Random Walks, a Paradigm to design Distributed Algorithms for Dynamic Networks

Thibault BERNARD thibault.bernard@univ-reims.fr

CRESTIC - EQUIPE Systèmes Communicants

October 30th 2007

Outline

Introduction

- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms

Futur works

Plan

- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms

Futur works

Framework study

Context

- Networks
- Distributed Systems (specially Dynamical networks like peer-to-peer or ad-hoc networks)

Constraints

- Management of dynamicity
- Fault tolerance
- Decentralized solutions

Motivation

Conception of solutions to classical problems of distributed algorithmic for dynamic networks

Distributed system

Model of distributed system

- Set of computing ressources that communicates through channels
- (G = (V, E))

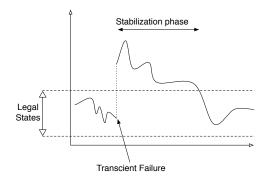
Communication model :

Messages passing model

Distributed algorithms

Definition

- Set of local algorithms
- Communication primitives (send, receive, ...)
- Local execution on each node


Fault Tolerance

Two approaches

- Robustness
 - Lots of impossibility results
 - Requires less restrictive assumptions

Self-stabilization

Self-stabilization [Dijk74]

Two properties for self-stabilizing alogorithms

- **Convergence** : starting from an illegal state and without failures, the algorithm converges to a legal state
- Closure : from a legal state and without failures occurences, the algorithm remains in legal states

Plan

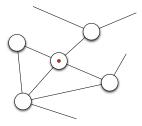
- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition


- Motivations
- Informal description
- Main mecanisms

Futur works

Random walks

- Random moves in a graph
- Algorithmic procedure :

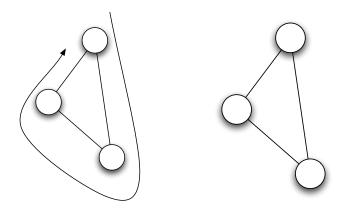
Reception of the token on the site iChoose j uniformly at random among Neigh(i)Send token to site j

Properties and mains caracteristics

Percussion

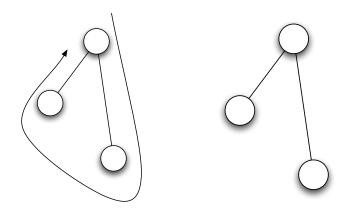
On a finite graph, a random walk hits a node in a finite time. The mean time starting at a node *i* to hit node *j* is h(i, j).

Coverage

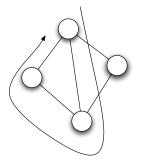

On a finite graph, a random walk hits all nodes in a finite time. The mean time to visit all nodes is C.

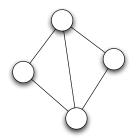
Meeting

On a finite and non-bipartite graph, two random walks meet on the same node in a finite time. The mean time before two random walks meet is $Me(x_1, x_2).$


