
The Interpretation of Time-Varying Data
with D IAMON-1

Friedrich Steimann, Sallstraße 65, D-30171 Hannover
e-mail: 100607.704@compuserve.com

Abstract: Applying the methods of Artificial Intelligence to clinical monitoring requires
some kind of signal-to-symbol conversion as a prior step. Subsequent processing of the
derived symbolic information must also be sensitive to history and development, as the
failure to address temporal relationships between findings invariably leads to inferior re-
sults. DIAMON-1, a framework for the design of diagnostic monitors, provides two methods
for the interpretation of time-varying data: one for the detection of trends based on classes
of courses, and one for the tracking of disease histories modelled through deterministic
automata. Both methods make use of fuzzy set theory, taking account of the elasticity of
medical categories and allowing discrete disease models to mirror the patient’s continuous
progression through the stages of illness.

Keywords: diagnostic monitoring, trend detection, disease tracking, fuzzy sets, automata

1. Introduction
It is a widely appreciated fact that much of the clinically relevant information is conveyed in
the change and development of a patient’s physiological variables—in the presence of a trend,
absolute values may indeed be of subordinate significance [7]. Utilization of this information
would seem imperative for diagnostic systems, as the inability to relate consecutive findings is
a serious handicap that cannot be compensated for [21]. However, the modelling of time in
most early diagnostic support systems—if at all existent—has been implicit [22], and so has
been the account of change and development. Later adding explicit temporal awareness to an
atemporal system design is nontrivial: it does not only boost complexity in the problem space,
but also affects data representation and processing, usually making a complete system redesign
necessary. Diagnostic monitoring systems with a full-fledged temporal account are thus still
few and far between.

DIAMON-1 is a monitoring framework that has incorporated time into its data model. It allows
the construction of problem-oriented diagnostic monitors out of standardized components.
The components analyse sequences of explicitly time-stamped samples rather than instan-
taneous parameter values, thereby making monitoring sensitive to history and development
[34].

As pointed out in [36], developments in a patient can be observed on different levels. At the
low end of the spectrum the change in one or a number of sampled physiological variables can
hint at an alteration in the patient’s present condition. Here, methods of trend detection lend
themselves to identifying clinically relevant developments. At the high end of the spectrum the
patient’s progression through the natural or therapy-induced stages of a disease is reflected in
a sequence of characteristic conditions; formalized models of disease histories allow their
automated tracking and prediction.

Covering both ends of the spectrum this article presents two of DIAMON-1’s time-sensitive
methods, one for the detection of trends and one for the tracking of disease histories, and
demonstrates their effectiveness by interpreting recorded data from an on-line monitored case
in critical care.
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2. Notation and conventions
Theories of clinical monitoring, borrowing from several disciplines, employ a wealth of con-
cepts and notations; the ones used throughout this article are briefly presented in the
following.

2.1. Variables and samples

I call all physiological parameters observed of a patient as well as personal attributes and ap-
paratus settings variables. Each variable has a label and a value. All variables are time-depend-
ent; the value of a variable x is a total function of time, , to the variable’s valuex : T → Vx

space, its instantaneous (point) value at time  being denoted by .t0 x(t0)
Practically, a variable is seldom available in its continuous-time form. Instead, variables are
sampled at distinct points in time, their availability thus being discrete-time. Because sampling
in the clinical environment can generally not be assumed to be regular [16], the actual sampl-
ing time must be provided with the sample. I do so by writing  to denote the sample takenx[t0]
at , indicating (by use of the square brackets) that sampling is discrete. Accordingly, a se-t0

quence of n samples is denoted by .〈x[t1], ...,x[tn]〉

2.2. Fuzzy sets

A fuzzy subset  of a set M is specified by its membership function, , assigninga∼ µa∼ : M → [0, 1]
a degree of membership to the elements of . The membership function is a generalization ofa∼
the characteristic function of ordinary sets, fuzzy subsets (called fuzzy sets hereinafter) thus
being generalizations of ordinary sets.

