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Indeed, the complexity of biological systems may force us to alter in radical ways our traditional
approaches to the analysis of such systems. Thus, we may have to accept as unavoidable a substantial
degree of fuzziness in the description of the behavior of biological systems as well as in their
characterization. This fuzziness, distasteful though it may be, is the price we have to pay for the
ineffectiveness of precise mathematical techniques in dealing with systems comprising a very large
number of interacting elements or involving a large number of variables in their decision trees.

Lotfi A. Zadeh, 1969 [14], p. 200

Lotfi A. Zadeh himself anticipated very early that medical diagnosis would be the
most likely application domain of his theory [14]. Despite his prominent forecast,
work on fuzzy set theory in medicine has largely remained that of individuals and
is still considered informal and ad hoc by many. This is the more surprising as fuzzy
sets formalize gradation, a natural characteristic of medicine that is incompatible
with the discrete nature of classical AI. Interest of the medical AI community in
fuzzy set theory should thus be vital.

1. The motivation of fuzzy sets

Nature has provided us with a mind that allows a certain sloppiness in the
descriptions of our environment. This sloppiness is sometimes at conflict with the
rigor of formal analysis, as the following example demonstrates.
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If the low blood pressure of a patient increases by a small amount, say 1 mmHg,
then, because nothing significant has happened, it will still be considered low. A
mean arterial blood pressure of 70 mmHg is certainly low. Therefore, by induction,
every blood pressure above 70 mmHg should be low, which is, of course, not true.

This old paradox (quoted after [4]) is easily resolved if one accepts that the
denotation of the word low is not as sharply defined as would be required for
induction to be applicable. Clearly, if 70 mmHg means low blood pressure, then 71
mmHg may still rightfully be called low, even though it is not quite as low as 70
mmHg. The higher the blood pressure gets, however, the less adequate the
description low becomes, until a point is reached where low is not an adequate
description at all.

AI, in its attempts to draw level with the performance of the human mind, relies
to a large extent on symbolic reasoning as a model of human thinking. Symbols,
like the words of a language, are names that denote concepts, and concepts are
abstractions from the concrete entities that constitute reality. To formally assign the
symbols a meaning they are usually associated with sets, collections of entities that
represent what the symbol stands for. There are situations, however, in which the
meaning of a word or symbol cannot be captured adequately by an ordinary set.
The term cold for example denotes the range of cold temperatures, which may vary
from context to context but, clearly, always lacks a sharp boundary. Analogously,
the set of people one might call one’s friends is not as sharply defined as would be
required if classical sets were to be used. It is Zadeh’s contribution to AI that he
provided us with a formal framework that allows it to capture the meaning of
vague concepts: the theory of fuzzy sets.

2. The definition of fuzzy sets

A fuzzy subset A0 of a (base) set X is specified by its membership function mA0 ,

mA0 : X� [0,1],

assigning to each xeX the degree or grade to which x belongs to A0 . Other than
ordinary subsets, fuzzy subsets allow the partial membership of their elements, the
degree of membership being expressed on a continuous scale from 0 to 1. [0, 1] is
called the 6aluation set of mA0 . Other valuation sets are also possible; the unit interval
is the one introduced by Zadeh [13] and is still the most common.

Clearly, the membership function of a fuzzy subset A0 of X — called fuzzy set A0
for short—is a generalization of the characteristic function of ordinary subsets,
which has a binary valuation set {0,1}. It is therefore legitimate to regard fuzzy sets
as generalizations of ordinary sets.

Fuzzy sets come with fuzzy set operators, which are usually specified on the basis
of their operands’ membership functions. Given two fuzzy sets A0 and B0 , fuzzy set
union, @ , is commonly defined so that

mA0 @B0 (x)=max(mA0 (x),mB0 (x))
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and intersection, S , so that

mA0 SB0 (x)=min(mA0 (x),mB0 (x)).

The complement, ¬, of a fuzzy set A0 is then defined by

m¬A0 (x)=1−mA0 (x).

Other definitions of these and further set operators have also been proposed, but
result in weaker structures (see, for example, [12]). Notice that the above definitions
of operators on fuzzy sets include those on ordinary sets as special cases. Fuzzy set
theory is a generalization of standard set theory.

It is a common phenomenon that generalizations of formal constructs have
weaker properties and thus form weaker structures than their specializations. In the
case of fuzzy set theory some laws of Boolean algebra that hold for ordinary set
theory do not hold for its fuzzy extension. In particular, if union, intersection, and
complement are defined as above,

A0 S¬A0 "f

and

A0 @¬A0 "X,

i.e. the laws of noncontradiction and excluded middle do not apply. This is not, as
is sometimes concluded, a flaw of fuzzy set theory, but merely the price to pay for
greater expressiveness.

