@ FernUniversitat in Hagen

Fachbereich Informatik

Lehrgebiet Programmiersysteme

Prof. Dr. Friedrich Steimann

Abschlussarbeit im Studiengang Master of Computer Science

Implementation einer Erweiterung von Java um

implizite Aufrufe mit impliziter Ankiindigung

Implementing a Java extension supporting

implicit invocation with implicit announcement

Vorgelegt von:

Thomas Pawlitzki
Friedrichstr. 25
51143 Koln
Matrikelnummer: 7074573

Koéln, den 02.07.2007

Abstrakt

Um die Qualitdt und die Effizienz in der Entwicklung von Software zu erhéhen, werden immer
wieder neue Programmierparadigmen entworfen oder bestehende weiter entwickelt. Eine
Weiterentwicklung der objektorientierten = Programmierung ist die aspektorientierte
Programmierung. Das Ziel der aspektorientierte Programmierung ist es, quer schneidende
Funktionalitdt (wie z. B. Logging oder Sicherheit) zu modularisieren.

Eine aspekorientierte Erweiterung fiir die Programmiersprache Java ist Aspect]. Kritisiert wird an
diesem Ansatz, dass es keinerlei Restriktionen gibt, wie Aspect] den Programmabfluss verdndern
und beeinflussen kann. Dies kann zu einer erschwerten Lesbarkeit und Nachvollziehbarkeit
fithren. AuBlerdem kann die Kopplung zwischen Aspekten und Klassen hoch sein, da Aspekte u. U.
die Interna einer Klasse kennen miissen, um ihre Logik mit der der Klassen zu kombinieren.

Diese Arbeit beschéftigt sich mit der Integration einer auf Aspect] basierende Erweiterung fiir
Java. Diese Erweiterung integriert implizite Aufrufe mit impliziter Ankiindigung in die
Programmiersprache. Diese Erweiterung versucht Aspekte und Klassen zu entkoppeln, indem eine
Schnittstelle zwischen den beiden Komponenten eingefithrt wird. Weiterhin dokumentiert diese
Arbeit die Implementierung des Compilers, der Java um implizite Aufrufe mit impliziter
Ankiindigung erweitert.

Structure

o 0] (o] o4 1 1< TP URUUPRIPUSRIUP v
Part 1 - Types and Modularity for Implicit Invocation with Implicit Announcement 1
L IETOUCTION. ...ttt a bttt e s bt bt a e et e bt e bt e st en e et e e bt eat et e naesbeebeeneenbens 1
2. A MOLIVALING EXAMPLE.....ciuiiriieitieriieiieiti ettt e eteste st e st et ebeesbeesbeesbeesbeassesssessaesssesseessaasseessesssasssesssessennns 2
3. Join point types, polymorphic pointcuts, and MOAUIALItY..........cccevviiiiiiirciieeiieeiie e 4
3.1, JOIN POINE LY PES.c.ureurreuretieiietesiteteetteteseeeteestessesseessesseessesseassenseassanseaseassesssessesssensesseansenssensesssansesseensessesssessenssensenns 4
3.2. POLYMOTPRIC POIMECULS.cuvivieeieteeiietietieteettete st estesteetesteesseteessesseeseessesssessesssessasseassassessesssessesseessesseessessenssessenns 5
3.3. Explicit announcement Of JOIN POINES.........eccvervirierierieriertieitesteetesteetestesstessesseesesseessesseessesseessesseessessesssessenssensenns 5

3.4, MOAUIATIEY ACHIEVE.icuieiiciieiiicie ettt ettt et et e b e e te e b e eteesbeeseessesseessesaeessesseessasseassansenssensesseensas 6

4. Subtyping and INNETITANCE.cccueeierieiiestestteteete et et e eteetesaestaesseesseesseeseesseanseansessseassesssesssesssesseesseenes 6
4.1. Subtyping and inheritance fOr JOIN POINt LYPES.....cceevirrieiertieieriieeete st ete st et sre et esseereessesreessesseessesseessaseessesseenes 6
O 0 B > 1S3 1 3 e 0 21 U 2RSSR 6

4.1.2. TNEENSIONAL VIBW.. ettt ettt ettt ettt ettt et s b et s bt e st e e bt e et e bt e st e ebeemeeebeemeesbeemeesbesssebeeneenee 7

4.2. Effect on subtyping and inheritance for classes exhibiting jOIn POINES.........cccvererierierierierieierieeieee e 7
4.2.1. EXTENSIONAL VIEW.....eutiitiiiiitieiiet ettt ettt ettt ettt ettt et e ae et e s bt em e e s bt em e e bt emeeneeeaeeneeseeensesbeensanbeensateans 7

A U113 1S3 (o) 2 N U< 2 USSP 8

5. The full 1anguage, fINALLY..........cociiiiiiiii e ettt e et e estr e e tae e taeesabeessbeesseesssaessseessseenns 8
S L SYIEAK ettt ettt ettt ettt et a et a e e a et e a e h e et e h e et a e e s e h e e e h e eae et h e et eae e et saeennesheennenre s 8
5.2 SEIMAITICS. ...ttt sttt ettt ettt sttt et e e e st ebt e bt e bt eb e b et et eabes b es e eb e eb e ebeeb e s et b et et en e eb e eb e e bt e bt et e et et en b ent e bt ebe et b e 9
5.3. Implementation Of the COMPILET.........cciiiiriiiieiieieieet ettt ettt eeae s e e s e beestesbesseessesseensesseensessennsens 9

5.4. Summary of properties, and comparison with interface and eXception types........cecevvrveereieenesierieneeeeereeeeennes 9

0. EVAIUATION. ...ttt ettt ettt ettt b e a et e bt s bt bt e st et b e e bt e st et e bt bt et et e e e 10
T REIATEA WOTK. ...ttt e ettt a et e et e bt e st et et e seeeseeseemeeseetesseeneesanaeeneas 11
LT Ofe) o Tod L0 13 [) T OO OSSR UPRRUROUURUPRI 13
REEETEIICES. ...ttt ettt et et e et e e e b e e s tte e tbeeeabeesabeesabeesaseesseeasseeasseesssesssseessseees 13

Part 2 - Implementation of a compiler supporting Implicit Invocation with Implicit Announcement.. 16

9. Implementing @ ITLA COMPILET........cccuiiiiiieiiie ettt ettt et e st e ebeesebeesabeessbeesssaesssaessseessseesssesnssens 17
9.1. AspectBench compiler fraAmMEWOTK.........coiriiiriiiiiiiii ettt ettt 17
9.2. Outline of the IMPIEMENTALION.c.eciiciieiieiiriete ettt ettt ettt este st e tessaesbeeseesseeseessesseensesseessesseasseseessensennes 18

9.2.1. Basic mapping of IITA t0 Java/ASPEct] CONSIIUCES........ccuerierierieieetieieeteeie st eee e seaeeeeseeeeseeesesreesesneennens 18
9.2.2. Basic tranSfOrMAtION.couiitirtirieieieiiecet ettt ettt sttt ettt b e bt sttt be bt e e st et e bbbt sbe b enen 19
9.3. Extending the ASpectBench COMPILET.........cceecieriieiieiieieiecieeieie ettt ettt st e eseenbeeseessesneenseenas 20
0.3, 1. PACKAZE OVEIVIEW....ccviitiiiiiitieiiietieiteetteetesteetesteeseestesstesseeseesseeseesesseessesssessesssessasseesseeseessesseessesseessessenssansenss 20
9.3.2. EXtending Parser nd LEXET..........ccerierieriieieriieietietesteetestestessesteesbesseessesseessesseessessesssesseensesseessenseensesseanses 22
9.3.3. Introducing new AST nodes and extending the type SYSteM........c.ccvieieriiiieriiiieieieeeeeieeeeere et 26
9.3.4. Introducing NEW COMPILET PASSES.....cuiruierierrieierieeterteeteteeeessesseessesstessesseessesseessesseessessesssessesssessesseessensesnes 32

10. Example of USae OF ITTA.......couiiiiieieie ettt ettt ettt ettt ettt et e te e atesateeste st e enseensesanesneennes 51
10.1. PrOdUCET CONSUIMET SCEINATIO.veeivvierrertreereertteareesteesseesseesseeasseesseessseasseesseessseessaesssesssaesseesssessseessesssseesssesssesnses 51
102, BUSINESS TULES. ...ttt ettt ettt ettt ettt ea et e ac e bt e ae et e s bt em e e e b e em b e eb e emteebeemeeseeemeeabeemeenbeentenbeeneenaeenes 55

11. SuMMAry and CONCIUSION.cccviiieiierieitiertierit et ebeebeeteereeeaeeebesteesttessaesaesseesseesseasseessesssesssesssessensseens 58
11.1. SUMMATY Of CONTIIDULION.eiiieiieiiieieetieieett ettt ettt et e et esbe s st esaesseensesseesseseessenseessenseasseseansessesssensenssens 58
11,2, COMCIUSIONS.uviitiiiitieieeetteeteeete ettt et e eeteeeebe e bt eeteeeabeeseeesseeaseassesaseeasaassessseassaassseenseasssaanssesssessseenseessseenseeseeanns 59

RETEIEIICES. ...ttt ettt ettt ettt ettt e a e e at e e et e sateeatesbe e bt ebe e beenbeenteeneeeaseeaee 60

List o

f figures

Figure 1: Simplified overview of transformation............ccoceoiiiiiiiiiiiiie e et 19
FIGUIE 2: PACKAZE OVEIVICW....eiiviiiiiiieiiitieieste st eteett et e et esteeteestesteestesteessesbeessasseessasseeseessesssesseessessanssesseessensesssensesssessesses 20
Figure 3: Extending and adapting the compiler DehavIOr.coiuiiiiiiiieiie et 21
Figure 4: Design OF AST NOGES.......ocviiiieieiieieie ettt ettt ettt et ste b e st e esaesbeess e beess e seesaessesseessesseessanseessesseessesaeaneas 26
Figure 5: Hierarchy of interfaces of IIIA-AST NOAES......cc.couiiiiiieiiieiee ettt ettt 27
Figure 6: AST nodes - JoinpointDecl, JOINPOINTNAIME.cccceriiiiriiiiiieniieieteee ettt s siens 28
Figure 7: AST Nodes - [ITAClassDecl, IITAASPECIDECL.........eouiiiieieiie ettt 28
Figure 8: AST nodes - EXIIDItBIOCK.........coouiiuiiii ettt s 29
Figure 9: AST n0des - POINECUL OAES.eueeiiiiieieeiieieee ettt ettt s et e st e e sae e e et e teeseenteeseenseeneensesneennens 29
Figure 10: AST N0AES = PCSUPET.......couiiiiiieieee ettt ettt ettt et e e e e e b et e et e et e eaee bt eseenaesseensesbeentenneans 30
Figure 11: AST nodes - PolymorphicPointcutDecl, JoinpointAdviceDecl............ccoccririnineniiiiiniininineneeeeeeeeeeiens 31
Figure 12: EXtending the TyPeSYSIEIM.ceiui ettt ettt ettt ettt ettt e et e e saeeeesaeeseebeeseenseeneeseeneeeeens 32
Figure 13: NEW COMPILET PASSES....cvieurereerietiriieteettetesteetesteeteteestesseeseesesseesesseensesseensanseensesseensessesssessesssensenssensesneensesses 33
Figure 14: Transformation - INTHAl AST......c.ooiiiiiiiieee ettt ettt e st et et esbe e st et e e st eseeneeeeenes 35
Figure 15: Transformation - JoinpointField AMbUigityREMOVET..........couiriiirieiiieieiieieie et e 36
Figure 16: Transformation - JoinpointConsStruCtOrGENEIALOT.........c..covetetiieiirienientertetet ettt ettt seene e 37
Figure 17: Transformation - JOinpointMethOdGENETALOL.............c.ecvieierieiieieciteie st eteie e sae et se b steesbesseensesseessesseennes 37
Figure 18: Transformation - AdviceJoinpointtypeFormalEXIractor..........cceoiririiirinienieiieininnesesetee e 38
Figure 19: Transformation - JoinpointNameAmbiguityREMOVET...........cccverviriierieriieieniieieneete e seereseesseseeesesseesnessesnnes 39
Figure 20: Transformation - PolymorphicPointCutINNEriter...........ccuerieiiirieierecieiecteeee e e 40
Figure 21: Transformation - PolymorphicPointCutFOrmalSSEtter..........covvrviiriirieriieieiieieie ettt 41
Figure 22: Transformation - EXhibit TransSformer...........c.coiiieiiriieiiniieiesit ettt neees 42
Figure 23: Transformation - PolymorphicPointCUtRESIIICIOTcouiiiiriiieiiiicieciceeete ettt a e see e seees 42
Figure 24: Transformation - PolymorphicPointcutSubjoinpointReEStIICtOr.c.ecvirieriieieiiieie st 44
Figure 25: Transformation - JoinpointSubtypeAdVICEGENETALOT..........cccueeiiierieeieeiiesteeteesiee e esteesereebeesseeseseeseesseesnseas 45
Figure 26: Transformation - PointcutDeclarationGeNEIator.ccveivieieriieieriieiesiesteteseeesreeseesesseessesseessesaeessesseessensenns 46
Figure 27: Transformation - AdviceTTanS OIMETcouiiiiiiiieiieieee ettt sttt 47
Figure 28: Transformation - AdviceJoinpointInStanCeCTICALON.cverveirieiierieieiteetesteetereeeebesteessesreesseeseessesaeesseseeas 48
Figure 29: Transformation - Before AdVICEREPIACETcccuiiuiiiiiiiiiiiieee e 49
Figure 30: Transformation - ProceedCallArgumentSSEter...........ccueruiiieriiiieiieeereete e ste et ste e v eee s reeseesreesaesaeesaesneas 50
Figure 31: Overview over producers/CONSUMETS SCEMATIO «......ecueeuuerueeueerteeseenteeseeeesseetesseeneesseeneenseeseansesneensesseesesseensessenns 52
Figure 32: Overview over bUSINESS TULES SCENMATIO ... cueetirtieiirtieieiteete ettt ettt ettt st et s eeste st e en et e e saeeneesaeenees 56
List of tables

Table 1: Mapping Of IITA t0 ASPECLI/TAVA.....cc.eccvieiieiiitieierie ettt ettt et te st ebesteesbesteesseseeseesseessesseessesseessesseessensenss 18
Listings

Listing 1 : New terminal SYNTAX tOKEM........c.cciiieriieieitieiertietesteseetesteeesesteestesseessessesstessesssessessaessesssensesssessesssensesseensessanns 22
Listing 2 : New non-terminal SYNtaX tOKEIS.c.ccviiiriieiieitieiertieteteseestesteeteereetesteeseesseesaessesssessasssessesseessesseessesssessesses 23
Listing 3 : Class declaration in PPG SYNAX..........cccvrieieriiiiiereiieiesteieeeetesteeee e saessesseessesseessessesssessesssessesssensessesssensenns 23
Listing 4 : Class eXhibition 1N PPG SYNTAX.......ccciieruirieiiiiieieiieiiesteeeeesteeteeteeseesesreeaesseessessesssasseessesseessesseessessesssessessesnns 24

Listing 5
Listing 6
Listing 7
Listing 8

: Join point type list definition in PPG SYNtAX........cccccircieriieieniieieii ettt ete et eeese e esaesreessessasssenseens 24
: Complete syntax definition of IIIA 1 BNF........ccoiiiiiiiiiiie ettt st seae s 25
T AAAPTATION OF LEXET ... eeuviitieieitieetieteet ettt et e ste et e et esb e e et e b e eteesbeeteesaesaeessesseessasseesaesseessessesssessesseessasanssensenns 25
: Transformation eXxample - SOUICE COUE.coouiiiiiiiiieieitieet ettt ettt e nae st ete b eneesbeens 34

Listing 9 : Producer-consumer JOIN POINt LY PES......ceevereerrerreerierrietesreeeesseeseessesseesesseessesseessesseessesseessesseessessesssessesssesseeses 52
LISEING 10 TEEII CIASS. .. .ottt ettt ettt ettt s bt et e s bt e e e bt es e et e ea e e bt emeeebeemeeebeeme e beeseenteeneenseeneenneenee 52
LIStING 11 2 PrOQUCET CLASS......iiiieiiiiiciieie ettt ettt ettt ettt e st e b e s te e b e teesseebeesseeseessesseessesbeessessaessensesseessesssensesssensensaans 53
LiSting 12 1 CONSUMET CLASS.cuuiiuieiiitieit ettt ettt ettt et s bt e et e e e st e bt es e et e eaeeeesaeeneeeb e e seeseenseeseanseeneensesneensesseensenseans 53

I

Listing 13
Listing 14
Listing 15
Listing 16
Listing 17
Listing 18
Listing 19
Listing 20

2 DISPALCIET @SPECL.... . evieiieiieiieieetieie et ettt et et ette e et et e eeeesseeseesse s st essesseessenseessenseaseanseeseansesseensesseensessennsanseans 54
: Output of producer-CONSUMET-SCENATIOc.eeutruerrirrirtirretetetetteitete sttt etetestesteueeue st ebestestessesneseeseenesuesseneens 55
: Join point types in business rules EXAMPIC.cccveruircieriieieriieierieseesie e ste e etesteeseesesseesesseesesseesessesssensenns 56
2 CUSTOIMET CLASS...cuviiiutietieitieete et e ettt ete e te e et e eete e teeeabeebeesabeesbeeeseessseeasaaseeseseesssensseeaseessaessseensaassessseeseasssennsis 57
T ACCOUNT CLASS. ..ttt ettt et et a e e bbbt et e st e st e st e h e e bt bt s bt et et et ebeebeebesbenbe st nee 57
S ACCOUNTTTANSTET CIASS....c..cuiiuiiiiiiitiit ettt sttt ettt b e bt sttt ettt eaeeae b 57
 DEDItINGRULIES @SPECT.....eviietieiieiieieieee ettt ettt ettt et sa e st ebeste e b e e teesbeeseessesseessesseessesseessesseessessesssensenses 58
2 TTANSTEL TULES ASPECT. . ecuiiiieiieiieiieieeiet ettt ettt ettt et et esaesseesaesseessenseesaenseeseensesseensesseensessennsensenns 58

I

Prologue

In order to improve quality and efficiency in software development the continuous development and research of new or
the enhancement of existing programing paradigms is necessary. A development of the object oriented programming is
the aspect oriented programming (abbreviated AOP). One of the main goals of AOP is the modularization of

crosscutting concerns, which can be subsumed under the idea of separation of concerns.

In asymmetric approaches of AOP (to which Aspect] is counted) concerns are divided into two types:
core concerns and crosscutting concerns. Core concerns realize the core functionality (business logic) of a software
system, whereas crosscutting concerns involve system wide functionality as logging or security.[AJIA2003] For
crosscutting concerns it is characteristic that they cannot be separated cleanly from other ones. So an implementation of

an crosscutting concern by using object oriented languages causes code scattering and code tangling'.

When modularizing crosscutting concerns with AspectJ it sometimes is criticized that aspects are able to influence and
change almost unrestrictedly the normal control flow of a program. Furthermore an aspect is able to manipulate classes
without the classes being aware of the changes. So the readability, traceability, debugging, and understanding of
programs becomes more complicated. In order to change the behavior of classes the aspects need often internal
knowledge of the classes. In addition to this, the fact that classes are not aware of the changes makes refactoring within

the classes complicated, because the developer has to recognize, which aspects are affected by the refactoring.

By extending the object oriented language Java with implicit invocation with implicit announcement (abbreviated I11A)
these issues are tried to be corrected. This extension integrates join point types in Java, which serves as interfaces
between classes and aspects. These interfaces reduce the coupling between the two components and therewith improve

the modularity.

Structure

This thesis consists of two parts. Part 1 introduces the concept of IIIA and provides the theoretical information of this
approach. The second part, Part 2, documents the implementation of the compiler which supports the approach of IIIA.

Furthermore the approach is tested at several examples for evaluating the usage and usability of IIIA.

1 Scattering of code is the distribution of similar code in different modules, whereas code tangling is, when multiple concerns are implemented in
one module.

Part 1
Types and Modularity for Implicit Invocation
with Implicit Announcement

Types and Modularity for Implicit Invocation with
Implicit Announcement

Friedrich Steimann

Lehrgebiet Programmiersysteme
Fakultét fur Mathematik und Informatik
Fernuniversitat in Hagen
D-58084 Hagen

steimann@acm.org

Abstract

Implicit invocation is both an architectural style and a pro-
gramming paradigm. Recently, aspect-oriented program-
ming has popularized a special form of implicit invocation,
namely implicit invocation with implicit announcement, as
a possibility to separate concerns that lead to interwoven
code if conventional programming techniques are used.
However, as has been noted elsewhere, implicit announce-
ment as currently implemented establishes strong implicit
dependencies between components, which hampers inde-
pendent software development and evolution. Inspired by
how interfaces and exceptions are realized in Java, we pre-
sent a type-based solution to this problem that integrates
naturally with object-oriented programming, in particular
with its subtyping and inheritance. Our presentation is in-
formal, yet provides some empirical evidence for the vi-
ability of our approach.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features —
abstract data types, polymorphism, control structures.

General Terms Design, Languages, Verification.

Keywords implicit invocation; event-driven program-
ming; publish/subscribe; aspect-oriented programming;
modularity; typing

1. Introduction

Garlan and Shaw have defined implicit invocation as an ar-
chitectural style. They introduce it as follows:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SIGPLAN’05 June 12-15, 2005, Location, State, Country.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X...$5.00.