Tools

Adaptativity

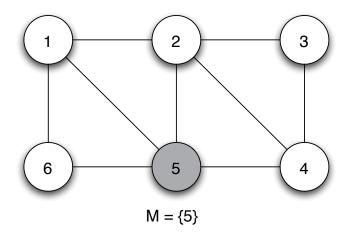


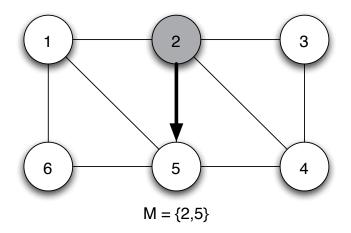

Tools

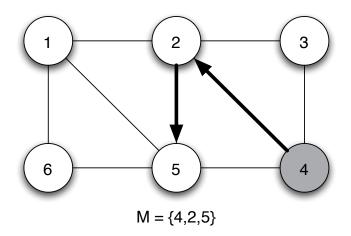
Adaptativity

Adaptativity

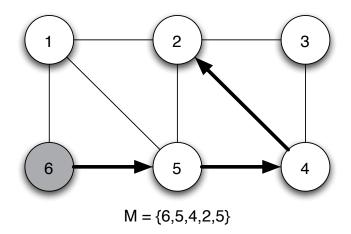
Circulating word

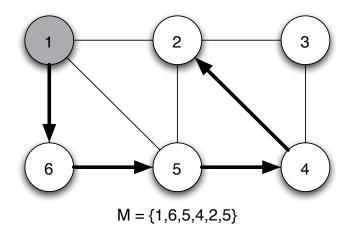

Definition

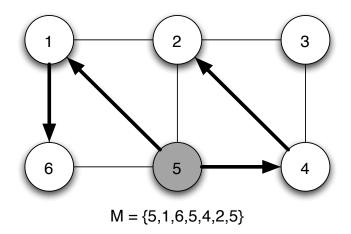

A circulating word is a message that collects information through its moves in the network.

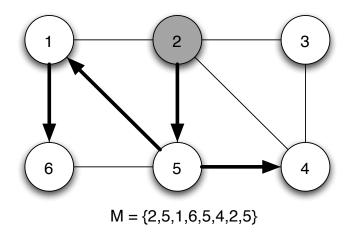

[Lava86]

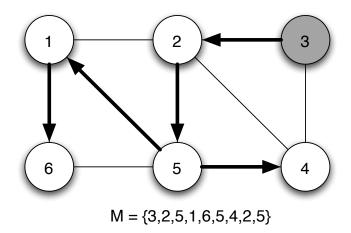

Circulating word + random walk


= Tools to collect and broadcast information.

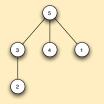


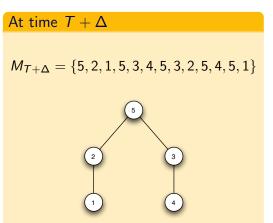






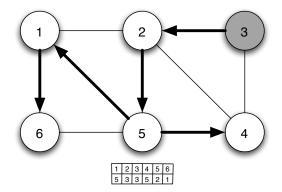
Tools


Adaptativity of the spanning tree


Circulating word moves permanently in the network \implies topological information are alway updated

\implies Spanning tree is adaptive

At time T


$$M_{T} = \{5, 3, 2, 5, 4, 5, 1\}$$

Reduction of circulating word size

$$M = \{3, 2, 5, 1, 6, 5, 4, 2, 5\}$$

Circulating word size fixed at n

Th. Bernard (URCA)

Plan

1 Introduction

- Main context
- Tools

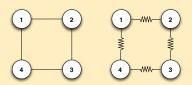
2 Random walks caracteristics evaluation

- Fault tolerant Token Circulation
 - Loss of token
 - Corruption of token
 - Duplication of token
 - Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms

5 Futur works


Computation of RW caracteristics

Two approaches

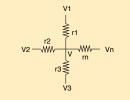
- Markov chains
- Analogy with electrical networks [DoSn84]

Results from [CRST+97,Tet91]

- $h(i,j) = m \times R(i,j) + \frac{1}{2} \sum_{k \in V} \deg(k) \times (R(j,k) R(i,k))$
- $m \times R \leq C \leq O(m \times R \times \log n)$

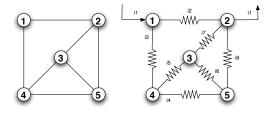
Computation of RW caracteristics \implies Computation of R(i,j)

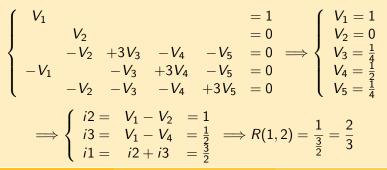
Electricity laws


Ohm's law

$$U_{AB} = R(A, B) \times i_{AB}$$

Kirchhoff's law


The sum of ingoing currents equals the sum of outgoing currents.


