
INFORMATIK
BERICHTE

359 – 07/2011

SemDupl: Semantic-based Duplicate
Identification

Sven Hartrumpf, Hermann Helbig,
Tim vor der Brück, Christian Eichhorn

Fakultät für Mathematik und Informatik
Postfach 940
D-58084 Hagen

SemDupl: Semantic-based Duplicate

Identi�cation

Sven Hartrumpf, Hermann Helbig,
Tim vor der Brück, Christian Eichhorn

Arbeitsgruppe Intelligente
Informations- und Kommunikationssysteme

FernUniversität in Hagen
58084 Hagen � Germany

{sven.hartrumpf,hermann.helbig,tim.vorderbrueck}@FernUni-Hagen.de

christian.eichhorn@outtalimits.de

July 2011

FernUniversität in Hagen � Informatik-Bericht

Contents

1 Overview, Introduction and Motivation; Accomplishment of Tasks 5

2 Comparison with other Systems 6

3 Architecture of SemDupl 6

4 The SemDupl Corpus 7

5 The Shallow Duplicate Detectors SemDupl-shallow and SemDupl-
quick 9

5.1 Features in SemDupl-shallow . 9
5.2 Combination of Features . 10
5.3 Training Phase . 10
5.4 Application Phase . 10
5.5 Aggregation of Feature Values . 11
5.6 SemDupl-quick (SQ) . 11
5.7 Comparison of Shallow Approaches 12

6 Linguistic Phenomena Relevant for Semantic Duplicates 12

6.1 Types of Paraphrases for Semantic Duplicates 12
6.2 Restrictive Contexts and Other Precision Problems for Semantic Du-

plicates . 15

7 Knowledge Acquisition for Deep Duplicate Detectors 16

7.1 Hypernyms and Meronyms . 16
7.2 Deep vs. Shallow Patterns . 19
7.3 Validation of Relation Hypotheses . 21
7.4 System Architecture: Relation Extraction 23

8 Annotation GUI 24

9 Extraction of Entailments 26

9.1 Extracting Entailments Employing a Search Engine 26
9.2 Extracting Entailments from SNs Basically Following Ravichandran

and Hovy . 26
9.3 Extracting Entailments Basically Following Lin and Pantel 27

10 The Deep Duplicate Detector SemDupl-deep 27

11 Combination 28

12 Evaluation 30

13 Evaluation Interpretation and Conclusions 32

A Extracted Knowledge 34

2

B Program Documentation and Manuals 44
B.1 SemDupl-deep . 44
B.2 SemDupl-shallow . 45
B.3 SemDupl-quick . 48
B.4 Combiner . 50
B.5 Knowledge Acquisition . 50

B.5.1 Hyponyms, Meronyms and Synonyms 50
B.5.2 Entailments . 56

B.6 The GUI . 60
B.6.1 Text Collection Maintenance 60
B.6.2 Text Collection Analysis . 62
B.6.3 Text Duplicate Search . 62

B.7 Class Diagram SemDupl-shallow . 62
B.7.1 Class Text . 62
B.7.2 Class Toolbox . 63
B.7.3 Class Comparer . 64
B.7.4 Class LAUT . 64
B.7.5 Class CErkenner . 64

List of Figures

1 Architecture of the duplicate detector SemDupl. 8
2 Data model of SemDupl-quick. 12
3 Shallow pattern for hyponymy extraction where the premise is given

as a regular expression. 17
4 Deep pattern for hyponymy extraction where the premise is given as

an SN. 18
5 Matching a deep pattern to a semantic network. 18
6 Deep pattern for hyponymy extraction where the premise is given as

an SN. 19
7 Application of a deep pattern to an SN representing the sentence He

sells all common string instruments except celli. 20
8 System Architecture of SemQuire. 23
9 Screenshot of the annotation tool. 24
10 Graphical user interface of SemChecker for displaying the result of the

logical validation, which marks the entry sub(land .1 .1 , provinz .1 .1)
as potentially defective. 25

11 System architecture of the Combiner. 29
12 Precision of hyponymy hypotheses depending on score. 32
13 Screenshot of the GUI for SemDupl. 61
14 Class diagram of SemDupl-shallow. 62

List of Tables

1 Assumed equivalent formulas with given con�dence score. 27
2 Confusion matrix for WCopyFind . 30
3 Confusion matrices for shallow approaches 31

3

4 Confusion matrices for deep approaches 31
5 F-Measure, precision, recall, and accuracy for shallow approaches. . . 31
6 F-Measure, precision, recall, and accuracy for deep approaches. . . . 31
7 Extracted semantic and lexical relation hypotheses. 32
8 Lines of source code of the SemDupl components. 32
9 Hypernymy relations with high con�dence score. 35
9 Hypernymy relations with high con�dence score. 36
10 Meronymy hypotheses with high con�dence score. 37
10 Meronymy hypotheses with high con�dence score. 38
10 Meronymy hypotheses with high con�dence score. 39
11 Synonymy hypotheses with high con�dence score. 40
11 Synonymy hypotheses with high con�dence score. 41
12 Selection of entailments. 42
12 Selection of entailments (ctd.). 43

4

1 Overview, Introduction and Motivation; Accom-

plishment of Tasks

What has been the motivation for the project SemDupl (Semantic Duplicate Detec-
tion)? � Duplicate detection becomes more and more important in the information
society as the number of available text documents grows rapidly; see for example
the growth of the web. At a similar speed, the number of duplicates increases.

Duplicates are relevant in many di�erent areas. In search engines, question an-
swering, and other information access applications, duplicates should not be counted
as di�erent documents for scoring purposes and should be excluded from result pages
presented to users. Copyright owners want to �nd cases of copyright violations, even
if the violators apply intelligent techniques to hide the origin of their plagiarisms.
Desktop administration and backup tools need ways to suggest which �les could be
unneeded duplicates. Depending on the application, near-duplicates are subsumed
under the term duplicates in this paper.

In prior work, duplicate detection worked with shallow checkers; they can be
called shallow because they work only on surface-oriented factors or features and
do not step into the semantics of words, sentences, paragraphs, or even whole texts.
Surface-oriented features of a given text are derived from n-grams, rare words,
spelling errors, etc. But two texts can be semantic duplicates, i.e., expressing the
same content, without sharing many words or word sequences and hence without
having similar values of shallow features. Shallow checkers can be easily tricked by
experienced users that employ advanced paraphrase techniques. Therefore, a deep
(semantic) approach that compares full semantic representations of two given texts
has been designed, implemented, and evaluated in the SemDupl (Semantic Duplicate
Detection) project.

To achieve this goal, the following tasks had to be accomplished according to the
project proposal:

(A1) Conceptional work In the preparation phase, existing shallow duplicate
recognizers had to be compared, with the aim to �nd one recognizer which
can be used as a baseline (see Section 2) and as a starting point for combining
shallow and deep methods for duplicate detection (see Section 3).

(A2) Knowledge acquisition This task turned out to be the most ambitious part
of the project, since the knowledge acquisition had to be done automatically,
and the results are the precondition for a successful work of the deep duplicate
recognizer. To this end, thousands of basic relations (subordination relations,
meronymy relations and semantic entailments, so-called meaning postulates)
had to be automatically found by means of statistical learning methods and
to be validated with logical methods (see Section 7 and Section 9).

(A3) Creation of convenient test beds As a basis for checking whether the du-
plicate recognizer works well, su�ciently large corpora of pairs of duplicate
texts and non-duplicates are needed. These corpora had partially been hand-
crafted and partially gathered from existing collections (see Section 4). Several
corpora form the SemDupl corpus, which can be seen as a valuable resource
produced in the SemDupl project.

5

(A4) Textual entailment During the work on the project, it turned out that
the theorem prover which had been developed in the LogAnswer project1 is
also well suited for textual entailment. Thus the main work consisted in the
generation of a large number of textual entailment patterns, deep as well as
shallow ones (see Section 7.2).

(A5) Technical realization of the duplicate recognizer The programs embody-
ing the recognizer have been developed according to the architectures shown
in Figure 1 and Figure 11. Their technical handling is described in Appendix
B.

(A6) Evaluation The results of the evaluation of the recognizer developed in the
SemDupl project are �nally described in Section 12.

2 Comparison with other Systems

As stated, detecting duplicates is of high interest for holders of rights and tutors.
Therefore, many tools exist to detect plagiarisms in given corpora or the web. Below
are some of the best ranked systems according to the 2008 test of the University of
Applied Sciences Berlin (HTW) (Weber-Wul�, 2009).

Copyscape 2, a plagiarism checker of Indigo Stream Technologies Ltd. Given a
text, it searches the Internet for possible duplicates of this text using the
document's words in the given order.

Plagiarism Detector 3 by SkyLine, Inc. uses non-overlapping n-grams with a con-
�gurable spacing between them to �nd online-plagiarisms of a given text in
various possible input formats.

Urkund 4 by PrioInfo AB targets to check papers written by students for possible
plagiarism and searches the Internet (with known paper mills), an own corpus
of scienti�c publications and papers checked for plagiarism before.

WCopy�nd 5 is an n-gram based plagiarism checker of the University of Virginia,
Charlottesville (Balaguer, 2009). It targets student's papers, searching a cor-
pus which has to be compiled by the user. Since it is open source software this
tool was used as a comparison for our SemDupl system.

3 Architecture of SemDupl

SemDupl is a complex software system, whose top-level architecture is illustrated in
Figure 1 (Hartrumpf et al., 2010b,a). (For simplicity, only one of the two shallow
duplicate detectors is included in the graph.) The user can access SemDupl via
a graphical user interface (GUI) or via a command line interface (CLI); for other
application programs, an application program interface (API) is provided.

1This project had been funded by DFG under contract number HE 2847/10-1.
2http://www.copyscape.com/, �rst and third place (premium and free version)
3http://plagiarism-detector.com/, scored second place
4http://www.urkund.de/, scored fourth place
5http://plagiarism.phys.virginia.edu/Wsoftware.html, marked as �good�

6

http://www.copyscape.com/
http://plagiarism-detector.com/
http://www.urkund.de/
http://plagiarism.phys.virginia.edu/Wsoftware.html

The GUI is designed with two di�erent user groups in mind: (1) developers
and testers that use SemDupl on a daily basis, (2) normal users that want to use
SemDupl to investigate their own corpus for duplicates. It was implemented in
Hop, a Scheme-based language for the Web 2.0, because the main parts of SemDupl
(parser, deep detector) are implemented in Scheme, too, and because Hop allows
concise and elegant programs that run e�ciently across the Internet. The details of
the GUI are explained in Appendix B.6.

The main functionality (or mode) is described in Figure 1: testing a single text
(the candidate text) against a corpus of texts (the base corpus) in order to decide
whether it is a duplicate (and if so, from what texts and in which parts exactly). The
candidate text is distributed by the central controller to three duplicate detectors:
two shallow ones (SemDupl-shallow, SemDupl-quick), to quickly �nd the easy cases;
and a deep one (SemDupl-deep), to tackle the di�cult cases. The results of the
three detectors are combined to give a single result with one con�dence score for the
reported decision.

The shallow detector SemDupl-shallow and the Combiner need corpus statis-
tics derived from an annotated corpus of plagiarism. In addition, lexical-semantic
relations are used to allow to follow semantic paraphrasing at least on the word
level.

SemDupl-deep is much more complex than the shallow detector SemDupl-shallow:
it starts with the syntactico-semantic parser WOCADI6 (Hartrumpf, 2003), which
delivers semantic networks of the MultiNet7 formalism (Helbig, 2006) and syntactic
dependency trees. Only the semantic networks are further processed in SemDupl-
deep. The base corpus is completely parsed during a preprocessing step, which is
comparable to an indexing step in simpler systems. The semantic representations
of the candidate texts are expanded (query expansion) and textual entailments are
precalculated by a large rule component. The resulting representations are the input
for a semantic matcher, which can only run e�ciently over the base corpus due to a
specialized index for semantic networks.

The knowledge aspect of SemDupl-deep is depicted in the lower right corner of
Figure 1. Automatic knowledge acquisition methods deliver semantic facts and rules
from parsed corpora like the German Wikipedia. In addition, knowledge engineers
can validate and extend the automatically generated resources.

4 The SemDupl Corpus

The corpus used in the learning process of the Combiner, SemDupl-shallow (see Sec-
tion 5) and for evaluation purposes is composed of �ve manually annotated corpora:

RSS news (semdupl-rss) Automatically collected news feed articles of di�erent
German media consisting of 99 texts fully annotated with 298 duplicate pairs.

Prose (semdupl-prose) Short stories by Edgar Allen Poe translated to German
by di�erent translators (split in 136 parts of about 600 words each) with 200
duplicate pairs.

6WOCADI is the abbreviation for word class based disambiguating parser.
7MultiNet is the abbreviation of Multilayered Extended Semantic Networks

7

User

OO

��

aa

!!CCCCCCCCCC

Application

==

}}{{{{{{{{{{ OO

��?> =<
89 :;GUI

��

?> =<
89 :;CLI

�������������

?> =<
89 :;API

wwooooooooooooooooooooo

︷ ︷

︸ ︸
Candidate

text

��>>>>>>>>>>>>

︷ ︷

︸ ︸

Results
(score, text
ID, matches),

. . .

__?????????

OO ??���������

?> =<
89 :;Controller

������������

��

&&MMMMMMMMMMMMMMMMMMMMMM

OO

︷ ︷

︸ ︸
Semantic

sentence index

︷ ︷

︸ ︸
Parsed text
corpus

oo
?> =<
89 :;NL parseroo

?> =<

89 :;

Shallow
duplicate
detector

(SemDupl-
shallow)

�� ��

��

?> =<

89 :;

Semantic
duplicate
detector

(SemDupl-
deep)

oo //

AA

�� ��

?> =<
89 :;

Query
expansion

OO

��

?> =<

89 :;
Combination
(of duplicate

results)

︷ ︷

︸ ︸
Base corpus

(2)

OO

︷ ︷

︸ ︸
Duplicate
statistics

︷ ︷
︸ ︸
Base corpus

?> =<

89 :;
Textual

entailment
component

//

��

︷ ︷

︸ ︸
Semantic rules
(equivalences,
entailments)

?> =<

89 :;
Knowledge
acquisition
methods

oo

uullllllllllllllllllllllllllllllllllll

︷ ︷

︸ ︸
Annotated
duplicate
corpus

OO

︷ ︷

︸ ︸

Facts (lexical-
semantic
relations,
world

knowledge)

?> =<
89 :;
Knowledge
workbench

\\::::::::::::::

oo Knowledge
engineer

oo

︷ ︷

︸ ︸

Knowledge
acquisition
corpora

e.g. Wikipedia

��

OO

︷ ︷
︸ ︸D a data collection D

?> =<
89 :;F a function collection F

︷ ︷
︸ ︸

D (2) data collection D duplicated for readability

E an external entity E

// a data �ow

oo // a bidirectional data �ow

// data access

Figure 1: Architecture of the duplicate detector SemDupl .

8

Internet (semdupl-google) 100 texts collected from Google (the 10 top texts of
the 10 fastest growing search terms in 2008), containing 224 duplicate pairs.

Minimal test units (semdupl-units) A collection of (mostly) minimal text pairs.
These were written to test for single paraphrase phenomena; the phenomena
will be discussed in Section 6. This subcorpus contains 134 duplicate pairs
and 5642 non-duplicate pairs.

Plagiarism (htw) Weber-Wul�'s collection of plagiarisms, annotated as 77 texts
with 141 duplicate pairs and 5788 non-duplicate pairs.

5 The Shallow Duplicate Detectors SemDupl-shallow

and SemDupl-quick

SemDupl-shallow is an approach to detect duplicates in a corpus of text documents
using shallow techniques only (Eichhorn, 2009). It employs the decision tree learning
algorithm ID3 (Quinlan, 1986) to learn to distinguish between duplicate pairs and
non-duplicate pairs of texts.

5.1 Features in SemDupl-shallow

Features in SemDupl-shallow use only the surface structure of the analyzed texts.
These features are the following:

Checksum To test quickly whether two texts are identical a checksum of each text
is calculated with the MD5 algorithm (Rivest, 1992).

Word sets The words of the compared texts as set of words. The sets calculated
are: all words of the text, the words of the text without stop words, the words
of the text in stemmed form using the Porter stemming algorithm (Porter,
1997), and the words of the text united with the sets of their synonyms.

Typos A good strategy for humans searching for plagiarism is to compare the
spelling mistakes made by di�erent authors. If a text is plagiarized, its typos
are often copied, too, as shown by Weber-Wul� (2002). Typos are calculated
using the spell checker GNU aspell.

Length of words and sentences Weber-Wul� (2002) shows that texts which are
plagiarized often share the same style of writing. Since the average length of
words and sentences (per paragraph) is one characteristic of the writer's style,
these two feature values are calculated and compared.

N-grams Word n-grams are sequences of n ∈ N words from the texts. In SemDupl-
shallow, di�erent types of n-grams are used to compare a pair of texts:

Standard n-grams n-grams with a length of 3 and 7.

Alliterations These are special n-grams with a length of 3 or 7 where all
words start with the same letter.

9

Phonetic alliterations These are alliterations with the words sharing the
same initial phoneme; initial phonemes are determined as described by
Brügge and Mohs (2003).

K-skip-n-grams Special n-grams where up to k ∈ N words are skipped be-
tween the elements of the n-grams, with a skip-length of k = 2 and a
length of n = 3.