Thomas Pawlitzki

Lehrgebiet Programmiersysteme
Fakultét fur Mathematik und Informatik
Fernuniversitat in Hagen
D-58084 Hagen

Thomas.Pawlitzki@fernuni-hagen.de

The idea behind implicit invocation is that instead of
invoking a procedure directly, a component can an-
nounce (or broadcast) one or more events. Other
components in the system can register an interest in
an event by associating a procedure with the event.
When the event is announced the system itself invokes
all of the procedures that have been registered for the
event. Thus an event announcement implicitly causes
the invocation of procedures in other modules. [18, p.
9

Implicit invocation is also a programming paradigm, better
known as event driven programming (EDP) or pub-
lish/subscribe (P/S) [12]. Szyperski characterizes it as fol-
lows:

Firing an event is similar to calling a procedure or
method. However, the target of the event is totally un-
known to the source of the event and there can be
multiple targets for a single fired event. Event firing is
not normally expected to return any results. Firing
events is done as a service to other objects, not to ful-
fil local needs. Event models can be seen as a gener-
alization of notification mechanisms, such as the one
introduced in the Observer design pattern. [44 , p.
157]

Not surprisingly, implicit invocation has benefits and dis-
advantages:

One important benefit of implicit invocation is that it
provides strong support for reuse. Any component can
be introduced into a system simply by registering it for
the events of that system. A second benefit is that im-
plicit invocation eases system evolution [...]. Compo-
nents may be replaced by other components without
affecting the interfaces of other components in the sys-
tem. [...]

The primary disadvantage of implicit invocation is
that components relinquish control over the computa-
tion performed by the system. When a component an-
nounces an event, it has no idea what other compo-
nents will respond to it. [...] Finally, reasoning about
correctness can be problematic, since the meaning of
a procedure that announces events will depend on the
context of bindings in which it is invoked. This is in
contrast to traditional reasoning about procedure
calls, which need only consider a procedure’s pre-
and post-conditions when reasoning about an invoca-
tion of it. [18, p. 10]

A special form of implicit invocation is implicit invoca-
tion with implicit announcement of events (hereafter abbre-
viated as I11A), in which events are not published through a
dedicated statement, but are instead specified declaratively.
According to [17, 32], prominent applications of I1IA are
database triggers and wrapper functions in CLOS; it is de-
scribed by the authors as permitting “events to be an-
nounced as a side effect of calling a given procedure”. This
is considered “attractive because it permits events to be an-
nounced without changing the module that is causing the
announcement to happen.” [17, 32]. However, this gain
also worsens the problems quoted above; in particular, it
adds to the ignorance of a component, which under 1A
does not even know that it announces an event.

Aspect-oriented programming (AOP) [23] can be
viewed as a contemporary form of II1A [45]. Indeed, the
most popular AOP language to date, AspectJ, has a power-
ful, declarative pointcut language that allows one to select
from certain points of execution in a program, called join
points, those with which an (implicitly announced) event is
associated. By binding pointcut expressions to methods
called advice, implicit invocation of these methods takes
place whenever the corresponding pointcut fires (matches).
The announcement of the corresponding event can there-
fore be considered implicit.

More recently, concerns have been raised that I11A a la
AOP is anti-modular in that it establishes a strong, implicit
coupling between the components of a system [1, 6, 7, 19,
20, 33, 36, 41, 42, 43, 45]. Especially the absence of ex-
plicit interfaces, or other hints in the places where behav-
iour may get changed, is thought to hamper independent
development. This is in stark contrast to the above quoted
benefit of implicit invocation, namely the easing of system
evolution.

In this paper, we present a simple solution to the prob-
lems of I11A that restores full modularity of involved com-
ponents. It evolved out of our own prior work on avoiding
accidental recursion in Aspect) by introducing type levels
[4, 15], and of our criticism of AOP including the solutions
suggested in the literature to date [41]. Our approach is
based on the novel concepts of join point types as the types

Table 1: Terminology, rough equivalences
Aspect-Oriented Programming, Event-Driven Programming,

this paper Publish/Subscribe
join point event
advice event handler

join point type
exhibits declaration publishes declaration
advises declaration subscribes declaration
pointcut, join point type predicate implicit announcement

event type

of events that can be implicitly announced, and polymor-
phic pointcuts as their type predicates that are defined as
parts of the classes exhibiting join points. Our solution,
which we present as an AspectJ-based extension to the Java
programming language, blends naturally with Java’s native
programming concepts; in particular, it bears some simi-
larities with its type-based notions of interfaces and excep-
tion handling.

The remainder of this paper is organized as follows. We
begin with an introductory example in Section 2, which
demonstrates the problem we are attacking and also builds
the bridge from general I11A to AOP. In Section 3 we in-
troduce the basic concepts of our solution, namely join
point types, polymorphic pointcuts, and explicit join point
creation. Section 4 extends these concepts to subtyping and
inheritance, taking the interaction with class hierarchies
into account. The full language is presented in Section 5;
however, its semantics is only informally sketched, by
showing how it is translated to the constructs of AspectJ.
Section 6 provides a short evaluation based on the experi-
ments we have conducted. Discussion of related work and
a conclusion complete our contribution.

One further remark before we begin. This paper is at the
intersection of OOP, EDP (or P/S), and AOP. This imposes
a terminological problem, namely which labels to use for
the terms we rely on. After several full rewrites of the pa-
per we decided to stick with the jargon of AOP, Aspect] in
particular, mostly because the target language of our com-
piler is Aspect) and many of its concepts shine through.
For readers unfamiliar with AOP and better acquainted
with EDP, Table 1 may serve as a cheat sheet helping
through the paper.

2. A motivating example

1A is perhaps best known in the world of relational data-
bases: so-called triggers allow the interception of database
operations and their enhancement with stored procedures
[11]. To quote from the reference manual of MySQL 5.0:

A trigger is a named database object that is associ-
ated with a table, and that activates when a particular
event occurs for the table. Some uses for triggers are
to perform checks of values to be inserted into a table

@ (b) ©

class A ;. <:' class A k 'K:

—x
class A

(d

classA :35 P! pointcut Y, K):

1 pointcut

class B

class C [class C }1’

N

class C }
pointcut

Figure 1. From standard aspects to typed and modular I11A. (2) Aspect with local pointcut. (b) Same aspect with pointcut
moved in proximity of targets. (c) Pointcut encapsulated by a join point type (jptype) and classes declaring to exhibit corre-
sponding join points. (d) Pointcut split and branches moved into targets (polymorphic pointcut). Dashed arrows represent
referencing and change dependency, vertical dotted bars represent interfaces, and hollow arrows the direction from which

they are programmed against.

or to perform calculations on values involved in an
update. ... A trigger is associated with a table and is
defined to activate when an INSERT, DELETE, or
UPDATE statement for the table executes. A trigger
can be set to activate either before or after the trig-
gering statement. For example, you can have a trigger
activate before each row that is deleted from a table
or after each row that is updated. [31]

For example, the following MySQL statement defines a
trigger named BonusProgram on a table named Shopping-
Cart:

CREATE TRIGGER BonusProgram

BEFORE INSERT ON ShoppingCart

->FOR EACH ROW SET
NEW.amount = NEW.amount + NEW.amount / 2;

It means that before records (called rows) are inserted into
ShoppingCart, the procedure after the -> is implicitly in-
voked, incrementing the value of the rows’ amount field by
one half. Readers familiar with AspectJ will note a certain
similarity; indeed, what a trigger can do to database opera-
tions, an aspect of Aspect] can do to statements of a Java
program.

To demonstrate this, we port our example to AspectJ
and extend it slightly. First, we introduce a class Shop-
pingSession and three referenced classes ShoppingCart,
Invoice, and Log’. The referenced classes all offer meth-
ods for adding an amount of items, the only difference be-
ing that Invoice takes a customer’s personal rebate into
account, which is why its add method receives the cus-
tomer as an additional parameter.

package application;

class ShoppingSession {

ShoppingCart s = new ShoppingCart();
Invoice 1 = new Invoice();

Log I = new Log("'buys™);

Customer c = customerLogOn();

void buy(ltem item, int amount) {
s.add(item, amount);

i.add(item, amount, c);
I.add(item, amount);

}

! Note that logging is not implemented as an aspect.

}

class ShoppingCart {
void add(ltem item, int amount) {.}

class Invoice {
void add(ltem item, int amount, Customer c) {.}

class Log {
void add(ltem item, int amount) {.}

Then, after the application has been deployed, market-
ing wants to install a customer bonus program “buy 2
books, get 1 for free”. Using AspectJ, this added behaviour
can be realized by installing an aspect BonusProgram,
which adapts the amount of books for all add transactions
except that for Invoice:

package aspects;
aspect BonusProgram {

pointcut buying(ltem item, int amount):
execution(* *_add(ltem, int))
&& args(item, amount);

void around (ltem item, int amount):
buying(item, amount) {
if (item.category == ltem.BOOK)
amount += amount / 2;
proceed(item, amount);

}

The (named) pointcut buying specifies the condition that
leads to the implicit invocation of the advice (the block in-
troduced by void around ..). Note that its specification is
highly economical in that it specifies an open number of
locations in the source code, a property sometimes referred
to as quantification [14].

Except for quantification, the situation in Aspect] is
rather similar to that in SQL. In particular, in both cases
only BonusProgram contains hints that, and where or
when, implicit invocation takes place. From a software en-
gineering perspective, however, this poses a serious modu-
larity problem: while BonusProgram implicitly specifies
on what it depends (in case of SQL through the BEFORE
clause, in case of Aspect) through the pointcut buying it
defines), the targets ShoppingCart and Log contain no
hints of this coupling, a property referred to as oblivious-

ness in [14]. In particular, the lack of an explicit interface
on the side of the target means that whenever one wishes to
change the implementation of that target, one does not
know which interfaces to respect. This situation is shown
in Figure 1 (a).

To illustrate this problem for the case of AspectJ, sup-
pose that after installation of the BonusProgram aspect it is
discovered that the log needs a customer entry (changes
highlighted):

class Log {
void add(ltem item, int amount, Customer c)

class ShoppingSession {
void buy(ltem item, int amount) {
'i‘.add(item, amount, c);

}

This change breaks the buying pointcut from above, which
no longer matches Log’s add method. Although this can be
fixed by adapting the pointcut as in

pointcut buying(ltem item, int amount):

(execution(* *.add(ltem, int)) &&

args(item, amount)) ||

(execution(* Log.add(ltem, int, Customer))

&& args(item, amount, ..));
nothing in Log informs the programmer of this necessary
change. The untoward effect this has on modularity and in-
dependent development has been discussed, e.g., in [1, 6, 7,
19, 20, 33, 36, 41, 42, 43, 45].

In the following, we will show how we have solved this
problem for I11A based on Aspect). We expect that our so-
lution can be transferred to other implementations of Il1A,
yet make no definite claims in this regard. However, we
note that the transfer to SQL is straightforward.

3. Join point types, polymorphic
pointcuts, and modularity

Modularity problems such as the one just described are
usually solved through the introduction of interfaces, i.e.,
“shared boundaries across which information is passed”
[22]. In our example, boundaries are shared between
classes ShoppingCart and Log on the one side and the as-
pect BonusProgram on the other, and the information
passed consists of the parameters Item item and int
amount, as well as the fact that the (type of) event that has
triggered the implicit invocation has been named “buying”
(through the pointcut with which the advice is associated).
However, declaration of this interface remains implicit in
BonusProgran (it can be derived from the pointcut buy-
ing), and is completely absent from the classes. Our first
step to restore full modularity is to make the boundary and
the information passed explicit, on both sides.

3.1 Join point types

Inspired by typed P/S [13] and also by Java’s type-based
exception handling, we interpret join points as typed events
and introduce join point types as first class constructs that
serve to specify the interface between classes exhibiting
join points and aspects handling them. In the case of our
example, we define the following join point type:

Joinpointtype Buying {
Item item;
int amount;
pointcut execution(* *.add(ltem, int, ..))
&& args(item, amount, ..);

This type gets instantiated every time a join point covered
by its pointcut occurs in the program. The instance’s fields
are bound to the parameters of the context in which the join
point occurs, as prescribed by the pointcut. Because it char-
acterizes the nature of its instances, we think of the point-
cut as a type predicate.

Join point types like this let us declare interfaces
(boundaries and information passed) between classes and
aspects. In our example, we add the following clauses to
make the interfaces explicit:

class ShoppingCart exhibits Buying {.}

class Logger exhibits Buying {.}
aspect BonusProgram advises Buying {.}

The exhibits clauses mark the caller side of implicit in-
vocation, and the advises clause the called. This may ap-
pear counter to intuition, since the aspect (as the “advisor”)
seems to be the active, and the class (the “advised”) the
passive, and indeed the aspect depends on the classes it ad-
vises and not vice versa; however, such reversal of depend-
ency is not unusual for interfaces (so-called enabling inter-
faces [40]). The situation is depicted in Figure 1 (c)

Definition of the join point type Buying as above allows
us to rewrite the aspect BonusProgram as follows (changes
highlighted):

aspect BonusProgram advises Buying {
before (Buying jp) {
if (Jp.item.category == ltem.BOOK)
jp-amount += jp.amount / 2;
3 ¥

The advice is now parameterized by the variable jp of type
Buying, which holds the join point instance that led to the
implicit invocation of the advice, and which (through its
fields) provides access to the context in which the join
point occurred.? Note that we have changed around to be-

2 What seems like a cosmetic change can have far-reaching consequences:
by assigning the join point instance to another variable, it need not be han-
dled immediately, but like an event can be stored in a queue for later,
asynchronous treatment, or like an exception can be re-exhibited (see Sec-
tion 3.3 on how this can be done). However, because of the volatility of
join points (which after all are points in the execution of a program), asyn-
chronous write access to the context where a join point occurred may be

fore and have dropped the proceed: values written to the
fields of a join point are written back to the actual parame-
ters bound to the fields during join point creation, once the
advice has completed. Following the usual convention of
Java, writing to the fields can be prevented by declaring
them final in the join point type.

Our use of join point types improves modularity in that
maintainers of a class wishing to make changes to it can
consult the definitions of the join point types the class ex-
hibits, and observe the pointcuts specified there. However,
two problems remain.

1. Pointcuts are currently still purely syntactical con-
structs. This means that while it is clear that refactoring
of a class should make sure that all pointcuts of the ex-
hibited types produce the exact same set of join points
after the refactoring, it is not so clear how to deal with
semantic changes: should a new method match a given
join point, should an existing method be changed to
match or no longer match one? For this, a semantic
specification of the pointcuts would be necessary.®

2. In practice, the surface structure (appearance) of join
points of a single join point type can vary greatly from
class to class, in Aspect] typically resulting in complex
pointcuts consisting of many disjuncts (the “quantifica-
tion failure” noted in [43]). Such a pointcut mirrors the
structure of the classes it advises, and changes in this
structure require changes in the pointcut, again com-
promising independent development.

Regarding the first problem: because languages for for-
mally specifying “semantic pointcuts” [28, 35] (analogous
to design-by-contract languages [29] that can specify the
semantics of an interface; cf. Footnote 3) are still mostly
dreams of the future, we resort to an informal description
of the nature of the join points covered by a join point type
(as has also been done for the crosscutting interfaces de-
scribed in [19, 43]; cf. related work for a discussion). It is
then the responsibility of the developer of each class exhib-
iting such a join point type that the join points matched by
the pointcut conform to this informal specification. Regard-
ing the second problem, we can offer a much more tangible
solution.

undefined for temporary variables (actual parameters and temporaries), so
that access should be limited to read only (see the discussion of spectators
and assistants in Section 7). We therefore decided that allowing explicit
assignment of join points may not be worth its price, and currently forbid
it in our language extension.

% As an aside, note that Java’s interfaces are also abstract type specifica-
tions consisting only of a set of method signatures. An implementing class
can give such a type any meaning it chooses to, and different classes can
give it different meanings. The meaning of the (abstract) type is then sim-
ply the union of all its implementations. This may appear unacceptable in
some situations, and natural in others (e.g., implementation of the Run-
nable interface poses no semantic requirements).

3.2 Polymorphic pointcuts

Because classes already specify whether they exhibit join
points of a certain type (through a corresponding exhibits
clause), it seems only natural to let the classes themselves
specify the (part of the) join point type predicate (the point-
cut) under which their join points fall. Transferred to our
example, this means that the pointcut definition in Buying
is dropped and the classes ShoppingCart and Log are ex-
tended as follows:

class ShoppingCart exhibits Buying {
Buying pointcut:

execution(* add(ltem, int))

&& args(item, amount);

X

class Log exhibits Buying {
Buying pointcut:
execution(* add(ltem, int, ..))
&& args(item, amount, ..);

X

The resulting dependencies are shown in Figure 1 (d). Note
that the polymorphic pointcuts lack class information; the
scope of each such pointcut is implicitly constrained to the
class in which its definition occurs. The disjunction of all
class-local pointcuts associated with a join point type then
constitutes the complete pointcut of that type. Because this
is reminiscent of how different classes implementing the
same interface provide for polymorphic methods in Java
(cf. Footnote 3), we call such pointcuts polymorphic. It is
the responsibility of the programmer to make sure that po-
lymorphic pointcuts conform to the informal specification
associated with the corresponding join point type.

3.3 Explicit announcement of join points

Our view of join points as instances of types opens up an
interesting opportunity: it allows us to announce join points
explicitly, corresponding to the explicit creation of events.
For instance, suppose that we want to add a counter cumu-
lating the total number of items delivered, and that we
therefore extend ShoppingSession and its method buy as
follows:
class ShoppingSession {
int totalAmount = O;

void buy(ltem item, int amount) {
s.add(item, amount);
i.add(item, amount, c);
1.add(item, amount, c);
totalAmount += amount;

¥
}

The added statement must be advised by BonusProgram to
maintain consistency, but because this statement does not
involve the variable item (access to which is needed by the
advice), formulation of a suitable pointcut is unobvious —
a problem reported to be not infrequent in practical applica-
tions of AspectJ (so called state-point separation and inac-
cessible join points [43]). Rather than rewriting our pro-

gram so as to allow pointcut matching (the intimacy de-
scribed in [9, 43, 45]), we introduce the following construct
that creates the join point instance with all required pa-
rameters explicitly:

class ShoppingSession exhibits Buying {

void buy(ltem item, int amount) {

exhibit new Buying(item, amount) {
totalAmount += amount;
i
}
The type of this newly created join point, which does typi-
cally not fall under the type predicate (pointcut) of its de-
clared type Buying (because otherwise the explicit creation
would be redundant), can be thought of as an anonymous
inner subtype (analogous to the anonymous inner classes of
Java), i.e., as a join point subtype that comes with its own,
implicit type predicate. More on subtyping in Section 4.

3.4 Modularity achieved

Letting a class declare that it exhibits join points of a cer-
tain type expresses a statement of consent that some of the
classes’ variables may be accessed by aspects advising the
exhibited join points. Moreover, the local pointcut specifi-
cation specifies within the class which of its variables can
get accessed. Conversely, it gives classes the opportunity to
deny aspects access; in particular, and much in the spirit of
information hiding, variables can only be accessed if the
owning class explicitly grants access to them.

As a consequence, our proposal makes evolution of
classes completely independent from aspects: anyone wish-
ing to make changes to the class can check locally, without
resorting to any other declaration or definition, whether
one’s changes respect the advising aspects’ interfaces.
Much more: in case one must break with a (local) pointcut
definition, one can adapt it without affecting the definitions
in other classes, because the scope of a local branch of a
join point is always limited to the owning class. In fact, the
only thing the programmer must guarantee is that the vari-
ables declared in the join point type (e.g., Item item and
int amount Of Buying) are correctly bound to variables in
the context of the local join points. If that is impossible us-
ing a (local) pointcut definition, one can still work around
it with the explicit creation of (an instance of) a join point
(via the exhibit clause as shown in Section 3.3). This
means that the advised classes can be changed at will, as
long as the local pointcut can be adapted accordingly.

To address concerns that local pointcut definitions limit
the expressiveness of our language proposal unduly, we
could offer the combination of “crosscutting”, global point-
cut definitions with local pointcuts, by allowing a global
pointcut definition to be overridden locally. More specifi-
cally, we could allow a join point type declaration (such as
that of Buying in Section 3.1) to include a pointcut defini-

tion that is inherited by the classes exhibiting this join point
type, while at the same time admitting that this (global)
definition is overridden by a local one. However, as the
next section will show, the same effect can be achieved by
making an abstract class exhibit a join point type, and let-
ting the its subclasses inherit the pointcut defined. The im-
patient reader can jump to Figure 6 for an example of this.

4. Subtyping and inheritance

Experience with object-oriented programming languages
has taught that subtyping and inheritance are sources of
considerable (and also often unexpected) complexity. In
order not to repeat errors of the past, we attempt a system-
atic analysis of what subtyping and inheritance mean for
join point types, and how this combines with subtyping and
inheritance of classes. For this purpose, we look separately
at intensions and extensions, i.e., the definitions of types
and the sets of objects falling under these definitions.

4.1 Subtyping and inheritance for join point types

If we want to treat join point types as types on the same
footing as classes, interfaces, and exceptions, subtyping
means that instances of a join point subtype can occur any-
where instances of its supertypes are required (extensional
view) [27]. This is naturally the case if whatever holds for
(the instances of) a join point supertype, also holds for (the
instances of) its subtypes (intensional view). This in turn is
granted by inheritance, i.e., by the propagation of proper-
ties from a supertype to its subtypes, as long as subtypes do
not override the inherited properties in an incompatible
way.

