7 .92 8 4
ROT JGJF 4317 1361 7427 2084
JAC/JGJF 2.1 .9 4.9 .96

100 SWEEP JAC 13.2 2.7 19 6
ROT JAC 40431 10814 213460 19908

SWEEP JGJF 6.5 1.1 9 5
ROT JGJF 20502 7816 92408 9059
JAC/JGJF 2.2 1.0 5.6 .91

200 SWEEP JAC 14.3 2.7 19 9
ROT JAC 173952 25326 231892 135121

SWEEP JGJF 8.0 1.3 10 6
ROT JGJF 108607 31874 161841 57715
JAC/JGJF 1.7 .72 3.6 .85
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[18] V. Hari, K. Veselić, On Jacobi methods for singular value decompositions, SIAM
J. Sci. Stat. Comp., Vol. 8, (741–754) 1987.

[19] N. Higham, Analysis of the Cholesky decomposition of a semi–definite matrix, in
Reliable Numerical Computation, Clarendon Press, eds. M. G. Cox and S. Ham-
marling, 1990.

[20] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

[21] R. Onn, A. O. Steinhardt, A. Bojanczyk, Hyperbolic Singular Value Decomposi-
tions and Applications, IEEE Trans. on Acoustics, Speech, and Signal Processing,
(1575–1588) July 1991.

[22] B. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Engelwood Cliffs,
NJ, 1980.

[23] H. Rutishauser, Vorlesungen über numerische Mathematik, Vol. 1, Birkhäuser
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[29] K. Veselić, An Eigenreduction Algorithm for Definite Matrix Pairs, preprint, FB
Mathematik, Fernuniversität, Hagen, 1989, 1992, to appear in Numer. Math.
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