5.2 Combination of Features

In order to combine the di�erent features, which may be calculated on a given text
pair, the system uses a trained decision tree (Quinlan, 1986). Starting at the root
of the tree, the value of the feature given in the node is calculated, the decision
tree path appropriate to the calculated value is chosen. This is repeated until a leaf
is reached and the pair falls in a class of duplicate or non-duplicate. This is a bit
unlike the usual use of decision trees, where all values are known prior to the use
of the tree, but in this way only some of the features have to be calculated, which
reduces processing time. Since there are 39 features which may be calculated and
the learned tree has a minimal depth of 3, a maximal depth of 14 and an average
depth of 9.6. roughly only a quarter of all features have to be calculated in order to
determine whether the pair is a duplicate pair or a non-duplicate pair.

5.3 Training Phase

Training is done in two steps. In the �rst step, each feature for each annotated pair
of corpus texts is calculated and stored in order to rerun the actual training without
time-consuming recalculation of feature values.

In the second step, a decision tree is calculated using the ID3 algorithm (Quinlan,
1986). Since the values are from the interval [0, 1], an extended version of the
algorithm is used which is capable of dealing with intervals instead of discrete values
only (Petersohn, 2005). Both the original and the extended algorithm are part of
the learning environment RapidMiner (Mierswa et al., 2006), which is used as the
machine learning component in this process.

5.4 Application Phase

During the application phase, the learned decision tree is traversed. The 111 leafs
of the tree consist of:

• 30 leafs containing only duplicate pairs

• 49 leafs containing only non-duplicate pairs

• 32 containing pairs of both classes.

If the tree is used for detecting duplicates, the leafs can be interpreted in di�erent
ways:

• The standard interpretation (which shows the best overall detection rate)
is to take the class of the majority of the examples to determine the class of
the leaf.

10

• If false detection of duplicates has to be reduced, another interpretation called
presumption of innocence can be used. In this case, a leaf falls into the
duplicate class only if there is no evidence that it may be a non-duplicate and
therefore only pure duplicate leafs belong to this class, while the others are
seen as non-duplicate leafs.

• If, in contrast, false negatives are to be avoided, the interpretation of pre-
sumption of guilt can be used: only leafs without any duplicates are seen
as non-duplicates, while all other leafs are seen as members of the duplicate
class.

• Sometimes, SemDupl-shallow may be used as preprocessor for another auto-
mated method of detection. Then it is crucial to eliminate all pairs of texts
from the analyzed text set that can be reliably classi�ed as duplicate or non-
duplicate in order to save machine time which would be used to classify these
examples again. Also, the pairs detected to be non-duplicates should contain
as few duplicates as possible because if eliminated during preprocessing there
is no chance of detecting them with the latter method. This preprocessing
or �ltering can be done by using the three class interpretation, allowing
SemDupl-shallow to classify pairs as unknown. A pair is classi�ed as unknown
if its leaf contains examples of both classes.

5.5 Aggregation of Feature Values

In order to develop an aggregated numerical value for duplicity, di�erent measures
have been tested. Among these methods, the arithmetic mean of the feature values
has shown to be the most useful. Calculated on the values of the annotated corpus,
the aggregated value of duplicates falls into the interval of [0, 021; 1], the aggregated
value of non-duplicate falls into [0, 016; 0, 701]. If the aggregated value is to be
determined, all features have to be calculated, which will need a lot more time than
just determining the pair's class.

5.6 SemDupl-quick (SQ)

Tests indicated that the shallow approach of SemDupl-shallow achieves good results
regarding precision and accuracy, but due to its time complexity it is rather unsuited
for large corpora. So another shallow approach was devised, using only features that
can be calculated e�ciently.

In the preprocessing phase, SemDupl-quick (SQ) searches the given texts for
misspelled words and words with a frequency class above a given threshold and
compiles all n-grams with lengths from 3 to 7. These values are used as indices
whereas the text's id (e.g. �lename) is used as value. This generates a database
with a list of text ids for each value (with a table for each feature).

In the detection phase all rows r containing a given text are searched inside the
tables. For each other a�ected text found inside the rows the ratio between the
total number of rows r and the number of rows in r containing the a�ected text
id is calculated for each table (and therefore feature). These scores are combined
linearly and normalized, resulting in an combined score for each text pair. A text
is regarded as a duplicate if the score is greater than a given threshold.

11

word

1..*1

wid

Indicator Indicator_files

filename

wid

Figure 2: Data model of SemDupl-quick.

Figure 2 shows the data model of SemDupl-quick. In the initialization phase, for
each feature the tables <feature>and <feature_�les> are �lled. An example entry
of table trigrams is:
Table trigrams: wid: 3, word: aber dann dachte
An example entry of table trigramme_�les is:
Table trigrams_�les: wid: 3, �lename: brief1_01.txt
For determining the overlap score of a �le with all other �les only the table <fea-
ture_�les> is used. The score is determined by calculate the number of common
entries, i.e., the relative amount of wid's which occur together with both �lenames.

5.7 Comparison of Shallow Approaches

SemDupl-shallow is ready to instantly check an arbitrary pair of texts without any
preprocessing steps as an �out-of-the-box� duplicate detector. Its capability to learn
the �de�nition� of duplicates on an annotated corpus leads to a detection which has
a lower chance of failing because of bad user-set thresholds. Its downside is it has to
inspect every possible text pair in order to detect all duplicates in a given corpus,
resulting in quadratic time complexity, so it should be used on small or �ltered
corpora.

SemDupl-quick, on the other hand, uses preprocessing resulting in a lower time
complexity while detecting, but only some of the possible features can be used as
index-values and the thresholds, which are de�ned by the user, may, if not set well,
become a source of errors.

6 Linguistic Phenomena Relevant for Semantic Du-

plicates

6.1 Types of Paraphrases for Semantic Duplicates

The following problems must be solved by advanced duplicate detectors. Most of
them are out of reach for standard surface-oriented methods; only items 1, 2, 4, 5,
13, 14, and 15 can probably be detected by shallow approaches, at least partially.

For each problem, an illustrative example is given and a solution in our semantic
approach is described. Most of these examples are already covered by our deep
detector SemDupl-deep (if not indicated otherwise).

1. di�erent word forms (e.g. `alle Barockkirchen'/`all baroque churches ' vs. `jede
Barockkirche'/`every baroque church'): solved by the morphology component,
more speci�cally by the operation called lemmatization. Di�erences in syn-
tactic case are irrelevant in paraphrases, but di�erences in number must be
investigated more closely. In the above example, the di�erence is irrelevant

12

because together with the quanti�ers both noun forms mean almost the same.
Such semantic equivalences of syntactically di�erent noun phrases can be de-
termined (in part) by the parser.

2. di�erent orthography (e.g. `Fluss '/`river ' vs. `Fluÿ '): solved by the morphol-
ogy component, by way of spelling normalization (new and old orthography
in German; also spelling variants).

3. semantically light or empty expressions: `Der Auÿenminister will den Grund
der Diskussion ja dann doch wissen.'/`The secretary of foreign a�airs now
wants to know the reason for the discussion.' vs. `Der Auÿenminister will den
Grund der Diskussion wissen.'/`The secretary of foreign a�airs wants to know
the reason for the discussion.'

4. abbreviations/acronyms and expanded forms (`die EU '/`the EU ' vs. `die eu-
ropäische Union'/`the European Union'): solved by lexical resources available
to the parser.

5. di�erent hyphenation of compounds (e.g. `Barock-Kirche'/`baroque church' vs.
`Barockkirche'): solved by the compound analysis component.

6. di�erent word order, e.g. `Der Schüler freute sich über das Buch.'/`The student
was happy about the book.' vs. `Über das Buch freute sich der Schüler.'/`literally:
About the book the student was happy.': solved by the parser. In German, word
order is much freer than in English.

7. discontinuous word forms (e.g. German verbs with separable pre�x: `. . . als der
Minister den Namen aufschrieb.'/`. . . as the secretary noted the name down.'
vs. `Der Minister schrieb den Namen auf.'/`The secretary noted the name
down.'): solved by the parser, which combines a separated verb pre�x with
the corresponding base verb.

8. di�erent voices (active or passive in German): e.g. `Der Lehrling reparierte das
Auto.'/`The apprentice repaired the car.' vs. `Das Auto wurde vom Lehrling
repariert.'/`The car was repaired by the apprentice.': solved by the parser be-
cause it generates identical semantic networks.

9. arguments in di�erent clauses, e.g. `Die Frau lief 10 Kilometer.'/`The woman
ran 10 kilometers.' vs. `Es gelang der Frau, 10 Kilometer zu laufen.'/`The
woman achieved to run 10 kilometers.'. In this example, the lexical syntax
and semantics of the control verb `gelingen'/`to achieve' allows to identify
similar content.

10. nominalization of situations, e.g. `der Kauf der kleinen Firma durch den Welt-
konzern'/`the acquisition of the small company by the world concern' vs. `Der
Weltkonzern kauft die kleine Firma.'/`The global company buys the small com-
pany '. Solution: The verb and the corresponding nominalization are linked
in the lexicon and lead to isomorphic semantic networks that can be easily
matched to �nd similar sentences.

13

11. information distribution across sentences, e.g. `Der Räuber verlieÿ die Bank
und �üchtete zum Bahnhof.'/`The bandit left the bank and escaped to the train
station.' vs. `Der Räuber verlieÿ die Bank. Er �üchtete zum Bahnhof.'/`The
bandit left the bank. He escaped to the train station.' As the parser works
sentence-oriented, the representations on the sentence level are di�erent. But
if one allows to split a conjunction (of situations) when searching, the infor-
mation can be found also in the document version that uses several sentences.
(Note that the case where the information in the candidate document is split
in several sentences matches a document with a combining sentence is already
covered without any extensions.)

12. names vs. de�nite description, e.g. `Paris ' vs. `die französische Hauptstadt '/`the
French capital '. This e�ect can be compensated by so-called question decom-
position in SemDupl-deep. As the term question decomposition indicates, this
kind of decomposition was introduced for question answering, but it can also
applied in semantic search for similar sentences. Currently, only one direction
(the replacement of a name) can be detected, mainly for e�ciency reasons.

13. synonyms: partially solved by HaGenLex (Hartrumpf et al., 2003) plus Ger-
maNet (Hamp and Feldweg, 1997) (relation syno); for compounds, many syn-
onyms can be inferred from synonyms of parts, e.g. `Groÿstadt-Atmosphäre'/`the
big city atmosphere' (literally) vs. `Metropolen-Atmosphäre'/`the metropolis at-
mosphere'.

14. hyponyms (or viewed reversely: hypernyms; in the case of verbs, these are often
called troponyms), e.g. `Geschäftsbrief '/`business letter ' vs. `Brief '/`letter ':
solved by lexico-semantic relations (sub and similar relations) stored in Ha-
GenLex and derived from other sources like GermaNet.

15. antonyms (plus negation), e.g. `nicht richtig '/`not right ' vs. `falsch'/`false'):
solved by lexico-semantic relations (anto and its subrelations) stored in Ha-
GenLex and derived from other sources like GermaNet. In some cases, the
negation of an antonym is not completely equivalent to the original concept.
Corpus analyses and statistics can help to detect such cases.

16. compounds vs. analytical expressions like complex NPs and clauses: com-
pounds with regular semantics can be paraphrased by a complex constituent,
e.g. `Finanzierungslücke'/`�nance gap' vs. `Lücke bei der Finanzierung '/`gap
in �nancing ' and `die Groÿstadt-Atmosphäre'/`the metropolis atmosphere' vs.
`die groÿstädtische Atmosphäre'/`the metropolitan atmosphere'. Solution: trans-
formation of compound semantics by the rule component of SemDupl.

17. idioms, e.g. `einen Entwurf in die Tonne werfen.'/`to throw a draft into the
bin' (literally) vs. `einen Entwurf verwerfen.'/`to discard a draft ': These are
probably not solvable in all cases in the near future. But cases like `ins Gras
beiÿen'/`kick the bucket ' vs. `sterben'/`to die' and the example given above
can be entered in an idiom lexicon. Currently, an idiom lexicon of around 250
idioms based on verbs is employed.

18. support verb constructions (SVCs), e.g. `einen Widerspruch äuÿern' vs. `wider-
sprechen'. Solution: an SVC lexicon that allows to normalize an SVC to a form

14

without the SVC. In SemDupl, this achieved by MultiNet rules applied during
query expansion.

19. coreferences (di�erent expressions referring to the same entity): solved by
the coreference module. For example intrasentential coreferences: `Syrakus,
das im Jahr 734 v. Chr. gegründet wurde . . . '/`Syracuse, which was founded
in the year 734 BC . . . ' vs. `Syrakus wurde im Jahr 734 v. Chr. gegrün-
det.'/`Syracuse was founded in the year 734 BC.' (the semantic representation
of the �rst sentence contains a correct resolution of the relative pronoun `das ');
intersentential coreferences: `Adenauer ', `Konrad Adenauer ', `er ' is a possible
sequence of noun phrases (forming a so-called coreference chain), as is `Kon-
rad Adenauer ', `er ', `Adenauer ', which leads to completely di�erent surface
sentences, but almost identical semantics.

20. presuppositions: existential presuppositions, e.g. `Der König von Frankreich
reiste 1730 . . . '/`The king of France traveled in 1730.' implies (presupposes)
`Es gab einen König von Frankreich 1730.'/`There was a king of France in
1730.'

21. entailments (especially entailments of verbs), e.g. `Die Firma verkauft ein
Patent an den Konkurrenten.'/`The company sells a patent to the business
rival.' vs. `Der Konkurrent kauft ein Patent von der Firma.'/`The business ri-
val bought a patent from the company.'): covered in part by entailments from
HaGenLex and entailments derived from knowledge bases like GermaNet and
manual translations of XWordNet.

22. metaphors like `am Anfang des Lebensweges '/`at the beginning of the path of
life' vs. `nach der Geburt '/`after birth' (metaphor: life-is-journey or life-is-
way). Metaphors span a whole range of phenomena. For example, lexicalized
metaphors can be easily handled by the lexicon, but more general cases would
require a special metaphor interpretation module to be used by the parser.

This enumeration could be extended further and further. In the end, complete
text understanding plus complete paraphrasing and inferencing is needed; this is
the ultimate goal of natural language understanding (NLU); this goal can only be
approximated step by step, phenomenon by phenomenon, module by module, as
indicated in this section.

6.2 Restrictive Contexts and Other Precision Problems for
Semantic Duplicates

For each problem, an illustrative example and a solution is given.

1. incorrectly collapsed discourse entities, e.g. `IBM kaufte 2000 andere Fir-
men.'/`literally: IBM bought 2000 other companies ': `2000 ' is a year not a
quanti�er for `andere Firmen'. Partially solved by sentence segmentation and
parsing of sentences.

2. incorrect phrases: solved by parsing sentences

15

3. incorrectly selected reading (wrong reading of ambiguous word or constituent):
e.g. `Die Birne schmeckt gut.'/`The pear tastes well.' would be irrelevant if the
query is about `Birne' in the sense of `Glühbirne'/`light bulb'. Solved by the
lexicon and the parser.

4. negation; constituent negation (compatibility test for the fact layer feature
in MultiNet su�ces); sentence negation, similarly.

5. other modalities, e.g. `Frankreich erzielt vielleicht höhere Einnahmen.'/`Maybe
France achieves higher incomes.' would (probably) be an incorrect duplicate
match if the other text reads `Frankreich erzielt höhere Einnahmen.'/`France
achieves higher incomes '. Incompatible modalities are tested in the semantic
network representations. Similarly, hypothetical situations must be excluded
from answering factual questions, e.g. `Wenn London in Frankreich liegt, ist
Schnee weiÿ.'/`If London is located inside France, then snow is white.' A sen-
tence that could incorrectly match as a (partial) duplicate of the main clause
is: `London liegt in Frankreich.'/`London is located inside France.' Other ex-
amples of modality come from epistemic modals like `glauben'/`to believe', e.g.
`Er glaubte, dass der Minister vom Präsidenten entlassen wird.'/`He believed
that the secretary was dismissed by the president.' vs. `Der Minister wird vom
Präsidenten entlassen.'/`The secretary was dismissed by the president.'

7 Knowledge Acquisition for Deep Duplicate Detec-

tors

The deep duplicate detector SemDupl-deep can only be as good as the underlying
knowledge bases. Therefore, the SemDupl project tries

• to consolidate our existing knowledge sources,

• to automatically (or semi-automatically) derive new knowledge bases, and

• to validate these new knowledges bases.

7.1 Hypernyms and Meronyms

A type of textual entailment that is both quite easy to create and to detect is
a sentence pair where the two sentences are almost identical, with the exception
that certain words (or concepts on a semantic level) of the original sentence are
replaced by synonyms, hypernyms or holonyms (the inverse of meronyms). This
is a modi�cation which can be done quite easily to obfuscate a plagiarism. For
example, `His father went to Bavaria.' implies `His father went to Germany '. In the
second sentence, `Bavaria' is replaced by one of its holonyms, `Germany '. Thus, a
large collection of synonyms, hypernyms and holonyms is quite vital for entailment
recognition.

Since the Wikipedia is often a source for creating plagiarisms or duplicates,
synonyms, hypernyms and holonyms are extracted from Wikipedia using a pattern-
based approach (vor der Brück, 2009; vor der Brück, 2010a,c,b, 2011; vor der Brück
and Stenzhorn, 2010; Tim vor der Brück, 2010; vor der Brück and Helbig, 2010). For

16

(a1 sub0 a2)← a1 ([word ”, ”] [cat (art)]?a1)∗

[word ”und (and)”] [cat (art)]?

[lemma ”ander (other)”] [cat (a)]?a2

Figure 3: Shallow pattern for hyponymy extraction where the premise is given as a
regular expression.

this it is di�erentiated between shallow and deep patterns. Both types of patterns
consist of a conclusion part of the form
(a1 syno a2), (a1 sub0 a2) or (a1 mero a2)
which speci�es that, if the premise holds, a synonymy / hyponymy / meronymy
relationship between the constants which are assigned to the variables a1 and a2 ,
holds. The assignments for both variables are determined by matching the premise
part to a linguistic structure which is created by analyzing the associated sentence.