That there is indeed an advance in expressive power of fuzzy sets over ordinary
sets is illustrated by the following fundamental relationship. To every fuzzy set A0
corresponds a family of ordinary sets

(Aa)a� [0,1]

called the a-le6el-sets or a-cuts of A0 . Each Aa is defined as

{x�X �mA0 (X)]a},

i.e. as the set of elements of X whose degree of membership in A0 is greater than or
equal to the threshold a. The definition implies that the Aa are ordered by a so that

Aa± Aa%

for all

0Ba5a %51.

a can be interpreted as assigning some rank to each set of the family, for example
a degree of specificity or the degree to which the set is an extension of a certain
concept. A fuzzy set may therefore be viewed as comprising the information
captured in a possibly infinite number of nested ordinary sets, each having a rank
assigned to it.

With the dissemination of fuzzy set theory it has become common to speak of
fuzzy logic whenever fuzzy sets and some computation based thereon are involved.
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As a matter of fact, fuzzy logic has become the keyword of the whole field (it is,
for example, included in the U.S. National Library of Medicine’s Medical Sub-
ject Headings, whereas fuzzy set theory is not), although its definition and its
relation to standard logic is by no means as agreed upon as that of fuzzy set
theory to standard set theory ([3], for Zadeh’s most recent definition of fuzzy
logic – see [15]). For most work based on fuzzy logic, however, it is sufficient to
understand the fundamentals of fuzzy set theory.

3. The controversy over fuzzy sets

From the perspective of other sciences fuzzy set theory has been perceived as
perfectly natural: ‘The notion of a fuzzy set... is an entirely uncontroversial
extension of respectable mathematical concepts.’ [9]. Yet, the mathematical com-
munity itself has indulged in lengthy discussions concerning the necessity, sound-
ness and adequacy of fuzzy set theory [2,6,11].

It seems that although fuzzy set theory has been contested on purely theoreti-
cal grounds, most of the debate is due to its supposed rivalry with probability
theory, the predominant uncertainty calculus of the past and present. The irrita-
tion among the followers of probability theory is not without reason: even
though Zadeh made it quite clear right from the beginning that ‘the notion of a
fuzzy set is completely nonstatistical in nature’ [13], fuzzy set theory and its
relatives, in particular possibility theory, have been recognized as accessible
means of treating uncertainty, thereby entering the territory of probability theory
and challenging its prescriptive sovereignty.

The struggle is, of course, not one of displacement, but one of finding the
innate positions. To illustrate this, consider the following situation. We see a
bottle half filled with water, and we know of another bottle we cannot see that
it is either full or empty, the chances being even. There are at least two different
aspects to this situation: one can focus on the truth value of a statement saying
that a particular bottle is filled to a certain extent, or one can ask for the chance
of such a statement being true. In case of the first bottle, the degree of (partial)
truth of the statement ‘the bottle is full’ may be set at 0.5, whereas the chance
that it is totally true is 0. In case of the second bottle, the degree of truth of the
same statement is unknown (as is the actual state of the bottle; yet we know
that it is either 1 or 0), but the chance that the statement is again totally true is
0.5.

Both fuzzy set theory and probability theory can, in principle, be used to
model and reason about either aspect of this situation: both are mathematical
constructs that are independent of any particular use. However, one will agree
that the first aspect, pertaining to the partial match of a proposition and a
perfectly known state of affairs, is more naturally modelled in terms of fuzzy set
theory, while the second, relating to the partial ignorance of what is actually
present, is the classical domain of probability theory.
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4. The power of fuzzy sets

Classical AI is discrete in nature. Its models of reality are built from enumerable
sets of symbols. Because the complexity of these models invariably increases with
the number of symbols employed, resolution1 and simplicity of AI systems are
almost mutually exclusive properties. As a result, medical AI systems often lack the
gradation that would be required to render the continuity of the addressed medical
problem. For example, would it not seem natural that different patients presenting
with comparable symptoms be given comparable diagnoses? Yet many diagnostic
systems lack this fundamental property: due to system-immanent thresholds, similar
cases may be separated during the qualitative abstraction of continuous parameters
and are subsequently treated differently, possibly resulting in significantly differing
diagnoses. Analogously, would it not seem likely that a slight alteration over time
in the parameters observed of one patient changes the diagnosis only slightly?
Instead, however, symbolic dynamic systems usually respond to a continuous
change in the patient’s condition with an abrupt change in state.