4.1.1 Extensional view

Recursively dividing the set of all join points of a program
into subsets, and viewing each such subset as the extension
of a corresponding join point subtype, seems natural. As
Figure 2 suggests, this division is independent of, and may
be orthogonal to, the association of join points with the
classes and subclasses hosting them.* Orthogonality, if pre-
sent, reflects the crosscutting property commonly associ-
ated with aspects: it indicates that sets of join points re-
garded as being related (as expressed by belonging to the
same type) cannot be assigned to a single branch of the
class hierarchy, but rather crosscut it.

* For the sake of simpler presentation, we have equated join points with
join point shadows [21], that is, with locations in the source code whose
execution may result in an implicit invocation. Every such join point
shadow may represent a potentially infinite set of join points.

JoinPoint

Figure 2. Class Object and two subclasses ¢ and D (all
depicted as rectangles), all possessing join points (depicted
as dots). Join points are also classified by join point types,
here JoinPoint, K, and J (depicted as ellipses), which
form an independent type hierarchy.

Note that orthogonality is not a necessary condition for
join point types. Yet there is a fundamental difference be-
tween the partitioning of the set of join points of a program
through classes and through join point types: while every
join point belongs to precisely one class (so that super-
classes do not include the join points of their subclasses),
the extension of a join point type includes the extensions of
its subtypes.

Set inclusion semantics of join point subtyping dictates
that a join point handler (advice) that accepts join points of
a certain type must also accept join points of its subtypes.
As we will see below, the requirements for this substitut-
ability, namely the availability of the fields that are de-
clared for the join point supertype, are naturally met. Con-
versely, a single join point of a certain type can be handled
by various handlers, namely by those for its type and those
for its supertypes. Since join points lead to (implicit) invo-
cation with the join point as a parameter®, we follow the
generally established rule of method binding in presence of
subtyping, namely that the most specific handler accepting
the join point is invoked (cf. the discussion of polymor-
phism in Aspect] in the related work). Note that this han-
dler is determined per aspect, i.e., in every aspects that has
a matching handler, the most specific one is invoked. This
maintains the broadcast semantics of implicit invocation.

4.1.2 Intensional view

The intension of a join point type consists of its field decla-
rations as well as an (informal; cf. above) specification of
the nature of its instances. This intension is inherited to its

% In fact, implicit invocation could be thought of as being dispatched on
the join point instance as the receiver, which would make aspects behav-
iour-delivering implementors of join point types. However, we do not pur-
sue this interpretation further here (but cf. Related work).

subtypes, meaning that an instance of a join point subtype
has the same fields and must obey the same (informal)
specification as those of its supertypes. Subtypes may how-
ever add to the intension: they can add fields and
strengthen the specification. This ensures that a join point
handler (advice) for a supertype can also accept join points
of its subtypes).

Of particular interest is the case in which a single class
exhibits both a join point type and one of its subtypes: the
pointcut specifications must then be consistent in that the
pointcut of the subtype must imply that of its supertype (so
that the supertype’s extension includes that of its subtype).
Analogous to Eiffel’s inheritance of assertions [29 , Sect.
16.1], this could be ensured by implicitly disjoining point-
cuts defined in a class. However, such is not needed in
practice, since a join point of a certain type is automatically
treated as if it were one of its supertype, should a specific
handler be missing (cf. above). On the other hand, what
must be guaranteed is that a class does not create two join
points for one executed statement (cf. [10] for how this is
currently the case in Aspect]), namely one for the join
point type and one for its supertype. To make sure that only
the most specific pointcut defined in a class creates a join
point, we automatically conjoin the pointcuts of join point
supertype with the negations of the pointcuts of their sub-
types specified in the same class.

4.2 Effect on subtyping and inheritance for classes
exhibiting join points

An entirely different, yet no less important issue is whether
subclasses exhibiting join points are proper subtypes of
their superclasses. Basically, this would require substitut-
ability, i.e., the fact that instances of the subclasses, with
the added behaviour from advice, behave in the same man-
ner as those of its superclasses (which may also, but need
not, be advised by same or different aspects). Whether this
is the case is nontrivial to decide (and has been classified
largely as an open problem [6]); however, we will argue
that the situation for I11A is no worse than for (late bound)
method calling.

4.2.1 Extensional view

The extensional view boils down to the question of
whether an object of a subclass that exhibits certain join
point types can occur anywhere in a program where an ob-
ject of its superclass, which may exhibit other or no join
point types, is expected. Syntactically, the answer is yes,
since I11A does not change the protocol of a class — it only
adds implicit method invocations. Semantically, however,
adding method invocations is similar to overriding, as it

can change behaviour.® Is the class with the changed be-
haviour still a proper subtype of its superclass?

To answer this question, one could attempt to set up a
formal framework that links advice to classes, and formu-
late formal conditions that must be met by advice affecting
the code of subclasses. This could, e.g., include rules of
covariance (or contravariance?) of exhibited join point
types. On the other hand, since subclasses may add code
that can require advice not anticipated by the superclass,
such rules are not easily identified. For this, we decided to
retreat to the general position that I1IA must not lead to a
behaviour that breaks the contract of a (super)class. As
long as all join points reside within methods, pre- and post-
conditions as demanded by design-by-contract [29] should
be sufficient to check substitutability of classes at runtime.
Verifying it statically in a modular fashion (i.e., without re-
sorting to a whole-program analysis) seems possible at
least under the same conditions as for implicit invocation
with explicit announcement (since advice is linked to a
class via exhibits and advises clauses, and the pointcuts
of a class can be locally translated to explicit calls; see also
[81); however, we do not pursue this further here.

4.2.2 Intensional view

Regarding inheritance, the question is whether (class local)
pointcuts and corresponding exhibits clauses should be
viewed as parts of the intension of a class and as such be
inherited to its subclasses. As argued above, that a class
hosts join points does not imply that its subclasses also do.
In fact, even though a class whose behaviour is changed
through the exhibition of join point types (see above) in-
herits this (changed) behaviour to all subtypes, it is still
only the class, and not its subclasses, that actually exhibit
the triggering join points. Also, a pointcut specified in a
class is a local branch of the type predicate associated with
the corresponding join point type and as such a part of the
join point type’s intension, not the class’s. In particular, it
has to satisfy the (informal) specification of the join point
type, not that of the class. It is related to the class only in-
sofar as it maps the specification of the join point type to
the implementation of the class (the occurrence of join
points in the code of the class).

On the other hand, that a subclass does not inherit join
point exhibition and pointcuts from its superclasses does
not mean that it cannot exhibit the same kind of join points
— indeed, this may make sense in certain situations. The
question, then, is whether exhibits and corresponding
pointcuts should be inherited by default and cancelled if
desired, or whether they should not be inherited, but may
be explicitly declared (reintroduced) by a subclass, which

® Note that for a change of behaviour, direct write access to the context of
join points is not needed; the triggered advice can change the state of the
exhibitor via its public interface.

type_specifier ::=

i joinpoint_name
joinpoint_name ::=

identifier | (package_name "."
type_declaration ::=

identifier)

i Joinpoint_declaration
joinpoint_declaration ::=

"joinpointtype" identifier

“{"" { joinpoint_field_declaration } "}"
joinpoint_field_declaration ::=

[“final”] type identifier “;”
class_declaration ::=

{ modifier } "class" identifier

t “"exhibits"™ joinpoint_name [{ “,” joinpoint_name }]

“{" { class_body } "}"
class_body ::= { class_member }
class_member ::=

| joinpoint_pointcut_declaration
block ::=

1 exhibit_block
exhibit_block ::=
“exhibit new ” joinpoint_name “(*“ [{argument }] “)”
“{* { statement } “}”
jJoinpoint_pointcut_declaration ::=
“pointcut” joinpoint_name :” pointcut_expression “;’
pointcut_expression ::=

| “super”
aspect_declaration ::=
{ modifier } "aspect' aspect_name
["advises" joinpoint_name [{ “,” joinpoint_name }]]
“{"" { joinpoint_advice_declaration } "}"
joinpoint_advice_declaration ::=
(""before™|"around" | "after'™)
"("" joinpoint_name variable_declarator ')
{" advice_content "}"

Figure 3. Syntax of our language extension.

then may refer to the superclass’s pointcut using the super
keyword.” Because inheritance is generally known as a
problem for modularity [30], and because modularity is one
of our main goals, we opt for the latter, establishing a clear
inheritance interface with respect to join point exhibition
between a subclass and its superclasses. In particular, this
lets the implementer of a subclass be always aware and in
control of the exhibited join points, avoiding the fragile
base class problem for join points [42].

5. The full language, finally

With the subtyping-related issues clarified as above, we are
now ready to complete the specification of our language.

5.1 Syntax

The syntax rules that add our language extension to the
Aspect) grammar as specified in the AspectBench Com-
piler [2] is shown in Figure 3. According to this grammar,
the program shown in Figure 4 is syntactically correct.

" Note that pointcuts inherited this way are restricted to the scope of the
subclass. Among other reasons, this avoids that a subclass can publish join
points of its superclasses, which the superclasses did not publish.

joinpointtype J {.}
Joinpointtype K extends J {.}
joinpointtype L extends K {.}

class C exhibits J {

pointcut J :© ..
}
class D extends C exhibits J, K {
pointcut J : super;
pointcut K = ..
pointcut L : .. // semantic error
}

class E extends C exhibits L {
pointcut L : ..

" exhibit new LO {.}

aspect X advises J, K, L {

before (3 J) {.}
after (K k) {.}

Figure 4. Sample code highlighting language features.

5.2 Semantics

We sketch the semantics of our language by providing the
mapping of its constructs to those of AspectJ. The mapping
is as follows:

e A join point type maps to a class with the type’s fields
and a constructor for creating instances and setting the
fields; a join point subtype maps to a corresponding
subclass.

e A class local pointcut maps to a correspondingly re-
stricted disjunct of a global pointcut.

e An aspect maps to an aspect; an advice linked to a join
point type maps to advice bound to the corresponding
global pointcut created from the class-local branches.

e To emulate subtyping of join point types, advises
clauses for which no specific advice exists map to addi-
tional advice in aspects providing advice for the super-
types only (cf. Section 4.1.2).

o Finally, explicit announcement of a pointcut maps to a
specially tagged block (see below).

Note that except for the subtyping mentioned above, ex-
hibts and advises clauses are used for semantic checking
only; they are compiled away. Figure 5 shows the result of
this translation when applied to the code of Figure 4.

5.3 Implementation of the compiler

We have implemented a compiler for our form of Il1A on
top of the AspectBench Compiler (abc) [2]. It adds a num-
ber of compiler passes, which are roughly characterized as
follows (passes performing semantic checks omitted):

class J { JC.) {.} .}
class K extends J { K(.) {.} .}
class L extends K { L(C.) {.} .}

class C {.}
class D extends C {.}
class E extends C {

{.}

¥

aspect X {
before <pointcut for J>: {. proceed(.);}
before <pointcut for K>: // same as above J
before <pointcut for L>: // same as above J
after <pointcut for K>: {.}
after <pointcut for L>: // same as for K

¥

Figure 5. Code of Figure 4 translated to standard AspectJ

1. The first pass collects all join point types and creates a
new node holding the fields, a constructor setting the
fields (including those inherited from supertypes), and
an empty pointcut definition for each type.

2. The second pass visits all classes, collects all pointcut
branches specified in each class, explicitly restricts the
scope of each branch to the class in which it occurred
(by adding a corresponding within clause), adds an ex-
clusion clause in case the same class specifies also
pointcuts for join point subtypes (cf. Section 4.1.2), and
adds it so-modified as a disjunct to the pointcut of the
corresponding join point type. Explicit (ad hoc) join
point creation is handled by adding an always-match tag
to the designated statement, which directs abc’s matcher
to insert an unconditional (unguarded) advice invoca-
tion.

3. The third pass visits all aspects and binds each of its ad-
vices to the corresponding pointcut constructed in the
second pass. It inserts a constructor call for the join
point type at the beginning of each advice, which binds
the pointcut parameters to the fields of the correspond-
ing join point type. It also creates copies of the advice
for all join point types that are subtypes of the types al-
ready advised by the aspect, and for which no specific
advice is defined in the aspect (in order to mimic the
subtyping of join point types; see Section 4.1.1). Fi-
nally, it adds the fields of the join point type to the pro-
ceed statement in around advice, and translates before
advice to around advice with a proceed at the end.

The compiler together with additional material can be
downloaded from www.fernuni-hagen.de/ps/prjs/IlIA/.
5.4 Summary of properties, and comparison with
interface and exception types

In brief, our AspectJ-based extension of Java with I11A has
the following properties:

o It interprets join points as runtime instances of user-
declared join point types, with fields of join point types
binding to the context of a join point instance.

o It interprets pointcuts as type predicates of join point
types.

o |t requires that classes exhibit join points explicitly, as
declared by an exhibits <join point type> clause.

o It requires the polymorphic definition of pointcuts by
making classes declaring to exhibit join points of a cer-
tain type define their branch of the corresponding point-
cut (type predicate) locally, the complete pointcut thus
being defined as a disjunction of it class-local branches.

o |t allows the explicit creation of join points at runtime
via an exhibit new <join point type construc-
tor> {<statement>} expression in all cases in which
a suitable type predicate is difficult or impossible to for-
mulate using the given pointcut language (not infre-
quent according to [43]).

¢ |t makes the dependencies of aspects explicit, by requir-
ing them to declare through an adivses <join point
type> clause instances of which join point types they
intend to advise.

Thus, join point types are like Java interfaces (analogies in
parentheses)

e in that they are abstract, i.e., provide no instances of
their own, but must recruit them from the exhibiting
(implementing) classes;

e in that they specify what the exhibiting (implementing)
classes must provide, namely the values of the fields
that are declared in the join point type, while leaving the
how to the classes; and

e in that they allow the creation of anonymous inner join
point types (anonymous inner classes) via exhibit
new <join point type constructor> {<state-
ment>}.

As a result, each class can define the sets of join points it
exhibits individually by providing its own type predicate,
and the extension of each join point type is the union of the
sets of join points of that type as specified by each class.
This is roughly the same with interfaces, which let classes
define the method implementations individually, and
whose extension is the union of those of its implementing
classes.
At the same time, join point types are like exceptions

¢ in that their instances may either come into existence at
some implicitly specified point of program execution
within the lexical scope of the exhibits (throws)
clause, or are explicitly created with an exhibit new
<join point type constructor> {<statement>}

10

Jjoinpointtype UpdateSignaling {
// change of state that affects display

abstract class Shape exhibits UpdateSignaling {
pointcut UpdateSignaling :
execution(void moveBy(int, int));
public abstract void moveBy(int dx, int dy);

class Point extends Shape
exhibits UpdateSignaling {

pointcut UdpateSignaling :

super || execution(void set*(int));
int x, y;
public int getX() { return x; }
public int getY() { return y; }
public void setX(int x) { this.x
public void setY(int y) { this.y
public void moveBy(int dx, int d

X += dx;

y+:

NATIT
<X
e

Yy

dy;
3
3

class Line extends Shape
exhibits UpdateSignaling {
pointcut UdpateSignaling : super;

private Point pl, p2;

public Point getP1() { return pl; }
public Point getP2() { return p2; }
public void moveBy(int dx, int dy) {
pl.x += dx; pl.y += dy;
p2.x += dx; p2.y += dy;
}
¥

aspect Display advises UpdateSignaling {
after (UpdateSignaling us) { update(Q); }
static void update() {.-.}

Figure 6. Drawing example with polymorphic pointcuts.

(throw new <exception constructor>) expression;
and

¢ in that their occurrence is handled in some place remote
from, and unknown to, where they occurred.

Most strikingly, our dealing with join points resembles
dealing with exceptions in that it avoids code tangling, but
not scattering — each scope in which a join point may oc-
cur must be explicitly marked with the corresponding join
point type. Therefore, our proposal is not useful for vastly
crosscutting concerns such as logging or tracing.

6. Evaluation

We have applied our language extension to a number of
publicly available Aspect) programs. The results were not
surprising: pointcut definitions became smaller, but were
distributed among classes, and the code became better
readable, because the advising of classes was apparent
from the classes themselves. To give an impression of this,
Figure 6 shows our transcription of one of the standard As-
pectJ examples, used in [24] and elsewhere. Note its use of
pointcut inheritance, while at the same time both oblivi-
ousness and quantification are reduced; yet, they are not

joinpointtype ItemProducing {}
joinpointtype ConsumerCreation {
Consumer consumer;

class Producer exhibits ItemProducing {
pointcut ItemProducing :
execution(ltem produceltem());

.

class Consumer exhibits ConsumerCreation {
pointcut ConsumerCreation :
execution(new(..)) && this(consumer);

.

class Item {.}

aspect Dispatcher
advises ItemProducing, ConsumerCreation {
List consumer = new ArrayList();
after(ConsumerCreation creation) returning {
consumer .add(creation.consumer);

}
after(ltemProducing producing)
returning(ltem it) {
// dispatch item to consumer

}

Figure 7. Event-driven consumer/producer communica-
tion based on I11A. Note how both parties remain com-
pletely unaware of each other, and also of the dispatcher.

removed entirely, but restricted to single classes. The re-
maining, intra-class obliviousness can be eliminated by tool
support making join point shadows visible in the source
code (as already available for Eclipse’s Aspect] plugin).
Since these pointcuts are specified within the class and are
under exclusive control by the developers of the class,
modularity is guaranteed. Figure 7 provides another popu-
lar example, this time with two different join point types
and a single aspect handling events of both types. Last but
not least, we are confident that we can solve most problems
of state-point separation, inaccessible join points, and
quantification failure described in [43] through explicit
join point creation; however, since we only transformed ex-
isting Aspect) programs (which all had more or less suit-
able pointcuts), we have collected only little empirical evi-
dence in this regard.

One question that remains, though, is whether I11A in
the form made possible by our extension of Java will add
real value in practice. By now it should be clear that be-
cause of its strongly restricted forms of obliviousness and
quantification, and also the lack of inter-type declarations,
it cannot generally replace for Aspect) or other forms of
AOP. In particular, many of the standard applications of
Aspect], including the usual logging, tracing, but also the
implementation of certain design patterns (those requiring
introductions), are not reasonably expressed using our form
of I111A. On the other hand, as demonstrated in the exam-
ples of Figure 6 and Figure 7, it can be used for EDP. EDP

11

is certainly successful, at least as judged by the frequency
of occurrence of the Event Notification [39] and Observer
[16] patterns in current software systems. EDP’s usefulness
even in non-distributed systems is also evidenced by the
fact that it is slowly beginning to move from the pattern
status to a native construct in major programming lan-
guages — for instance, C# offers some basic support, via
delegates and constructs for registering them with a pub-
lisher®. Evidence for the usefulness of implicit announce-
ment is harder to find; knowledge and use of database trig-
gers is mostly confined to the database community; yet the
implementation of business rules in Java as described in
[25], like our example from Section 2, can be based on im-
plicit announcement. The added value of our approach is
that it makes it modular.

7. Related work

Event-driven programming and publish/subscribe In
EDP, registering and unregistering of subscribers usually
occur at runtime, whereas in our approach to I11A they are
“woven in” using the weaving mechanism of an aspect-
oriented programming language (see, e.g., [3, 21], but also
[38] for a viable alternative). Also, the announcement, or
firing, of events in EDP is usually explicit, while it is by
definition implicit in our approach (there is no publish
statement or explicit call of a corresponding procedure).
Types have been introduced to EDP and P/S mainly as fil-
ters for subscribers [13]: rather than accepting every event
and checking it individually for relevance, a subscriber
subscribes only to certain types of events. By contrast, we
use types mostly to specify interfaces on the side of the
publisher, a purpose that is explicitly declined by propo-
nents of implicit invocation [17, 32]. Denying interfaces
sacrifices modularity, which we restore.

Aspect-oriented programming According to most com-
mon definitions of AOP, what we suggest is no longer as-
pect-oriented. For instance, compared to Aspect] it does
not perform well in the removal of scattered code, and
therefore does not modularize crosscutting concerns in the
way expected by many in the aspect community. Compared
to symmetric approaches such as Hyper/J [34], it performs
even worse — because of its restriction to invocation, it
does not support the merging of classes (or aspects) deliv-
ering aspect-wise structure and behaviour (introduction of
new features into classes is not supported).

It follows that implementing important standard aspects
such as logging or tracing, and also certain design patterns
requiring structural introductions, with our proposal is no
good idea. Also, in terms of the much-cited quantification

8 Smalltalk, which may be viewed as the origin of the Observer pattern, al-
ready had it implemented as one of its control structures.

and obliviousness characterization [14], our proposal does
not make it as a form of AOP: quantification is restricted to
classes declaring to exhibit join points, and obliviousness is
compromised to the extent that all classes in which join
points may occur must be explicitly tagged as such. In fact,
we even go as far as permitting explicit marking of indi-
vidual join points through the exhibit new <join
point type> construct, which eliminates obliviousness
and quantification completely.

Adding Polymorphism to Aspect] Ernst and Lorenz
noted that the polymorphism present in AspectJ is basically
ad-hoc; all available inclusion polymorphism is that of the
base language (Java) [10]. In order to introduce late bind-
ing of advice, the authors require some kind of advice
grouping, so that a binding algorithm can “choose exactly
one most specific advice and invoke it, ignoring all the oth-
ers in the group (they are being overridden).” [10]. By our
introduction of join point types and subtypes, and by link-
ing advice to join point types (providing some kind of “ad-
vice signatures” [10]), we have installed such groupings.
However, with the language and its translation to Aspect]
as defined above, advice is still bound at runtime; in par-
ticular, we have not yet explored whether and how our ap-
proach could open the door for separate compilation.