In the following, we only describe the extraction of hyponyms. The extraction
of synonyms and meronyms works quite similar. The premise of a shallow pattern
is given as a regular expression and is matched to the token information given by
the parser. This token information contains the following information:

• word: word form

• category: grammatical category

• lemmas: a list of possible lemmas

• readings: a list of possible readings

• reading: the reading determined by the word sense disambiguation of the
parser

• lemma: lemma determined by the word sense disambiguation of the parser

If a match is successful, then the variables of the conclusion are replaced with the
constants matched to the same variables in the premise. Note that a variable of
the premise can be matched several times, either if it appears several times in the
premise or if that variable is in the scope of a Kleene-star operator (both is true in
the pattern given in Figure 3). In this case, the relations stated by the Cartesian
product of all possible variable instantiations are extracted.

The premise of a deep pattern is given as a semantic network graph, whereas
the conclusion is the semantic relation to be deduced. The deep pattern is applied
by a graph pattern matcher (or an automatic theorem prover if axioms are to be
employed). An example pattern is given in Equation 1 and Figure 4.

(a1 sub0a2)← follows
*itms

(c, d) ∧ (d pred a2)∧

(d prop ander .1 .1 (other .1 .1))∧
(c suba1)

(1)

follows*itms(c, d) denotes the fact that c precedes d in the argument list of the
function *itms.

17

... ...

(a1 SUB a2)

a2

a1

... ...

P
R

O
P

PRED

SUB

ander.1.1 (other.1.1)

*ITMS

*ITMS

follows

Figure 4: Deep pattern for hyponymy extraction where the premise is given as an
SN.

SUB present.0

TEM
PO

BJ

SCAR

S
U

B
S

SUB

P
R

O
P

old.1.1

man.1.1

own.1.1

PR
ED

PROP

other.1.1

SUB

a2=instrument.1.1

a1=cello.1.1

*IT
M

S

*ITMS

follows

Figure 5: Matching a deep pattern to a semantic network.

18

(a1 SUB0 a2)

a2a1

SUBM

*D
IF

F

P
R

E
D

P
R

E
D

Figure 6: Deep pattern for hyponymy extraction where the premise is given as an
SN.

Figure 5 illustrates the application of the deep pattern that is displayed in
Figure 4 to a semantic network representing the sentence: `Der alte Mann be-
sitzt ein Cello und andere Instrumente.'/`The old man owns a cello and other
instruments '. The semantic network arcs which are matched with the literals of
the pattern are printed in bold. The dashed edge represents the inferred fact:
(cello.1 .1 sub instrument .1 .1) with the variable instantiations a1 = cello.1 .1 ,
a2 = instrument .1 .1 .

Note that we consider instance of relations as a special kind of hyponymy as
well and such relations were also extracted by our algorithm. Instance of relations
involving named entities are represented in MultiNet using attribute-value construc-
tions, e.g. `Bonn ist eine Stadt.'/`Bonn is a city.' is represented by

(a attr b) ∧ (b sub name.1 .1) ∧ (b val bonn.0) ∧ (a sub stadt .1 .1) (2)

7.2 Deep vs. Shallow Patterns

On the one hand, a shallow pattern has the advantage that it is also applicable if
the parse fails. It only relies on the fact that the tokenization is successful. On
the other hand, deep patterns are still applicable if there are additional constituents
or subclauses between hyponyms and hypernyms which usually cannot be covered
by shallow patterns. The following sentences (the �rst two originating from the
Wikipedia corpus) are typical examples where the hyponymy relationship could only
be extracted using deep patterns (hyponym and hypernym are set in bold face).

`Die Stadt besitzt eine romanische Kathedrale aus dem 12. Jahrhundert, viele
andere romanische Kirchen und einige Museen.' `The city contains a Romanesque
cathedral from the 12th century, a lot of other Romanesque churches and some
museums.'

Another advantage of deep patterns is illustrated by the following sentence:
`Auf jeden Fall sind nicht alle Vorfälle aus dem Bermudadreieck oder aus an-
deren Weltgegenden vollständig geklärt.'/`In any case, not all incidents from the
Bermuda Triangle or from other world areas are fully explained.'

From this sentence, a hyponymy pair cannot be extracted by the Hearst pat-
tern `X or other Y ' (Hearst, 1992). The application of this pattern fails due to the
word `aus '/`from' which cannot be matched. To extract this relation by means of
shallow patterns an additional pattern would have to be introduced. This could
also be the case if syntactic patterns were used instead since the coordination of

19

present.0

S
U

B
STEMP

O
B

J

AGT

S
U

B

sell.1.1

cello.1.1

SUBM

he.1.1

SUBM

*D
IF

F

P
R

E
D

PROP

common.1.1

P
R

E
D

SUB0 string_instrument.1.1

Figure 7: Application of a deep pattern to an SN representing the sentence He sells
all common string instruments except celli. Arcs matched with the pattern
premise are printed in bold. The dashed arc is inferred by application of
the pattern.

20

`Bermudadreieck '/`Bermuda Triangle' and `Weltgegenden'/`world areas ' is not rep-
resented in the syntactic constituency tree but only on a semantic level8. Thus, the
same deep pattern can be used for the hyponymy extraction in this sentence as for
extracting the hyponymy relationship from the phrase: `das Bermuda-Dreieck oder
andere Weltgegenden'/`the Bermuda Triangle or other world areas '.

Furthermore, several syntactic or surface representations are frequently mapped
to the same semantic network like in the sentences:

1. `Er besitzt ein Cello, eine Geige und andere Instrumente.'/`He owns a cello,
a violin and other instruments.'

2. `Er besitzt eine Geige, ein Cello sowie andere Instrumente.'/`He owns a violin,
a cello as well as other instruments.'

Thus, the hyponymy relationship that cello and violins are instruments can be ex-
tracted by the application of the same deep pattern. However, to extract the same
information by the application of shallow or even syntactic patterns, two di�erent
patterns have to be de�ned.

Another example:
• `Er verkauft alle gebräuchlichen Streichinstrumente auÿer Celli.'/`He sells all
common string instruments except celli.'
• `Er verkauft alle gebräuchlichen Streichinstrumente bis auf Celli.'/`He sells all
common string instruments aside from celli.'
• `Er verkauft alle gebräuchlichen Streichinstrumente ausgenommen Celli.'/`He
sells all common string instruments excluding celli.'

All three sentences have di�erent dependency trees (tested by applying the Stanford
Dependency Parser (de Marne�e and Manning, 2008) on the English translations).
However, the SN representations of all three sentences are identical (depicted in
Figure 7), i.e., the pattern given in Figure 6 can be applied to extract the hy-
ponymy relation (cello.1 .1 sub0 string_instrument .1 .1) from all three sentences,
while three di�erent syntactic patterns would have to be designed if the same rela-
tion was to be extracted from the dependency parse. The same fact holds if surface
representations are used. Thus, the use of a deep semantic representation reduces
the amount of required patterns in comparison to a surface or dependency based
representation. A further advantage of the deep semantic approach consists in the
fact that person names are already identi�ed by the parser which simpli�es the ex-
traction of hyponyms (instance-of relations) relating to persons. Finally, the deep
approach allows the usage of logical axioms, which can make the patterns more
generally applicable.

7.3 Validation of Relation Hypotheses

Naturally, not all hypotheses extracted by the patterns are correct. Therefore, a
validation component is required. A two-step validation is followed here. In the
�rst step, ontological sorts and features (Helbig, 2006) of the two concepts involved
in a relation hypothesis are compared. Only if the sort/feature combination is
admissible, the hypothesis is stored in the database. In the second step, several

8Note that some dependency parsers do a semantic-oriented normalization as well.

21

statistical features are calculated and employed to derive a con�dence score (vor der
Brück, 2010a; vor der Brück and Helbig, 2010).

Let us look at the �rst validation step more closely. First we give a short overview
on ontological sorts and semantic features.

The ontological sorts (MultiNet de�nes 45 sorts) form a taxonomy. In contrast
to other taxonomies, ontological sorts are not necessarily lexicalized, i.e., they do
not necessarily denote lexical entries. The following list shows a small selection of
ontological sorts below the sort object (o):

• Objects
� Concrete objects
∗ Discrete objects: e.g. `chair '
∗ Substances: e.g. `milk ', `honey '

� Abstract objects: e.g. `race', `robbery '

Semantic features are certain properties which can be set, unset or underspeci�ed.
The following semantic features are de�ned:

• animal

• animate

• axial

• artif (arti�cial)
• geogr (geographic)
• human

• info

• instit (institution)
• instru (instrument)
• legper (legal person)
• mental

• method

• movable

• potag (potential agent)
• spatial

• thconc (theoretical concept)

Sample characteristics for the concept bear.1.1 (The su�x .1.1 denotes the reading
numbered .1.1 of the given word.): discrete object; animal +, animate +, artif
-, human -, spatial +, thconc -, . . .

Each hypothesis stored in the database has passed a consistency check using onto-
logical sorts and features. For hyponymy hypotheses, the ontological sorts/features
of the hypernym must subsume the sorts/features of the hyponym. For synonymy
hypotheses, ontological sorts and features must be identical for the two compared
concepts. For meronymy hypotheses, the allowed combinations are learned by a
tree-augmented naïve Bayes algorithm. Examples:

• bear.1.1 (animal:+) can be no hyponym/synonym of house (animal:-)
• milk.1.1 (substance) can be no hyponym/synonym of house (discrete object)
• house.1.1 (movable:-) can be no hyponym/synonym of chair.1.1 (movable:+)
• living_being.1.1 (animal:underspeci�ed) can be a hypernym but no hyponym/syn-
onym of bear.1.1 (animal:+)
• child.1.1 (human:+, etype:0) can be no meronym ofman.1.1 (human:+, etype:0)

22

Tokens SN

Shallow Pattern

Application

Deep patterns

HaGenLex Text

Deep Pattern

Application

Validation

(Filter)

Validation

(Score)

Analysis

WOCADI

KB

Shallow patterns

Figure 8: System Architecture of SemQuire.

7.4 System Architecture: Relation Extraction

To �nd meronymy relations from a text, this text is processed by our knowledge
acquisition tool called SemQuire.9

1. The sentences of the German Wikipedia are analyzed by the deep linguistic
parser WOCADI. As a result of the parsing, a token list, a syntactic depen-
dency tree, and a semantic network are created.

2. Shallow patterns, consisting of a regular expression in the premise, are ap-
plied to the token lists, and deep patterns are applied to the SNs to generate
proposals for meronymy relations.

3. A validation tool using ontological sorts and semantic features checks whether
the proposals are technically admissible to reduce the amount of data stored
in the knowledge base (KB).

4. If the validation is successful, the meronymy candidate pair is added to the
KB. Steps 2�4 are repeated until all sentences are processed.

5. Each meronymy candidate pair in the KB is assigned a con�dence score esti-
mating the likelihood of its correctness.

6. The correct hyponymy/meronymy subrelation is determined. (No further sub-
relation exists for synonymy.)

9SemQuire is derived from semantically acquire knowledge.

23

8 Annotation GUI

A GUI-based tool called SemChecker is provided for annotating the extracted hy-
ponym / meronym / synonym hypotheses for correctness Danninger (2009). Sem-
Checker is primarily an annotation tool for relation hypotheses but can be used
also to identify inconsistent hypotheses. SemChecker displays the hypotheses con-
tained in the database including its associated database attributes. In the upper
part of the window in Figure 9 the contents of the database table RELATION is
given. If one of these entries is selected, the associated entries of the SOURCE
table, which specify the source of that entry, is displayed. Additionally, by means of
the attributes FILENAME and SENTENCE_INDEX, the sentence from which the
hypothesis was extracted from is identi�ed and shown. This sentence is quite vital
for the annotator to decide whether a hypothesis is correct or not. This is especially
the case for technical terms which are not generally known. Without the text, the
annotator is frequently not able to decide about the hypothesis' correctness. In
addition, this sentence is often quite useful to identify shortcomings of the relation
extraction process and helps therefore to further improve this process. Furthermore,
several bits of information for the concepts involved in the relation hypothesis from
the lexicon are shown, including ontological sorts and semantic features as well as
an example sentence which clari�es the intended reading. In the shown case, the
mistake that the wrong reading was chosen for one of the words of the hypothesis
can be identi�ed easily. Usually such errors are based on the fact that a reading was
incorrectly chosen by the word sense disambiguation of the parser.

Figure 9: Screenshot of the annotation tool.

24

In the middle of the graphical user interface, there are several buttons whose
functions are de�ned as follows:
• view concept1: Display the �rst concept (hyponym / meronym / �rst syn-
onym) in LIA by employing the LIA remote control. In order for this to work,
LIA has to be started previously.
• view concept2: Display the second concept (hypernym / holonym / second
synonym) in LIA.
• view primary1: Display the associated reading belonging to the base word
(primary word) of the �rst concept , if existing, in LIA.
• view primary2: Display the associated reading belonging to the base word
(primary word) of the second concept, if existing, in LIA.
• score features: Displays the features which were used to calculate the con�-
dence score for the selected hypothesis. This value must not be confused with
the semantic features of MultiNet.
• axioms: Displays the axioms that were applied to derive a contradiction for
this hypothesis. This is only possible if the automated theorem prover was
able to derive a contradiction for the selected hypothesis.
• filter: Activates a �lter, which causes only the hypotheses to be displayed
whose database attributes ful�ll the �ltering conditions. SemChecker supports
�ltering according to equality or interval checks for numerical values.

Additionally, SemChecker provides the possibility to sort the shown data accord-
ing to the database attributes. For this, the user just selects the table border above
the desired column.

Figure 10: Graphical user interface of SemChecker for displaying the result of the
logical validation, which marks the entry sub(land .1 .1 , provinz .1 .1) as
potentially defective.

Beside its use as an annotation tool, SemChecker can also be used to show
inconsistent relation hypotheses. Entries which caused a contradiction are marked

25

by an attention symbol. Additionally, if the button axioms is selected, SemChecker
displays all axioms which were required for deriving the contradiction proof for the
selected hypothesis. This is illustrated in Figure 10.

9 Extraction of Entailments

Next to semantic relations, a collection of entailments can be useful for plagiarism
or duplicate detection. An entailment is a relationship between two expressions
which holds, if the truth of the �rst expressions (the base expression/text) implies
the truth of the other (the hypothesis). Three di�erent approaches for entailment
extraction were devised which are described in the following three subsections.

9.1 Extracting Entailments Employing a Search Engine

We basically follow the approach of Ravichandran and Hovy (2002) which identi-
�es entailments by collecting texts with identical noun phrases, using the assump-
tion that such texts often contain similar contents. Consider for example the noun
phrases: John McEnroe, Björn Borg, Wimbledon, 1980. Sentences containing such
expressions could be:
• John McEnroe lost against Björn Borg in the �nal of Wimbledon 1980. or
• Björn Borg beat John McEnroe in the �nal of Wimbledon 1980.

Thus, if a lot of such texts are examined, the entailments
• X beat Y → Y lost againstX and
• Y lost againstX → X beat Y

can eventually be learned. The entailment extraction is done in the following steps:
• SNs are created for all texts which contain the given noun phrases.
• The texts are extracted by web search engine queries.
• Nominal phrases which are employed for the search are replaced by variables.
• Frequently occurring substructures S in these SN are learned by following the
Minimum Description Length Principle (Cook and Holder, 1994).
• Entailments are created by building the Cartesian product over S : S×S, i.e.,
the �rst component of a pair s ∈ S × S represents the base expression, the
second the hypothesis.

Entailments extracted by this approach are given in Appendix A.

9.2 Extracting Entailments from SNs Basically Following Ra-
vichandran and Hovy

The approach described in Section 9.1 pro�ts from a large corpus (the part of the
web indexed by the search engine) and the precision is quite good due to the fact
that the method is semi-automatic and a human user has to provide the search
tuples. However, this can also be a disadvantage since human interaction is required
and a high amount of labor is required to extract a high number of entailments.
Furthermore, the approach is not fully semantic-oriented since surface strings are
used for the search engine queries. Therefore, we devised an additional approach
which is fully automatic and is also based on the approach of Ravichandran and Hovy
(2002). In this approach, we extract entailments from a newsfeed corpus in form

26

Table 1: Assumed equivalent formulas with given con�dence score.

Formula 1 Formula 2 Score
compl1 (holen) nach.dircl compl1 (werden) an.loc (in-

stitut) in.loc
1.000

compl1 (holen) nach.dircl compl1 (niederlassen)
in.compl2

1.000

compl1 (holen) nach.dircl compl1 (gehen) nach.dircl 0.219
adj (studieren) compl1 in.loc (promoviern) compl2 0.106
compl1 (kommen) auf.circ
(Weg) zu.compl2

compl1 (zur"uckkehren)
zu.purp

1.000

of semantic networks. The semantic networks were derived by a deep syntactico-
semantic analysis (the WOCADI parser). The search tuples were determined by
corpus statistics following the method introduced by Szpektor et al. (2004) called
TE/ASE.

9.3 Extracting Entailments Basically Following Lin and Pan-
tel

We further tested a di�erent entailment extraction approach (Zauner, 2009) which is
based on the method of Lin and Pantel (2001). For this method it is not necessary to
construct any search tuples like for the two other approaches, which is not trivial and
can result in either many work or considerably computations if done automatically.
However, the other two approaches created several intermediate results which could
be used to manually in�uence the �nal result which is not possible here.