Fuzzy sets, on the other hand, have become known for their ‘ability to introduce
notions of continuity into deductive thinking’ [10]. Transferred to practice this
means that the use of fuzzy sets allows a conventional symbolic system (specified in
the form of rules, tables, or whatever) to adopt continuous behaviour. This should
indeed be of considerable interest to the medical AI community, because, as
indicated above, medicine is essentially a continuous domain.

How can the use of fuzzy sets resolve the mismatch between the discreteness of
symbolic systems and the continuity of medical reality? For clear-cut cases (cases
whose parameters are typical representatives of the symbols employed) a system
built on fuzzy sets—a fuzzy system—produces the same results as its underlying
symbolic skeleton. For borderline2 cases, however, it brings to bear the gradation
that is implicit in the meaning of the symbols and explicated by the fuzzy sets: it
determines the degrees of fit of what is actually present and its internal descriptions
and propagates these degrees through the system to its output, where they serve to
qualify the results of the reasoning process. For example, as the actual blood
pressure of a patient increases, the degree of fit of the description ‘low blood
pressure’ (or the degree of truth of an equivalent statement) decreases, and the
degrees of truth of all conclusions derived therefrom change in the direction
determined by the involved logical connectives.

There is a special subset of fuzzy systems that is designed to operate in a
completely continuous, ie essentially real-valued, environment. If carefully designed,
the output of such a system is a continuous function of its input and, if present, of
its internal memory. This function is usually a better approximation of the
modelled medical relationship than its underlying discrete specification; at the same
time, it is much easier defined in fuzzy terms than would be possible analytically.

1 The degree to which the model can reproduce the nuances of reality.
2 Note that in a fuzzy system ‘borderline’ is not an additional category, but a smooth transition zone

that is defined by the overlapping of the fuzzy sets partitioning the problem domain.
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Many practical applications of fuzzy set theory in medicine make use of this
principle: fuzzy scores, continuous versions of conventional scoring schemes, and
fuzzy alarms are just examples. Best developed is the approach for fuzzy control,
the most successful application of fuzzy set theory to date in which a tabular or
rule-based mapping from input to output variables effectively implements a contin-
uous control law. Fuzzy qualitative simulation and, more generally, fuzzy model-
based diagnosis are promising candidates for future research.

Fuzzy set theory is not an alternative to, but an enhancement of classical AI
approaches. By virtue of fuzzy sets, symbolic systems may exhibit continuous
behaviour and thus address medical problems more adequately. Although the
theory of fuzzy sets may not be the only formalism to interface the symbolism of
AI with the continuity and gradation of reality, it requires minimum remodelling
and is highly effective. This makes it a powerful tool.

5. This issue

The articles compiled in this special issue address a wide variety of medical and
technical problems. Interestingly, most of the work is practically oriented.

The first two articles make use of fuzzy systems as function approximators. In the
first one a model-based controller for the closed-loop delivery of a muscle relaxant
is presented. Unlike many other fuzzy controllers, this work relies on a deep model
of the process under control, with a small fuzzy controller stepping in to adapt
unknown process variables. The resulting system has been shown to perform well
under simulated and real conditions [7].

The second article applies the same principle, the approximation of functions
through fuzzy systems, to the field of clinical alarming. For this purpose the domain
knowledge acquired from thirteen cardiac anaesthesiologist is compiled into 188
rules mapping input to output variables. The approach has been evaluated under
both off-line and on-line conditions [1].

The third article describes a formalized approach aiming to facilitate the transfor-
mation of fuzzy processing systems that, despite their demonstrated usefulness,
have remained in a prototypical stage of development to compact pieces of software
that meet the requirements of industrial production systems [5]. With the aid of
such semiautomatic transformation, fuzzy systems may eventually become as
naturally integrated into clinical devices as they already are in many consumer
products.

The final contribution in the form of a research note presents an ongoing
research project that deals with the formalization of terms from the American
College of Radiology (ACR) Breast Imaging Lexicon using fuzzy sets [8]. Formal-
ization is crucial to the standardization of medical diagnosis and for all attempts to
make it more objective; despite its undeniable aptness, fuzzy set theory has not yet
played a role in such endeavours.

Although its application in medicine is still far from being mainstream, there is
a noticeable tendency towards making use of fuzzy set theory whenever it appears
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practical to do so. However, many remain sceptical. To them, the work compiled
in this special issue may serve as a case in point that fuzzy sets have their rightful
place in medical AI. To all others, it should be an encouragement to consider the
fuzzy aspects of their own work, and a source of inspiration.
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