Fuzzy sets are related to ordinary sets through α-cuts. The α-cut of a fuzzy set  is defined asa∼

. A fuzzy set is convex if and only if all its α-cuts are convex. [13]{x µa∼(x) ≥ α}
Fuzzy sets are usually employed to express diffusion in the extension of concepts1. The degree
of membership of an element in a fuzzy set then expresses the grade of compliance or compati-
bility of that element with the concept the set denotes. Examples of this will be given in con-
text below.

An element of a fuzzy set is given by a pair , where µ is the degree of membership of x in(x,µ)
that set. Finite fuzzy sets can thus be specified by the listing of such pairs in curly brackets, as
in .2{(a, 0.2), (b, 0.4), (c, 0.9)}
Just like ordinary sets, fuzzy sets can be combined by the set-theoretic operations union and
intersection, the resulting fuzzy set’s membership function being defined as the maximum of
the operands’ membership functions or as the minimum, respectively.

2.3. Automata

Automata specify sequences of symbols or discrete events3. Their regard of time is implicit in
the notion of sequence: one event comes after the other, the distance between events being
ignored.

Formally, a deterministic finite automaton is an abstract machine consisting of a finite set of
distinct states, a finite set of input symbols (the events), and a transition function mapping the
automaton’s state and an event onto its next state [11]. The transition function connects states
through transitions; a transition is triggered whenever the corresponding event occurs. Every
automaton has an initial state from which it departs upon occurrence of the first event; the set
1 Zadeh usually terms these concepts linguistic variables [37].
2 Elements with zero degree of membership are usually omitted.
3 As a rule of thumb, one speaks of symbols if sequence is spatial, and of events if sequence is temporal;
the latter is the case in the context of this article.
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of final states found in most definitions of automata is of no significance in the context of clini-
cal monitoring [32].

3. Detecting trends in a sequence of samples
Although broadly used, the term trend does not come with one generally accepted definition.
In the biomedical field, a trend has been defined as

“presence of a slow, consistent, unidirectional change in the value of a variable” [6];
“general direction of the mean level of the data” [2];
“any change in the underlying signal dynamics slower than the system’s time
constants” [3];
“steadily rising or steadily falling pattern” [8]; and
“clinically significant pattern in a sequence of time-ordered data” [18].

These informal definitions suggest that a trend is either regarded as a feature that can be ex-
tracted from or as a pattern that can be recognized in a signal. I will give a different, more
stringent definition below.

Like the term trend itself the problem of trend detection is a very general one. It can be formu-
lated as “identify all the trends occurring in a signal together with their times of onset”. If the
trend specifications are parameterized, trend detection may also derive the parameters as part
of the answer.

The general problem of trend detection has several more specific instantiations, two of them
being “which trend is the signal currently following?” and “did a certain trend occur in the sig-
nal and when was its time of onset?”. While the latter is the subject of another article [33], the
former is characteristic of the critical care environment and will be dealt with in the following.

3.1. Classification of sequences of samples based on sets of absolute courses

Classification of instantaneous quantitative observations based on intervals (convex sets),
fuzzy or non-fuzzy, is easy to specify and implement; because it has served its purpose well in
several prominent projects (including the non-fuzzy MYCIN [28] and the fuzzy CADIAG-2
[1]), adding a temporal dimension to cover the course of a variable seems a worthwhile exten-
sion. Following this idea I define a trend as a set of courses or continuous-time functions hav-
ing identical meaning with respect to the given monitoring problem.

The detection of a trend in discrete-time sequences of samples usually relies on one implicit as-
sumption, namely that the variable does not deviate significantly from the hypothesized trend
at times at which it is not sampled. In other words, it is assumed that the observed variable fol-
lows a continuous-time course that both explains the sampled findings and is compliant with
the trend to be detected. To make this assumption explicit and for reasons of derivability (see
below) I base the trend detection in sequences of samples on the classification of continuous-
time courses.