This approach extracts all paths from a dependency tree which connect two
nouns with each other. These nouns are referred to as slot �llers. Two text passages
are considered as similar (and therefore as paraphrases) if the associated paths
connect essentially the same nouns with the same frequency with each other. For this
purpose, every path is assigned two vectors which specify the number of occurrences
of the slot �ller expressions in the text corpus. For the determination of the similarity
of the vector pairs, a distance function is de�ned, where the occurrence of usually rare
nouns has more in�uence for the similarity calculation than of more frequent ones.
Note that this algorithm is quite similar to the synonymy/hyponymy recognition by
textual context analysis (Cimiano et al., 2005).

Instead of dependency trees, this approach was applied to SNs following the
MultiNet formalism. Furthermore, a hybrid was realized which is based on depen-
dency trees but replaces the edge labels of the trees by the semantic relations. Some
of the extracted entailments are shown in Table 1.

10 The Deep Duplicate Detector SemDupl-deep

To adequately handle linguistic phenomena, i.e., identify paraphrase phenomena
discussed in Section 6.1 and to not get disturbed by non-paraphrase phenomena
discussed in Section 6.2, a deep semantic approach to duplicate detection has been
developed. It integrates existing tools for producing semantic representations for

27

text: the WOCADI parser and the CORUDIS coreference resolver. In an indexing
phase, all texts in the base corpus are transformed into semantic representations by
WOCADI and CORUDIS (Hartrumpf, 2003).

In the detection step, the duplicate candidate is analyzed in the same way as
the texts of the base corpus. For each sentence in the candidate, a semantic search
query is sent to a retrieval system that contains all the semantic representations for
the base corpus. Matches are collected and after all sentences of the candidate have
been investigated, scores are calculated from the results for the text sentences.

The average overlap score over all candidate sentences is a good score. The
individual overlap score is calculated by the retrieval system, based on distances of
related concepts and the distance between the left-hand side and right-hand side of
inference rules.

The power and potential of this detector was illustrated by some examples in
Section 6. Some more real-world examples from the SemDupl corpus are presented
next. The following four examples can be detected as semantically equivalent by
a unit conversion rule between meters and kilometers and abbreviation de�nitions
for `m' and `km': `Die Frau lief 10 Kilometer/10000 Meter/10 km/10000 m.'/`The
woman ran 10 kilometers/10000 meters/10 km/10000 m.'

Another example that shows the inferential power of SemDupl-deep in the area
of verb meanings are the three following sentences: `Der alte Parlamentarier stellt
einen Antrag auf eine Beratung.'/`The old parliamentarian �les an application for
a debate.', a variant with the SVC replaced by a full verb `Der alte Parlamentarier
beantragt eine Beratung.'/`The old parliamentarian applies for a debate.' and �nally
a variant with an in�nitive clause replacing the NP taking the object role of the
verb: `Der alte Parlamentarier beantragt zu beraten.'/`The old parliamentarian ap-
plies to debate.' (literally translated). All three semantic duplicates can be linked;
This linking successfully used knowledge about support verb constructions (`einen
Antrag stellen'/`to �le an application' and `beantragen' / `to apply ') and relation-
ships between verbs and their nominalizations (`beraten'/`to debate' and `Beratung '
/ `debate').

From the independent translations subcorpus, the following is a illustrative ex-
ample that shows what the deep method can detect: `Man weiÿ ferner, dass sie
noch im Besitze des Dokumentes ist.'/`Furthermore, one knows that she still holds
possession of the document.' (corpus text brief1_01) vs. `Man weiÿ ebenfalls, daÿ
sich das Schriftstück noch in ihrem Besitz be�ndet.'/`Likewise one knows that the
document is still in her possession.' (corpus text brief2_01).

To evaluate the inferential aspects of SemDupl-deep, the English test set from
RTE-2 (Recognizing Textual Entailment Challenge) was translated to German by
a native German speaker. Then, the translations of the IE and IR parts were
controlled by an English native speaker in order to check that no information from
the English versions was missing or mistranslated and �nally revised by a second
German native speaker.

11 Combination

The architecture of the Combiner is illustrated in Figure 11. First, SemDupl-shallow,
SemDupl-quick and SemDupl-deep produce XML output containing the feature val-
ues for a given training set of annotated text pairs. The annotation is 1 for duplicates

28

SemDupl-

shallow

SemDupl-

quick

XML XML XML

arff-File

XML

Combiner

svm-train

libsvm

model

Duplicate

Output

SVM

Classifier

SemDupl-deep

Figure 11: System architecture of the Combiner.

29

Table 2: Confusion matrix for WCopyFind. D=Duplicate, ND=No Duplicate,
PD=Predicated Duplicate, PND=Predicted Non-Duplicate.

PD PND
D 39 215
ND 8 21645

and 0 for non-duplicates. The XML output is combined by the XMLCombiner which
produces a single LIBSVM �le as the result. This �le is used by the support vector
machine LIBSVM (Chang and Lin, 2001) to create a model �le. Afterwards, a clas-
si�cation for a previously unseen data set can be done. Again, SemDupl-shallow,
SemDupl-quick and SemDupl-deep produce XML output for this dataset. This out-
put is combined by the svm_classifier.out which additionally employs the model
�le to classify each instance of this dataset. The classi�cation output consists of a
list of 4-tuples
(t1, t2, r, p) ∈ T × T × {0, 1} × [0, 1] where

• T : the text corpus

• t1: a text from the text corpus

• t2: the text t1 is compared with

• r: the classi�cation value which can be duplicate (1) or non-duplicate (0).

• p: the probability estimate that t1 and t2 are actually duplicates of each other.

Note that we use the single features from the ShallowChecker and not the total score
as determined by the decision tree.

12 Evaluation

The three individual detectors (shallow, quick, deep) as well as the combined system
have been evaluated on the SemDupl corpus, which is annotated for duplicates. For
each text pair and each approach, a set of feature values is generated where high
values indicate the texts being duplicates. These values are combined by the support
vector machine classi�er WLSVM (EL-Manzalawy and Honavar, 2005), which is
based on LIBSVM (Chang and Lin, 2001) as described in the last section. For
training this classi�er, the text pairs of our corpus were used (in 10-fold cross-
validation). The confusion matrices calculated for shallow and deep approaches are
shown in Table 3 and Table 4.

Furthermore the knowledge extraction process was evaluated. Hyponyms, meronyms,
synonyms and entailments were automatically extracted. Table 7 shows a number
extracted relation hypotheses, including the number of hypotheses which were man-
ually annotated and which were annotated as correct. The precision depending on
the validation score is given in Figure 12. Part of the extracted knowledge is listed
in Appendix A.

Furthermore, the number of source code lines of the individual systems were
determined and is given in Table 8.

30

Table 3: Confusion matrices for shallow approaches. SQ=SemDupl-quick,
SS=SemDupl-shallow, D=duplicate, ND=no duplicate, PD=predicted du-
plicate, PND=predicted non-duplicate.

SQ SS SQ+SS

PD PND PD PND PD PND
D 97 157 200 54 201 53
ND 16 21637 14 21639 13 21640

Table 4: Confusion matrices for deep approaches. D=duplicate, ND=no duplicate,
PD=predicted duplicate, PND=predicted non-duplicate, SD=SemDupl-
deep.

SD SD+SQ SD+SQ+SS

PD PND PD PND PD PND
D 42 212 106 148 202 52
ND 5 21648 16 21637 11 21642

Table 5: F-Measure, precision, recall, and accuracy for shallow approaches.

Measure WCopy�nd SQ SS SQ+SS

F-Measure 0.259 0.529 0.855 0.859
Precision 0.830 0.858 0.935 0.939
Recall 0.154 0.382 0.787 0.791
Accuracy 0.990 0.992 0.997 0.997

Table 6: F-Measure, precision, recall, and accuracy for deep approaches.

Measure SD SD+SQ SD+SQ+SS

F-Measure 0.279 0.564 0.865
Precision 0.894 0.869 0.948
Recall 0.165 0.417 0.795
Accuracy 0.990 0.993 0.997

31

Table 7: Extracted semantic and lexical relation hypotheses.

Type of Relation Hypotheses Annotated Annotated+Correct
Synonymy 88 624 996 164
Hyponymy 391 153 29 523 7617
Meronymy 1 483 701 49 839 1421
Entailments 150 000 413 91

0.5
0.5 1

Corr.

Score

Correctness

+ +

+
+

+ +

+ +

+
+

Figure 12: Precision of hyponymy hypotheses depending on score.

13 Evaluation Interpretation and Conclusions

In order to compare the results of the combined system with plagiarism detection
software, WCopy�nd was evaluated on our text corpus, see Table 2 and Table 5 for
details. Table 5�Table 7 show the results of our approach. It can be seen that each
approach of our system generates signi�cantly better results in terms of F-measure,
precision, and recall than WCopy�nd (determined with con�dence intervals of level
99%).

Similarly (at 95% con�dence), the best combined shallow+deep approach out-
performs the best shallow approach. Furthermore, F-measure, precision, and recall
of the combined shallow+deep system are considerably higher than the associated
values of the combination of the two shallow systems. Note that the SemDupl-deep
approach can show its full potential only in more professionally constructed dupli-
cates; for example, on the semdupl-units subcorpus (which was excluded from the
evaluation because it was constructed), it performs much better than any shallow
system.

Table 8: Lines of source code of the SemDupl components.

Component Number of lines of source code
SemDupl-quick 4000
SemDupl-deep 19 000
SemDupl-shallow 8000
SemQuire 100 000

32

The SemDupl system shows that a deep, semantic approach for duplicate de-
tection pays o�. The combination of deep and shallow methods outperforms each
single method.

In future work, we want to improve the coverage of the deep approach by further
extending its knowledge bases by (semi-)automatic means.

33

A Extracted Knowledge

Part of the extracted knowledge is given in the tables below. Table 9 contains
a selection of hyponymy hypotheses, Table 10 contains highly scored meronymy
hypotheses. Synonym hypotheses are listed in Table 11. Finally, some entailment
examples are shown in Table 12.
It must be remarked that automatic extraction of entailments from texts is one of
the most ambitious tasks in automatic knowledge acquisition. Therefore, this task
is far from being completed and has to be considered as a research �eld in itself.
Further research should be carried out in the following directions:

• Including new methods into the automatic acquisition of entailments.

• Enlarging the base of textual corpora for this task.

• Improving the computation of scores judging the quality of the entailments.

• Re�ning the logical validation of entailments and �nding generalizations over
the achieved results (generation of axiom schemata).

34

Table 9: Hypernymy relations with high con�dence score.

Relation Score
sub(silber .1 .1 ,metall .1 .1 , categ, situa) 0.9737
sub(bronze.1 .1 ,werkstoff .1 .1 , categ, situa) 0.9696
sub(wasserdampf .1 .1 , gas .1 .1 , categ, situa) 0.9696
sub(trompete.1 .1 , instrument .1 .1 , categ, situa) 0.9591
sub(gold .1 .1 ,metall .1 .1 , categ, situa) 0.9589
sub(blei .1 .1 ,metall .1 .1 , categ, situa) 0.9572
sub(gitarre.1 .1 , instrument .1 .1 , categ, situa) 0.9567
sub(blut .1 .1 , k örperflüssigkeit .1 .1 , categ, situa) 0.9548
sub(physik .1 .1 , naturwissenschaft .1 .1 , categ, situa) 0.9546
sub(aluminium.1 .1 , leichtmetall .1 .1 , categ, situa) 0.9521
sub(schmuck .1 .1 , gegenstand .1 .1 , categ, situa) 0.9518
sub(kunststoff .1 .1 ,material .1 .1 , categ, situa) 0.9504
sub(buch.1 .1 , schrift .1 .1 , categ, situa) 0.9486
sub(pr äsident .1 .1 , staatsoberhaupt .1 .1 , categ, situa) 0.9485
sub(kruzifix .1 .1 , element .1 .1 , categ, situa) 0.9458
sub(tierarzt .1 .1 , person.1 .1 , categ, situa) 0.9458
sub(vesper .1 .1 , ding .1 .1 , categ, situa) 0.9458
sub(sultan.1 .1 , person.1 .1 , categ, situa) 0.9458
sub(knochen.1 .1 , gegenstand .1 .1 , categ, situa) 0.9458
sub(aluminium.1 .1 , stoff .1 .1 , categ, situa) 0.9458
sub(milchstrae.1 .1 , objekt .1 .1 , categ, situa) 0.9458
sub(dolmen.1 .1 , struktur .1 .1 , categ, situa) 0.9458
sub(gewerkschaft .1 .1 , bündnis .1 .1 , categ, situa) 0.9458
sub(heiz öl .1 .1 , stoff .1 .1 , categ, situa) 0.9458
sub(energie.1 .1 , stoff .1 .1 , categ, situa) 0.9458
sub(editor .1 .1 , programm.1 .1 , categ, situa) 0.9458
sub(vollholz .1 .1 ,werkstoff .1 .1 , categ, situa) 0.9458
sub(erbauer .1 .1 , person.1 .1 , categ, situa) 0.9458
sub(honig .1 .1 , stoff .1 .1 , categ, situa) 0.9458
sub(regierung .1 .1 , institution.1 .1 , categ, situa) 0.9458
sub(gummi .1 .1 , kunststoff .1 .1 , categ, situa) 0.9458
sub(k örperschaft .1 .1 , institution.1 .1 , categ, situa) 0.9458
sub(erde.1 .1 , existenzbereich.1 .1 , categ, situa) 0.9458
sub(alkohol .1 .1 , droge.1 .1 , categ, situa) 0.9452
sub(pflanzenöl .1 .1 ,flüssigkeit .1 .1 , categ, situa) 0.9425
sub(zoll .1 .1 , behörde.1 .1 , categ, situa) 0.9424
sub(klavier .1 .1 , instrument .1 .1 , categ, situa) 0.9415
sub(kupfer .1 .1 ,material .1 .1 , categ, situa) 0.9377
sub(biologie.1 .1 , naturwissenschaft .1 .1 , categ, situa) 0.9375
sub(vater .1 .1 , person.1 .1 , categ, situa) 0.9368

35

Table 9: Hypernymy relations with high con�dence score.

Relation Score
sub(kleidung .1 .1 , ding .1 .1 , categ, situa) 0.9356
sub(phosphor .1 .1 , element .1 .1 , categ, situa) 0.9356
sub(schule.1 .1 , gebäude.1 .1 , categ, situa) 0.9352
sub(schlagzeug .1 .1 , instrument .1 .1 , categ, situa) 0.9318
sub(methan.1 .1 , treibhausgas .1 .1 , categ, situa) 0.9315
sub(frucht .1 .1 , pflanzenteil .1 .1 , categ, situa) 0.9298
sub(englisch.2 .1 , sprache.1 .1 , categ, situa) 0.9291
sub(k äse.1 .1 ,milchprodukt .1 .1 , categ, situa) 0.9286
sub(chemie.1 .1 , naturwissenschaft .1 .1 , categ, situa) 0.9281
sub(holz .1 .1 , stoff .1 .1 , categ, situa) 0.9281
sub(aluminiumoxid .1 .1 ,material .1 .1 , categ, situa) 0.9279
sub(wysiwyg-texteditor .1 .1 , programm.1 .1 , categ, situa) 0.9279
sub(cayennepfeffer .1 .1 , gewürz .1 .1 , categ, situa) 0.9279
sub(carolinalilie.1 .1 , pflanze.1 .1 , categ, situa) 0.9279
sub(havelland .2 .1 , landschaft .1 .1 , categ, situa) 0.9279
subs(karnevalssession.1 .1 , veranstaltung .1 .1 , categ, situa) 0.9279
sub(exoskeletts .1 .1 , tier .1 .1 , categ, situa) 0.9279
sub(zypressenwolfsmilch.1 .1 , pflanze.1 .1 , categ, situa) 0.9279
sub(qawwali .1 .1 ,musikstil .1 .1 , categ, situa) 0.9279
sub(hammaburg .1 .1 , kirche.1 .1 , categ, situa) 0.9279
sub(verbandsvorsitzend .1 .1 ,mitglied .1 .1 , categ, situa) 0.9279
sub(untergrund .1 .2 , bestandteil .1 .1 , categ, situa) 0.9279
sub(knaanischen.1 .1 , sprache.1 .1 , categ, situa) 0.9279
sub(jugendbildungswerk .1 .2 , organisation.1 .1 , categ, situa) 0.9279
sub(wrangelschen.1 .1 , gebäude.1 .1 , categ, situa) 0.9279
sub(kriebelmücke.1 .1 , insekt .1 .1 , categ, situa) 0.9279
sub(dozentin.1 .1 , frau.1 .1 , categ, situa) 0.9279
sub(betelwachs .1 .1 , produkt .1 .1 , categ, situa) 0.9279
sub(beteiligungshaushalt .1 .1 , form.1 .1 , categ, situa) 0.9279
sub(neokonservatismus .1 .1 , form.1 .1 , categ, situa) 0.9279
sub(tongji -universit ät .1 .1 , einrichtung .1 .2 , categ, situa) 0.9279
sub(phosphor .1 .1 ,mineralien.1 .1 , categ, situa) 0.9279
sub(plektrum.1 .1 ,musiker .1 .1 , categ, situa) 0.9279
sub(sünderin.1 .1 , film.1 .1 , categ, situa) 0.9279
sub(senf .1 .1 , gewürz .1 .1 , categ, situa) 0.9261
sub(aluminium.1 .1 ,metall .1 .1 , categ, situa) 0.9249
sub(gemüse.1 .1 , produkt .1 .1 , categ, situa) 0.9231

36

Table 10: Meronymy hypotheses with high con�dence score.

