A Vision System for Interactive Object Learning

Gabriele Peters
Universität Dortmund, Informatik VII,
Otto-Hahn-Str. 16, D-44227 Dortmund, Germany
peters@ls7.cs.uni-dortmund.de

Abstract

We propose an architectural model for a responsive vision system based on techniques of reinforcement learning. It is capable of acquiring object representations based on the intended application. The system can be interpreted as an intelligent scanner that interacts with its environment in a perception-action cycle, choosing the camera parameters for the next view of an object depending on the information it has perceived so far. The main contribution of this paper consists in the presentation of this general architecture which can be used for a variety of applications in computer vision and computer graphics. In addition, the functionality of the system is demonstrated with the example of learning a sparse, view-based object representation that allows for the reconstruction of non-acquired views. First results suggest the usability of the proposed system.

1 Introduction

Both, computer vision as well as computer graphics are concerned with the visual appearance of objects of the real world. Major problems of computer vision are the recognition or classification of objects from images. An important challenge of computer graphics consists in the generation of internal models of objects from images, e.g., for the purpose of geometric modelling or graphic illustration. For both fields of research the acquisition of an object representation is necessary.

The current situation is for the most part marked by a separation between object acquisition and further processing of the acquired information in a specific application, whether in the field of computer vision or in the field of computer graphics (figure 1). This often leads to the fact that the recorded data do not meet the requirements of the application. A usual way to obtain reasonable results anyhow is the development of heuristics. Another approach, which has been used to different extents in the mentioned fields of application, is the active visual acquisition of objects. This means that the processing of the recorded data gives feedback to the acquisition part of the system. In analogy to human information processing the system should autonomously learn strategies of object acquisition on the basis of application-specific objectives only.

We propose an architectural model for a responsive vision system based on techniques of reinforcement learning that takes these considerations into account (figure 2). It is capable of acquiring object representations based on the intended application only and thus can be employed for a variety of tasks. The system can be interpreted as an intelligent
scanner that interacts with its environment in a perception-action cycle, choosing the camera parameters for the next view depending on the information it has perceived so far. So, the subsequent input depends on the actions taken previously.

Section 2 summarizes related work. In section 3 we propose the responsive vision system. In section 4 this system is applied to a typical problem, the acquisition of a view-based object representation, which can be used for view morphing. In addition, first results for this problem are presented here. Finally, in section 5 some conclusions are drawn.

2 Related work

The term viewpoint planning summarizes techniques of deciding the optimal viewpoint distribution which captures all relevant information about an object or a scene for a specific task. Within the last decade a variety of methods for viewpoint planning have been proposed. But in the field of computer vision it is usually not employed until the level of object recognition [1], instead of utilizing it also for object acquisition. This holds true also for [2], where the dynamic aspect plays a role also not until the level of recognition. In [3] an approach to the acquisition of view-based object representations is proposed where key-frames for the representation are chosen from an image sequence. But the strategy for the choice of key-frames as well as the scan path are given. The same holds true for the adaptive tracking approach proposed by [4]. In [5] an approach to 3d model acquisition with an "eye-in-hand" configuration is described but again with a given scan strategy. Also for more adaptive systems, which try to adapt the scan path to the object or the application, holds true that the strategies for scanning an object or a scene are mostly given by the developer [6, 7, 8, 9, 10]. Only recently these strategies are also learned automatically, for example with methods of reinforcement learning. This approach is chosen, e.g., by [11, 12, 13] for the autonomous emergence of strategies for object recognition. However, we do not know any approach to object acquisition by active learning up to now and propose a method which adaptively learns a view-based object representation without a given strategy.

3 A responsive vision system

Figure 3 displays the general architecture of a vision system that learns object representations interactively depending on the intended application. The different components of the system are separated in three modules: Learning in the upper right part of the diagram, Acquisition in the lower left, and Application in the upper left. The resulting object representation is shown in the lower right part. In the diagram examples for concrete design decisions are printed in italics. In the next section the different modules are described, in section 3.2 the interaction between these modules is explained, and in section 3.3 we focus on some design decisions a user has to make when she likes to utilize this system for her own needs.