With the above definition of trend at hand, a given sequence of samples is compatible with a
trend if there exists a continuous-time course going through all samples (called an explanatory
course hereafter) which is also a member of the trend. More formally, if the trend is defined as
a fuzzy set , the degree of compatibility, γ, of a sequence of samples, , with C

∼ 〈x[t1], ...,x[tn]〉 C
∼

 is defined by

.4 (1)γ =
xe(t)
supµC

∼(xe(t)), xe(ti) = x[ti] for all 1 ≤ i ≤ n

4 Throughout this discourse I ignore the temporal extent (duration) of a trend and its time of onset in
the potentially infinite sequence of samples for the sake of simplicity; refer to [34] for a complete account.
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The explanatory course required in the definition of compatibility presents a guess about the
true course of the variable. Trend detection as defined in (1) is optimistic in that it chooses the
explanatory course best suiting the trend to be detected. Quite clearly, if sampling is sparse,
trend detection is subject to uncertainty and hence speculation: if gaps between samples allow
a variable to have taken significantly differing courses, the method cannot differentiate trends
competing in the explanation of the findings. Consequently, if these trends are mutually exclus-
ive, they must be understood as alternative hypotheses, differentiation between which being
left to other methods or the user.

A trend  is specified by its membership function. This membership function can be con-C
∼

structed using a parametrized description of the trend’s elements, the courses, as in

,C
∼ = {(x(t),µ) x(t) = mt+ b, m,b ∈ ℜ,µ = min(µm∼ (m),µb

∼(b))}
specifying the fuzzy set of linear courses with some fuzzy slope  and intercept . However,m∼ b

∼

naturally occurring courses rarely lend themselves to parametrization. Instead, the following
definition of fuzzy courses allows intuitive specification of trends and makes classification of
sequences of samples straightforward.

Let  be a function mapping time to convex fuzzy subsets of a variable’s range . I callx∼(t) Vx

 a fuzzy course; it may be viewed as a fuzzy band denoting the allowable spread in thex∼(t)
course of a variable still considered following a trend. The trend  is then defined as the set ofC

∼

courses whose points all lie within the range of ; specifically,x∼(t)
. (2)C

∼ = {(x(t), µ) µ =
t0

inf µx∼(t0)(x(t0))}

As shown in [34], the degree of compatibility γ of a sequence of samples  with〈x[t1], ...,x[tn]〉
 is then determined by the least degree of membership of all  in , i.e., C

∼
x[ti] x∼(ti)

,γ =
1≤i≤n
min µx∼(ti )(x[ti])

because the explanatory course  required in (1) can always be constructed so thatxe(t)
µx∼(t0)(xe(t0)) ≥ µx∼(ti )(xe(ti)) = µx∼(ti )(x[ti])

for  in proximity of each .t0 ti

This framework has a nice graphical metaphor depicted in Fig. 1: if the fuzzy course  isx∼(t)
viewed as a tunnel extending in time and whose height at any point  is given by its(t0,x0)
membership function’s value , then γ is the clearance of the best path going throughµx∼(t0)(x0)
all , which is equal to the minimum of the heights at all  with .x[ti] (ti ,x[ti]) 1 ≤ i ≤ n

Figure 1: Trend detection visualized: the tunnel represents the trend, the vertical bars denote the samples and
their respective degrees of membership, and the rail corresponds to the explanatory course; the clearance

(minimum height) above the explanatory course is the degree of compatibility of the findings with the trend

The feasibility of the approach is demonstrated on a recorded data set taken from a case of
adult respiratory distress syndrome (ARDS) in an eight-month-old female. For a period of 12
hours, several physiological variables including arterial oxygen saturation (SaO2), mean arter-
ial blood pressure and heart rate were sampled and recorded in intervals of approximately 20
seconds.
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ARDS, a form of acute respiratory insufficiency, requires substantial respiratory support. In-
tervening mechanical ventilation, this particular patient was hand-ventilated (with a hand bag)
approximately every two hours for roughly 15 minutes; during that time, the fraction of in-
spired oxygen (FIO2) was increased from 50 to 100 per cent.

One expected effect of such a drastic increase in FIO2 is a corresponding increase in oxygen-
ation. Oxygenation as measured by SaO2, however, is naturally bounded by 100 per cent. Be-
cause ventilator therapy aims at (and, in the given case, succeeded in) keeping SaO2 above 90
per cent, the variable’s potential for change is within fixed bounds. The expected increase in
SaO2 is modelled by the fuzzy course shown in Fig. 2 a).