Relation Score
sub(x, haut .1 .1 , categ, categ) ∧ pars(x, fisch.1 .1 , categ, proto) 1.0000
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9999
sub(x,motor .1 .1 , categ, categ) ∧ pars(x, fahrzeug .1 .1 , categ, proto) 0.9993
pars(gepäckwagen.1 .1 , zug .1 .1 , proto, proto) 0.9990
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, auto.1 .1 , categ, proto) 0.9982
sub(x, kopf .1 .1 , categ, categ) ∧ pars(x,mensch.1 .1 , categ, proto) 0.9975
sub(x, ufer .1 .1 , categ, categ) ∧ pars(x,flus .1 .1 , categ, proto) 0.9973
sub(x, schwanz .1 .1 , categ, categ) ∧ pars(x, tier .1 .1 , categ, proto) 0.9973
sub(x, turm.1 .1 , categ, categ) ∧ pars(x, burg .1 .1 , categ, proto) 0.9971
sub(x, kind .1 .1 , categ, categ) ∧ pars(x, paar .3 .1 , categ, proto) 0.9967
sub(x,wagen.1 .1 , categ, categ) ∧ pars(x, zug .1 .1 , categ, proto) 0.9964
sub(x, fakult ät .1 .1 , categ, categ) ∧ subm(x, hochschule.1 .1 , categ, ktype) 0.9964
sub(x, zeiger .1 .1 , categ, categ) ∧ pars(x, uhr .1 .1 , categ, proto) 0.9963
sub(x, kopf .1 .1 , categ, categ) ∧ pars(x, fisch.1 .1 , categ, proto) 0.9962
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, saal .1 .1 , categ, proto) 0.9962
pars(fassade.1 .1 , querhaus .1 .1 , categ, situa) 0.9962
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, hauptschiff .1 .1 , categ, proto) 0.9962
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, seitenschiff .1 .1 , categ, proto) 0.9962
sub(x, giebel .1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9961
pars(haut .1 .1 , auge.1 .1 , categ, situa) 0.9959
sub(x, fassade.1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9959
sub(x, fassade.1 .1 , categ, categ) ∧ pars(x, nachbarhaus .1 .1 , categ, proto) 0.9959
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, neubau.1 .1 , categ, proto) 0.9956
sub(x, bau.1 .1 , categ, categ) ∧ pars(x, gebiet .1 .1 , categ, proto) 0.9956
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, fahrzeug .1 .1 , categ, proto) 0.9956
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, dom.1 .1 , categ, proto) 0.9955
sub(x, hafen.1 .1 , categ, categ) ∧ pars(x, schiff .1 .1 , categ, proto) 0.9954
sub(x, herz .1 .1 , categ, categ) ∧ pars(x,mensch.1 .1 , categ, proto) 0.9954
sub(x, netzhaut .1 .1 , categ, categ) ∧ pars(x, auge.1 .1 , categ, proto) 0.9953
pars(ortsteil .1 .1 , stadt .1 .1 , proto, proto) 0.9952
sub(x, haut .1 .1 , categ, categ) ∧ pars(x,wirtstier .1 .1 , categ, proto) 0.9952
sub(x, haut .1 .1 , categ, categ) ∧ pars(x, tier .1 .1 , categ, proto) 0.9952
sub(x, haut .1 .1 , categ, categ) ∧ pars(x, frosch.1 .1 , categ, proto) 0.9952
sub(x, haut .1 .1 , categ, categ) ∧ pars(x, arm.1 .1 , categ, proto) 0.9952
sub(x,musik .1 .1 , categ, categ) ∧ pars(x, szene.1 .1 , categ, proto) 0.9951
sub(x, dorf .1 .1 , categ, categ) ∧ pars(x, gemeinde.1 .1 , categ, proto) 0.9951
pars(gegenstand .1 .1 ,welt .1 .1 , proto, proto) 0.9951
sub(x, erdgeschoss .1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9951
sub(x, etage.1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9951
sub(x, erdgeschoss .1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9950

37

Table 10: Meronymy hypotheses with high con�dence score.

Relation Score
sub(x, sockel .1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9950
sub(x, innenraum.1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9950
sub(x, fundament .1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9950
sub(x, obergescho.1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9950
sub(x, fundament .1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9950
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9949
sub(x, spitzdach.1 .1 , categ, categ) ∧ pars(x, turm.1 .1 , categ, proto) 0.9949
sub(x,wagen.1 .1 , categ, categ) ∧ pars(x, d -zug .1 .1 , categ, proto) 0.9949
pars(bord .1 .1 ,flugzeugtr äger .1 .1 , proto, proto) 0.9949
sub(x, bord .1 .1 , categ, categ) ∧ pars(x, raumschiff .1 .1 , categ, proto) 0.9949
sub(x, bord .1 .1 , categ, categ) ∧ pars(x, boot .1 .1 , categ, proto) 0.9949
sub(x, bord .1 .1 , categ, categ) ∧ pars(x, satellit .1 .1 , categ, proto) 0.9949
sub(x, stockwerk .1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9949
sub(x, bord .1 .1 , categ, categ) ∧ pars(x, fangschiff .1 .1 , categ, categ) 0.9949
sub(x, fassade.1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9949
sub(x, fraktion.1 .1 , categ, categ) ∧ subm(x, partei .1 .1 , categ, ktype) 0.9947
sub(x, bündnis .1 .1 , categ, categ) ∧ subm(x, partei .1 .1 , categ, ktype) 0.9947
sub(x, titel .1 .1 , categ, categ) ∧ pars(x,werk .1 .1 , categ, proto) 0.9946
sub(x, ast .1 .1 , categ, categ) ∧ pars(x, baum.1 .1 , categ, proto) 0.9946
sub(x,wurzel .1 .1 , categ, categ) ∧ pars(x, baum.1 .1 , categ, proto) 0.9946
sub(x, schnauze.1 .1 , categ, categ) ∧ pars(x, tier .1 .1 , categ, proto) 0.9946
sub(x, k örper .1 .1 , categ, categ) ∧ pars(x, tier .1 .1 , categ, proto) 0.9946
sub(x, k örper .1 .1 , categ, categ) ∧ pars(x, pferd .1 .1 , categ, proto) 0.9946
sub(x, deckel .1 .1 , categ, categ) ∧ pars(x, topf .1 .1 , categ, proto) 0.9945
sub(x, hilfsmotor .1 .1 , categ, categ) ∧ pars(x, segelschiff .1 .1 , categ, proto) 0.9945
sub(x, antriebshebel .1 .1 , categ, categ) ∧ pars(x,maschine.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,waisenhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,mittelschiff .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,wohngebäude.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, reichstagsgebäude.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,flughafengebäude.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, hauptgebäude.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, kirchenschiff .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,wolkenkratzer .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, nachbarhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, schulhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, sockelbau.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,münster .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, haupthaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, schulgebäude.1 .1 , categ, proto) 0.9945

38

Table 10: Meronymy hypotheses with high con�dence score.

Relation Score
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, fahrerhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,wasserhochbehälter .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, rauchsalon.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, parlamentsgebäude.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,westbau.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, zugfahrzeug .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, kraftfahrzeug .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, bus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, studio.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, torbau.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, priesterhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, landhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, glockenhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, f ührerhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, hochbau.1 .1 , categ, categ) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, zwerchhaus .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, hubschrauber .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,mittelbau.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, oiya-gebäude.1 .1 , categ, categ) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, festsaal .1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, bahnhofsgebäude.1 .1 , categ, categ) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, amtsgebäude.1 .1 , categ, categ) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, reaktorgebäude.1 .1 , categ, proto) 0.9945
sub(x, dach.1 .1 , categ, categ) ∧ pars(x, generatorhaus .1 .1 , categ, categ) 0.9945
sub(x, umschlag .1 .1 , categ, categ) ∧ pars(x, hafen.1 .1 , categ, proto) 0.9944
sub(x, fu.1 .1 , categ, categ) ∧ pars(x, tier .1 .1 , categ, proto) 0.9944
sub(x, etage.1 .1 , categ, categ) ∧ pars(x, gebäude.1 .1 , categ, proto) 0.9944
sub(x, vorderseite.1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9944
sub(x, schauseite.1 .1 , categ, categ) ∧ pars(x, haus .1 .1 , categ, proto) 0.9944
sub(x, titel .1 .1 , categ, categ) ∧ pars(x, novelle.1 .1 , categ, proto) 0.9943
sub(x, regierung .1 .1 , categ, categ) ∧ pars(x,welt .1 .1 , categ, proto) 0.9943
sub(x, fu.1 .1 , categ, categ) ∧ pars(x, patient .1 .1 , categ, proto) 0.9943
sub(x, hand .1 .1 , categ, categ) ∧ pars(x,mensch.1 .1 , categ, proto) 0.9943
sub(x, gesicht .1 .1 , categ, categ) ∧ pars(x,mensch.1 .1 , categ, proto) 0.9943
sub(x, ohr .1 .1 , categ, categ) ∧ pars(x,mensch.1 .1 , categ, proto) 0.9943
sub(x, auge.1 .1 , categ, categ) ∧ pars(x,mensch.1 .1 , categ, proto) 0.9943
sub(x, dach.1 .1 , categ, categ) ∧ pars(x,wagen.1 .1 , categ, proto) 0.9942
sub(x, kopf .1 .1 , categ, categ) ∧ pars(x, tier .1 .1 , categ, proto) 0.9942
sub(x, hornhaut .1 .1 , categ, categ) ∧ pars(x, auge.1 .1 , categ, proto) 0.9942
sub(x, konstruktion.1 .1 , categ, categ) ∧ pars(x,wagen.1 .1 , categ, proto) 0.9942

39

Table 11: Synonymy hypotheses with high con�dence score.

Relation Score
syno(kopfschmerz.1.1, cephalgie.1.1, categ, categ) 0.7107
syno(parallelepiped.1.1, spat.1.1, categ, categ) 0.7107
syno(kopfschmerz.1.1, kephalgie.1.1, categ, categ) 0.7107
syno(kopfschmerz.1.1, kephalalgie.1.1, categ, categ) 0.7107
syno(kopfschmerz.1.1, zephalgie.1.1, categ, categ) 0.7107
syno(kopfschmerz.1.1, cephalaea.1.1, categ, categ) 0.7107
syno(refsum-syndrom.1.1, refsum-thiébaut-krankheit.1.1, categ,
categ)

0.7107

syno(honigmagen.1.1, honigblase.1.1, categ, categ) 0.7107
syno(rhesusinkompatibilität.1.1, rh-inkompatibilität.1.1, categ,
categ)

0.7107

syno(ott-zeichen.1.1, ott-maÿ.1.1, categ, categ) 0.7107
syno(versetzungszeichen.1.1, akzidens.1.1, categ, categ) 0.7107
syno(surrogatmarker.1.1, surrogatparameter.1.1, categ, categ) 0.7107
syno(glucose-6-phosphat.1.1, robisonester.1.1, categ, categ) 0.7107
syno(vierhügelplatte.1.1, lamina.1.1, categ, categ) 0.7107
syno(nierenzellkarzinom.1.1, grawitz-tumor.1.1, categ, categ) 0.7107
syno(hornschwiele.1.1, tylositas.1.1, categ, categ) 0.7107
syno(rhesusinkompatibilität.1.1,rhesusunverträglichkeit.1.1, categ,
categ)

0.7107

syno(verkehrsleistung.1.1, beförderungsleistung.1.1, categ, categ) 0.7107
syno(kreiselkäfer.1.1, breithalskäfer.1.1, categ, categ) 0.7107
syno(honigmagen.1.1, sozialmagen.1.1, categ, categ) 0.7107
syno(verkehrsleistung.1.1, transportleistung.1.1, categ, categ) 0.7107
syno(taiwan_taoyuan_international_airport.0, tty_airport.0,
categ, categ)

0.7107

syno(chiang_kai-shek_international_airport.0, cks_airport.0,
categ, categ)

0.7107

syno(karnaugh-veitch-diagramm.1.1, kv-diagramm.1.1, categ,
categ)

0.7107

syno(propagandistin.1.1, propagator.1.1, categ, categ) 0.7107
syno(schober-zeichen.0, schober'sches_zeichen.0, categ, categ) 0.7107
syno(alpha-1-antitrypsinmangel.1.1, laurell-eriksson-syndrom.1.1,
categ, categ)

0.7107

syno(refsum-syndrom.1.1, heredopathia.1.1, categ, categ) 0.7107
syno(propagandistin.1.1, verkaufsförderer.1.1, categ, categ) 0.7107
syno(parallelepiped.1.1, parallel�ach.2.1, categ, categ) 0.7107
syno(alpha-1-antitrypsinmangel.1.1, proteaseinhibitormangel.1.1,
categ, categ)

0.7107

syno(versetzungszeichen.1.1, akzidentalen.1.1, categ, categ) 0.7107
syno(lapacho.1.1, iperoxo.1.1, categ, categ) 0.7107
syno(la_crosse-enzephalitis.0, crosse_la.0, categ, categ) 0.7107
syno(mbtps1.0, s1p.0, categ, categ) 0.7107
syno(laurent.0, saint_laurent.0, categ, categ) 0.7107

40

Table 11: Synonymy hypotheses with high con�dence score.

Relation Score
syno(zenionidae.1.1, zeniontidae.1.1, categ, categ) 0.7107
syno(parallelepiped.1.1, parallelotop.1.1, categ, categ) 0.7107
syno(erythropoetin.1.1, erythropoietin.1.1, categ, categ) 0.7107
syno(erythropoetin.1.1, epoetin.1.1, categ, categ) 0.7107
syno(zenionidae.1.1, macrurocyttidae.1.1, categ, categ) 0.7107
syno(laurent.0, pinot_saint_laurent.0, categ, categ) 0.7107
syno(�ngerperimetrie.1.1, konfrontationsperimetrie.1.1, categ,
categ)

0.7107

syno(perimetrie.1.1, goldmannperimetrie.1.1, categ, categ) 0.7107
syno(perimetrie.1.1, computerperimetrie.1.1, categ, categ) 0.7107
syno(invagination.1.1, intussuszeption.1.1, categ, categ) 0.7107
syno(nierenzellkarzinom.1.1, hypernephrom.1.1, categ, categ) 0.7107
syno(colitis.1.1, kollagenkolitis.1.1, categ, categ) 0.7107
syno(hornschwiele.1.1, tylosis.1.1, categ, categ) 0.7107
syno(colitis.1.1, kollagencolitis.1.1, categ, categ) 0.7107
syno(perimetrie.1.1, schwellenperimetrie.1.1, categ, categ) 0.7107
syno(ethylenimin.1.1, aziridin.1.1, categ, categ) 0.7106
syno(basaliom.1.1, basalzellkarzinom.1.1, categ, categ) 0.7106
syno(hornschwiele.1.1, tylom.1.1, categ, categ) 0.7106
syno(art.1.1, alpha-fehler.1.1, categ, categ) 0.7105
syno(�lzstift.1.1, �lzschreiber.1.1, categ, categ) 0.7105
syno(verhalten.1.1, verhaltensformung.1.1, categ, categ) 0.7105
syno(�lzstift.1.1, �lzmaler.1.1, categ, categ) 0.7105
syno(�lzstift.1.1, faserschreiber.1.1, categ, categ) 0.7105
syno(�lzstift.1.1, fasermaler.1.1, categ, categ) 0.7105
syno(krankheit.1.1, morbus.1.1, categ, categ) 0.7105
syno(loránd-eötvös-universität_budapest.0, elte.0,categ,categ) 0.7105
syno(amyotrophe_lateralsklerose.0, als.0, categ, categ) 0.7105
syno(sender_policy_framework.0, spf.0, categ, categ) 0.7105
syno(�nancial_reporting.0, icofr.0, categ, categ) 0.7105
syno(Åtvidabergs_�.0, å�.0, categ, categ) 0.7105
syno(unshiu_mikan.0, mikan.0, categ, categ) 0.7105
syno(initial-v.0, dulv.0, categ, categ) 0.7105
syno(hunter's_rank.0, hr.0, categ, categ) 0.7105
syno(bande_dessinée.0, dnap.0, categ, categ) 0.7105
syno(radboud-universität_nimwegen.0, ru.0, categ, categ) 0.7105
syno(sociaal-democratische_arbeiderspartij.0, sdap.0, categ,
categ)

0.7105

syno(azienda_trasporti_milanesi.0, atm.0, categ, categ) 0.7105
syno(koca_mimar_sinan_aga.0, mimar_sinan.0, categ, categ) 0.7105
syno(integrada.0, oilb.0,categ,categ) 0.7105

41

Table 12: Selection of entailments.