Reduction of AOP to implicit invocation Xu et al. have
shown how aspect-oriented programs can be automatically
reduced to implicit invocation, so that available model
checking approaches designed for implicit invocation can
be used for aspect-orientated programs also [44]. However,
as the authors themselves admit, the practicality of their
approach is limited by the practicality of model checking in
general: formulation of conditions to be checked is diffi-
cult, scalability is poor, and translation of the results (found
counterexamples) back to the original input, in this case
aspect-oriented programs, is nontrivial. By contrast, we
have suggested an intuitive and simple to use type system
that lets the compiler make certain checks, and sketched
how semantic conditions can be ensured both dynamically
and statically, using the traditional means of program veri-
fication.

Type-theoretic interpretation of pointcuts and advice In
[26], Ligatti, Walker, and Zdancewic present formal se-
mantics for an idealized AOPL. For this, they extend the
simply-typed lambda calculus with two new abstractions
covering join points, pointcuts, and advice, and prove type
safety for this calculus. They present a small functional lan-
guage, MiniAML, and show how this maps to the core cal-
culus. MiniAML has some similarities with our language,
most prominently that it allows scoping of advice: func-
tions can be hidden from advice, thereby allowing “pro-
grammers to retain some control over basic information
hiding and modularity principles in the presence of as-

12

pects.” [26] The mapping of MiniAML to the core calculus
is non-trivial; we expect a corresponding mapping of our
own language, although certainly desirable to prove the
soundness of our type system, to be no easier. On the other
hand, what we have delivered can be immediately tried out
in practical settings, allowing the community to improve it
until it is maximally useful.

Stratified aspects In our own previous work, we pro-
posed [15] and implemented [4] an extension of Aspect]
that adds type levels to its join points and aspects. In the re-
sulting language, type information in a program is partly
implicit, and for the rest consists of meta modifiers at-
tached to aspects and pointcuts. According to this type sys-
tem, all join points contained in classes are of type level 0,
all in aspects of type level 1, all in aspects declared with a
single meta modifier of type level 2 and so forth. Pointcuts
to range over join points of type level 0 remain unmodified,
while those to range over type level 1 and higher have to be
modified with a corresponding number of meta modifiers.
This allows us to build towers of aspects as advertised in
[37], albeit on the class rather than the instance level (cf.
below). As can easily be seen, our current type system can
emulate our previous one, simply by dividing the set of join
point types into disjoint subsets each associated with a type
level, and requiring that aspects advise only join point
types from levels lower than the join points they them-
selves exhibit (if that is what they do; aspects exhibiting
join points are not discussed in this paper). In fact, it
should even be possible to automatically construct the type
strata from the exhibits/advises relationships found in a
program, and to report a typing error (or warning) should
the relationship contain circles (potentially leading to self-
application and recursion).

Classpects and Eos-U To achieve greater conceptual in-
tegrity, the “classpects” of Eos-U [37] drop the distinction
between classes and aspects and let instances advise other
instances. However, this requires binding of advising to
advised objects, which introduces additional dependencies.
By contrast, we have introduced join point instances that
are automatically created when a pointcut matches, and let
advice operate on these instances as if it were a method of
the corresponding join point type (cf. Footnote 5). Our gain
in conceptual integrity is therefore comparable. On the
other hand, we believe that Eos-U would profit from the
typing we suggested: for instance, its addobject method
could be typed to accept only objects exhibiting the advised
join point type.

Crosscutting Interfaces (XPIs) Griswold et al. suggest
the introduction of crosscutting interfaces (XPIs) as inter-
faces “that base code designers ‘implement’ and that as-
pects may depend upon” [19]. For this, each XPIl comes
with a “syntactic part” that exposes the signature of named

pointcuts, and a “hidden implementation” [19, p. 54], the
part that specifies the concrete pointcut expressions. XPIs
are enhanced by informal, “semantic” specifications of join
points that need to be observed by the implementers of
classes. Note that storing the implementation, the pointcuts,
in the interface is somewhat unusual (cf. the discussion of
attaching pointcuts to join point types in Sections 3.1 and
3.2), but must be seen as technical tribute to AspectJ as the
language in which XPlIs are currently implemented. How-
ever, this technicality impairs independent module evolu-
tion to a certain extent, since the implementation of the in-
terface is not part of the implementation of the module (so
that decoupling reaches only stage (b) in Figure 1). Adopt-
ing our language extension would let XPIs achieve full
modularity (stage (d) in Figure 1), by letting interfaces be
implemented polymorphically, that is, per implementing
class. At the same time, it addresses elegantly many of the
problematic issues of AspectJ identified in [43], which are
mostly due to the inability to formulate pointcuts that read-
ily match the intended points in a program.

Open Modules Following Aldrich’s influential work [1],
Ongkingco et al. [33] present an implementation of Open
Modules for AspectJ. It introduces a module concept as an
owning collection of classes that together declare a set of
friend aspects (that can freely access all classes of the mod-
ule) as well as specific pointcuts advertised or exposed (the
difference is of little importance here) to aspects. All join
points included in the module that are not exposed are in-
visible from the outside. In addition, a module may expose
join points selectively to aspects that it names. This is
somewhat comparable to, although still sufficiently differ-
ent from, our approach in which join points are specifically
exposed to classes that declare to depend on the join
points’ type. In sharp contrast to our work, however, is that
in Open Modules classes remain unaware of the join points
they expose, and also of the pointcuts specifying those join
points. In particular, in Open Modules a la [33] the point-
cuts used by an aspect cannot be adapted and maintained
on a per class basis, thereby limiting independent evolution
of aspects and base classes to a certain extent. Also, the
ability to declare friend aspects of a module, while allow-
ing such things as debugging via aspects, provides for un-
specified (implicit) interfaces to the module, which basi-
cally implies that friend aspects are part of the modules
whose classes they advise.

Spectators and assistants Clifton and Leavens use the
accept keyword to let classes declare that they admit ad-
vice from the aspects listed thereafter [5]. In Figure 1, this
would correspond to (a) with bidirectional dependencies.
We are taking a different route: by introducing join point
types as middle men between aspects and their targets, and
by introducing class-wise polymorphic pointcuts, we reach

13

the degree of decoupling shown in Figure 1 (d). Clifton and
Leavens [5, 6] further distinguish between spectators (as-
pects that may only observe) and assistants (aspects that
can actually change state). Using our approach, and would
Java offer a modifier similar to C++’s const, we could al-
low declaring single fields of a join point type as being ob-
servable only, or as being changeable, thereby granting
finer-grained access control. On the other hand, preventing
direct write access to objects cannot prevent the behaviour
changing interception of methods. For a more detailed dis-
cussion of how potentially interfering aspects can be sepa-
rated from “harmless advice”, we refer the reader to [7].

Aspect-implied interfaces In their effort to restore modu-
larity of AOP, Kiczales and Mezini argue that “aspects cut
new interfaces through the primary module structure”, and
that a tool can compute these interfaces once a system has
been assembled [24]. This means that a module is no
longer sovereign over its own interfaces — rather, they are
forced upon it by system composition. It follows immedi-
ately that modules cannot be changed independent of their
use in a particular assembly, simply because it is unclear
which interfaces to keep constant. This in turn hampers re-
use in all cases in which a module is to be used in more
than one composition. By contrast, what we have suggested
here is much more conservative: we require that all inter-
faces of a module be made explicit at module design time,
so that programmers can observe them while doing what-
ever they need to do, independently of each other.

8. Conclusion

It seems that implicit invocation with implicit announce-
ment and modularity of components are in tension: one
cannot be achieved without compromising the other. In-
spired by how exception handling is done in Java, and how
its interfaces-as-types provide for the decoupling of the
caller from the called, we believe to have found a middle
way that allows implicit announcement scoped to single
classes, while achieving the classes’ modularity through
explicit interfaces. Applications of the so extended lan-
guage are the same as that for other implicit invocation
mechanisms with implicit or explicit event announcement,
such as (database) triggers or occurrences of the event noti-
fication and observer patterns. Its limitations are clearly
cases in which the publisher should remain unaware of the
fact that it publishes. This includes, for practical reasons,
some of the most prominent applications of AOP, in par-
ticular all extensively crosscutting concerns such as log-
ging or tracing.

References

[1] J Aldrich “Open modules: modular reasoning about advice”
in: ECOOP (2005) 144-168.

(2]

P Avgustinov et al. “abc: an extensible Aspectd compiler”
TAOSD (2005) 293-334.

P Avgustinov et al. “Optimising Aspect]” in: PLDI (2005)
117-128.

E Bodden, F Forster, F Steimann “Avoiding infinite recur-
sion with stratified aspects” NODe (2006) to appear.

(3]
(4]
[5] C Clifton, GT Leavens “Observers and assistants: A proposal

for modular aspect-oriented reasoning” in: FOAL (2002) 33—
44,

C Clifton, GT Leavens “Obliviousness, modular reasoning,
and the behavioral subtyping analogy” in: SPLAT (2003).

DS Dantas, D Walker “Harmless advice” in: POPL (2006)
383-396.

J Dingel, D Garlan, S Jha, D Notkin “Reasoning about im-
plicit invocation” in: SIGSOFT '98/FSE-6 (1998) 209-221.

T Elrad, RE Filman, A Bader “Aspect-oriented program-
ming: Introduction” CACM 44:10 (2001) 29-32.

[10] E Ernst, DH Lorenz “Aspects and polymorphism in AspectJ”
in: AOSD (2003) 150-157.

[11] KP Eswaran Specifications, Implementations and Interac-
tions of a Trigger Subsystem in an Integrated Database Sys-
tem (IBM Research Report, RJ1820, 1976).

[12] PT Eugster, P Felber, R Guerraoui, AM Kermarrec “The
many faces of publish/subscribe” ACM Comput. Surv. 35:2
(2003) 114-131.

[13] P Eugster "Type-based publish/subscribe: Concepts and ex-
periences" ACM Trans. Program. Lang. Syst. 29:1 (2007).

[14] RE Filman, DP Friedman “Aspect-oriented programming is
quantification and obliviousness” in: RE Filman et al. (eds)
Aspect-Oriented Software Development (Addison-Wesley
2004).

[15] F Forster, F Steimann “AOP and the antinomy of the liar” in:
FOAL @ AOSD (2006) 47-56.

[16] E Gamma, R Helm, R Johnson, J Vlissides Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-
Wesley 1995).

[1 D Garlan, D Notkin “Formalizing design spaces: Implicit in-
vocation mechanisms” in: VDM '91: Formal Software De-
velopment Methods Springer LNCS 551 (1991) 31-44.

[17] D Garlan, C Scott “Adding implicit invocation to traditional
programming languages” in: ICSE (1993) 447-455.

[18] D Garlan, M Shaw An Introduction to Software Architecture
CMU Software Engineering Institute Technical Report
CMU/SEI-94-TR-21 (1994).

[19] W Griswold et al. “Modular software design with crosscut-
ting interfaces” IEEE Software 23:1 (2006) 51-60.

[20] S Gudmundson, G Kiczales “Addressing practical software
development issues in AspectJ with a pointcut interface” in:
Workshop on Advanced Separation of Concerns at ECOOP
(2001).

(6]

[7]

(8]

(9]

14

[21] E Hilsdale, J Hugunin “Advice weaving in Aspect)” in:
AOSD (2004) 26-35.

[22] IEEE Standard Computer Dictionary (IEEE, 1991).

[23] G Kiczales, J Lamping, A Mendhekar, C Maeda, CV Lopes,
JM Loingtier, J Irwin "Aspect-oriented programming" in:
ECOOP (1997) 220-242.

[24] G Kiczales, M Mezini “Aspect-oriented programming and
modular reasoning” in: ICSE (2005) 49-58.

[25] R Laddad AspectJ in Action (Manning 2003).

[26] J Ligatti, D Walker, S Zdancewic “A type-theoretic interpre-
tation of pointcuts and advice” Science of Computer Pro-
gramming 63:3 (2006) 240-266.

[27] B Liskov, JM Wing “A behavioral notion of subtyping” ACM
Trans. Program. Lang. Syst. 16:6 (1994) 1811-1841.

[28] CV Lopes, P Dourish, DH Lorenz, K Lieberherr “Beyond
AOP: Toward naturalistic programming”. in: OOPSLA
(2003) 198-207.

[29] B Meyer Object-Oriented Software Construction 2nd Edition
(Prentice-Hall 1997).

[30] L Mikhajlov, E Sekerinski “A study of the fragile base class
problem” in: ECOOP (1998) 355-382.

[31] MySQL 5.0 Reference Manual (http://dev.mysgl.com/).

[32] D Notkin, D Garlan, WG Griswold, KJ Sullivan “Adding
implicit invocation to languages: Three approaches” in: I1SO-
TAS (1993) 489-510.

[33] N Ongkingco et al. “Adding Open Modules to AspectJ” in:
AOSD (2006) 39-50.

[34] H Ossher, P Tarr "Hyper/J: Multi-dimensional separation of
concerns for Java" in: ICSE (2001) 729-730.

[35] K Ostermann, M Mezini, C Bockisch “Expressive point-cuts
for increased modularity” in: ECOOP (2005) 214-240.

[36] H Rajan, KJ Sullivan “Eos: Instance-level aspects for inte-
grated system design” in: ESEC/SIGSOFT FSE (2003) 291—
306.

[37] H Rajan, KJ Sullivan “Classpects: Unifying aspect- and ob-
ject-oriented language design” in: ICSE (2005) 59-68.

[38] H Rajan et al. “Preserving separation of concerns through
compilation” in: SPLAT Workshop @ AOSD (2006).

[39] D Riehle “The Event Notification Pattern — Integrating im-
plicit invocation with object-orientation” Theory and Prac-
tice of Object Systems 2:1 (1996) Page 43-52.

[40] F Steimann, P Mayer “Patterns of interface-based program-
ming” Journal of Object Technology 4:5 (2005) 75-94.

[41] F Steimann “The paradoxical success of aspect-oriented pro-
gramming” in: OOPSLA (2006) 481-497.

[42] M Storzer, J Graf “Using pointcut delta analysis to support
evolution of aspect-oriented software” in: ICSM (2005) 653—
656.

[43] KJ Sullivan et al. “Information hiding interfaces for aspect-
oriented design” in: ESEC/FSE (2005) 166-175.

[44] C Szyperski Component Software (Addison-Wesley 1999). [45]J Xu, H Rajan, KJ Sullivan “Understanding aspects via im-
plicit invocation” in: ASE (2004) 332-335.

15

Part 2
Implementation of a compiler supporting
Implicit Invocation with Implicit Announcement

9. Implementing a IIIA compiler

9. Implementing a IIIA compiler

In the following the implementation of the compiler that extends Java with IIIA is documented.. This documentation
contains the technical appendix details of Part I. Initially, in 9.1 some basic information about the AspectBench
compiler [abc] frameworks are provided, because this compiler framework is used for the implementation. Afterwards,
the concept of the implementation is introduced in 9.2. Finally, referring to the concept the extension of the

AspectBench compiler is described in 9.3.

9.1. AspectBench compiler framework

The AspectBench compiler is a compiler framework which includes an implementation of the Aspect] language. The
framework allows to extend and to optimize the basic Aspect] language via extensions [abc2005]. The compiler is
based on Polyglot [Polyglot] and Soot [Soot], whereas Polyglot act as the front end of the compiler and Soot represents
the back end. The front end parses the source code into an abstract syntax tree (AST) and is responsible for lexical,
syntactical and semantic checks. These checks are performed in compiler passes which can also rewrite the AST. On

the other hand the back end optimizes the AST and generates the executable code.

Polyglot

Polyglot is a compiler front end for Java. It is designed to be extend the Java language and to explore new language
constructs for research. Therefore it allows to customize the grammar and the semantic analysis of a language. For
customizing the syntax Polyglot includes a parser generator named PPG [PPG]. PPG is based on the CUP Parser

generator for Java and provides the ability to extend an existing base language grammar. [Polyglot]

Soot

Soot can be seen as framework for manipulating, optimizing and transforming of Java byte code. The frameworks
offers different representations of the Java byte code to perform different tasks, namely manipulation, optimization,
decompilation and inspection of byte code. [Soot] The AspectBench compiler uses Soot also for the process of

weaving.

In summary it can be said that the AspectBench compiler combines Polyglot and Soot to offer a workbench for
implementing Aspect] or Aspect]-based extensions. Therefore the AspectBench compiler offers the possibility to
extend or adapt syntax, type system, semantic checks, source code transforms and byte code optimization of the Aspect]

language. In order to get more information of AspectBench compiler extensions [abc2005] should be referred.

17

9. Implementing a IIIA compiler

9.2. Qutline of the implementation

As the IITA extension of Java is based on language constructs introduced by Aspect], it is reasonable to re-use the
existing functionality of the Aspect] compiler. For this purpose it is necessary to define how the IIIA language
constructs map to Java or Aspect] language constructs and how the transformation of a IIIA program into an Aspect]
program is accomplished, including the semantic checks that are needed. This general proceeding of extending the

AspectBench compiler is shown in section 3.4 of [abc2005]:

“The normal use of Polyglot is as a source-to-source compiler for extensions to Java, where the final
rewriting passes transform new features into an equivalent pure Java AST. abc is different in that most of
the transformation happens at a later stage, when weaving into Jimple. It is, however, often useful to
employ Polyglot’s original paradigm when implementing extensions to AspectJ that have an obvious

counterpart in AspectJ itself.”

9.2.1. Basic mapping of IIIA to Java/AspectJ constructs

To transform an IIIA program into an Aspect] program it has to be defined how the constructs of the IIIA language map

those of Aspect] and Java. An overview of the mapping can be found in Table 1.

ITIA construct Java/AspectJ construct

exhibiting class class
+ list of join point types
+ class local pointcuts definition

class local pointcut pointcut
- formal parameters
+ join point type name

join point type class
- methods
- constructors

advising aspect aspect
+ list of join point types

join point advice advice

(with exactly 1 join point type as formal
parameter)

- pointcut

@ o9 __

“+” = additional elements , “-” = dropped elements

Table 1: Mapping of IlIA to AspectJ/Java

Exhibiting classes are ordinary Java classes including a list of join point types (whose instances) the class exhibits. The
class local pointcuts, defined within the exhibiting classes, are basically normal pointcut definitions known from
Aspect]. However, they are defined without any formal parameters. Providing formal parameters would be redundant,
as they are already determined through the field declarations of the join point type. For this reason a pointcut in IITA

needs to be linked to the join point type for which it is defined. This is done by adding the name of the join point type to

18

9. Implementing a IIIA compiler

the pointcut definition. A join point type can be mapped to a normal class definition with the restriction, that the

definition may only contain field declarations. Furthermore, final is the only modifier allowed for the fields.

Aspects map to normal Aspect] aspects, but analogous to classes they contain a list of join point types which the aspect
may advise. An aspect may contain several advices. These advice definitions are Aspect] advice definitions with
exactly one formal parameter typed with the corresponding join point type and without a pointcut. The pointcut for the
advice is defined by the class local pointcut definitions which are scattered among the classes exhibiting the same join

point type.

9.2.2. Basic transformation

In IITA there is no central definition of a pointcut. The pointcut definition on which an advice relies is divided and every
part is moved into the class definition the part belongs to. So every class exhibiting the corresponding join point type
contains one part of the global pointcut definition for this join point type. The bracket holding together the scattered
pointcut definitions is the join point type, because pointcuts on the class side as well as advices on the aspect side are

each defined for one particular join point type.

To let the advice apply to every pointcut defined for the same join point type as the advice, the compiler collects all
pointcut declarations for this join point type and combines them into one central pointcut definition. Serving as the
interface between aspects and classes the proper location for the global pointcut definition is the join point type

definition itself.

A __ _ =exhibitss s «joinpointtypes {__gag\l:.e_sg___ ®aspechs
K

e ¥
pointcut K~ gollect| - pe— R
e intcut K g t -
collect SEENIE a i TETETETCES +after{ k 1 K)
C : A N ?

wjoinpointtypes
L

pointcut K

cexhibitssy ~
T intcut L
B - ,P’O

pointcut L

cottect
Figure 1: Simplified overview of transformation
The basic transforms is shown in Figure 1 and can be outlined as followed:

1. Collect all join point definitions and relate them to all classes exhibiting this join point type. To ask for
information about a join point type, store the join point type definitions in a central repository which can be

accessed by other compiler passes.

2. Collect all pointcuts for one particular join point type from all classes exhibiting this join point type and

conjoin them into one global pointcut definition located within the join point type itself.

19

9. Implementing a IIIA compiler

3. For each advice in each aspect set the pointcut of the advice to the global pointcut definition of the advised join

point type as generated in step 2.

9.3. [Extending the AspectBench Compiler

The extension of the AspectBench compiler is performed analogous to the procedure suggested in [abc2005]. This

procedure can be briefly outlined as followed:
1. define the new syntax of the compiler extension
2. integrate new AST nodes and types
3. add new compiler passes, which modify the AST
Beginning with an overview of packages of the compiler extension, the following subsections will describe the

implementation based on these three steps.

9.3.1. Package overview

In order to give a rough overview of the compiler extension the relevant packages are described. Figure 2 shows a

overview of the packages.

abc | polyglot
main polyglot weaving soot m visit types m

frontend ext main

aspecl |

m extension types

parse m

parse visit

so0t
dava jimple m

iiia I
ast types I parse' util I viswt'

Figure 2: Package overview

20

9. Implementing a IIIA compiler

The compiler extension is rooted in the package abc.iiia. This package contains a package for new or extended
AST nodes (abc.iiia.ast), a package for new or extended types (abc.iiia.types) and a package for new
compiler passes (abc.iiia.visit). Classes and resources for parsing an IIIA program are located in the package
abc.iiia.parse and the abc.iiia.util package contains helper and utility classes. Furthermore the root
package contains two classes which integrates the extension in the AspectBench compiler. The first class is called

AbcExtension and the second one is called ExtensionInfo. Figure 3 shows the relationships of the two classes.