3.1 Modules

Module Learning. In traditional approaches of computer science a problem is solved by an algorithm that has been developed by the programmer who has reflected on the problem. In contrast to this, approaches exist which delegate also the discovery of solution procedures to the machine. Often principles of nature are a role model for such approaches. One example are evolution-based methods such as genetic programming [14]. Another example are behavior-based techniques such as Reinforcement Learning, which seem to be an appropriate approach to our problem of object learning. The principles of reinforcement learning are sketched in the following. An agent interacts with its environment by perception and action. In an interaction step i the agent receives information $s_i \in S$ on the current state of the environment as input via perception. Then the agent chooses an action $a_i \in A$ according to its policy function $p: S \rightarrow A$. The action is carried out and changes the state of the environment (transition function $d: S \times A \rightarrow S$). The agent is able to adapt its behavior to certain conditions. For this purpose the agent receives direct feedback for its last action by a scalar reward signal r_i. In addition, a valuation of the state transition is conducted by a value function $Q: S \times A \rightarrow \mathbb{R}$. The behavior of the agent should maximize the long term sum of the reward signals, i.e., the expected return. The value function is learned by systematic trial-and-error for which a bunch of techniques has been developed. In [15, 16, 17] overviews are given.

Module Acquisition. There are some steps in the acquisition process which are common to all kinds of applications and all kinds of data structures of the object representation. Whether a 3D model or a view-based representation should be learned, in any case there will be some steps of preprocessing of a perceived view of the object, such as image enhancement or segmentation techniques. As the perceived image is the only information about the environment available to the agent, there will also be some feature extraction technique. Examples for features are responses of a Gabor wavelet transform or the scale-invariant feature transform (SIFT) [18]. Depending on the specific design there may also be a calculation of a representation of a single view (e.g., in form of a graph
Figure 3. Architecture of a vision system that learns object representations.

labeled with local object information or in form of the 3d positions of object features) before the new information is incorporated into the object representation. At last, to extract useful information from a sequence of views the common information between successive views has to be exploited. This can be realized for example by 2d feature tracking or by bundle adjustment techniques.

Module Application. The two major fields of application for interactive object learning are computer vision with the goal of object recognition and classification and computer graphics with the purpose of object reconstruction. After the learning process and given a test view or a sequence of test views recognition and classification should be possible even if the agent has not experienced those test views. Analogously, the reconstruction of the complete object and the rendering from unfamiliar views are claimed. This module gives the crucial feedback to the Learning module utilizing the object representation learned so far.

3.2 Interaction between the modules

The Learning module implements the perception-action cycle of the system. It produces actions and states as output and takes feedback from the defined application as input. The feedback from the application modifies the subsequent environment of the agent. The goal of the acquisition process is defined by the reward signal. This reward signal is calculated according to the specific application. Thus, goal-directed behavior emerges, resulting in different object representations for different applications.
3.3 Design decisions

Besides decisions concerning the data structure of the object representation and the way how new information is integrated (Acquisition module) the majority of design decisions falls in the Learning module. Here we have to define the following parameters:

States S: A state should incorporate the information necessary for the agent to decide for the next action. It seems reasonable to include at least information on the object learned so far and on the current view which is perceived.

Actions A: An action should change the camera parameters, i.e., position and orientation of the camera in relation to the object, but also the focal length could be useful to change depending on the application. In addition, an update of the object representation can also be implemented as action of the agent.

Value function Q: The estimation of the value function is the goal of reinforcement learning. It reflects how good it is for the agent to perform a given action in a given state. The definition of the policy function has to be taken into account here.

Policy function p: It determines for each state the next action of the agent. One of the design decisions here consist in the determination to which extend the strategy learned so far is exploited or, on the other hand, is ignored in favor of exploration.

Reward function r: Its definition is the crucial design decision as it determines the goal of the learning process. Here the response of the application must be integrated.