Premise Conclusion Score

temp(d, b)∧
subs(d, tod.1.1)∧ aff(d, a)

subs(d, versterben.1.1)∧ temp(d, b)∧
aff(d, a)

0.9081

subs(d, versterben.1.1)∧ temp(d, b)∧
aff(d, a)

temp(d, b)∧
subs(d, tod.1.1)∧ aff(d, a)

0.9081

subs(e, entdecken.1.1)∧ obj(e, b)∧
exp(e, a)

subs(m, entdeckung.1.1)∧
temp(n, present.0)∧ obj(m, b)∧
assoc(n, m)∧ agt(n, a)

0.5567

subs(e, entdeckung.1.1)∧
temp(f, present.0)∧ obj(e, b)∧
assoc(f, e)∧ agt(f, a)

subs(m, entdecken.1.1)∧ obj(m, b)∧
exp(m, a)

0.5567

subs(e, bekräftigen.1.1)∧
temp(e, past.0)∧ obj(e, d)∧
sub(d, forderung.1.1)∧ obj(d, a) ∧
ante(b, e)

semrel(e, d)∧
subs(d, aussprechen.1.4)∧
purp(d, b)∧ agt(d, a)

0.5464

attch(b, e)∧ temp(d, c)∧
subs(d, gewinnen.1.1)∧ exp(d, a)

assoc(e, b)∧
temp(e, past.0)∧ temp(e, c)∧
subs(d, sieg.1.1)∧ scar(e, d)∧
exp(d, a)

0.5464

assoc(e, b)∧
temp(e, past.0)∧ temp(e, c)∧
subs(d, sieg.1.1)∧ scar(e, d)∧
exp(d, a)

attch(b, e)∧ temp(d, c)∧
subs(d, gewinnen.1.1)∧ exp(d, a)

0.5464

subs(d, sterben.1.1)∧ temp(d, b)∧
aff(d, a)

subs(d, versterben.1.1)∧ temp(d, b)∧
aff(d, a)

0.5461

subs(d, versterben.1.1)∧ temp(d, b)∧
aff(d, a)

subs(d, sterben.1.1)∧ temp(d, b)∧
aff(d, a)

0.5461

subs(e, gewinnen.1.1)∧ temp(e, c)∧
attch(b, f)∧ exp(e, a)

temp(m, past.0)∧
subs(n, sieg.1.1)∧ temp(m, c)∧
assoc(m, b)∧ scar(m, n)∧
exp(n, a)

0.5459

temp(e, past.0)∧
subs(f, sieg.1.1)∧ temp(e, c)∧
assoc(e, b)∧ scar(e, f)∧
exp(f, a)

subs(m, gewinnen.1.1)∧ temp(m, c)∧
attch(b, n)∧ exp(m, a)

0.5459

subs(e, entdecken.1.1)∧ obj(e, b)∧
exp(e, a)

temp(m, erst.2.1)∧
subs(m, landen.1.2)∧
temp(m, past.0)∧ *in(n, b)∧
loc(m, n)∧ agt(m, a)

0.5461

42

Table 12: Selection of entailments (ctd.).

Premise Conclusion Score

temp(e, erst.2.1)∧
subs(e, landen.1.2)∧
temp(e, past.0)∧ *in(f, b)∧
loc(e, f)∧ agt(e, a)

subs(m, entdecken.1.1)∧ obj(m, b)∧
exp(m, a)

0.5461

sub(e, forderung.1.1)∧ ante(b, e)∧
obj(d, e)∧
temp(d, present.0)∧
subs(d, pochen.1.1)∧ agt(d, a)

obj(d, b)∧
subs(d, fordern.1.1)∧ agt(d, a)

0.5461

subs(e, entdecken.1.1)∧ obj(e, b)∧
exp(e, a)

subr(m, attch.0)∧
subs(n, entdecken.1.2)∧
temp(o, past.0)∧ arg1(m, p)∧
arg2(m, b)∧ obj(n, b)∧
mcont(o, m)∧ mexp(o, a)

0.5461

semrel(e, d)∧
subs(d, aussprechen.1.4)∧
purp(d, b)∧ agt(d, a)

sub(e, forderung.1.1)∧ ante(b, e)∧
obj(d, e)∧
temp(d, present.0)∧
subs(d, pochen.1.1)∧ agt(d, a)

0.5461

sub(e, forderung.1.1)∧ ante(b, e)∧
obj(d, e)∧
temp(d, present.0)∧
subs(d, pochen.1.1)∧ agt(d, a)

semrel(e, d)∧
subs(d, aussprechen.1.4)∧
purp(d, b)∧ agt(d, a)

0.5461

obj(d, b)∧
subs(d, pochen.1.1)∧ agt(d, a)

subs(e, bekräftigen.1.1)

temp(e, past.0)∧ obj(e, d)∧
sub(d, forderung.1.1)∧ obj(d, a) ∧
ante(b, e)∧

0.5461

subs(e, bekräftigen.1.1)∧
temp(e, past.0)∧ obj(e, d)∧
sub(d, forderung.1.1)∧ obj(d, a) ∧
ante(b, e)

obj(d, b)∧
subs(d, pochen.1.1)∧ agt(d, a)

0.5461

obj(d, b)∧
subs(d, pochen.1.1)∧ agt(d, a)

obj(d, b)∧
subs(d, fordern.1.1)∧ agt(d, a)

0.5461

obj(d, b)∧
subs(d, fordern.1.1)∧ agt(d, a)

obj(d, b)∧
subs(d, pochen.1.1)∧ agt(d, a)

0.5461

obj(e, b)∧
*mods(f, besonders.1.1, fordern.1.1)∧
subs(e, f)∧
sourc(e, d)∧
pred(d, reihe.1.1)∧ attch(a, d)

semrel(e, d)∧
subs(d, aussprechen.1.4)∧
purp(d, b)∧ agt(d, a)

0.5461

obj(d, b)∧
subs(d, pochen.1.1)∧ agt(d, a)

sub(d, forderung.1.1)∧ ante(b, d)∧
obj(d, a)

0.5461

sub(e, er�nder.1.1)∧ arg2(f, g)∧
equ(a, e)∧ obj(h, b)∧
arg1(f, a)∧ agt(h, e)

subs(m, er�nden.1.1)∧ agt(m, b)∧
agt(m, a)

0.1131

subs(e, er�nden.1.1)∧ agt(e, b)∧
agt(e, a)

sub(m, er�nder.1.1)∧ arg2(n, o)∧
equ(a, m)∧ obj(p, b)∧
arg1(n, a)∧ agt(p, m)

0.1131

43

B Program Documentation and Manuals

The SemDupl system consist of three individual detectors, a combination module,
and a GUI. The GUI is the easiest access to the detectors, but hides most of their
details. Therefore, the GUI is mainly intended for the casual user, while for experi-
mentation the single detectors should be called with explicit parameter settings as
described in their manual sections below.

B.1 SemDupl-deep

The deep detector is implemented in the Scheme program semdupl. This program is
contained in the directory semdupl-deep and can be built by calling make. The main
module is semdupl, which needs several other modules as de�ned in semdupl.mod.

SemDupl-deep uses a special key-value store in order to access large collections of
semantic networks e�ciently. The current implementation employs a Tokyo Tyrant
server for this. It must be started (currently on the server named ki205) with the
following script:

start-gnet-servers.205

First, texts must be registered with SemDupl-deep. To register the text poe13,
issue the following command:

semdupl --register poe13 ...

Registration assigns a unique ID consisting of four characters to each text. These
IDs must be used in the following if referring to texts.

If later on, a text with ID Fzzz should be discarded, the following command
su�ces:

semdupl --delete Fzzz ...

This deletes the registration information and removes all representations for the text
with ID Fzzz.

Before a text can be used in the deep detection of duplicates it must be analyzed
by the parser and the coreference resolver. For text Fzzz, the command is:

semdupl --analyze Fzzz ...

To process a long list of texts, the following command is often more convenient:

xargs -a <file-with-text-ids> semdupl --analyze

In addition, some metadata statistics (like number of paragraphs and sentences)
must be collected for SemDupl-deep:

find /cl/sd/net/ -type f | sort |

xargs wocadi-tool -collect-metadata > /cl/registry/db_metadata.tsv

cd /cl/registry/

tchmgr importtsv db_metadata.tch < db_metadata.tsv

To detect duplicates for a given text (e.g. with id Fzzz), the test option is needed:

44

semdupl --test Fzzz

This command accepts several additional options:

�start-sentence <N> : For detection, sentences in the candidate text are only
considered from the Nth sentence onwards. In other words, the �rst N-1
sentences are ignored.

�stop-sentence <N> : The detection stops after the Nth sentence in the can-
didate text. The main purpose for this would be to speed up the detection
because the complexity of SemDupl-deep is linear to the number of sentences
in the candidate text.

�html : Output is written in HTML format instead of plain text format.

�show-sentence : The corresponding sentence pairs between the candidate text
and the duplicate at hand are shown in the output.

To transform the output of SemDupl-deep into a format accepted by the evalu-
ation module, the XML results option (short: -x) is needed, e.g.

semdupl --xml-results semdupl-deep.log > eval.semdupl-deep.xml

B.2 SemDupl-shallow

All options of this program can be set by command line arguments. Since SemDupl-
shallow is usually called with certain attributes which are normally constant, there
is the possibilities to specify default options in a con�guration �le in XML format. If
not speci�ed otherwise the �le CErkenner.properties contains the con�guration.
Listing 1 shows the settings which are given in this �le.

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

<!DOCTYPE properties SYSTEM

"http :// java.sun.com/dtd/properties.dtd">

<properties >

<entry key="tree">data/tree.mod </entry >

<entry key=" stopwords">data/stop.dat </entry >

<entry key=" synonyms">data/synonyme.dat </entry >

<entry key=" interpretation">standard </entry >

<entry key=" corpusdir">corpus </entry >

<entry key=" aspellpath ">/usr/bin/aspell </entry >

<entry key=" output">stdout </entry >

<entry key=" loglevel">warning </entry >

<entry key=" outlevel">duplikat keinduplikat verdacht

</entry >

<entry key="error">stderr </entry >

</properties >

Listing 1: Contents of the �le CErkenner.properties with default values of
SemDupl-shallow.

45

If a setting is speci�ed both in the con�guration �le and in the command line
options, the options given in the command line is used. In this way, it is possible to
override default con�guration entries without changing the con�guration �le.

SemDupl-shallow is a console tool and can be started using either the script
SemDupl-shallow.bat for Windows or SemDupl-shallow for Unix-based operating
systems. The following command line options are de�ned:

-text <filename 1> [<filename 2>...] Space-separated list of �lenames which
should be checked by SemDupl-shallow. If this option is given at the very
beginning, the keyword -text can be omitted. The �lenames must be speci�ed
either absolutely or relatively to the base directory of SemDupl-shallow. The
use of wildcards is also possible

-textdir <directory> Instead of �lenames, a directory can be speci�ed using this
option. All �les are tested which are located inside this directory and end
with the su�x .txt or .jtxt. The directory must be speci�ed absolutely or
relatively to the base directory of SemDupl-shallow.

-textfile <filename> A further alternative to specify the input texts. In this
case, the given �le contains a list of �lenames which should be checked where
each �lename must be given in a separate line.

To specify the comparison texts, the following options are available:

-x The input texts are compared with each other. This means no external corpus
is used.

-corpus <filename 1> [<filename 2>...] Space-separated list of �les, which
are used for comparison. The �les again must be speci�ed absolutely or rela-
tively to the base directory of SemDupl-shallow.

-corpusdir <directory name> All �les located in this directory and end with
the su�x .jtxt are used for comparison. The directory must be speci�ed
absolutely or relatively to the base directory of SemDupl-shallow.

-corpusfile <filename> A further options is the speci�cation of a �le which con-
tains a list of �lenames, each on a separate line. The �lename again must be
speci�ed absolutely or relatively to the base directory of SemDupl-shallow.

If no location of the input �les is speci�ed on the command line, the location which is
given in the XML �le CErkenner.properties is employed. The following optional
options can be used (default parameter values are printed in bold):

-error <filename> oder stderr This option speci�es the destination of the error
stream.

stderr The error stream is written to the console (standard error)

<filename> The error stream is written to the given �le

-interpretation <Option> This option controls the classi�cation if a leaf of the
decision tree is reached and there exist examples for both classes (duplicate /
non-duplicate).

46

standard Standard decision procedure. The class is selected to which the
majority of examples belong to.

poi presumption of innocence The class no duplicate is selected if there exists
at least one example of this class.

doubt The class duplicate is selected if there exists at least one example of
this class.

trivalent Tri-value, i.e., duplicate, suspicion, or no duplicate. The selected
class is duplicate, if the leaf node contains exclusively examples of this
class. Suspicion is selected if there are more examples of class duplicate
than of type no duplicate. In all other cases the class no duplicate is
selected.

-loglevel <loglevel> The option speci�es the debug logging. Possible parameters
are:

off no logging at all

severe only error output

warning

config

fine

finer

finest

all the most detailed output

-output <filename> or stdout This option controls the destination for textual
output

stdout The output is written to the console.

<filename> The output is written to the �le <filename>

-proxy In addition to the classi�cation duplicate, no duplicate or suspicion, the
arithmetic mean of the feature values is displayed. For this, all feature values
have to be determined which causes a higher execution time.

-stopwords <filename> the �le containing a list of stop words. (data/stop.dat).

-synonyms <filename> the �le containing the employed synonyms.
(data/synonyms.dat).

-processors <number> The number of processors used, usually 1, 2, 4 or 0 for all
processors.

-properties <filename> Load the �le <filename> instead of the default �le
CErkenner.properties.

-tree <filename> The decision tree of the system as is created by RapidMiner as
an XML �le with the extension mod. As default, the �le data/tree.mod is
used.

-export <filename> Export the features in XML format to the given �le.

47

Examples for an applications The following guide is for the use of SemDupl-
shallow from Linux. Task: Examine the �le google_000.jtxt against all �les in
the corpus and use two processors.

SemDupl-shallow -text corpus/google_000.jtxt -corpusdir corpus

-processors 2

Task: Check all �les, which can be matched by the pattern google_00?.jtxt, where
the question mark (?) is a wildcard for exactly one arbitrary character, against all
�les in the corpus which can be matched by google_*.jtxt and use all available
processors. The wildcard * matches to a sequence of arbitrary characters of any
length.

SemDupl-shallow -text corpus/google_00?.jtxt

-corpus corpus/google_*.jtxt

Task: Test all �les in the directory corpus against each other, which start with the
pre�x rss.

SemDupl-shallow corpus/rss* -x

B.3 SemDupl-quick

The default values are speci�ed in the �le Flatchecker.properties in XML format.
This �le contains the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<comment>Einstellungen fuer Flatchecker</comment>

<entry key="aspellpath">/usr/bin/aspell</entry>

<entry key="lang">de</entry>

<entry key="encoding">UTF-8</entry>

<entry key="dbpath">semdupl</entry>

<entry key="output">stdout</entry>

<entry key="wortschatzpasswd">anonymous</entry>

<entry key="minsim">0.001</entry>

<entry key="loglevel">warning</entry>

<entry key="dbpasswd">semdupl</entry>

<entry key="dbuser">semdupl</entry>

<entry key="sourcepath">/cl/sd/utf</entry>

<entry key="processors">1</entry>

<entry key="error">stderr</entry>

<entry key="wortschatzuser">anonymous</entry>

<entry key="dbip">132.176.72.201</entry>

<entry key="minfreq">17</entry>

<entry key="maxfreq">MAX</entry>

</properties>

The SemDupl-quick program is called via the Bash script SemDupl-quick with
the following options:

48

-put or -p The contents of the given �les is inserted into the database if not already
contained.

-check or -c Checks the given texts for duplicates

-noput The contents of the given �les is not inserted into the database

-text <filename 1> [<filename 2>...] Space separated list of texts which should
be checked by SemDupl-quick. If this options is speci�ed as very �rst option
then the keyword -text can be omitted. The text must be speci�ed relatively
to SemDupl-quick base directory or absolutely. The use of wildcards (e.g. *
or ?) is also possible.

-textdir <directory> All �les inside this directory are included into the database.
This directory can be speci�ed absolutely or relatively of the SemDupl-quick
base directory.

-textfile <filename> A text �le is speci�ed which contains a list of �lenames,
each on a separate line. All these �les are included into the database.

-R If this option is speci�ed, a given directory is searched for �les recursively.

-loglevel <loglevel> This option speci�es the logging level for debug and error
output. The options for this output are:

off no logging output at all

severe

warning

info

config

fine

finer

finest

all most detailed output

-aspellpath <Path> to the executable of GNU Aspell.

-lang <mnemonic> mnemonic for the language for GNU Aspell (de for German)

-encoding <Encoding> The encoding used by GNU Aspell (ISO-8859-1 for latin1
or utf8 for UTF-8)

-dbpath <database name> Name of the database

-dbip <IP> IP address of the database server

-dbpasswd <Password> Password for the database server

-wortschatzpasswd <Password> Password for the database server for the Leipzig
Wortschatz system.

49

-sourcepath <path> Optional parameter of the source path for the speci�ed �les.
In this way, there is no need to state the path of each �le separately.

-processors <numbers> The number of the processors, usually 1, 2, 4, or 0 for all
processors.

-error <filename> or stderr Controls the error output of the program.

stderr Write all output to the console (stderr stream).

<filename> Errors are written into the �le with name <filename>

-maxfreq <Integer> or MAX , frequence which is assumed if wortschatz.uni-leipzig.
de returns no result for the query for the frequency class of a word. Use the
keyword MAX for the greatest possible integer number (Integer.MAX).

B.4 Combiner

This section describes how duplicate features from the individual classi�ers SemDupl-
deep SemDupl-quick and SemDupl-shallow can be combined to a decision duplicate
or no duplicate. To create such classi�cation values for previously unseen data do
the following:

• Run SemDupl-quick, SemDupl-deep and SemDupl-shallow on this data and
copy the �les, as created by these classi�ers, to the locations expected by
svm.classify.sh which are

� /home_pc/gesamt/semdupl/input_data/semdupl-deep.xml for SemDupl-
deep

� /home_pc/gesamt/semdupl/input_data/semdupl-quick.xml for SemDupl-
quick

� /home_pc/gesamt/semdupl/input_data/semdupl-shallow.xml for SemDupl-
shallow

• Switch to the directory /home_pc/gesamt/semdupl/Combiner/scripts

• Type: ./svm_classify.sh

B.5 Knowledge Acquisition

B.5.1 Hyponyms, Meronyms and Synonyms

The knowledge acquisition process of semantic and lexical relations is done in the
following steps:

• Learning deep and shallow patterns

• Applying deep and shallow patterns to extract relations hypotheses

• Filtering hypotheses

• Determining features

• Assigning a quality score to the hypotheses

50

wortschatz.uni-leipzig.de
wortschatz.uni-leipzig.de
Integer.MAX

Learning deep and shallow patterns Shallow patterns can be learned using
the relation extraction system developed by Duman (2008) which is not described
in this paper.