AbcExtension

This class extends the class abc.main.AbcExtension. This class configures and extends the behavior of the

compiler. The two important extensions introduced by the abc.iiia.AbcExtension are:
1. create an ExtensionInfo object (see below)

2. initialize the lexer with new IIIA-keywords (see section 9.3.2)

atc |
main fiia aspect]
Extensieninfo
AbcExtension AbcExtension -
jar_classes
reweavingPasses)
— collectVersions() source:_fies
versions
getJPTPrefix() class_to_ast
collectVersions()
makeExtensioninfof) aspect names
makeExtensioninfol)
seiGiobaspectnil) initLexerkeywords() prec_rel
peC
Extensioninfol)
createGlobalAspectinfo() defaultFile Extension()
Extensioninfo ault-ieExiension
getWeaver() v ;)
defaultFileExtensions()
createWeaver() Extensioninfo() -
)) compilerName()
makeAdvicelnliner() compilerName() e
shadowTypes()
s - i passt) createNodeFactory()
istShadowTypes teNodeFact ™
aclimplePacks) credle actory() T createTypeSystem()
implePacks teTypeSyst
: EERETEE, addDependency ToCurrentJob()
addBasicClassesToSoot() passes_iia_transforms() passes()
runtimeSJPFactoryClass() d cle
passes_parse and clean() passes_parse_and_clean(]
createSJPInfo()
B passes_patterns_and_parents()
initLexerkKeywords()
passes_precedence_relation()
findMethedShadows ()
passes_fold_and_checkcode()
getPrecedence()
passes_saveAST()
getPrecNumi) " 0
passes_mangle_names
residueConjuncts()
. passes_aspect transforms()
createReweavingPasses() .
; passes_jimple()
getReweavingPasses()
passes_disambiguate_signatures()

passes_add_members()
passes_interface_ITDs()
passes_disambiguate_all()

21

Figure 3: Extending and adapting the compiler behavior

9. Implementing a IIIA compiler

ExtensionInfo

The ExtensionInfo is responsible for creating the TypeSystem and the NodeFactory (see 9.3.3). In order to
offer new or adapted nodes and types the ExtensionInfo can provide specialized instances of the NodeFactory
or TypeSystem. Also the ExtensionInfo defines which compiler passes traverses the AST and in which order the

compiler passes traverses the AST. The integration of the new IIIA passes is described in 9.3.4.

9.3.2. Extending parser and lexer

The front end of the compiler is responsible for the parsing of the source code and the generation of the AST. The
AspectBench compiler uses Polyglot as front end for parsing, which includes a parser generator named PPG. PPG is

based on the CUP parser generator for Java and allows to extend a base language grammar [Polyglot].

The contribution of PPG is described in [PPG]:

“PPG is a parser generator for extensible grammars, based on the CUP parser generator. It provides the
ability to extend an existing base language grammar written in CUP or PPG with localized, easily

;

maintained changes.’

In order to use PPG for generating a new parser the new syntax has to be defined in PPG notation. The PPG notation is
based on the CUP notation, but extends the CUP notation in some points to allow the extension of a base language

grammar. The exact notation of PPG and CUP can be found at [PPG] and [CUP].

As IITA is based on the Aspect] syntax it is reasonable to use the Aspect] syntax as base grammar and to modify it in

such a way that the IIIA syntax is supported. Therefore the Aspect] syntax definition is included.

The second step for adapting the AspectJ syntax is the definition of new tokens? for the new keywords. The IIIA syntax

introduces the following tokens:

terminal Token JOINPOINTTYPE;
terminal Token EXHIBITS;
terminal Token EXHIBIT;
terminal Token ADVISES;

Listing 1 : New terminal syntax token

The token JOINPOINTTYPE is used to define a new join point type. The token EXHIBITS offers classes the
possibility to define which join point type they exhibit whereas aspects use ADVISES to define which join point types

they advise. The token EXHIBIT is used for explicit exhibiting blocks.

After the definition of the new tokens also the new non-terminal tokens of the new syntax must be defined. A non-
terminal token is a token that expands to other terminal or non-terminal tokens. Listing 2 shows the definition of the
non-terminal tokens. As can be seen from the listing below a non-terminal token has to be typed. Thereby the types of a
non-terminal tokens correspond to the classes of AST-nodes or the type java.util.List, when the token

represents a list of nodes.

2 Atoken is the atomic part of the syntax

22

9. Implementing a IIIA compiler

non terminal JoinpointDecl joinpoint declaration;

non terminal ClassBody joinpoint body;

non terminal List joinpoint field declarations;

non terminal List joinpoint field declarations opt;
non terminal VarDeclarator joinpoint variable declarator;
non terminal List joinpoint field declaration;

non terminal Flags joinpoint modifier opt;

non terminal Flags joinpoint modifier;

non terminal JoinpointName joinpointtype name;

non terminal List joinpointtype name list;

non terminal List exhibition;

non terminal List exhibition opt;

non terminal ExhibitBlock exhibit block;

non terminal List advising;

non terminal List advising opt;

non terminal List joinpointadvice declaration list;
non terminal List polymorphic pc declaration;

Listing 2 : New non-terminal syntax tokens

Having all new terminal and non-terminal tokens integrated into the list of allowed tokens, the syntax of the base

grammar can be adapted:

1. The syntax is defined by combining (terminal and non-terminal) tokens

For the newly introduced non-terminal tokens the syntax can be defined by using CUP notation. To adopt the
syntax of old tokens the PPG extension of the CUP notation must be used. With this extension it can be
specified how the inherited grammar for this token should be handled. In order to preserve the parsers ability to
parse “normal” Aspect], only the extend specification is used. This specification adds the newly defined

grammar to the original grammar, but does not change it.

2. Embedded Java code creates the AST node for this token.

The AspectBench compiler uses a node factory®, which is responsible for the creation of the AST nodes. In the
embedded Java code grabs the tokens of the syntax, and uses the node factory to create from these tokens a

new AST node instance.

To illustrate the described procedure the extension of the class declaration syntax is shown exemplary in Listing 3. The

normal class declaration is extended and the extension adds the non-terminal token exhibition to the declaration.

extend class declaration ::=
// ClassDecl
modifiers opt:a
CLASS:n IDENTIFIER:b
super opt:c
interfaces opt:d
exhibition:f
class body:e

Grm.parserTrace ("CLASS declaration "+ b +" exhibits "+f+" advises ");
RESULT = parser.nf.ClassDecl (parser.pos(n, e),a, b.getIdentifier(), c, d, £, new
ArrayList() , e);
B

r

Listing 3 : Class declaration in PPG syntax

3 The node factor is described in more detail in the next section.

23

9. Implementing a IIIA compiler

The definition of the token exhibition is listed as an example for the grammar definition of a new (non-terminal)

token. The definition in Listing 4 consists of the terminal token EXHIBITS and the non-terminal token

joinpointtype name list.

exhibition ::=
// List of JoinpointName
EXHIBITS:e joinpointtype name list:1
{: RESULT = 1; :}

Listing 4 : Class exhibition in PPG syntax

A joinpointtype name list is simply a comma-separated list of joinpointtype name tokens (Listing
5).

joinpointtype name list ::=
// List of join pointName
join point name:a

List 1 = new TypedList (new LinkedList (), join pointName.class, false);
l.add(a);
RESULT = 1;

| join point name list:a COMMA join point name:b

RESULT = a;
a.add (b) ;
3

’

Listing 5 : Join point type list definition in PPG syntax

This example describes the general procedure of the syntax definition. The full syntax definition in PPG notation can be

taken from the file iiia.ppg within the package abc.iiia.parse. A complete definition of the syntax in BNF

can be found in Listing 6.

type specifier ::=
| joinpointtype name

joinpointtype name ::=
identifier | package name "." identifier

type declaration ::=
| joinpoint declaration

joinpoint declaration ::=
"joinpoint type" identifier

"{" { join point field declaration } "}"

joinpoint field declaration ::=
[“final”] type identifier “;”

class declaration ::=
{ modifier } "class" identifier

["exhibits" joinpointtype name [{ “,” join point name }]]
"{" { class body } "}"

24

9. Implementing a IIIA compiler

class body ::= { class member }
class member ::=
i.joinpoint_pointcut_declaration
block ::=
i.éxhibit_block

exhibit block ::=
“exhibit new ” joinpointtype name “(“ [{argument }] “)”
“{"“ statement “}”

joinpoint pointcut declaration ::=
“pointcut” joinpointtype name “:”

A4
’

pointcut expression
pointcut expression ::=
| “super”

aspect declaration ::=
{ modifier } "aspect" aspect name
["advises" joinpointtype name [{ “,” Jjoinpointtype name }]]
"{" { Joinpoint advice declaration } "}"

joinpoint advice declaration ::=
("before" |"around" |"after")
"(" Jjoinpointtype name variable declarator ")
{" advice content "}"

Listing 6 : Complete syntax definition of IlIA in BNF

Once the syntax is defined in PPG notation, the generation of the parser consists of two steps. Firstly the file including
the syntax definition is fed into PPG (class: ppg.PPG) in order to create from the syntax definition and the included
base grammar a syntax definition in CUP notation. Secondly the generated CUP syntax definition is fed into CUP itself
(class: java cup.Main) in order to generate the parser. The CUP parser generator produces two Java source files
representing the parser. The first Java file is a table of symbols where every terminal token is mapped to an integer. The
second file represents the parser rules. These rules uses the symbols and the Java code which was embedded in the

token definitions to generate the AST nodes.

package abc.iiia;
public class AbcExtension extends abc.main.AbcExtension {

public abc.aspectj.ExtensionInfo makeExtensionInfo(Collection jar classes,Collection
aspect sources) {
return new abc.iiia.ExtensionInfo(jar classes, aspect sources);

}

public void initLexerKeywords (AbcLexer lexer) {
super.initlLexerKeywords (lexer) ;

lexer.addGlobalKeyword ("joinpointtype", new LexerAction c(new Integer (sym.join
point)));

lexer.addJavaKeyword ("exhibits", new LexerAction c(new Integer (sym.EXHIBITS))):;

lexer.addJavaKeyword ("exhibit", new LexerAction c(new Integer (sym.EXHIBIT)));

lexer.addAspectJKeyword ("advises", new LexerAction c(new Integer (sym.ADVISES)));

}
Listing 7 : Adaptation of lexer

25

9. Implementing a IIIA compiler

The AspectBench compiler connects the PPG parser with a lexer in order to map the tokens from the syntax definition
to keywords which can be used in the source code. This mapping is performed in the lexer of the AspectBench
compiler. The lexer is initialized within the class abc.main.AbcExtension. As every compiler extension has to
subclass this class every extension is able to extend or adapt the lexer's initialization. This mapping is performed in the

method initLexer (AbcLexer) . The mapping of IIIA symbols to keywords can be seen in Listing 7.

9.3.3. Introducing new AST nodes and extending the type system

By extending Java with IIIA there is the need for new AST nodes representing the adapted language elements. As IIIA
is an Aspect] based extension for Java the set of new nodes extends the set of existing nodes from the Java or Aspect]
language. An AST node in the AspectBench compiler consists of an interface describing the services of an node and an
implementing class. The decoupling of the interface of an node from its implementation is necessary to allow a node to

be subtype of multiple other nodes.* Figure 4 shows the typical relationships of a node.

=<interfaces=
Node ¢

Node [8f---

= 1

==interfaces=

=

=<interfaces=
MyNode MyMNeode ¢

my Method()

Figure 4: Design of AST nodes
The nodes are instantiated by a node factory. This factory should be the only component of the compiler knowing the
nodes' implementations. All other components like the parser or compiler passes only know the interfaces of the nodes.
Therefore the node factory must offer a factory method for every node which should be instantiated. The AspectBench
compiler allows every compiler extension to offer a specialized node factory. With this node factory new nodes can be

introduced or creation of existing nodes can be changed.

4 This is done to let the node's interface extend multiple node interfaces.

26

9. Implementing a IIIA compiler

=<interfaces= grey = polyglot
Node blue = AspectJ

yellow = 1A

<<interfaces=

] Term

=zinterfaces=

| ClassMember

=<interfaces=
P CodeDecl

=<interfaces= =<interfaces=

o

+—— ClassDecl ProcedureDecl

=<interfaces=

=<interfaces= %
MethodDecl

JoinpointDecl

<interfaces>
<<interfaces:
I—| AdviceDecl

T

HIAClassDecl

=<interfaces=

JoinpointAdviceDecl

=<interfaces=

AspectDecl -
<<interfaces=
<<nterfaces= L
<<interfaces= dt PointcutDecl
llAAspectDecl
] Stmit
T =<interfaces= L ==interfacess
CompoundStmt PointcutAccessablePointcutDecl
=<interfaces= =
—| Pointcut ==interfaces=
L Block <<interfaces:=
; o
i sentertace== PolymorphicPeointcutDecl

PCMName ﬁ) =<interfaces»

- ExhibitBlock
=<interfaces= =<interfaces=

— Prefix L PCSuper
=<interfaces=
L QualifierNode
<<interfaces=
L TypeNode
<<interfaces=

JoinpointName

Figure 5: Hierarchy of interfaces of I11A-AST nodes

Figure 5 shows the hierarchy of the nodes introduced by IIIA. In the following these nodes are described in more detail.

JoinpointDecl

As a join point type maps to a normal Java class its AST node extends the ClassDecl node. The inherited behavior of
the node is unchanged. However, nodes of this type are linked to the IITAClassDecl nodes of all classes exhibiting
this join point type. These links are used for generating the join point type's global pointcut definition from all class

local pointcuts®. Figure 6 shows the JoinpointDecl node in a class diagram.

5 This will be described in 9.3.4 in more detail.

27

9. Implementing a IIIA compiler

JoinpointName

A new TypeNode is required for referencing a join point type (e.g. in a class node which lists all exhibited join point
types, see above). This type node's interface is called JoinpointName and is implemented by two classes, the
AmbJoinpointName c and the CanonicalJoinpointName c, whereas the former is used if the type of the
node is ambiguous and the latter, if the the node's type is unambiguous (Figure 6). Unambiguous types contain the fully
qualified name of the type. For example String is a ambiguous representation of a type, whereas

java.lang.String is its unambiguous representation.

=<interfaces= T o superClass =<interfaces=
ClassDecl []----------------1 - TypeNode
AJClassDecl_c éﬁ

<<interfaces=

<<interfaces= JoinpointName

JoinpointDecl

F---------- mmm-mmmo oo R}
' '

. . * CanonicalloinpointMame_c AmbJoinpointName_c
JoinpeintDecl_c

Figure 6: AST nodes - JoinpointDecl, JoinpointName

TITAClassDecl

As classes are able to exhibit multiple join point types the class nodes have to be able to store a list of names of join

point types. Therefore it is necessary to extend the ClassDecl node. In Figure 7 this extension is illustrated.

<<interfaces= &(/ Crassbecl < <<interface=»
ClassDecl [[F----------------- AspectDecl
zl:. L
AJClassDecl_c AspectDecl_c
=zinterface=> % All =<interface=>
llAClassDecl_c llAAspeciDecl_c
MAClassDec [[J----------=----- ----[{mAAspectDecl
l l <<interfaces=

JoinpointName

Figure 7: AST Nodes - IIIAClassDecl, Il[IAAspectDecl

IITA AspectDecl

Analogous to the class declaration node, the aspect declaration node must also be extended to enable the storing of a list

of join point type names. This list defines which join point types the aspect advises. Figure 7 shows extended node.

28

9. Implementing a IIIA compiler

ExhibitBlock

For explicitly announced join points, an extended block node is needed to store the block's link to a join point type. This

link is necessary to determine the join point type fields and to generate the pointcut matching this block (see Figure 8).

==interfaces= AbstractBlock_c

Block [<]------msemmimesii oo
1 Block_c
e cccccc s e e e e e m
<<interfaces= Zl}‘ R ==interfaces=
- ExhibitBlock_c joinpoint
ExhibitBlock [[<]------------omeoeoe e JoinpointName

Figure 8: AST nodes - ExhibitBlock

ArgsExtractablePC

In Aspect] variables of the context of a join point are exposed by pointcut definitions. In IIIA pointcuts are linked to a
join point type, which can contain one or more fields. Therefore it is necessary that each pointcut exposes a variable for
each field of the join point type it is associated with. So, this interfaceThis is checked by the interface
ArgsExtractablePC, which defines a method providing this service. The interface has to be implemented by all
context-exposing pointcut nodes. These are PCArg (in Aspect]: arg()), PCBinary (in Aspect] conjunction or
disjunction of pointcuts via && or | |), PCTarget (in Aspect]: target ()) and PCThis (in Apsect] this ()).
These pointcut nodes have to be extended, because the existing nodes classes do not implement this interface and

therewith do not provide its service. Figure 9 shows the context of this interface in a class diagram.

right ==interfaces:s

i&—.__:———h;% Pointout [€]- -~ - === mmmmm e ﬁ
pc T
=<interface== =<interface== =<interfaces= <<interfacess =<interface==
PCArgs PCBinary PCNot PCTarget PCThis
Paointcuf_c

B b ; S
L I 7 7 I;

PCArgs_c PCBinary_c PCHNot_c PCTarget_c PCThis_c

z<interfacess

e e e

. extractArgs()
ExtendedPCArgs_c ExtendedPCBinary_c ExtendedPCNot_c ExtendedPCTarget_c ExtendedPCThis_c

<<interface==

NameToTypeConvertablePointcut

converthamesToTypes()

Figure 9: AST nodes - Pointcut nodes

29

9. Implementing a IIIA compiler

NameToTypeConvertablePointcut

Pointcuts of a join point type are not allowed to match join points matched by a pointcut of a join point subtype defined
in the same class. So the pointcut of the join point supertype must be restricted. This restriction can be achieved by
negate the pointcut of the join point subtype and join the pointcut of the join point supertype with this negated pointcut.
But the join point subtype may contain additional fields so that the pointcut of the join point subtype exposes additional
variables. For this reason the pointcut of the join point subtype must be converted before it is negated and joined with
the pointcut of the join point supertype. The conversion of the pointcut replaces all variable names within the pointcut
with the types of the variables. The types are determined by the field declarations of the join point subtype. After this
conversion the pointcut of the join point supertype can be restricted accordingly. The context of the interface is

illustrated in Figure 9.

PCSuper

The PCSuper node is used when referencing the pointcut of the same join point type from the superclass with the
keyword super. Actually this node is only a simple placeholder and marker for a special compiler pass. When the
compiler pass traverses the AST and visits a super pointcut node, it replaces it with the pointcut definition from the
super class. The role of the node is described in 9.3.4 in context with the PolymorphicPointcutInheriter.

Figure 10 shows the node's relationships.

<<interface=>
Painteut_¢
Pointout [------oom s
4 T
=interfaces=
PCHName_c
PCName <.]' """""""""""""""""
4 T
<<interfacess=
PCSuper_c
PCSuper <]' """"""""""""""""""

Figure 10: AST nodes - PCSuper

JoinpointAdviceDecl

The AdviceDecl node has to be extended to make an association of an advice to a join point type possible. This
association is needed to determine the fields of the join point that are used as advice formals. Within the scope of
subtyping of join point types the advices must be able to store a second association to a join point type. This is
necessary, when the compiler pass JoinpointSubtypeAdviceGenerator copies an advice to simulate
subtyping of join point types (see 9.3.4 for more information). The relationships of the JoinpointAdviceDecl

node are shown in Figure 11.

30

9. Implementing a IIIA compiler

PolymorphicPointcutDecl

Because a class local pointcuts are defined for a certain join point type, an extended pointcut node is required. This

extended pointcut node can be associated with a join point type. This can be seen in Figure 11.

=<interfaces=
AdviceBody c
""""" AdviceDecl
=<interface== A|l
PointcutDecl_c
________________________ PointcutDecl AdviceDecl_c
<<interfaces>
PointcutAccessablePointcutDecl_c
""" 1% PointcutAccessablePointcutDecl
T intert. . . i
PolymorphicPointcutDecl_c <<interface== poly morphicPointeutDec] JoinpointAdviceDecl_c <<interface>»>
""""""""" PolymorphicPointcutDecl [“V'| JoinpointAdviceDecl
: advisesJoinpoint {
joingoint =ainterfacess

JeinpointName |5~ c e e d sinpointinstance

Figure 11: AST nodes - PolymorphicPointcutDecl, JoinpointAdviceDecl

For the implementation of the compiler which support the approach of IIIA also the type system of the AspectBench
compiler must be adapted. The type system of the AspectBench compiler is described in [PolyglotDoc] as follows:

“A type system object acts as a factory for objects representing types and related constructs such as

method signatures. The type system object also provides some type checking functionality.”

This type system object is also used in Polyglot's compiler pass TypeBuilder which builds type objects for the nodes
of the AST. Normally the TypeBuilder creates for ClassDecl nodes a ParsedClassType. In order to simplify
semantic checks the ParsedClassType is extended by ParsedIIIAClassType. This class type stores the list of

join point types a class exhibits.