Millman's theorem

$$\frac{\frac{V-V_1}{r_1} + \frac{V-V_2}{r_2} + \dots + \frac{V-V_n}{r_n}}{\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}} = 0$$

Computation of R(1,2)

Th. Bernard (URCA)

Computation of meeting time

Case of 2 RW

Plan

1 Introduction

- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms

Futur works

Token circulation

Primitive for :

- Election
- Efficient broadcast information
- Ressources allocation
- Structures Maintenance
- ...

Existing solutions

Based on the construction and maintenance of a virtual spanning structure [ChWe02]

Communication failures

Self-stabilization in messages passing model

loss of token

• Corruption of token

• Duplication of token

Plan

Introduction

- Main context
- Tools

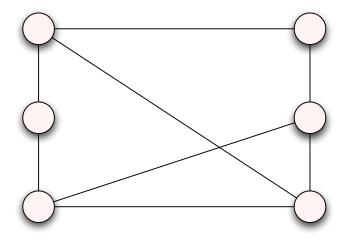
2 Random walks caracteristics evaluation

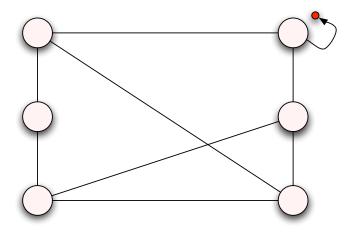
3 Fault tolerant Token Circulation

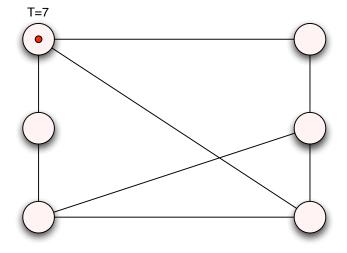
- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

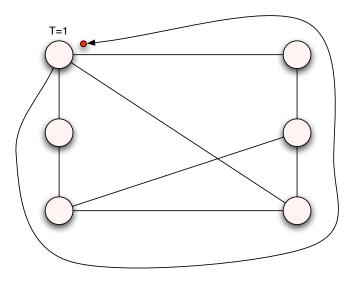
Network decomposition

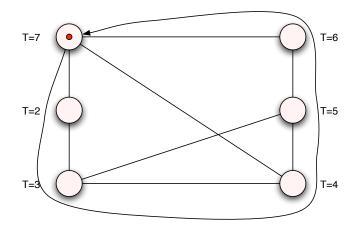
- Motivations
- Informal description
- Main mecanisms

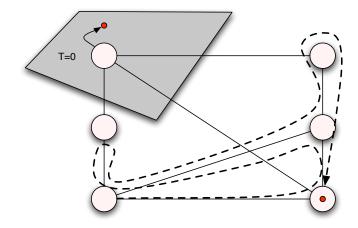

Futur works


Loss of token


Communication deadlock


Solution : Timeout


- At the reception of the token, a node reset its timeout
- If the timeout trigger, its node produce a new token



Random walk policy as token's moves $[DoSW02]: T = C \times i$ $\implies Token creation still possible$

There is no bound on the visiting time for a given node.

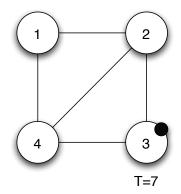
Reloading Wave

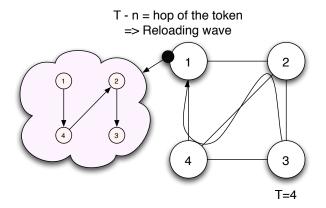
Our approach : a solution decided by the token

Broadcast a reset timeout order to all nodes

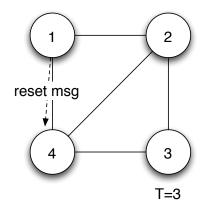
Principle

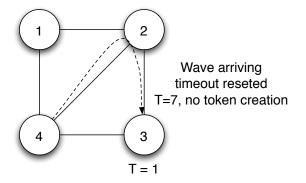
- A nodes receiving this wave, reset its timeout and continue the propagation.
- The wave is propagated periodically through an adaptive spanning tree stored in a circulating word inside the token


When propagate the wave?