In order to extract deep patterns, �rst a set of semantic networks containing a
known hyponymy/meronymy or synonymy relation have to be collected.

Switch to the directory trunk/src/pattern_extraction/tools and enter
./example_searcher.out -d <dir> -m <int> -n <string> -r <rel>

-s <start-index> -y <hyperrel>

where the parameters have the following meaning

-d directory where the SNs reside (omitting the directory net, key in con�guration
�le: directory)

-m maximum number of �les used for learning

-n negative-examples: �le to store the negative examples where no meronym or
hyponym shows up

-p output directory

-r relation-list �le which contain a list of relations (hyponyms/meronyms)

-s start-index: numerical index where to start

-y hyperrelation: sub0 or mero (syno not yet supported)

Afterwards the pattern can be learned. For that switch to the directory
src/pattern_extraction/deep and type
./mdl_pattern_extractor.out -c <string> -d <dir> -m <num> -p <string>

-o <string>

The parameters have the following meaning:

-c either mdl (minimum description length) or kernel. Recommendation: use the
minimum description principle for learning

-d directory where the SNs reside

-m number of �le use for learning

-o �le where to store the patterns to

-p directory where the positive examples reside as determined by
example_searcher.out

Application of Deep Patterns Deep patterns have to be de�ned in FOIL (First
Order Inductive Learner) input format. An example line is:

sub0(A,B) :- sub(C,A), f_itms(D,C), pred(E,B), f_itms(D,E),

h_itms(C,E), prop(E,ander#1#1), refer(E,det) ;0.1;0.1;

undandere_neighbor_sub

The period (.) has a special meaning in FOIL and is therefore replaced by a �#�. The
Conclusion is given by sub0(A,B), �:-� is the inference operator (←). The premise

51

is given by a comma-separated list which is interpreted as logical conjunction. The
predicate f is used for functions with variable number of arguments like *itms. It
make it easier to de�ne patterns where such function appear in. f_x(C0,C1) means
that C1 appears as parameter for function x and the result is C0. The predicate
g_x(C0,C1) is used to specify that C0 precedes C1 in the argument list of function
x. The predicate h_x(C0,C1) speci�es that argument C0 immediately precedes C1
in the argument list of function x.

The two numbers (here 0.1) are currently not used. The last argument is the
name of the pattern. Patterns can be commented out by a preceding �//�.

All extracted relation hypotheses are stored in a database. This database can
be created by:
cd acquire/trunk/src/pattern_application/tools

./database_table_creator_mysql.out.out -b <database_name>

Afterwards the database can be �lled with extracted hyponymy hypotheses by:
cd acquire/trunk/src/pattern_application/deep

./pattern_applier.out -d <directory> -p <patternfile> [-e]

-b <database_name> -u <user_name> -q <password>

where the parameters have the following meaning:

-d <directory>where the semantic network reside (key in con�guration �le: di-
rectory)

-b <database name>(key in con�guration �le: db_name)

-q <database password>(key in con�guration �le: db_password)

-u <database username>(key in con�guration �le: db_username)

-e exclude hyponyms with compounds (e.g. Graubär is a Bär)

-i <history �lename>(key in con�guration �le: history_deep_hyponyms)

Similarly, meronyms meronyms can be extracted by:
cd acquire/trunk/src/pattern_application/deep

./meronym_pattern_applier.out -d <directory> -p <patternfile>

-b <database_name> -u <user_name> -q <password>

The parameters are mostly identical to those of ./pattern_applier.out.
Synonyms can be extracted by:

cd acquire/trunk/src/pattern_application/deep

./synonym_pattern_applier.out -d <directory> -p <patternfile>

-b <database_name> -u <user_name> -q <password>

Application of Shallow Patterns Besides the usage of deep patterns there is
also the possibility to apply shallow patterns. Shallow patterns are applied on the
contents of the analysis-ml tag (token list) of WOCADI. The format of a pattern is:
(conclusion premise num1 num2 name).
The parameters num1 and num2 are currently not used. An example entry is:
(((syno a b)) (a ((word �respektive�)) b) 0.5 0.5 �shallow_respektiv�)

The variables a and b are matched with concepts of type object. The token entries
(e.g. ((word "respektive")) are tried to be uni�ed with the token list provided

52

by the parser. The character �?� is used to specify an optional element, e.g.
? ((cat (adj))).

The wildcard �*� is used to specify zero or more occurrences of one expression,
like: * (((word ",")) b). The variables a and b are allowed to appear several
times in a token list. In this case the Cartesian product of the bound constants is
created as the set of extracted relations. d is used to specify a disjunction, e.g.
(d ((((word �und�))) (((word �oder�))))).
The shallow hyponym pattern applier can be called in the following way:
cd trunk/src/pattern_application/shallow

./shallow_pattern_applier.out -d <directory> -p <patternfile>

-b <database_name> -u <user_name> -q <password>

Shallow meronym patterns can be applied by:
cd trunk/src/pattern_application/shallow

./shallow_meronym_applier.out -d <directory> -p <patternfile>

-b <database_name> -u <user_name> -q <password>

Synonym patterns can be applied by:
cd trunk/src/pattern_application/shallow

./shallow_synonym_applier.out -d <directory> -p <patternfile>

-b <database_name> -u <user_name> -q <password>

Feature Calculation First the features have to be calculated. The dataset is
divided into training and evaluation partitions:
Type: cd acquire_repos_scheme/trunk/src/feature_combination/tools

and
eval_training_set_divider.out -b <database_name> -u <user_name>

-q <password> -f <factor>

where <factor>is the relative amount of training data (e.g. 0.7=7 parts training
data, 3 parts evaluation data) Afterwards, calculate the features in the following
way:
First type: cd acquire_repos_scheme/trunk/src/feature_combination/

Make sure that the history �le is removed:
rm feature_calculation.hist Then start the feature calculation process:
./feature_calculator.out -b <directory> -p <patternfile>

-b <database_name> -u <user_name> -q <password> -F
The current progress is always written to the �le feature_calculation.hist. Thus,
if the program crashes, the feature calculation process can be continued just by
restarting the feature calculator as described above.

Score Calculation Finally, the score must be calculated. First, a certain subset
of the entire annotated data is selected. To do this, switch to the directory
acquire_repos_scheme/trunk/src/feature_combination/tools.
Type: ./combination_training_set_creator.out -e <num_examples_pattern>

-m <num_examples>-r <hyper-relation> -i <inital_set> [-I]

-o <output_filename> -d <directory> -p <patternfile>

53

-b <database_name> -u <user_name> -q <password>

The parameters have the following meaning:

-e num_examples_pattern speci�es the number of examples for hyponymy /
meronymy / synonymy hypotheses per pattern

-m num_example total number of patterns

-r generalized relation name of the generalized relation, can be sub0, mero, syno.

-i initial_set this option can be used to enlarge an existing training set

-I This option is used to specify that the number of positive and negative exam-
ples need not to coincide

-o Output �le su�x containing the selected training data. The �les:
<output_�lename_<hyper-relation>.scm and <output_�lename>_<hyper-
relation>.svm will be created

Next step is to learn a model. For that the toolkit LIBSVM is employed. Switch to
the directory app_data and type:

./svmtrain.sh <generalized_relation> <output_filename>

The created model can then be used to create the probability estimates which
are provided by LIBSVM and serve as con�dence score in SemQuire. To do this,
switch to the directory: src/feature_combination and type:

./score_calculator -l <learning_method> -r <hyper-relation>

-s <svm_model> -w <feature_list> -b <database_name>

-u <user_name> -n <host_name> -q <password>

where the meaning of the parameters is de�ned as follows:

-l learning_method: Allowed values are

0 for a con�dence score determined by a linear combination usually be
determined by ordinary least square (OLS) regression (parameter values
are contained in the feature list)

1 for a con�dence score determined by a support vector machine classi�er
(as described above)

2 for a con�dence score determined by a support vector machine employing
a graph kernel function (computation-intensive)

• svm_model svm model �le, only needed for learning method number 1 (svm)

• database_name, user_home, host_name, password: database parameters

There is also the possibility to do all steps (pattern application / training set selec-
tion / score computation) in one. To do this switch to the directory
src/feature_combination/tools and type:

./extract_all.out -b <database_name> -u <user_name> -q <password>

-n <hostname> where

54

-b,u,q,n database parameters
-T directory containing the results
-r name of the extracted generalized relation (sub0, mero or syno)

Similarly, evaluation output can be generated automatically for a given training set
where all steps are done automatically which includes:
• Automatic feature selection
• Evaluation results with ordinary features
• Evaluation results with string and graph kernel
• Evaluation results with additional grid search
• Sign�cance scores for graph / string kernel based evaluation in comparison
with only feature-based validation

To do this, switch to the directory:
src/feature_combination/tools and type:

./learn_all.out -b <database_name> -u <user_name> -q <password>

-n <hostname>

where
-b,u,q,n database parameters
-T directory containing the results
-r name of the extracted generalized relation (sub0, mero or syno)

The validation with ontological sorts and semantic features is done automatically,
i.e., the sort/features of all hypotheses in the database are consistent. However,
it may be the case that a collection of relations should be veri�ed regarding sorts
and features which were not extracted by our proposed pattern matching approach.
For instance, we currently try to map Cyc relations to MultiNet. Furthermore, the
lexicon is continuously extended which means that a sort/feature consistency check
which can not be done in the moment could be possible in the future. Therefore,
the possibility is included to check the hypotheses in the database for sort/feature
consistency. The check is done as follows:
Switch to the directory src/feature_combination/tools and type:

./database_checker.out -b <database_name> -u <user_name>

-q <password> -w <weka buffer output> -f <weka-features>

The parameters have the following meaning:
-b,u,q,n database parameters
-w weka bu�er output which describes the network structure of the tree aug-

mented naïve Bayes algorithm
-f feature �le in ar� format

The annotations can be exported by the tool backup_annotations.out and re-
stored with the tool restore_annotations.out. The advantage of this tools is
that annotations from one database can be used for another, e.g. the annota-
tions for an older Wikipedia can be used for a newer one. The parameters of
backup_annotations.out are de�ned as follows:
-b,u,q,n database parameters

-r name of the generalized relation name (either mero, sub0, or pars)
-o name of the backup �le

The parameters of restore_annotations.out are given below:

55

-b,u,q,n database parameters
-r name of the generalized relation name (either mero, sub0, or pars)
-i name of the annotation �le

The database entries can for example be exported by the tool data_exporter.out
in the following way:
./database_exporter -b <kb> -g mero.net -r mero exports all meronym hy-
potheses of the database `kb' which were annotated as correct to the �le mero.net.
./database_exporter -b <kb> -s mero.net -r mero -l 1000 exports the 1000
meronym hypotheses with the highest score to the �le mero.net.

Logical Validation of the Knowledge Base The knowledge base can be vali-
dated employing an automated theorem prover. To do this, install the automated
theorem prover Ekr-hyper (Baumgartner et al., 2007) and switch to the directory
src/logval and type

./log_validator.out -s <sub0> -m <mero> -k <kb1,...,kbn>

-b <database_name> -u <user_name> -n <host_name> -q <password>

where the parameters are de�ned as follows:
-b,u,q,n database parameters
-m name of the meronymy database
-s name of the hyponymy database
-k comma-separated list of validated knowledge bases

Hypotheses found as inconsistent are marked by the theorem prover in the database
column LOGVAL.

B.5.2 Entailments

This tutorial describes the extraction of entailments employing a web search query.
First step is to create the con�guration �le with the search tuples. An example �le
is given below:

(

(

(surface ("Mozart" "5. Dezember 1791"))

(deep (

((attr A B) (sub B "nachname.1.1") (val B "mozart.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1791)

(attr A D) (sub D "monat.1.1") (val D E) (card E 12)

(attr A F) (sub F "tag.1.1") (val F G) (card G 5)))))

(

(surface ("Mozart" "27. Januar 1756"))

(deep (

((attr A B) (sub B "nachname.1.1") (val B "mozart.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1756)

(attr A D) (sub D "monat.1.1") (val D E) (card E 1)

(attr A F) (sub F "tag.1.1") (val F G) (card G 27)))))

(

(surface ("Bundesbank" "Leitzins"))

(deep (

56

((sub A "bundesbank.1.1"))

((sub A "leitzins.1.1"))

)))

(

(surface ("Columbus" "Amerika"))

(deep (

((attr A B) (sub B "nachname.1.1") (val B "columbus.0"))

((attr A B) (val B "amerika.0"))))

)

(

(surface ("Edison" "Glühbirne"))

(deep (

((attr A B) (sub B "nachname.1.1") (val B "edison.0"))

((sub A "glühbirne.1.1")))

))

(

(surface ("Zuse" "Computer"))

(deep (((attr A B) (sub B "nachname.1.1") (val B "zuse.0"))

((sub A "computer.1.1")))

))

(

(surface ("Becker" "Wimbledon" "1985"))

(deep

(((attr A B) (sub B "nachname.1.1") (val B "becker.0"))

((attr A B) (sub B "name.1.1") (val B "wimbledon.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1985))

)

))

(

(surface ("Deutschland" "Demokratie"))

(deep

(

((attr A B) (sub B "name.1.1") (val B "deutschland.0"))

((attr A B) (sub B "demokratie.1.1"))

))

)

(

(surface ("CDU" "Christlich Demokratische Union"))

(deep

(((attr A B) (sub B "name.1.1") (val B "cdu.0"))

((*modp B "christlich.1.1" "demokratisch.1.1" categ situa)

(prop A B) (prob A "union.1.1"))

))

)

(

(surface ("Berlin" "Hauptstadt" "Deutschland"))

(deep

57

(((attr A B) (sub B "name.1.1") (val B "berlin.0"))

((sub A "hauptstadt.1.1"))

((attr A B) (sub B "name.1.1") (val B "deutschland.0"))

))

)

(

(surface ("Deutschland" "Polen" "1939"))

(deep

(((attr A B) (sub B "name.1.1") (val B "deutschland.0"))

((attr A B) (sub B "name.1.1") (val B "polen.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1939)))

)

)

(

(surface ("DDR" "Warschauer Pakt" "1990"))

(deep

(((attr A B) (sub B "name.1.1") (val B "ddr.0"))

((attr A B) (sub B "name.1.1") (val B "warschauer_pakt.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1990)))

)

)

(

(surface ("Mauer" "Berlin" "1961"))

(deep

(((sub A "mauer.1.1"))

((attr A B) (sub B "name.1.1") (val B "berlin.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1961))

))

)

(

(surface ("Deutschland" "Argentinien" "1990"))

(deep

(((attr A B) (sub B "name.1.1") (val B "deutschland.0"))

((attr A B) (sub B "name.1.1") (val B "argentinien.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1990))

))

)

(

(surface ("Deutschland" "Niederlande" "1974"))

(deep

(((attr A B) (sub B "name.1.1") (val B "deutschland.0"))

((attr A B) (sub B "name.1.1") (val B "niederlande.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1990))

))

)

(

(surface ("Deutschland" "Italien" "1982"))

(deep

58

(((attr A B) (sub B "name.1.1") (val B "deutschland.0"))

((attr A B) (sub B "name.1.1") (val B "italien.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1982))

))

)

(

(surface ("Deutschland" "Argentinien" "1986"))

(deep

(((attr A B) (sub B "name.1.1") (val B "deutschland.0"))

((attr A B) (sub B "name.1.1") (val B "argentinien.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1986))

))

)

(

(surface ("Becker" "Stich" "1991"))

(deep

(((attr A B) (sub B "nachname.1.1") (val B "becker.0"))

((attr A B) (sub B "nachname.1.1") (val B "stich.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1991))

)

))

(

(surface ("Becker" "Edberg" "1990"))

(deep

(((attr A B) (sub B "nachname.1.1") (val B "becker.0"))

((attr A B) (sub B "nachname.1.1") (val B "edberg.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1990))

)

))

(

(surface ("Bayern München" "Manchester United" "1999"))

(deep

(

((attr A B) (sub B "name.1.1") (val B "bayern_münchen.0"))

((attr A B) (sub B "name.1.1") (val B "manchester_united.0"))

((attr A B) (sub B "jahr.1.1") (val B C) (card C 1999))

)

)

)

...

)

Each entry consists of a deep representation and an equivalent shallow one. Af-
terwards, web sites which contain the surface representation are searched with the
search_engine_learner which is done as follows. Type

cd src/entailments

./search_engine_learner.out -d <entailments_dir>

This command creates a subdirectory for each search tuple and creates search engine

59

queries containing the surface texts. The found web sites in PDF or HTML format
are stored in these directories. In the next step, the ASCII text is extracted from
these web sites employing a self-written HTML to text converter and for PDF �les
the tool pdftotext. To do this type:

./ascii_converter.out -d <entailments_dir> Afterwards, the texts are seg-
mented into single sentences where only the sentences are stored which contain
all of the surface words. This is done with
./sentence_segmenter.out -d <entailments_dir>. This command creates �les
called sentences.scm in each subdirectory. In the next step these sentences need
to be analyzed using WOCADI with
./wocadi_applier.out -d <entailments_dir>. This commands results in the
creation of WOCADI .net-�les for each input �le in every subdirectory.

To replace the concepts in the semantic networks matching to an entry in the
search tuples by the anchor variables, type:
./variable_replacer.out -d <entailments_dir>. Modi�ed semantic networks
are written in each subdirectories in �les with the su�x _var.net.

Frequently occurring subnetworks (patterns) are learned from those modi�ed se-
mantic networks by typing ./search_engine_learner.out -d <entailments_dir>

The patterns are stored in the �le patterns.scm in each subdirectory.
In the last step the entailments are created by the Cartesian product of those

patterns excluding the trivial entailments where a pattern entails itself. The entail-
ments are then stored in the database. This process is executed by:
/se_entailments_storer.out -d <entailments_dir> -b <database_name>

-u <user_name> -n <host_name> -q <password>

The parameters are the directory containing the entailments and search engine re-
sults and the database parameters where the entailments should be written to.