Furthermore the type system object is used build up a central repository of join point type definitions. These repository
is implemented as JoinpointtypeManager and is filled by the IIIA compiler pass JoinpointCollector (see
9.3.4). This repository is used by several IIIA compiler passes to ask for information about join point types. Some of the
passes need this information in order to perform their tasks.® Figure 12 shows the extension of the type system and the

embedding of the JoinpointtypeManager.

6 This will be described in 9.3.4.

31

9. Implementing a IIIA compiler

<<interfaces>

L <<interface=>
e - ParsedClassType_c
F-ee TypeSystem_c | ParsedClassType [<}---------

<<interfaces>

JT
-~ JiTypeSystem ¢ |

<<interface=:=

N

AJTypeSystem
? AJTyp: _c
<<interfaces>
NATypeSystem
=<interfaces= <<interface=:>
_manager ParsedlllAClassType_c
Joinpointtypelt ParsedlllAClassType [------

grey = polyglot :
green = soot JoinpointManagerimpl
blue = abc.aspect]

yellow = abc jiia

Figure 12: Extending the TypeSystem

9.3.4. Introducing new compiler passes

For the transformation of the AST Polygot uses compiler passes. The single passes traverse and rewrite the AST
consecutively while each pass is using the output of the previous pass as input. Each AspectBench extension can create
a list of compiler passes, which defines which passes traverse the AST and in which order they are executed. As there
are multiple passes every pass performs only a small amount of work and it is easy to insert new passes or change the

list of compiler passes. [abc2005].

The adaptation of the list of passes is done in the class abc.iiia.ExtensionInfo. In this class the new IIIA
compiler passes are inserted into the list of the remaining AspectBench compiler passes. In order to be able to use the
existing AspectBench compiler passes with as few changes as possible. Therefore, the IIIA passes are inserted directly
after the parsing, which actually generates the AST, and the compiler pass TypeBuilder, which uses the type system
for creating type objects for the AST nodes. After the IIIA passes, which transform the IIIA-AST into a pure Aspect]-
AST, the original compiler passes of the AspectBench compiler are inserted, which produce from the pure Aspect]-AST

executable byte code.

Figure 13 shows the new compiler passes in the order they are executed in a class diagram. To show the collaboration
of the passes their, transformation is illustrated step by step with a simple example. The source code of the example can
be found in Listing 8, whereas Figure 14 shows the (simplified) AST which the parser generates from the source code
of Listing 8. To improve the readability of the object diagrams, nodes (or subtrees of nodes), which are not involved in

the actual transformation, are labeled with “...”. Modified, newly inserted or replaced nodes are highlighted in red.

32

9. Implementing a IIIA compiler

wvisit '

abeiiiavist

Joinointtype Collector

JoinpointFielkdsAmbiguityRemover

wisit '

JoinpointConstructorGenerator .
pobglotvisit

Modelisitor
JoinpointMethodGenerator
PointeutPatternChecker T
HaltingVisitor
Advice JoinpointtypeFormalExtractor T

JoinpointHameAmbiguityRemover ErrorHandlingVisitor

ClassExhibitor

Visitor

AspectAdivisor outer

PolymeorphicPointeutinheriter

PolymorphicPeintcutFormalsSetter

ExhibitBlock Transformer

PolymorphicPointeutRestrictor

PolymorphicPeintcutSubjeinpointRe strictor

ClassChecker

AspectChecker

JoinpoimtChecker

JoinpointSubtypeAdviceGenerator

PointcutDeclarationGenerator

AdviceTransformer

UnappliedAdviceRemover

Advice JoinpointinstanceCreator

BeforeAdviceReplacer

ProceedCallArgumentSetter

Figure 13: New compiler passes

33

9. Implementing a IIIA compiler

joinpointtype J {}
joinpointtype K extends J {final int a}
joinpointtype L extends K {String b}

class A exhibits J,L{
pointcut J : execution (void doAl());
pointcut K : execution (void doA2(..)) && args(b,a);

void doAl () {

}
void doA2 (String name, int number) {
System.out.println (name+” - “+number) ;

}
void doA3 () {
final int n = 12;
final String m = "Hallo";

exhibit new L (n,m) {
System.out.println("...");
}
}

class B extends A exhibits J,K {

pointcut J : super || (execution(void doBl()));
pointcut K : execution (void doB2(..)) && args(..,a);
/*Q0verride*/

void doAl () {

}

void doB1 () {

}

void doB2 (String name, int i) {

}

}

aspect X advises J,K {

before (J j) {
System.out.println (“Before J”);

}

void around (K k) {

proceed () ;

}

Listing 8 : Transformation example - source code

34

9. Implementing a IIIA compiler

exhibits :AmbJoinpointName_c

AlllAClassDecl © name =J
name = A exhibits :AmbJoinpointdame_c
name =L
AJClassBody_c
AmbJoinpointMame_c
:Polymorphic PointcutDec] ¢ name = J
name =J
:PCExecution_c

initialised = void doA1()

:Polymorphic PointcutDec] ¢

AmbJoinpointName_c

name =L name =L
PCArgs_c
:PCBinary_c
pats =ab
.
AdMethodDecl_c :PCExecution_c
name = doA initialised = void doA2y..)

AdMethodDecl_c

— formals = String name, int number
name = doA2

AdMethodDecl c

J:JoinpointDecl_c

name =.J

AJClassBody_c

K:JoinpointDecl_c

super Type:AmbTypeNode ¢

name = K name =.J
:AJClassBody_c
AmbTypeMode c
:FieldDecl_c name = int
name = a
final:Flags

L:JoinpointDec] ¢

superType:AmbTypeNode_c

name =L

name = K

AJClassBody o

:FieldDec] c

AmbTypeNode ©

name =b

:AmbJoinpointName_c

name = String

name = doAd

body Block_c

I name =L

B:lllAClassDecl_c

name =B

:AJClassBody_c I

‘ExhibitBlock_c

AdCall

arguments =n , m

name = System.out.printing...}

superType:AmbTypeNode_c

name = A

exhibits :AmbJoinpointName_c

name =.J

ex hibits :AmbJoinpointlame_c

name = K

:Polymorphic PointcutDecl ¢

AmbJoinpointMame_c

name =.J

name =.J

:PCBinary_c

:PCExecution_c

inftialised = void doB1()

advises AmbJoinpointMame_c

[lAAspectDec] ¢

name =.J

name = X

advises:AmbJeinpointName_c

name = K

AJClassBody_c I

adviceSpec: Before_c

adviceSpec:Around_c

sJoinpointAdviceDec] ¢

formals =J j

‘JoinpointAdviceDecl_c

:Polymorphic PointcutDecl ¢

:PCSuper_c

AmbJoinpointName ¢

| void:CanonicalTypeNode_c

formals = Kk

name = doAl

name = K name = K
PCArgs_c
:PCBinary_c
pats=..,a
AdMethodDecl ¢
:PCExecution_c

inttialised = void doB2(..)

—

:AJMethodDec! c o]
R R |

‘AdMethodDecl_c

name = doB2

formals = String name, int i

Figure 14: Transformation - Initial AST

35

9. Implementing a IIIA compiler

Pass 1: JoinpointCollector

In the first pass all JoinpointDecl nodes are collected and stored in the JoinpointManger within the types
system object. Therewith the type system offers access to a central repository for all join point types. This repository
can be used by all compiler passes to retrieve information about a join point type. The JoinpointtypeManager
stores a JoinpointDecl node by using its type as key in order to have a unique key for looking up a the

corresponding JoinpointDecl node.

Pass 2: JoinpointFiledsAmbiguityRemover

The ambiguity of join point type fields is removed in order to make it possible to generate the constructors for the join
point instances in the next pass. It is important to remove the ambiguity of the fields before the constructors are
generated, because the constructor of a join point subtype contains also the fields of its join point supertype, although
the types of the join point supertype fields may not have been imported in the source. This would result in a compiler
error as the compiler can not resolve the types. To avoid these errors the ambiguity of the types is removed by replacing

the simple names of the types with their fully qualified names.

JuloinpointDec]_c K:loinpointDecl_c superType:AmbTypeNode ¢ L:JoinpointDec]_c superType:AmbTypeNode_c
name = J names = K names =.J name =L name = K
‘AJClassBody_c gElEbesEodyRg ‘AJClassBody ¢

| final:Flags I -
FiekiDecl_c | fpekiiieclic

. Iin‘f:Carll:irlit:al'l'].-'pﬂh.ll:m:le_t: I Ijaua.laru;.striru:(}amni:arrypeNudB_c I

name = b

name=a

Figure 15: Transformation - JoinpointFieldAmbuigityRemover
Figure 15 shows the result of the transformation in the example. The type nodes of the FieldDecl nodes are replaced
by CanonicalType nodes, which in the AspectBench compiler represents the fully qualified name of a type. This is

noticeable at the change from Stringto java.lang.String.

Pass 3: JoinpointConstructorGenerator

For each JoinpointDecl node a constructor is generated. The generated constructor is used to create an instance of
the join point type within advices. To ensure that all fields of the join point type are initialized the constructor expects
for each (inherited and not inherited) field one formal parameter. The constructor of a join point subtype delegates the
initialization of inherited fields to the constructor of its join point supertype and initializes its own fields afterwards. The
actual instantiation of the join point type within the advices is done in the AdvideJoinpointInstanceCreator-

pass.

Applied to the above example this transformation causes the generation of one constructor for each join point type: an
AJConstructorDecl node is added to the body of the JoinpointDecl node. Figure 16 shows the result of the
transformation. As it can be seen in the constructor of join point type L, it calls the constructor of K in order to initialize

the field a and initialize field b by itself.

36

9. Implementing a IIIA compiler

JJoinpointDec]_c K:JoinpointDec|_c superType:AmbTypehlode ¢ L:JoinpointDec]_c superType:AmbTypeNode_c
name = J name = K name =J name = L name = K
| |

‘AJClassBody_c AJClassBody_c ‘AJClassBody

| — I | — I final:Flags = =
:FieldDecl ¢ - - ‘FieldDecl_c

:AJConstructorDecl_c int:CanonicaTypeMNode_c java.lang.String:CanenicaTypeNode_c I

name =a name =b
:AJGonstructorDecl ¢ e e
formals =int a formals = int a, java.lang.String b

body :Block_c I

super:AJConstructorCall_c

super:AJConstructorCall_c I

arguments = a

:Eval ¢ H :FieldAssign_c I

:Eval_c I—l :FieklAssign_c I

left:AJFisld_c

name = this.a EHFEILE

name = this b

right:AJAmbExpr_c

right:AJAmbExpr_c

name=a

name = b

Figure 16: Transformation - JoinpointConstructorGenerator

Pass 4: JoinpointMethodGenerator

An exhibit block is transformed into an anonymous inner class of the join point type exhibited by the block. In order to
create an anonymous inner class of the join point type a method within the join point type is needed which can be
overridden with the code of the exhibit block. Therefore a method with an empty body is added to the body of the join
point type. This method may not be abstract, because if the join point type contains a abstract method itself must be
abstract, too. Being an abstract type the creation of a join point type instance via a constructor would not be possible
without creating a concrete subtype of it. For this reason an empty method is generated. This method requires for each
of the join point type's field (including those inherited) one formal parameter. This method will be overridden in the
anonymous inner class that is created when the ExhibitBlockTransformer found an ExhibitBlock node

while traversing the AST.

JulginpointDecl_c K:JoinpointDecl_c superType:AmbTypeNode_c f| | L:JeinpointDecl ¢ superType:AmbTypeNode ¢
name =.J name = K name =.J name =L name = K
AJGlassBody_c ‘AJClassBody_c AJClassBody_c

:FiekDecl ¢ :FieldDecl_c || [. . B
AJGonstructorDecl ¢ {int:CanonicalTypeNode_c ‘I java.lang String:GancnicalTypehode_c I
name =a name =b
= AdCenstructorDecl_c AdConstructorDecl ¢
formals =inta formals = int a, java.lang.String b
:AdMethodDecl ¢
name =_5 do AdMethodDecl_c AdMethodDecl_c

 formals =int a body:Block_c +— formals = int a, java.lang.String b body:Block_c
body :Block
B EE=N rame - _$.do

Figure 17: Transformation - JoinpointMethodGenerator

37

9. Implementing a IIIA compiler

In the example this transformation generates an AJMethodDecl node named with $ do for each join point type and
adds the node to the body of the corresponding JoinpointDecl nodes. The generated methods contain an empty

body and requires for each field a formal parameter. Figure 17 shows the result of this transformation.

Pass 5: PointcutPatternChecker

This pass simply checks the pointcut patterns if they adhere to the required syntax of IIIA . In particular, a class pattern
in an execution () -pointcut within a PolymorphicPointcutDecl node is not allowed, because the hole
pointcut is restricted to match only within the class by adding a corresponding within () -pointcut to the pointcut

definition in the PolymorphicPointcutRestrictor pass.

Pass 6: AdviceJoinpointFormalExtractor

This pass examines each JoinpointAdvice node and checks if there is only one formal parameter defined for the
advice, which is represented by this node, and if the formal parameter is a join point type. If this check succeeds, the
name of the join point type is stored in the JoinpointAdviceDecl node, so that later passes know to which join
point type the advice belongs. Also the name of the formal parameter is stored in the node to make the instance of the

join point type available under this name. If the check fails, a compiler error is generated.

advises:AmbJoinpointhame_c HlAAspectDec]
name = J name = X
advises AmbJoinpointName_c :AJClassBody ¢ I
name = K
adviceSpec:Before_c sJoinpointAdviceDecl_c
joinpointArgumentiame = j
advises AmbJoinpointName_c LELEE 1 :

name =J body:..._c

sJoinpointAdviceDecl c

adviceSpec Around_c

jeinpointArgumentMame = k
void:CancnicalTypeNode_c L |
advises :AmbJoinpointName_c body Block_c I—

name = K :ProceedCall_c

L

Figure 18: Transformation - AdviceJoinpointtypeFormalExtractor
The transformation of this pass is shown in Figure 18. The formal parameters of both advice are removed and an
association to a corresponding JoinpointName node is added. Furthermore the names of the formal parameters are

stored in the appropriate JoinpointAdviceDecl node.

Pass 7: JoinpointNameAmbiguityRemover

The ambiguity of the JoinpointName nodes is removed by replacing them with their fully qualified names. This is
necessary for looking up the corresponding JoinpointDecl nodes in the JoinpointtypeManager. The simple
name is not adequate to look up in the repository, because there can be several join point types defined with equal

names but in different packages.

38

9. Implementing a IIIA compiler

exhibils :C LE
AdlACIassDecl © inpoi ¢ AlllAAspectDecl ¢
name = A ErE=d) type =.J name = X
exhibits:C .
:AJCla.ssBudy_cI el s L ‘AJClassBody_c
type = K

:PolymorphicPointcutDec]_c

‘CanonicabloinpointMame_c

name =J

type=dJ

:PCExecution_c

initialised = void doA1()

JoinpointAdviceDecl_c

:Polymorphic PointcutDecl_c

B:lllAClassDecl ¢

superType:AmbTypeNode_c

‘Canonicakloinpointhame_c)))
adviceSpec:Around_c sloinpointAdviceDecl ¢
name =L type=L - 1
void:CanonicalTypeNode_c formals = finakint a
‘PCArgs_c jpinpoi =k
PCBinary_c
pats =ab |
e e |budy:Bluck7c I
initialised = void doA2(..)
< =]
:AdMethodDec] o
body :Block_c type=L | ProcesdCall_c
name = doA3 = - ...
‘ExhibitBlock_c _
_l:l arguments =n , m
— |

name = B name = A
| et Y
:AJClassBody_c —
ex hibits °C. i il il C
type =K

‘PolymorphicPointcutDecl_c sCanonicalJoinpointiame_c

name =J type=d

1—' :PCBinary_c :PCSuper_c I
:PCExecution_c

initialised = void doB1()

‘PolymorphicPointcutDecl_c

‘CanonicakloinpointName_c

name = K

type =K

:PCExecution_c

intialised = void doB2(..)

‘PCArgs_c

pats=.., a

Figure 19: Transformation - JoinpointNameAmbiguityRemover

In the example AST all occurring AmbJoinpointName nodes are replaced with CanonicalJoinpointName

nodes. These nodes represent the fully qualified names of the join point types. Figure 19 shows the transformed AST.

Pass 8: ClassExhibitor

The ClassExhibitor pass is responsible for two tasks: 1. the pass adds the list of JoinpointName nodes to the
(extended) class type. This information is used during later semantic checks. 2. The JoinpointDecl nodes of the

join point types the class exhibits are associated with the TITAClassDecl nodes. These associations are required in

later passes to collect all pointcuts of one join point type.

39

9. Implementing a IIIA compiler

Pass 9: AspectAdvisor

Analogous to the class nodes the JoinpointDecl nodes are associated with the TITAAspectDecl nodes for all

aspects advising the join point type. These associations are also needed for semantical checks.

Pass 10: PolymorphicPointcutInheriter

This pass resolves the references to super pointcuts by replacing PCSuper node with the pointcut of the superclass
defined for the same join point type. The superclass's pointcut must be copied rather than referenced, because every
pointcut will be restricted by a later pass to the class in which the pointcut is declared in. In particular, the superclass's
pointcut will be restricted to match only within the superclass. If a reference would be used the subclass pointcut would

never match as the restriction would be referenced, too. By copying the pointcut reference super gets the right

semantics.
AclllAClassDecl ¢ exhibits:GanonicalloinpointName_c BilllAClassDecl ¢ superType:AmbTypeNode ¢
name = A type =J name = B name = A
-AJClassBody_c exhibits :CancnicallcinpointMame_c :AJClassBody_c exhisits:CanonicalloinpointName_c
type=L type=.J
‘CanonicakloinpointName ¢ exhibits :CanonicakloinpointName_c
:Polymerphic PointcutDec]_c i —
type =J L5
name =.J
-PCExecution :Polymorphic PeintcutDecl_c :Cancnicakl ginpointhame_c
initialised = void doA1() name =J type=J
-PCBinary_c :PCExecution_c
:Polymorphic PointcutDec|_c :CancnicakloinpointMame_c initialised = void doB1()
=L =L
i 2 :PCExecution_c
PCArgs c initialised = void doA2(..)
:PCBinary_c
pst==ah :PolymorphicPointcutDec]_c CancnicakloinpointMame_c
:PCExecution_c name = K type = K
initialised = void doA2(..) PCBinary_c -PCExecution ¢
initialised = void doB2(..)
° —
PCArgs_c
pats=.. . a

Figure 20: Transformation - PolymorphicPointcutlnheriter
In the example the pointcut definition for J in class B contains a super-pointcut. The transformation replaces the
reference to the super-pointcut in class B with the pointcut definition for the join point type J from class A. Figure 20

shows the result.

Pass 11: PolymorphicPointcutFormalsSetter

In this pass the formal parameters of the PolymorphicPointcutDecl nodes are set. For this purpose the
JoinpointDecl node is looked up in the JoinpointtypeManager using the JoinpointName stored in the
PolymorphicPointcutDecl node as the key. The FieldDecl nodes of the join point type are converted to

formal parameters and are added to the pointcut definition.

40

9. Implementing a IIIA compiler

BE:lllAClassDecl c superType:AmbTypeNode_c
AlllACIassDecl ex hibits :Canonicalloinpointhame _c — e b= —
name =B name = A
name = A type =d
exhibits :CanonicalloinpointMame_c
ex hibits :=Cancnicakloinpointhame_c .
:AJClassBody_c SUETEO e type =J
type=L
exhibits :CancnicalloinpointName_c
‘CanonicalloinpointMame_c
type =K
type=J
:Polymerphic PointcutDecl_c :PCExecution_c :Polymorphic PointcutDecl_c :Canonicalleinpointhame_c
name =.J . initialised = void doA1() name = J type=.J

-PolymorphicPainicutDec]_¢ Canonicakloinpointiame_c -PCExecution_c
—— - - - L L':PCBinary_c = v
t— formals = final int a, java.lang.String b type inttialised = void doB1()

:PCExecution_c

PCArgs_c
:PCBinary_c » initialised = void doA2(..)
pats =a,b
:Polymarphic PointcutDecl_c - - -
‘Canonical)oinpointMame_c

HRESEeliLE +— formals = final int a
initialised = void doA2(..) name = K

name =L

type=K

:PCExecution_c
:PCBinary_c
initialised = void doB2(..)

pats=..,a

Figure 21: Transformation - PolymorphicPointcutFormalsSetter

Figure 21 shows the setting of pointcut formal parameters in the example. For pointcuts of join point type J no formal
parameters are set, because join point J contains no field declarations. On the other hand pointcuts for join point type K
the formal parameter final int a and for join point type L the formal parameters final int a,

java.lang.String b are set.

Pass 12: ExhibitBlockTransformer

Explicit announcement via an exhibit block is transformed into an anonymous inner class of the exhibited join point
type (see Pass 4). The anonymous inner class overrides the method generated by the JoinpointMethod-
Generator pass and the statement of the block is copied into the method body. The original exhibit bock is replaced
by a call of the inner class's method and a pointcut matching the call is added to the class. Thereby it is ensured that
advice defined for the join point type is invoked whenever original block is executed. If there already exists a pointcut
definition for the block's join point type, the generated pointcut is added to the existing pointcut definition. If there
exists no pointcut for the block's join point type, a complete new pointcut is generated and added to the class, which

contains the exhibit block.

As illustrated in Figure 22 the exhibit block is transformed into an anonymous inner class of the join point type. A new
instance is created, in which the method $ do () is overridden with the code from the ExhibitBlock node. Also a
new pointcut matching the execution of the overridden join point type method is generated and added to the existing

pointcut of L.