Remarks :

- After a visit, a node produces a new token in T time units
- The propagation of the wave takes in the worst case *n* time units


The token should propagate the reloading wave each T - n time units


Loss of token

Loss of token

Plan

Introduction

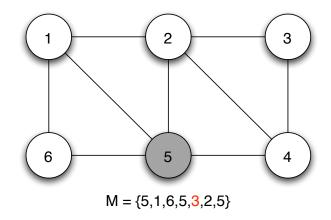
- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition


- Motivations
- Informal description
- Main mecanisms

Futur works

Corruption of token

Solution

Test realized locally on each visited nodes.

Here $3 \notin Neigh(5)$, node 5 corrects the word : $M = \{5, 1, 6, 5\}$.

Plan

Introduction

- Main context
- Tools

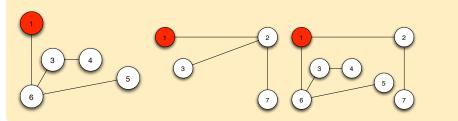
2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms


Futur works

Duplication of token

A solution [IsJa90] (state model)

Meeting property

Mergure of topological information

Scheme of proof

Legal state \mathcal{EL}

- \bullet One complete and consitent token \mathcal{JUCC}
- All nodes have been visited \mathcal{TSV}

Lemmas

- A visited node can not produce new tokens
- The number of visited nodes increases
- All nodes become visited nodes : $\mathcal{C} \longrightarrow \mathcal{TSV}$
- All tokens become consistent
- There exist at least one complete token
- For all configurations satisfying $\mathcal{C} \in \mathcal{TSV}, \mathcal{C} \longrightarrow \mathcal{JUCC}$

Theorem

$$\forall \mathcal{C}, \mathcal{C} \longrightarrow \mathcal{EL}$$

Th. Bernard (URCA)

Plan

Introduction

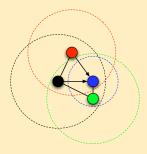
- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition


- Motivations
- Informal description
- Main mecanisms

Futur works

Model

Communication model

- Nodes communicate through radio waves of different range
- Oriented graph

Mobility

- Dynamic graph
- Nodes moves are a natural behavior
- Alternative solutions to flooding

Th. Bernard (URCA)

Adaptation of circulating word management

Permanent algorithm \implies size growths infinitely

Our reduction technique

- based on usefull information.
- Allows to renew topological information used.

Adaptation of circulating word management

Remarks

The word $M = \langle 5, 4, 1, 3, 1, 2, 3, 4, 2, 5, 1 \rangle$ allows the construction of spanning tree enrooted on an arbitrary node

 $\underbrace{\underbrace{5,4,1,3,1,2,3,4,2,5}_{Constructor\ Cycle},1}_{Constructor\ Cycle}$

 \implies our algorithm maintains a constructor cycle

Definition

A cycle $\mathcal{C}(i, j)$ in the word M is called *constructor* if :

$$\forall k \in identities(M), \exists l \in \{i, \dots, j\} | M[l] = k$$

Results

Our algorithm

- maintains an adaptive image of the network
- manages connexions and disconnexions
- bounds the size of the circulating word

Lemma

The size of the circulating word is bounded by $\frac{n^2+8n}{4}$

Simulations results

Size of the network	10	100	500
Averrage size of the word	17	225	1342
Deviation	1,9	20	192

k exclusion for ad-hoc network

k exclusion

- Extension of mutual exclusion
- At most k nodes can get critical section at a given time

k distinct tokens will circulate (Set of colors \mathcal{K})

Convergence

- Preliminary phase : deletion of corrupted tokens
- \bullet Production phase : produce at least one token by colors of ${\cal K}$
- Mergure phase : deletion of duplicated tokens

Mobility assumption

Self-stabilizing if :

An edge chosen to belong to the spanning tree should permit the propagation of the reloading wave during the time it belongs to this tree.