Summarizing, as the chosen application determines the learning process and the resulting object representation this system will be applicable for many purposes, in computer vision as well as computer graphics. Once a basic system has been established the user primarily has to define states, actions, and a reward function to adopt it for a different application.

4 Application to a standard vision problem

We have applied the proposed system to a standard task in computer vision, namely the acquisition of a sparse, view-based object representation. To test whether the relevant information on the object has been captured by the learned scan path we reconstruct non-acquired views from perceived views by 2d view morphing. In section 4.1 we describe briefly the components of this application. A more detailed description can be found in [19]. In section 4.2 we concretize the design decisions of section 3.3, and in section 4.3 first results are summarized, which have also been described in more detail in [19].

4.1 Basic components of the system

Data base and view representation. We simulate an eye-in-hand camera setup with the object on a table such as shown in figure 4. The camera rotates around the object at a fixed distance and is oriented to the center of the object base. The observed object views are represented in a database which contains views for 100 lines of longitude and 25 line of latitude on the upper view hemisphere resulting in 2500 views for one object. Each of the recorded views is preprocessed by a Gabor wavelet transform using a filter bank with wavelets of 8 orientations and 4 frequencies followed by a simple segmentation utilizing gray level values. A regular grid graph is placed on the object segment and the nodes of the graph are labeled with the corresponding Gabor wavelet responses.

Correspondences by tracking. Correspondences between successive views are obtained by tracking the nodes of a graph from frame to frame within a local area of the view hemisphere. This is realized by utilizing the information obtained from the Gabor transform at each node of the graph [20]. The grid graph shown in the left
Figure 5. Tracking of object points.

A view of figure 5 is tracked along the sequence to the view shown on the right. The nodes stay on corresponding object points. A similarity function between two graphs based on the Gabor wavelet responses is defined reflecting the similarity between the particular views.

Sparse object representation. A sparse, view-based object representation consists of original grid graphs and tracked graphs of only some key views of the scanned path. Given a scan path on the view hemisphere we start with its first view (key view K_0) and incorporate its original grid graph $G_{\text{orig}}^{K_0}$ in the object representation. This graph is tracked along the scan path until the similarity between the tracked graph at the current view of the scan path and $G_{\text{orig}}^{K_0}$ drops below a preset threshold. The tracked graph $G_{\text{track}}^{K_1}$ for this second key view K_1 is also stored in the object representation. For K_1 a new grid graph $G_{\text{orig}}^{K_1}$ is generated and incorporated into the representation as well. It is also tracked until the similarity to $G_{\text{orig}}^{K_1}$ drops again below the threshold, and so on. For the first and the last key view of the scan path only one graph is stored ($G_{\text{orig}}^{K_0}$ and $G_{\text{track}}^{K_N}$, respectively), whereas for each other key view $K_j, j = 1, \ldots, N - 1$ of the scan path two graphs $G_{\text{track}}^{K_j}$ and $G_{\text{orig}}^{K_j}$ are stored in the object representation, ensuring piecewise correspondences for local areas of the view hemisphere (figure 6).

Reconstruction of non-acquired views. An unfamiliar view is morphed from those two consecutive key views which are closest to it, using the correspondences provided by the tracking procedure. For view morphing we use a standard technique described in [21]. A morphed view can then be compared to its original version by an error function. This yields an error for a reconstructed view. In the example in figure 7 the non-acquired view (7, 11) is reconstructed from the key views (3, 7) and (14, 7). It can be compared to the original view (7, 11).

This technique is used for the calculation of the reward signal after each step of a scan episode as well as for the calculation of the total reconstruction error after a scan path has been learned.

4.2 Design decisions for the application of 2d view morphing

States S: The current position of the camera only is not sufficient to define a state of the environment. But the complete path which has been scanned would yield too many states. Thus, we define a state as a vector which contains the current position of the camera and four values which describe the degree of unfamiliarity of the areas to the north, east, south, and west of the current position on the view hemisphere, respectively. To calculate the degree of unfamiliarity of an area we assign a value to each unfamiliar position of an area. This value is the distance from this unfamiliar position to the next familiar position (i.e. one that has already been scanned). Then the value of an area is the sum of all values of unfamiliar positions in this area. The possible values of an area are quantized into five bins. For a further reduction of the number of states we also quantize the original view hemisphere, resulting in a raster of 20×5 views. Thus, a state consists of six components: x-position on the hemisphere (20 possible values), y-position (5 possible values), unfamiliarity of the areas in the four directions (5 possible values each), resulting in a total of 2000 states.