41

9. Implementing a IIIA compiler

AdllACIassDecl ¢ exhibits :CancnicalloinpointMame_c
name = A type=J
exhibits :Cancnicalloinpointhame_c - —
:AJClassBody_c ‘Cancnicalloinpointhame_c
type =L
type =L
:AJMethodDecl_c ‘ExhibitBlock_c EEleT e 3 :Cancnicalloinpointhame_c
body :Block_c . arguments =n . m New_c
name = doA3 arguments =n , m rau ' |—| type =L
L name =_% do
Po hic PointcutDecl _ :Class c
pune oL MethodDec]_c =
+— formals = final int a, java.lang.String b
bl formals = finalint a , java lang.String b
o=k name =_% do
L‘ :PCBinary_c I
‘PCExecution_c Friy EEEL AJCall_c
:PCEinary_c :PCEBinary_c
initialis ed = void doA2(..) name = System.out.printin...)
PCExecution_c
:PCArgs_c
initialised = L._$ do(..)
pats=ab
==
pates =a,b
Figure 22: Transformation - ExhibitTransformer
AcdllACIassDecl © ex hibits :=CanonicalloinpointName_c B:lllAClassDecl ¢ superType:AmbTypeNode_c
name = A type=J name =B name = A
exhibits :CanonicalloinpointName_c :AJClassBody_c exhibits :CancnicalloinpointMame_c
AJClassBody_c -
type =L type=J
— - — exhibits :CanonicakloinpointMame_c
:Polymorphic PeintcutDecl_c ‘CancnicakloinpointMame_c
type=K
name = J type =
‘PCExecution ¢ :Polymorphic PointcutDecl c ‘CancnicakloinpointMame_c
‘PCBinary_c — _ _
inftialised = void doA1() Ei3ed B2
I —
-Amib :PCExecution_c
‘PCWithin ¢ i e h :PCBinary_c I——| :PCBinary_c
- — |name = A initialised = void doB1()
:PCWithin_c :PCExecution_c
:Polymerphic PointcutDecl_c intialised = void doAZ(..)
— - - :Canonicalloinpointhame_c AmbTypeNode_c _
t— formals = final int a, java.lang.String b
name = L type=L name = B
:Polymorphic PointcutDecl_c = o —
-PCEi :CanonicalloinpointMame_c
=t I H formals = final int a
.) type =K
:PCWithin_c :PCBinary_c name = K
l_‘ :PCExecution_c
‘PCBinary_c ‘PCBinary_c —| I ‘PCBinary_c I'| ‘PCBinary_c inftialised = void doB2]..)
AmbTypeNode_c :PCExecution_c :PCExecution_c ‘PCWithin_c -PCAMgs_c
—A initialised = L._$_do(..) initialised = void doAZ/..) pats =..,a
name AmbTypeNode ¢
PCA K
LAL PCArgs_c name = B

Figure 23: Transformation - PolymorphicPointcutRestrictor

42

9. Implementing a IIIA compiler

Pass 13: PolymorphicPointcutRestrictor

As already mentioned the class local pointcuts have to be restricted to match only join points within the class they are
defined in. So this pass adds a restriction to every PolymorphicPointcutDecl node. The Aspect] language offers
a proper pointcut definition to achieve this restriction. The lexical pointcut is called within () and matches every join
point occurring in the type defined by the pattern of the pointcut. In order to restrict the class local pointcut, the original
pointcut is conjoined with a within (<classname>), where <classname> stands for the class the restricted

pointcut is defined in.

Figure 23 shows the AST after the PolymorphicPointcutRestrictor restricted the individual Pointcut-

Decl nodes. By adding the required within () -restriction to the individual pointcut nodes.

Pass 14: PolymorphicPointcutSubJoinpointRestrictor

This pass checks every IITAClassDecl node if the class contains a pointcut for a join point type and simultaneously
a pointcut for a subtype of this join point type. If this is the case, the pointcut of the supertype must be restricted so that
it does not to match when the pointcut of the join point subtype matches. To create the restriction in the pointcut of the
join point subtype all variable names within the pointcut are replaced with there types. This is done by using the
methods of the interface NameToTypeConvertablePointcut which is implemented by the corresponding
pointcut nodes (see 9.3.3). After the names of the variable are replaced with their types, the pointcut is negated and

conjoined with the original pointcut.

n the example two subtyping-induced pointcut restrictions have to be added to the AST. Class A exhibits the join point
types J and L. L is a subtype of J, so that the pointcut of J has to be restricted not to match join points of L's pointcut.
After in the pointcut of L all variable-names are replaced with their types the pointcut is negated with an PCNot node
and conjoined with the pointcut of J with an PCBinary node. The same procedure is applied to the pointcuts for the
join point types J and K in class B, because XK is also a subtype of J. The result of the transformation can be seen in

Figure 24.

Pass 15: ClassChecker

The ClassChecker pass performs semantic checks. In particular, it is checked whether a class contains only
pointcuts to join point types that are exhibited by the class. If this check fails, the pass generates an error as this would
be inconsistent with the concept of modularity of the IITA extension. Also, the pass checks if for every exhibited join
point type a pointcut exists. If a pointcut is missing a warning is generated to provide information about the missing join

point type and the (perhaps) needles exhibition.

43

9. Implementing a IIIA compiler

AzlllAClassDecl_c

exhibits :CanonicakloinpointName_c

‘CancnicalloinpointMame_c

name = A type =d
ex hibits :Cancnicak)ginpointName_c
AJClassBody_c
type =L
:Polymorphic PointcutDecl_c
name =.J type=.J

:PCBinary_c

:PCExecution_c

B:lllAClassDecl o

superType:AmbTypeNode_c

name =B

name = A

Restriction LB} --:PCNot_c

:PCBinary_c

:PCBinary_c

initialised = void doA1()

AmbTypeNode ¢

i :PCWithin_c

‘AJClassBody_c

ex hibits :CancnicalloinpointMame_c

type =J

exhibits :CancnicakloinpointhName_c

type =K

:Polymorphic PointcutDec]_c

CanonicalloinpointMame_c

name =.J

type =J

name = A

:PCBinary_c

:PCExecution_c

:PCExecution_c

initialised = L._$_do..)

:PCArgs_c

initialised = void doA2]..)

PCArgs_c

pats = int , java.lang.String

pats =int , java.lang.String

:Polymorphic PointcutDecl_c

+— formals = final int a, java.lang.String b

name =L

CancnicalloinpointMame_c

type=L

:PCBinary_c I

PCWithin_c I—l—| :PCBinary_c I

Restriction K

L‘ :PCBinary_c

-|:PCBinary_c I
-I:PCBinary_c I

‘PCWithin_c

»—|:PCE!inary_c I

:PCExecution_c

initialised = void doA2(..)

:PCExecution_c

inflialised = void doB1()

AmbTypeNode

(7]

name =B

:PCExecution_c

initialised = vioid doB2(..)

PCArgs_c

:Polymorphic PointcutDec]_c

pats =.. , int

name = K

t— formals = final int a

CancnicallcinpointMame_c

type=K

:PCBinary_c :PCBinary_c
AmbTypeNode_c :PCExecution_c :PCExecution_c
name = A initialised = L._$_do(..) inftialised = void doA2(..)
‘PCArgs _c ‘PCArgs_c
pats=a, b pats =ab

Figure 24: Transformation - PolymorphicPointcutSubjoinpointRestrictor

Pass 16: AspectChecker

The AspectChecker does similar checks on aspect side as the ClassChecker on class side. It generates an error

ifan ITIIAAspectDecl node contains an advice for a join point type which is not advised by the aspect and generates

L‘:PCBinary_c I

»—| :PCBinary_c I

:PCExecution_c

intialised = void doB2(..)

PCArgs_c

PCWithin_c

pats=.. , a

AmbTypeNode_c

a warning if the aspect advises a join point type, but contains no advice for this join point type.

Pass 16: JoinpointChecker

This pass simply checks, whether a join point type is used. Therefore it is checked, whether the join point type is

advised by an aspect and exhibited by a class. If a check fails a warning is generated.

44

name =6

9. Implementing a IIIA compiler

Pass 17: JoinpointSubtypeAdviceGenerator

With this pass the subtyping of join point types on the aspect side is emulated. For this purpose the pass checks if an
aspect declares to advise a join point type and a subtype of this join point type simultaneously. If this is the case, it is
checked if an advice for the subtype is missing. If this is also the case the advice for the join point supertype is copied
and added to the aspect. Before it is added the copy of the advice is modified so that it is associated with the join point
subtype. By copying the advice for the join point supertype it is ensured that the aspect's behavior is exactly the same
for the join point supertype as for the join point subtype.

advises CancnicakloinpointMame_c AlAAspectDec] c

type =J name = X

advises Cancnicakloinpointame_c
AJClassBody c
type=K

JoinpointAdviceDec|_c

adviceSpec:Before_c

joinpointArgumentMame = j

advises Cancnicakloinpointame_c

type =J body:..._c ‘»5‘

sJoinpointAdviceDecl ¢

adviceSpec:Around c
formals = final int a — Copy
void:CanonicalTypeNade_c joinpointArgumentName = k 5

advises CancnicakloinpointMame_c
body:Block_c
type =K

:ProceedCall_c

JoinpointAdviceDec|_c

adviceSpec:Before_c

joinpeintArgumenthame = |

advises Cancnicakloinpointame_c
oo«

generates :Canonicalloinpointhame_c

type =J

Figure 25: Transformation - JoinpointSubtypeAdviceGenerator
The result of the transformation is Figure 25. The before-advice of join point type J in aspect X has to be copied,
because X is advising beside J the join point type K, which is a subtype of J, and and concurrently defines no own
before-advice for K. Therefore the before-advice is copied and added to X. Before the adding it is associated with the
join point type K and in the copy it is annotated, that a join point type instance of J should be generated. This ensures,
that in the advice only the context of J is available and not the extended context of K. This have to be done, because the

copied advice is an advice of J, even if it is invoked by the occurring of join point type K.

Pass 18: PointcutDeclarationGenerator

This pass generates the global pointcut definition of a join point type by visiting every JoinpointDecl node. The
global pointcut definition is created by disjoining all class local pointcut branches of the join point type. The collection

of the pointcut branches is done by exploiting the associations between the JoinpointDecl nodes and the

45

9. Implementing a IIIA compiler

IIIAClassDecl nodes, as created by the ClassExhibitor pass. The final global pointcut is stored in the

JoinpointDecl node of the corresponding join point type.

A:lAClassDecl_c exhibits CancnicalloinpointName_c J:JoinpointDec]_c
‘PCName_c —
name = A type =J _ = name = J
e "7 |name = A
exhibits:CanonicalloinpointName_c H .
:AJClassBody_c e — H PCN AJClassBody_c
| :PCName_c
type =L H -
H name = B.J globalP -Poly PeintcutDecl ¢
:PolymerphicPointcutDecl ¢ [~ """ "7 77T = :
. - — - name =J
name =J ‘CanonicalloinpointName_c -
; typo ; e]
pointcut:. H
i superType:AmbTypeNode c K:JoinpointDecl_c
Poly morphic PeintcutDec]_c !
: name =J name = K
+— formals = final int a, java.lang.String b :Caneonicakloinpointhame_c !
-L : AJC c I
RaTic) .., |tyee=L H int:CanonicalTypeNode_c :FiekdDecl|_c
L|pu|ntcut:... I final:Flags name =a

[+ |:PCMame c | |globalPainteut:Poly icPointcutDecl ¢
BilllIACIassDecl ¢ superType:AmbTypeNode_c H
— formals = finalint a —
name =B name = A
name = B.K name = K

exhibits :Cancnical)einpointName_c

type=.J

~ H

L:JoinpointDecl_c

AJClassBody ¢

exhibits :CancnicakloinpointName_c B I alia (2

name = K muE=L

type=K T
] ‘.MC\a.ssBudy_cI
-Polymorphic PointcutDec]_¢ |l.. -~ H
} — o :FiekiDecl_c
name =J ‘CancnicakloinpointName_c : : Java.lang.String:G scaTyp ¢
- HE name=>b
:PolymorphicPointeutDecl_¢ [l ---~ 77777777 T mmmmm e e e :PCName_c globalPgintcut:Polymorphic PeintcutDec]_c
t— formals = final int a - — “----args =ab [—formals = final int a, java.lang.String b 1
‘CanonicalloinpointMame_c
name = K name = AL name = L

=

Figure 26: Transformation - PointcutDeclarationGenerator
In Figure 24 it can be seen that for every join point type a PointcutDecl node was generated. Each generated node
represents the global pointcut for the corresponding join point type. Therefore the global pointcut uses PCName nodes

for referencing the class local pointcuts.

Pass 19: AdviceTransformer

The AdviceTransformer pass visits each advice and connects it with the global pointcut definition of the advice's
join point type. Therefore the pass creates a reference to the global pointcut definition of the advice's join point type and
adds this reference to the advice. Furthermore the fields of this join point type are converted to formal parameters and

are added to the advice in order to capture the context bindings of the global pointcut.

To avoid that in the advice a formal parameter is referenced in the advice accidentally a prefix is added to the names of
the formal parameters. This prefix contains keywords, which can not be handled by the parser. If the parser would hit
these keywords while expecting a name of a formal parameter a parsing error would be generated. This ensures that the
formal parameters can not be used in the source code and that the context of the join point can only be accessed by
using the join point type instance (the instance of the join point type is created in the AdvideJoinpoint-

InstanceCreator pass)

46

9. Implementing a IIIA compiler

JuJoinpointDec]_c advises :CanonicalloinpointMame_c :lIAAspectDecl ¢
PCName c .
name =.J type=J name = X
name = A.J
:PCBinary_c -AJClas et i -
-PGName_c sBody_c advisesCancnicalloinpointName_c e -
name = B.J globalPointcut:PelymerphicPointcutDec]_c =l
name = .J __""‘----_‘,___7___ :PCName ¢ JoinpointAdviceDecl_c
[name = J.J joinpointArgumentName = j
superType:AmbTypeNode K:JginpointDec]_c ErviceSpechieionelc
name = J name = K advises:CancnicakloinpointName_c
=J
-AJClassBody ¢ I lype
int:=CanonicalTypeNode_c :FiekiDec]_c
PCName ¢
final:Flags name=-a T name - K.K sJoinpointAdviceDecl_c
1 formals = final int <prefi -t
‘PCMName ¢ globalPointcut: PolymorphicPointcutDec] ¢ | [. -e------- 4 |.:u:1\.I iceSpec:Around_c rma A=l EEE
- joinpointArgumentName = k
args =a — fermals = final int a — | void:CanonicalTypeMode_c
name=B.K | |name=K I R TR * : I
H advises :CancnicalloinpointName_c body:Block_c

_F type =K

superType:AmbTypeNode_c L:JeinpointDecl_c

‘ProceedCall ¢

—]
T Memmeme e, . L
|:AJCla.sstudy_c I --+|:PCName_c — -
p— R sJoinpointAdviceDecl_c
:FieldDecl_c | | - |
java.lang.String:CanonicalTy p ' fermals = final in <prefic=_a
name = b joinpointArgumentName = j
adviceSpec:Before_c
‘PCName_c globalPointcut:PolymarphicPointcutDec]_c advises :Canonical) cinpointName_c
args =a,b [—|formals = final int a, java.lang.String b — type =K
=AL -
i name =L generates :Canonical) cinpointName:_c

Figure 27: Transformation - AdviceTransformer

Figure 27 shows the transformation of the advice. Each JoinpointAdviceDecl node is linked via a PCName node
with the global pointcut definition of the advice's join point type. Also the formal parameters of the advice are updated

with the join point type fields. Because join point type J has no fields the corresponding advice has no formal

parameters.

Pass 20: UnappliedAdviceRemover

In Aspect] the formal parameters of an advice must correspond with the formal parameters of the advice's pointcut. In
ITIIA the advice is not linked with its pointcut definition in the source code, but the linked is tied by the
AdviceTransformer during the compilation. This can cause, that an advice is defined for a certain join point type,
but for this join point type there is no (global) pointcut existing’. The result is an advice with an empty pointcut
definition. If the advice's join point type contains any fields, this fields are added as formal parameters to the advice
during the transformation. This produces an advice which formal parameters does not correspond with the formal
parameters of its pointcut. When the original Aspect] passes of the AspectBench compiler are executed, this situation
would produce compiler errors. Therefore the advices, which are linked with a join point type for which no pointcuts

are defined, have to be removed from the AST in order to prevent these errors.

In the example no advice has to be removed.

7 Namely then, when no class local pointcut is defined for the join point type.

47

9. Implementing a IIIA compiler

Pass 21: AdvideJoinpointInstanceCreator

To make the context of the join point available in an advice a instance of the advice's join point type is created. This is
done by using the constructor generated by the JoinpointConstructorGenerator pass (see Pass 3). Therefore
a constructor call is generated into the advice body. The constructor call is inserted as first statement in the advice's
body and uses the actual parameters of the advice as arguments for the call. This ensures that the actual parameters are

bound to the join point type fields and are reachable via the join point type instance.

advises :CanonicalloinpointName_c [lAAspectDec] ¢
type=dJ name = X
|
advises:CanonicakloinpointName_c :AJClassBody_c I
type =K
‘PCName_c — -
WJoinpointAdviceDecl ¢
name =J.J adviceSpec Before_c I-
joinpointArgumentiame =
advises :Canonicalloinpointhame_c ’_A_I
body Block_c
type=J
:CancnicalloinpointName_c LocalDecl ¢
type=J name = j
:CanonicakloinpointName_c M
type=J
:PCName_c wJoinpointAdviceDec|_c

adviceSpec:Around_c

name = K.K formals = final int <prefix=_a |—
void:CancnicalTypeiode ¢

jpinpointArgumentName = k

advises:CancnicakloinpointName_c
type =K body :Block_c

:CanonicakloinpointName_c LocalDecl ¢
type =K name =k
:Canonicalloinpointhame_c New_c | I"
type=K arguments = <prefix=_a ‘ProceedCall_c
‘PCName_c

wJoinpointAdviceDecl_¢
name = K.K adviceSpec: Before_c

formals = final int <prefix=_a —*

advises :Canonicakloinpointhame_c || | | joinpointArgumentName =

type =K

body :Block_c

generates :Canonic alloinpointhame_c

type=J

:Cancnicalloinpointame_c :LocalDecl ¢

type=J name = j

:CanonicaklginpointName_c

type=4J

New_c

Figure 28: Transformation - AdviceJoinpointlnstanceCreator
The instantiation of the join point type is done to provide an object oriented way to handle the join point type. For
instance this includes the access to the fields of the join point type. The creation of a join point type instance is nothing

different then the definition of local variable within an advice, only that the definition is not included in the source code,

48

9. Implementing a IIIA compiler

but generated by the compiler. The instantiation can be left out® by rewriting each access to a field of the join point type

instance to an access to the formal parameters of the advice.

The transformed AST in Figure 28 shows the local declaration of the join point type instances. Therefore for each
advice a LocalDecl node is generated and added to the body of the advice. As name for the join point type instance
the LocalDecl node uses the original name of the join point type advice formal parameter, which was extracted by
the AdvideJoinpointFormalExtractor. Also within the third advice in the aspect a instance of J is created,
although the advice is linked with join point type K. This advice is the one, which was copied by the Joinpoint-
SubtypeAdviceGenerator pass (Pass 6) in order to simulate the subtyping of join point types. This ensures, that

only the context of J is available in the copied advice even if the advice is invoked by the occurring of K.

advises:CanonicakloinpointName_c [NAAspectDec]_c
type=J name =X
I
advises:CanonicakloinpointName_c |:MCla.ssBuch I
type =K
‘PCName ¢ r7—| java.lang.Object:CanonicalTypeNode_c I
rame =1 | [aveeSpes Ao | cebecl c
foinpoi -i
advises:Canonica | L(E
ype=d bady Block_c
-Canonicak c LocalDecl_c
type=d name = |
G \
- = Mew_c
type=J :ProceedCall_c
?7_| void:CanonicaTypeMode_c I
:PCName ¢
iceDecl ©

name = K.K adviceSpec:Around_c

fermals = finalinta —

advises:C. icakloinp : C joinpoi =k
=K
ype body Block_c I
:CanonicalloinpointName_c ‘LocalDecl_c
type =K name =k
:CanenicalloinpointMame_c New_c
=K arguments =a
o L :ProceedCall_c
PCMName ¢

ri—‘ java lang Object:CanonicalTypeNode_c I
name = K.K adviceSpec:Around_c JoinpointAdviceDecl_c

advises:C icakloinp c | | |eme =l
type =K body-Block_c I
[+ -G, icakloinp C
type=J
:CanonicakloinpointhName_c ‘LocalDecl_c
type =K name =k
 —
:CanenicalloinpointName_c New_c B I—<
—K s =
type arguments = a ProcesdCal o

Figure 29: Transformation - BeforeAdviceReplacer

Pass 22: BeforeAdviceReplacer

A before advice is replaced by a around advice for make the changing of the context within the advice possible. A

before advice is transformed into an around advice with a return type of java.lang.Object. This allows the advice

8

For instance to increase the performance and to decrease the memory consumption.

49

9. Implementing a IIIA compiler

to return any type, also primitive types (like int) or even void. After changing the specification of the advice from
before into around a proceed call is appended to the advice body. This has to be done in order to simulate the behavior

of an before-advice, because by before-advices the original join point code is executed after the advice code. The

around advice without the inserted proceed call would replace the original code.

The transformed AST can be found in Figure 29. The advice specifications of the two before advices are replaced by

new Around nodes and the return type of the advice is changed to java.lang.Object. Also a ProceedCall

node is append to the advice's body.