Plan

Introduction

- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms

Futur works

Motivation

Limitation of Random Walks

- In the most general case, Bounds on hitting, cover and meeting time are in $O(n^3)$
- Acceptable in theory but not for practical application.

Differents kinds of solutions (depending of the task to achieve)

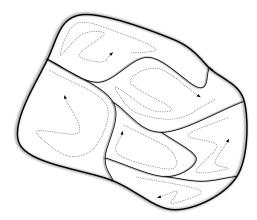
- Increasing the number of random walks
- Build and maintain a hierarchical structure over the network

Plan

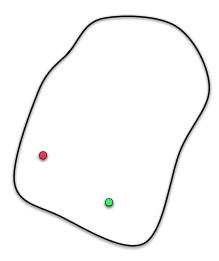
Introduction

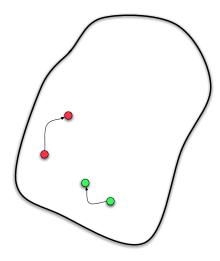
- Main context
- Tools

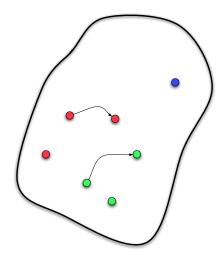
2 Random walks caracteristics evaluation

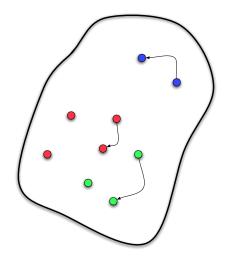

3 Fault tolerant Token Circulation

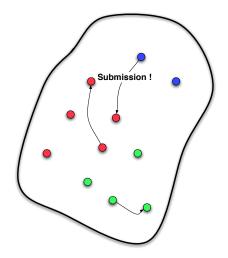
- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

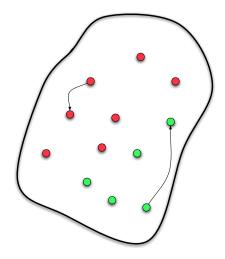

Network decomposition

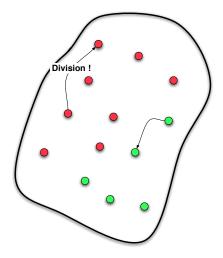

- Motivations
- Informal description
- Main mecanisms

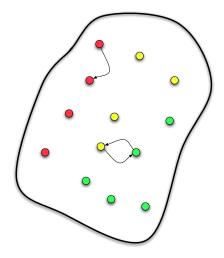

Futur works




Get a decomposition of the network into partition. Each of them should have a number of node comprised between m_{min} and m_{max} .







Plan

Introduction

- Main context
- Tools

2 Random walks caracteristics evaluation

3 Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms

Futur works

Annexion

Condition

The local random walk annexes a new node and

 $Nb_nodes \leq m_{max}$

Operations

- Mark the new node with the LRW color.
- Udpate LRW information

Division

Condition

The local random walk annexes a new node and

 $Nb_nodes > m_{max}$

Operations

- Udpate LRW information
- Send a wave on the spanning structure to split it into two parts

Submission

Condition

The local random walk visits another partition and

 $Nb_nodes < m_{min}$

Operations

- Kill the LRW
- Propagate a wave through the partition to change the color partition

Plan

1 Introduction

- Main context
- Tools

2 Random walks caracteristics evaluation

B Fault tolerant Token Circulation

- Loss of token
- Corruption of token
- Duplication of token
- Application to ad-hoc networks

Network decomposition

- Motivations
- Informal description
- Main mecanisms

Futur works

Futur works

Adaptive hierarchization

- Formal proof of the algorithm
- Self-stabilizing behaviour?

Experimentations

- Topology of the partitions created
- Stability of the partition regarding the mobility of the network

Applications

Hybridation of random walks and *local flooding* for ad-hoc networks

Random Walks, a Paradigm to design Distributed Algorithms for Dynamic Networks

Thibault BERNARD thibault.bernard@univ-reims.fr

CRESTIC - Equipe Systèmes Communicants

October 30th 2007