B.6 The GUI

The GUI (graphical user interface) provides a convenient access to the SemDupl
prototype and its component detectors. It is written in Hop (http://hop.inria.
fr/), a modern, portable, very concise Web 2.0 language, Hop is based on the
functional programming language Scheme.

The screenshot in Figure 13 shows the main control elements. They are explained
in the following.

SemDupl is a software system that �nds duplicates for a given text (the candidate
text) similar texts (semantic duplicates) in an existing text collection. Each text
has a unique name (ID) of 4 letters or digits. In the standard text collection, these
IDs come from the range Fz00 to Fzzz. The GUI shows a menu on the left hand
side. All menu items are grouped in 3 groups, which are described in the following
sections.

B.6.1 Text Collection Maintenance

There are two menu items for adding texts to the text collection: one for uploading
a single text, one for uploading several texts.Furthermore, texts can be removed
from the text collection.And �nally, a keyword-based search allows to explore the

60

http://hop.inria.fr/
http://hop.inria.fr/

Figure 13: Screenshot of the GUI for SemDupl.

61

contents of the text collection. This is useful for human users in order to come up
with ideas for possible duplicates.

B.6.2 Text Collection Analysis

After uploading a text, it must be analyzed so that the di�erent duplicate detectors
have access to the required input data.Two menu items are available for starting the
analysis: the �rst one starts the analysis for the last uploaded text, the second one
starts the analysis for all uploaded texts that have been analyzed before.

B.6.3 Text Duplicate Search

Finally, one can search for a text from the text collection all duplicates in the text
collection. For this aim, four di�erent methods are available: the deep one, the
shallow one, the quick one, and the combined one.

B.7 Class Diagram SemDupl-shallow

Toolbox

creates

compares
Comparator

calls

uses

uses

Text

CErkenner

Laut

uses

Figure 14: Class diagram of SemDupl-shallow.

SemDupl-shallow is implemented in Java and therefore follows an object oriented
design. The class structure of SemDupl-shallow is given in Figure 14.

B.7.1 Class Text

The class Text is used for the internal representation of the texts which are to be
checked. All texts are represented by an instance of this class.

62

Fields This class contains �elds which are necessary for the comparison of two
texts which are:

• The original text, the text after the removal of punctuation marks, the text
after removal of stop words, and the text containing the word lemmas

• The entire list of words appearing in a text, the list of words after the removal
of stop words, and after stemming

• The set of synonyms and the set of synonyms after stop word removal including
the word itself

• The average word and sentence length of a text as a �oating point number

• The average word and sentence lengths of each paragraph as list of �oating
point numbers

• The maximum deviation of the average word and sentence length in the para-
graphs from the average

• The MD5 sum of a text as list of bytes

• 1-skip-2-grams over the entire text as list of strings

Methods Text contains mainly getter-methods, which means methods which re-
turn the values of the �elds of the objects. In order to return the n-grams, the four
methods getGramm(int, int), getGrammStop(int, int), getGrammStemmed(int,
int) und getGrammStemmedStop(int, int) were implemented. These methods
should be called with the skip width and the length of the queried n-grams. Is
the queried n-gram contained in the list of the stored n-grams than this n-gram is
returns. Otherwise it has to be calculated, stored in the text object and returned
afterwards. Further methods are load and save for loading and saving the text with
the extension .jtxt by employing the Java serialization.

The class text employs for the calculation of its stored information static methods
of the class Toolbox.

B.7.2 Class Toolbox

The class Toolbox contains static methods which are required for the creation of
Text objects. This class also contains the stop word and synonym list which only
have to be kept in the memory once. It also makes use of the snowball-library which
provides methods for stemming.

The class Toolbox contains only three class variables which are

• STEMMER An object instance of the class snowball

• STOP The stop word list

• SYNONYME A hash table which maps a word to its synonyms

The following methods are provided by this class

• calcMD5 Determines the MD5 sum of a text

63

• getSynonyme Determines the synonyms of a word or word set.

• rechtschreibPruefung Checks the given text by means of the program as-

pell.

• satzzeichenEntferner Removes the punctuation marks in the given text.

• stem Does a stemming for the given word by means of the porter-stemmer-
algorithm.

• stopwortEntferner Removes all stop-words from the given text.

• textStemmer Does a stemming for all words in a given text.

• woerterProSatz Determines the number of words per sentence of the given
text.

• wortmenge Determines the word set of the given text.

• zeichenProWort Determines the average word length in the sentences of the
given paragraph.

B.7.3 Class Comparer

This class contains the methods which are required for the comparison of two texts.
There is one method for each feature implemented in SemDupl-shallow.

B.7.4 Class LAUT

LAUT is a global enumeration type and contains all possible onsets of the German
language according to Brügge and Mohs (2003) with the value range {A, Ä, B, BL,
BR, CH, D, DR, DSCH, E, F, FL, FR, G, GL, GN, GR, H, I, J, K, KL, KN, KR,
KW, L, M, N, O, Ö, P, PFL, PFR, PL, PR, PS, R, S, SCH, SK, SKL, SL, SW, SZ,
T, TR, TSCH, U, Ü, W, WR, X, Z, ZW}.

B.7.5 Class CErkenner

The class CErkenner combines the individual classes described so far. This class is
the interface to the entire CErkenner duplicate recognition system and can be called
from the command line.

This class consists several �elds and methods for the interaction with the classes
described above. Among others, it contains the main routine main which is used to
start the SemDupl-shallow and specify the desired options.

Acknowledgment

This research was funded in part by the DFG project Semantische Duplikatserken-
nung mithilfe von Textual Entailment (HE 2847/11-1). Furthermore, we want to
thank all members of our group who supported us in this work, especially Ingo
Glöckner and Christoph Doppelbauer.

64

References

Balaguer, Enrique Vallés (2009). Putting ourselves in SME's shoes: Automatic
detection of plagiarism by the WCopyFind tool. In Proceedings of PAN Workshop
and Competition. Valencia, Spain.

Baumgartner, Peter; Ulrich Furbach; and Björn Pelzer (2007). Hyper tableaux with
equality. In Automated Deduction � CADE-21, volume 4603 of LNCS, pp. 492�
507. Heidelberg, Germany: Springer.

Brügge, Walburga and Katharina Mohs (2003). Therapie der Sprachentwick-
lungsverzögerung. Munich, Germany: Ernst Reinhardt, second edition.

Chang, Chih-Chung and Chih-Jen Lin (2001). LIBSVM: a library for support vector
machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cimiano, Philip; Aleksander Pivk; Lars Schmidt-Thieme; and Ste�en Staab (2005).
Learning taxonomic relations from heterogeneous sources of evidence. In Ontol-
ogy Learning from text: Methods, evaluation and applications (edited by Buite-
laar, Paul; Philipp Cimiano; and Bernardo Magnini), pp. 59�73. Amsterdam, The
Netherlands: IOS Press.

Cook, Diane J. and Lawrence B. Holder (1994). Substructure discovery using mini-
mum description length and background knowledge. Journal of Arti�cial Intelli-
gence Research, 1:231�255.

Danninger, Christian (2009). Werkzeug zur Validierung automatisch generierten
Wissens. Master's thesis, FernUniversit"at in Hagen, Hagen, Germany.

de Marne�e, Marie-Catherine and Christopher D. Manning (2008). Stanford
Typed Dependencies Manual. Online at: http://nlp.stanford.edu/software/
dependencies_manual.pdf.

Duman, Yilmaz (2008). Automatische Extraktion von semantischen Relationen aus
gro�sen Textkorpora. Diplomarbeit, FernUniversität in Hagen, Hagen, Germany.

Eichhorn, Christian (2009). Automatische Erkennung von Duplikaten in Textbestän-
den mithilfe �acher Verfahren. Diplomarbeit, Technische Universität Dortmund,
Dortmund, Germany.

EL-Manzalawy, Yasser and Vasant Honavar (2005). WLSVM: Integrating LibSVM
into Weka Environment. Software available at http://www.cs.iastate.edu/

~yasser/wlsvm.

Hamp, Birgit and Helmut Feldweg (1997). Germanet - a lexical-semantic net for
german. In Proceedings of the ACL workshop Automatic Information Extraction
and Building of Lexical Semantic Resources for NLP Applications. Madrid, Spain.

Hartrumpf, Sven (2003). Hybrid Disambiguation in Natural Language Analysis.
Osnabrück, Germany: Der Andere Verlag.

65

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://www.cs.iastate.edu/~yasser/wlsvm
http://www.cs.iastate.edu/~yasser/wlsvm

Hartrumpf, Sven; Hermann Helbig; and Rainer Osswald (2003). The semantically
based computer lexicon HaGenLex � Structure and technological environment.
Traitement Automatique des Langues, 44(2):81�105.

Hartrumpf, Sven; Tim vor der Brück; and Christian Eichhorn (2010a). Detecting
duplicates with shallow and parser-based methods. In Proceedings of the 6th
IEEE International Conference on Natural Language Processing and Knowledge
Engineering (NLPKE). Peking, China.

Hartrumpf, Sven; Tim vor der Brück; and Christian Eichhorn (2010b). Semantic
duplicate identi�cation with parsing and machine learning. In Proceedings of
the 13th International Conference on Text, Speech and Dialogue (TSD), volume
6231 of Lecture Notes in Arti�cial Intelligence, pp. 84�92. Brno, Czech Republic:
Springer.

Hearst, Marti A. (1992). Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the 14th International Conference on Computational Linguistics
(COLING 92), pp. 539�545. Nantes, France.

Helbig, Hermann (2006). Knowledge Representation and the Semantics of Natural
Language. Heidelberg, Germany: Springer.

Lin, Dekang and Patrick Pantel (2001). Dirt - discovery of inference rules from text.
In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining
(KDD), pp. 323�328. San Francisco, California.

Mierswa, Ingo; Michael Wurst; Ralf Klinkenberg; Martin Scholz; and Timm Euler
(2006). Yale: Rapid prototyping for complex data mining tasks. In Proceedings
of the 12th ACM SIGKDD international conference on knowledge discovery and
data mining (edited by Ungar, Lyle; Mark Craven; Dimitrios Gunopulos; and
Tina Eliassi-Rad), pp. 935�940. Philadelphia, Pennsylvania: ACM.

Petersohn, Helge (2005). Data Mining: Verfahren, Prozesse, Anwendungsarchitek-
tur. Munich, Germany: Oldenbourg.

Porter, Martin F. (1997). An algorithm for su�x stripping. In Readings in In-
formation Retrieval, pp. 313�316. San Francisco, California: Morgan Kaufmann
Publishers.

Quinlan, John R. (1986). Induction of decision trees. Machine Learning, 1:81�106.

Ravichandran, Deepak and Eduard Hovy (2002). Learning surface text patterns
for a question answering system. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 41�47. Philadelphia,
Pennsylvania.

Rivest, Ronald L. (1992). The md5 message-digest algorithm. URL http://tools.

ietf.org/html/rfc1321, online; 26. Februar 2009.

Szpektor, Idan; Ido Dagan; and Bonaventura Coppola (2004). Scaling web-based
acquisition of entailment relations. In Proceedings of the Conference on Empirical
Methods on Natural Language Processing (EMNLP). Prague, Czech Republic.

66

http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321

Tim vor der Brück, Hermann Helbig (2010). Validating meronymy hypotheses with
support vector machines and graph kernels. In Proceedings of the 9th Interna-
tional Conference on Machine Learning and Applications (ICMLA), pp. 243�250.
Washington, District of Columbia.

vor der Brück, Tim (2009). Hypernymy extraction based on shallow and deep pat-
terns. In From Form To Meaning: Processing Texts Automatically, Proc. of the Bi-
ennial GSCL Conference 2009 (edited by Chiarcos, Christian and Richard Eckart
de Castilho), pp. 41�52. Potsdam, Germany.

vor der Brück, Tim (2010a). Hypernymy extraction using a semantic network rep-
resentation. International Journal of Computational Linguistics and Applications
(IJCLA), 1(1).

vor der Brück, Tim (2010b). Learning deep semantic patterns for hypernymy extrac-
tion following the minimum description. In Proceedings of the 29th International
Conference on Lexis and Grammar (LGC), pp. 39�49. Belgrade, Serbia.

vor der Brück, Tim (2010c). Learning semantic network patterns for hypernymy ex-
traction. In Proceedings of the 6th Workshop on Ontologies and Lexical Resources
(OntoLex), pp. 38�47. Peking, China.

vor der Brück, Tim (2011). Synonymy extraction using a semantic network repre-
sentation. Submission planned.

vor der Brück, Tim and Hermann Helbig (2010). Retrieving meronyms from texts
using an automated theorem prover. Journal for Language Technology and Com-
putational Linguistics. Accepted.

vor der Brück, Tim and Holger Stenzhorn (2010). Logical ontology validation using
an automatic theorem prover. In Proceedings of the 19th European Conference on
Arti�cial Intelligence (ECAI), pp. 491�496. Lisbon, Portugal.

Weber-Wul�, Debora (2002). Der gro�se Online-Schwindel. Spiegel Online.
URL http://www.spiegel.de/unispiegel/studium/0,1518,221507,00.html,
online; 2008-10-15.

Weber-Wul�, Debora (2009). Softwaretest 2008. URL http://plagiat.

fhtw-berlin.de/software, online at http://plagiat.fhtw-berlin.de/

software.

Zauner, Michael (2009). Lernverfahren für Inferenzregeln und Paraphrasierungen
im Bereich deutscher Verben. Diplomarbeit, FernUniversität in Hagen, Hagen,
Germany.

67

http://www.spiegel.de/unispiegel/studium/0,1518,221507,00.html
http://plagiat.fhtw-berlin.de/software
http://plagiat.fhtw-berlin.de/software
http://plagiat.fhtw-berlin.de/software
http://plagiat.fhtw-berlin.de/software

Verzeichnis der zuletzt erschienenen Informatik-Berichte

 [342] Hönig, C. U.:
Optimales Task-Graph-Scheduling für homogene und heterogene Zielsysteme

[343] Güting, R. H.:
Operator-Based Query Progress Estimation

[344] Behr, T., Güting, R. H.:
User Defined Topological Predicates in Database Systems

[345] vor der Brück, T.; Helbig, H.; Leveling, J.:
The Readability Checker Delite Technical Report

[346] vor der Brück, T.:
Application of Machine Learning Algorithms for Automatic Knowledge Acquisition
and Readability Analysis Technical Report

[347] Fechner, B.:
Dynamische Fehlererkennungs- und –behebungsmechanismen für verlässliche
Mikroprozessoren

[348] Brattka, V., Dillhage, R., Grubba, T., Klutsch, A.:
 CCA 2008 - Fifth International Conference on Computability and Complexity in
 Analysis
[349] Osterloh, A.:
 A Lower Bound for Oblivious Dimensional Routing
[350] Osterloh, A., Keller, J.:
 Das GCA-Modell im Vergleich zum PRAM-Modell
[351] Fechner, B.:

GPUs for Dependability
[352] Güting, R. H., Behr, T., Xu, J.:
 Efficient k-Nearest Neighbor Search on Moving Object Trajectories
[353] Bauer, A., Dillhage, R., Hertling, P., Ko K.I., Rettinger, R.:
 CCA 2009 Sixth International Conference on Computability and Complexity in
 Analysis
[354] Beierle, C., Kern-Isberner, G.
 Relational Approaches to Knowledge Representation and Learning
[355] Sakr, M.A., Güting, R.H.
 Spatiotemporal Pattern Queries
[356] Güting, R. H., Behr, T., Düntgen, C.: SECONDO: A Platform for Moving Objects

Database Research and for Publishing and Integrating Research Implementations
[357] Düntgen, C., Behr, T., Güting, R.H.: Assessing Representations for Moving Object
 Histories
[358] Sakr, M., Güting, R.H.: Group Spatiotemporal Pattern Queries

	semdupl-tr.pdf
	semdupl-tr.pdf
	Overview, Introduction and Motivation; Accomplishment of Tasks
	Comparison with other Systems
	Architecture of SemDupl
	The SemDupl Corpus
	The Shallow Duplicate Detectors SemDupl-shallow and SemDupl-quick
	Features in SemDupl-shallow
	Combination of Features
	Training Phase
	Application Phase
	Aggregation of Feature Values
	SemDupl-quick (SQ)
	Comparison of Shallow Approaches

	Linguistic Phenomena Relevant for Semantic Duplicates
	Types of Paraphrases for Semantic Duplicates
	Restrictive Contexts and Other Precision Problems for Semantic Duplicates

	Knowledge Acquisition for Deep Duplicate Detectors
	Hypernyms and Meronyms
	Deep vs. Shallow Patterns
	Validation of Relation Hypotheses
	System Architecture: Relation Extraction

	Annotation GUI
	Extraction of Entailments
	Extracting Entailments Employing a Search Engine
	Extracting Entailments from SNs Basically Following Ravichandran and Hovy
	Extracting Entailments Basically Following Lin and Pantel

	The Deep Duplicate Detector SemDupl-deep
	Combination
	Evaluation
	Evaluation Interpretation and Conclusions
	Extracted Knowledge
	Program Documentation and Manuals
	SemDupl-deep
	SemDupl-shallow
	SemDupl-quick
	Combiner
	Knowledge Acquisition
	Hyponyms, Meronyms and Synonyms
	Entailments

	The GUI
	Text Collection Maintenance
	Text Collection Analysis
	Text Duplicate Search

	Class Diagram SemDupl-shallow
	Class Text
	Class Toolbox
	Class Comparer
	Class LAUT
	Class CErkenner