(PCName_c

advises CanonicalloinpointMame_c HlAAspectDec]_c
type=J name = X
|
advises CancnicalloinpointMame_c :AJClassBody_c I
type=K
:PCName_c _
h Decl ¢
name =.J.J adviceSpec:Around_c -
=]
advises . 1(
body :Block_c
type =J
:CanonicalloinpointName_c ‘LocalDecl ©
type=J name =j
:CanonicakloinpointN. s
anonicakloinpointName_c LG
type=J :ProceedCall_c
:PCName_c dviceDecl ¢
name = K.K adviceSpec:Around_c formals = finalint a —1
advises G G plnpulntArgun'llentName =k
type =K |bndy"Bluck_cI
sCancnicakloinpointhame_c :LocalDec] ¢
type =K name =k
:Cancnicalloinpointhame_c MNew_c
type=K =a
Py all_ ¢
arguments = k.a

| ——

name = K.K

iceDecl ¢

adviceSpec:Around_c

advises:CanonicakloinpointMame_c

type = K

i =i
budy':Bluck_cI

generates:CanonicalloinpointName _c

type =J
:Canonicakloinpointhame_c :LocalDecl ¢
type =K name =k

sCancnicakloinpointiame_c

New_ c

|

type =K

arguments = a

Figure 30: Transformation - ProceedCallArgumentsSetter

Pass 23: ProceedCallArgumentsSetter

Differing from Aspect] the IIIA extension requires that proceed calls have no arguments. Instead, the arguments are
inserted into the AST in order to use the Aspect] compiler passes. As the arguments of a proceed call are determined by

the advice's formals and in IITA the advice's formals are represented by the fields of the join point type instance, these

fields have to be inserted as arguments of the proceed call.

50

9. Implementing a IIIA compiler

Figure 30 shows the AST after the proceed arguments are added. For advice of join point type J no arguments has to be
added, as this join point type has no fields. The proceed in the advice for K contains one argument for the K's field

final int a.

After all passes have done their transformation the resulting AST is a valid Aspect] AST. The IIIA related information
and nodes are removed from the AST or transformed, so that they can be used as Aspect] or Java nodes. This allows the
original Aspect] passes and the rest of the AspectBench compiler to generate Java byte code by using the AST as input.

Therewith the hole IIIA transformation can be seen as prefix of the hole compilation process.

10. Example of usage of I11A

In the following subsections the usage of the IIIIA concepts is demonstrated with two examples. The first example is a
producer consumer scenario and in the second one some basic business rules for a simple banking account system are

implemented. The full code of the examples and further examples can be found on the IIIA-project site [IIIAproject].

10.1. Producer consumer scenario

A typical scenario in operating systems is the producer consumer problem. This scenario can be sketched as a producer
produces items and a consumer consumes the items. The communication between the producer and the consumer is
realized by buffer. A problem occurs when the producer wants to store a new item in the buffer and the buffer is full or

when the consumer wants to consume an item and the buffer is empty.

With IIIA this scenario can be handled very simply and understandably. First, there is a producer class whose instances
produces the items. In the example these items are only wrappers around random integer values, but can be replaced by
any other objects. The counterpart to the producer is the consumer. It takes an item and consumes it. In addition, two
types of join points are defined in the program. Instances of the first type occur when a new consumer is created, those

of the second are generated when an item is produced.

The link between a producer and a consumer is an aspect named Dispatcher. The dispatcher's advice is triggered by the
two join point types. The new consumer event prompts the dispatcher to store a reference to the new consumer in a list.
When the dispatcher's advice is invoked by the production of a new item, this new item is handed over to the dispatcher
via a join point type instance. Then the value of the item is checked and, when it is not valid (in the example the value
“0” is invalid), rejected. If the value passes the check, the dispatcher starts to find an idle consumer (a consumer which
is not consuming at the moment). If there is an idle one in the list, the item is passed to the consumer. If there is no idle
consumer in the list, the dispatcher is suspended for a short time and after the pause retries to find an idle consumer in

the list.
A overview of the scenario can be seen in Figure 31.

51

10. Example of usage of I1IA

==UESE== ltem =S E=
:'"""""""'"""""""""""""""""""_':% walue tint [T T T T T T 1
: ==threads= <¢us‘e_>_:: e
Producer _ * 2
=<joinpointty pe>> “<ASpECT=>
<<ppintcut>> temProducing : > + B
""""""""""" Iltem Producin S Ispatcher
numberOfltems : int == hibits == 8 |< T
runi) <<advises=> 777" | check(Item) : boolean
produceltem() :ftem - - - | dispatch{ltem)
<=joinpointtypes> zzad I-SE"S;;‘ ==advice== after|temProducing)
i Consumer ¢ ConsumerCreation <<advices> after(ConsumerCreation)
<<pointcut=> ConsumerCreation : z<exhibits==
consumer : Consumer

L

Figure 31: Overview over producers/consumers scenario

The implementation of this scenario works with two join point types. The first is called ItemProducing and should
occur whenever an item is produced.. The second join point type is named ConsumerCreation and arises whenever
a consumer is created. This will be used by the dispatcher to build up a list of consumers, for which purpose a field of
type Consumer is defined within the join point type. The dispatcher then searches the list for a consumer to which an

item can be dispatched. Listing 9 introduces the two join point types.

public joinpointtype ItemProducing {}

public joinpointtype ConsumerCreation {
Consumer consumer;

}
Listing 9 : Producer-consumer join point types

Listing 10 shows the definition of item which is produced and consumed. As already mentioned it is a simple wrapper

around an integer value, but the type of the value is replaceable.

public class Item {
public int value = 0;

}
Listing 10 : Item class

The producer's implementation can be found in Listing 11. Producer implements the java.lang.Runnable
interface in order to run the item production in an own thread. The method run () simply produces a certain amount
of items. Furthermore the class exhibits the join point type TtemProducing. To satisfy the requirements of IIIA the
class has to provide a pointcut for the exhibited join point type. In our example the pointcut for the TtemProducing

type matches the execution of the method produceItem ().

public class Producer implements Runnable exhibits ItemProducing {
pointcut ItemProducing : execution (Item produceltem()) ;
private int numberOfItems = 0;
public Producer (int numberOfItems) ({

this.numberOfItems = numberOflItems;

}

52

10. Example of usage of I1IA

public void run() {
System.out.println (" [producer]\tstart producing "+numberOfItems+" items");

for(int 1 = 0; i < numberOfItems; i++) {
Item it = produceltem() ;
System.out.println (" [producer] item "+i+" : "+it.value);

}
System.out.println (" [producer] stop producing");

}

private Item producelItem() { ...}

}
Listing 11 : Producer class

Listing 12 shows the implementation of Consumer. The consumer is simple Java class exhibiting the join point type
ConsumerCreation. The pointcut of this join point type matches the constructor of the class and exposes the just
created Consumer instance. The real consumption of an Item instance is done in the method named

consume (Item).

public class Consumer exhibits ConsumerCreation ({
pointcut ConsumerCreation : execution(new(..)) && this(consumer) ;

private java.util.Random random = new java.util.Random() ;
private boolean working = false;

private String name;
public Consumer (String n) {
name = n;
}
public String getName () {return name;}

public void consume (Item it) {

working = true;

System.out.println (" ["+name+"] consuming "+it.value);
&ééking = false;

}

public boolean isWorking () {return working;}

}
Listing 12 : Consumer class

Listing 13 shows the implementation of Dispatcher. This aspect is responsible for dispatching the produced items to
the consumers. Therefore it advises the two join point types ITtemProducing and ConsumerCreation. For both
join point types the aspect offers an advice. The first advice is invoked, when a Consumer instance is being created.
To build up a list of consumers the advice stores the instance of Consumer in the list consumers within the aspect.
The second advice is invoked, when a new item is produced. Firstly the produced item is checks by the method
check (Item). If th item passes the check, the Dispatcher searches in the list of consumers for an idle one. This is

done in the method dispatch (Item) which starts for the dispatching an own thread so that the producer is not

53

10. Example of usage of I1IA

blocked and can continue with the production of items. If no idle consumer the dispatching-thread is suspended and

after the pause the search for on idle consumer is started again.

public aspect Dispatcher advises ItemProducing, ConsumerCreation {
private java.util.List consumers = new java.util.ArrayList();

after (ConsumerCreation creation) returning {

System.out.println (" [dispatcher] add new consumer: "+creation.consumer.getName ()) ;
consumers.add (creation.consumer) ;

after (ItemProducing producing) returning(Item it) {
System.out.println (" [dispatch] receive item : "+it.value);
boolean check = check(it);
if (check) {

dispatch (it) ;

} else {
System.out.println (" [checking] invalid value "+it.value+"! item rejected");
}
}
private boolean check(Item it) {...}

private void dispatch(final Item it) {
Runnable r = new Runnable () {
public void run() {
System.out.println (" [dispatch] search for idle consumer") ;

boolean searching = true;
while (searching) {

for(java.util.Iterator i = consumers.iterator(); i.hasNext();) {
Consumer ¢ = (Consumer) i.next();
if (!c.isWorking()) {
System.out.println (" [dispatch] "+c.getName()+" is idle ...");
c.consume (it) ;
searching = false;
break;
}
try {

Thread.sleep (1000) ;
} catch(InterruptedException e) {
System.err.println(e) ;

}

}
b7
Thread th = new Thread(r);
th.start () ;

}
Listing 13 : Dispatcher aspect

An exemplary output may look like in Listing 14.

dispatcher] add new consumer: Consumer 1
dispatcher] add new consumer: Consumer 2
dispatcher] add new consumer: Consumer 3

producer] start producing 20 items
] receive item : 2

producer] item 0 : 2

dispatch] search for idle consumer

dispatch] Consumer 1 is idle

[
[
[
[
[dispatch
[
[
[
[

Consumer 1] consuming 2

54

10. Example of usage of I1IA

[Consumer 1] sleeping for 2527
[dispatch] receive item : 2
[producer] item 1 : 2

[dispatch] search for idle consumer
[dispatch] Consumer 1 is busy
[dispatch] Consumer 2 is idle
[Consumer 2] consuming 2

[Consumer 2] sleeping for 2412
[dispatch] receive item : 3

[dispatch] receive item : O

[checking] invalid value 0! item rejected
[producer] item 4 : O

[Consumer 3] ready for new Items
[dispatch] receive item : 4

[producer] item 5 : 4

[dispatch] search for idle consumer

Listing 14 : Output of producer-consumer-scenario

10.2. Business rules

An example from [AJIA2003] illustrates the use of Aspect] for implementing business rules. Business rules are thought
to be crosscutting concerns because they influence not only a single functionality in the software system but rather
affect many business transactions implemented in the software system. In the example of [AJIA2003], the scenario of a
simple banking system is chosen. The system allows to debit and credit an account and to transfer an amount of money

from one account to another.

In this example also a simple bank system is implemented with the same functionality: debit and credit an account as

well as the transfer from one account to another. Furthermore the following business rules are implemented:

» dynamic credit check

If an account is debited, it is checked, whether the total capital of the customer covers the debit

+ charging an account with transfer fees

On every account transfer the transferring account is charged with a transfer fee. Exclusion is, if the owner of

both accounts is the same. Also the transfer fee depends on the amount of the transfer.

At first the basic classes are defined, which covers the core concerns of the banking system. These are classes for a
Customer, an Account and an AccountTransferSystem. The implementation of the Customer is kept very
simple. It defines that a customer has a name and can own many accounts. The Account class is responsible for
managing the balance of an account. To identify an account, it contains an account-number. For crediting and debiting
the class offers corresponding methods. If an account is credited and the balance is unscientific to cover the credit, a
InsufficientBalanceException is thrown. The AccountTransferSystem transfers a certain amount

from one account to another one.

The business rules are implemented in aspects. One aspect, called DebitingRules, is responsible for the dynamic

credit check and another aspect, called TransferRules, implements the calculating and charging of the transfer fees

55

10. Example of usage of I1IA

during a transfer. In order to invoke the aspect's advices, join point types are required. For this reason the
implementation of the business rules uses three join point types: AccountAction, Debiting and Account-
Transfering. The join point type Debiting is exhibited by the class Account which defines a pointcut for the
join point type matching the debit () -method of Account. Furthermore the aspect DebitingRules advises the
Debiting and contains a before advice which checks, whether the total capital of the customer covers the debit. The
join point type AccountTransfering is exhibited by AccountTransferSystem. This class defines a pointcut
for the join point type which matches the transfer () -method. On aspect side, AccountTransfering is advised
by TransferRules which defines an around advice for the join point type which computes the transfer fee and

charges the account initiating the transfer with this computed fee.

An overview over the hole scenario is given in Figure 32.

InsufficientBalanceException L
=<joinpointty pes:>
InsufficientBalanceException| String) AccountAction
s Ve account : Account
GCustomer throws e
4 i <ethroviss, T
name : String . R o
Account -| ==joinpointtype== <<aAspect>>
getTotalBalance() : float R A 5 Debiting |- ____ . | DebitingRules
- ' Py— cadvisesss
1 17 balance : float |- - - s H amount - <<advice=> before(Debiting)
. = =

credit{float) T

debiti float) —
< =l
T =<joinpointty pes:>
| SeUsEs> TransferRules
A 1T ferSyst [AccountTransfering |- ____ ——— e
ccountTransfe em ! -advi
—— .. . reciever : Account =<AVISES=> | __advices> around|AccountTransfering)
transferiAccount. Account. float) =<exhibits=: computeTransferFee()

Figure 32: Overview over business rules scenario

In the following the implementation is described in more detail. Listing 15 shows the join point types.

public joinpointtype AccountAction {
Account account;

}

public joinpointtype Debiting extends AccountAction({
float amount;

}

public joinpointtype AccountTransfering extends Debiting {
Account reciever;

}

Listing 15 : Join point types in business rules example

Listing 16 contains the implementation of the Customer class.

public class Customer ({
private Map accounts = new HashMap () ;
private String name;

public Customer (String name) {this.name = name;}

56

10. Example of usage of I1IA

public String getName () {return name;}

public void addAccount (Account account) {...}
public void removeAccount (Account account) {...}
public Account getAccount (int number) {...}
public float getTotalBalance() {...}

}
Listing 16 : Customer class

The implementation of an Account can be found in Listing 17. This class exhibits the join point type Debiting.
Therefore the class offers a pointcut matching the debit () method. Furthermore the pointcut exposes the amount of

the debit and the instance of Account, which is debited.

public class Account exhibits Debiting({

pointcut Debiting:

execution (void debit(..)) && args(amount) && this (account);
public Account (int number) {...}
public Account (int number, float balance) {...}
public int getAccountNumber () {...}
protected void setBalance (float balance) {...}

public float getBalance() {...}

public void credit (float amount) {setBalance (getBalance() + amount);}
public void debit (float amount) {setBalance (getBalance() - amount);}
public Customer getOwner () {...}

public void setOwner (Customer new owner) {...}

}
Listing 17 : Account class

Next, the AccountTransferSystemn is introduced in Listing 18. This class offers a simple static method, which
transfers a certain amount from one account to another. For including the transfer rules of the software system the class
exhibits the join point type AccountTransfering and offers a pointcut for it. This pointcut matches the execution

of the transfer () -method, which causes the invoking of the advice of AccountTransfering.

public class AccountTransferSystem exhibits AccountTransfering{
pointcut AccountTransfering
execution (void transfer (Account, Account, float))
&& args (account, receiver, amount);
public static void transfer (Account from, Account to, float amount) {
from.debit (amount) ;
to.credit (amount) ;

}
Listing 18 : AccountTransfer class

Now, the aspects, which implements the rules, are described. Listing 19 starts with the aspect DebitingRules. The
aspect advises the join point type Debiting and defines an advice for it. The advice simply checks, if the customer's
total capital covers the amount of the debit. If the customer capital does not cover the amount an Insufficient-

BalanceException is thrown.

57

10. Example of usage of I1IA

public aspect DebitingRules advises Debiting {

before (Debiting debit) {

log ("Debiting ["+debit.amount+"] from : "+debit.account);

// Get total money of customer

float total = debit.account.getOwner ().getTotalBalance() ;

if (total < debit.amount) {
throw new InsufficientBalanceException ("Total Balance of “+
debit.account.getOwner () .getName () +" is with "+total+" “+
“unsufficient for debiting "+debit.amount) ;

}
Listing 19 : DebitingRules aspect

The next listing, Listing 20, shows the aspect TransferRules. This aspect computes the transfer fee and charges
the account, from which the money is transfered, with this computed fee. Therefore the aspect advises the join point
type AccountTransfering and offers an advice for it. This around advice calls the aspect's method

computeTransferFee (), invokes the original join point by an proceed() and charges afterwards the account with

the fee.

public aspect TransferRules advises AccountTransfering {
void around (AccountTransfering transfer) {

float transfer fee = computeTransferFee (transfer.account,
transfer.receiver, transfer.amount) ;
try {

proceed () ;
if (transfer fee > 0) ({
transfer.account.debit(transfer_fee);
}
} catch (Exception e) {System.out.println(e);}
}
private float computeTransferFee (Account account, Account receiver, float amount)
{...}
private static void log(Object msg) {...}
}

Listing 20 : Transfer rules aspect

11. Summary and conclusion

11.1. Summary of contribution

Being an Aspect] based extension for Java the approach of implicit invocation with implicit announcement (IIIA)
integrates join point types in Java and therewith results in the introduction of certain new language elements. These new
elements were mapped to existing Java/Aspect] language elements and a transformation was developed that is able to

accomplish this mapping.

Based on this transformation the compiler supporting IIIA was implemented by creating an extension for the
AspectBench compiler framework (abc). The implemented compiler extension consists primarily of a parser, several

new nodes of the abstract syntax tree (AST) and several compiler passes. The parser extends and adapts the Aspect]

58

11. Summary and conclusion

language grammar in order to support the IIIA syntax. Furthermore the parser uses the new nodes of the compiler
extension for creating an abstract syntax tree during the parsing of IIIA-programs. Thereby the new AST nodes contains
additional information, which are required by the compiler passes of the compiler extension. These compiler passes are
responsible for the transformation of the AST into a pure and valid Aspect]-AST, so that the Aspect] functionality of
the AspectBench compiler can finish the compilation and can produce Java byte code from the Aspect]-AST. The
implementation of the compiler and with it the approach of IIIA was tested on some examples that demonstrate the

promised modularity of the approach.

11.2. Conclusions

After having applied IIIA in a couple of examples a statement concerning usage and usability of the compiler and the

supported approach of IIIA can be made as follows:

Compared to Aspect] programs, pointcut definitions in IIIA programs become smaller and less complex and therefore
better readable. At the same time, they are scattered over the exhibiting classes. This is the result of splitting the
pointcut into class local pointcuts and distributing them to the classes they match in. Depending on standpoint this is no

disadvantage, since it reduces the obliviousness and thus the anti-modularity Aspect] is often criticized for,

59

References

References
[abc] : abc-Team "The AspectBench Compiler for Aspect]" , http://abc.comlab.ox.ac.uk/, last visit: 02.07.2007
[abc2005] : Pavel Avgustinov, Aske Simon Christensen , Laurie Hendren, Sascha Kuzins, Jennifer Lhotak, Ondfej

Lhotak, Oege de Moor, Damien Sereni , Ganesh Sittampalam, Julian Tibble "abc : An extensible Aspect] compiler"
http://abc.comlab.ox.ac.uk/documents/taosd2005.pdf, last visit: 02.07.2007

[AJTA2003] : Ramnivas Laddad "Aspect] in Action", 2003, 1-93-0110-93-5
[AJIA2003] : Ramnivas Laddad "Aspect] in Action", 2003, ISBN 1-930110-93-6

[CUP] : CUP-Team "CUP - LALR Parser Generator in Java" , http://www?2.cs.tum.edu/projects/cup/, last visit:
02.07.2007

[[ITAproject] : Friedrich Steimann, Thomas Pawlitzki "Modular Programming with Join Point Types and Polymorphic
Pointcuts" , http://www.fernuni-hagen.de/ps/prjs/I11A/, last visit: 02.07.2007

[Polyglot] : Andrew Myers "Polyglot - A compiler front end framework forbuilding Java language extensions" ,
http://www.cs.cornell.edu/Projects/polyglot/, last visit: 02.07.2007

[PolyglotDoc] : Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers "Polyglot: An Extensible Compiler
Framework for Java" , http://techreports.library.cornell.edu:8081/Dienst/Ul/1.0/Display/cul.cs/TR2002-1883, last visit:
02.07.2007

[PPG] : Michael Brukman, Andrew C. Myers "PPG - A parser generator for extensible grammars" ,
http://www.cs.cornell.edu/Projects/polyglot/ppg.html, last visit: 02.07.2007

[Soot] : Patrick Lam, Feng Qian, Ondrej Lhotak "Soot: a Java Optimization Framework" ,
http://www.sable.mcgill.ca/soot/, last visit: 02.07.2007

60

Ehrenwortliche Erklirung

Hiermit erkldre ich, dass ich die vorliegende Arbeit selbstindig und ohne Benutzung anderer als der angegebenen
Hilfsmittel angefertigt habe. Alle Stellen, die wortlich oder sinngemél aus verdffentlichten oder nicht verdffentlichten

Schriften entnommen wurden, sind als solche kenntlich gemacht.

Koln, den 02.07.2007 Thomas Pawlitzki

	MCSc_Pawlitzki_7074573_1.pdf
	OOPSLA2007-submitted.pdf
	MCSc_Pawlitzki_7074573_2.pdf