Actions A: Possible actions are the movement of the camera in one of the four above mentioned directions on the quantized view hemisphere.

Value function Q: We apply Q-learning. The Q-values
predicted and the actual view. More concrete, the reward action is higher for larger reconstruction errors between the camera is moved one position on the quantized hemisphere, according to the morphing technique described in section 4.1. Then the total reconstruction error for this path is the mean of the reconstruction errors of all test views.

4.3 First results

The method described above has been carried out for the “Tom” object (figure 6). The learned scan path stabilized after 2 million episodes which took a few minutes on a standard PC with pre-calculated values from the tracking and reconstruction modules. It yielded a significantly lower total reconstruction error than achieved with random scan paths of equal length. The mean reconstruction error for 100 random paths is 9.2, whereas the error for the learned path is 5.8. In figure 8 the key views of the stabilized, learned scan path are depicted. The inset shows the view hemisphere seen from above with view (0, 0) at the bottom. Only the key views of the path are displayed. The returns seem to be monotonously increasing until the scan path has stabilized between episodes 10^6 and 10^7. The scan paths learned up to these episodes are displayed in figure 9 illustrating the learning process. The resulting path has an even shape, going around the lower part of the view hemisphere from the front to the backside, turning up and moving back to the front in the upper part of the hemisphere. Those views of the backside of the object that haven’t been covered are rather similar to the views where the agent turned up towards the top of the hemisphere. Thus it seems to make sense not to incorporate these redundant views into a sparse

Policy function p: We apply a learning rate $\alpha = 1/3$ and an ϵ-greedy policy with $\epsilon = 1/3$, annealed by the factor $1/1.000001$. In the beginning the agent chooses a random action in one third of all steps (exploration) and an action based on the learned information in two thirds of all steps (exploitation). With ongoing processing the probability for exploration is slowly decreasing for the benefit of exploitation.

Reward function r: Before the choice of the next action the agent predicts the view he would perceive if he performed the action. The prediction is calculated according to the morphing technique described in section 4.1 from the last two key views he has experienced so far. After the prediction the action is carried out. The reward for this action is higher for larger reconstruction errors between the predicted and the actual view. More concrete, the reward is calculated according to $r_{t+1} = -(\epsilon_{\text{recon},t+1} - 1)^{10}$. The total return for one episode is the sum of the rewards received for each step of the episode.

We carry out 32 steps per episode. Each episode starts at position (0, 0) on the view hemisphere. In each step the camera is moved one position on the quantized hemisphere, i.e., we track the current graph on the unquantized hemisphere to the next position on the coarser raster according to section 4.1. While tracking from step to step key views are determined as described in section 4.1. Each episode provides a scan path with associated key views. This learning process is stopped when the scan path has stabilized. To assess the quality of the learned path we calculate a total reconstruction error by choosing a set of 25 test views on the unquantized hemisphere. These views are reconstructed from the acquired key views of the learned path as described in section 4.1. Then the total reconstruction error for this path is the mean of the reconstruction errors of all test views.
5 Conclusions

We have proposed an architecture for a vision system that is capable of acquiring object representations. It is based on reinforcement learning techniques and interacts with its environment via a perception-action cycle. The resulting object representations depend on the information perceived so far and on the intended application only. The functionality of the system has been shown with the example of learning a sparse, view-based object representation that allows for the reconstruction of non-acquired views. Because of its generality we presume that the model is applicable to a variety of tasks in computer vision and computer graphics. This is still to be demonstrated with examples of more objects as well as more and different applications.

Acknowledgements: This research was funded by the German Research Association (DFG) under Grant PE 887/3-1.

References