Figure 2: Fuzzy courses specifying trends
a) sharply rising SaO2; b) falling blood pressure; c) increasing heart rate

Based on this expectation the trend detection method produces the results shown in Fig. 3. It
fully recognizes sharply rising SaO2 seven times, six times at the beginning of a hand-bagging
session and once during mechanical ventilation.

Figure 3: detection of a sharp increase in oxygenation; upper frame shows SaO2 in the range of 80–100 per
cent, lower frame shows degree of compatibility with the trend; vertical dotted bars indicate periods of

hand-bagging (high FIO2)

The fact that trend detection based on absolute courses works well for the expected increase
in SaO2 is partly due to the fact that it is naturally bounded by 100 per cent as a landmark
value. Other trends lack this absolute orientation; a method appropriate for their detection will
be presented next.

3.2. Floating level trend detection

Trends specified in terms of absolute courses constrain absolute variable values rather than
relative changes, a property that makes them unsuited for many clinically relevant patterns.
For example, the trend “heart rate stable for ten minutes” is characterized by a fairly constant
course of the heart rate, no matter at which level.

Mathematically, the first derivative is a measure for the rate of change in a signal. A trend may
thus more adequately be specified in terms of its courses’ first derivatives. However, a se-
quence of samples is not continuous, and, unless the sampling frequency is high enough to
allow (near) perfect reconstruction of the original signal, the sequence’s derivative cannot be
derived. Matching a sequence of samples with a trend specified through its courses’ first de-
rivatives thus builds on explanatory courses: if there is a continuous-time course which ex-
plains all findings and whose first derivative satisfies the trend’s specification, then the findings
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are compatible with the trend. Obviously, such an explanatory course is not as easily con-
structed as in the absolute case; yet, there is a solution with computational effort linear in the
number of samples as long as the defining fuzzy course satisfies certain conditions [34].

However, there is a simpler solution to the problem: if the change in a signal making up a
trend can be specified in absolute terms, the trend detection method based on absolute courses
can be adapted to match signals at variable levels, leaving the representation of trends unal-
tered. All that needs to be done is to derive an offset that when added to the trend yields the
best match.

The method works as follows. Assume that  is the first sample to be matched with a trendx[t1]
specified as in (2) by a fuzzy course .  then denotes the degree of compatibilityx∼(t) µx∼(t1)(x[t1])
of that sample with the trend. Obviously, there is always an offset b making the match perfect
so that . In fact, the degree of compatibility of the one-sample sequenceµx∼(t1)(x[t1] − b) = 1
with the trend can be specified as a function of b, namely

,µb
∼

1
(b) := γ = µx∼(t1)(x[t1] − b)

with and  being constants.  specifies the fuzzy set of offsets, , making a match.t1 x[t1] µb
∼

1
(b) b

∼
1

Clearly, the same holds for the second sample, , so that for the pair of samples,x[t2]
, the set of offsets resulting in a positive match is given by the intersection〈x[t1],x[t2]〉

, the offsets suiting both the first and the second sample. The degree of compatibilityb
∼

1 ∩ b
∼

2

for any chosen offset b is then given by

.γ = µb
∼

1∩b
∼

2
(b)

It follows that for any sequence of samples  and  the degree〈x[t1], ...,x[tn]〉 b
∼ = b

∼
1 ∩ ...∩ b

∼
n

of compatibility of the samples with the trend and offset b is . Consequently, for theµb
∼(b)

matching to produce the best result, b only needs to be chosen so that  is maximum.µb
∼(b)

While scanning over the findings, this trend detection method continuously adapts the offset of
the fuzzy course (thereby keeping its level floating, hence its name) so it best matches the find-
ings. Surprisingly, doing so adds only little computational effort; in fact, given that fuzzy set
intersection can be done in constant time, computational effort is still linear in the number of
samples, which must be attributed to the fuzzy set representation of the offset b.

Again, the practicability of the approach is demonstrated on the ARDS case. As pointed out in
[18], blood pressure and heart rate of the ARDS patient show noticeable fluctuations. In par-
ticular, several coordinated drops in blood pressure and increases in heart rate can be ob-
served. Because these changes set off from widely differing levels, they are typical candidates
for floating level trend detection. Fig. 4 shows the outcome of this procedure based on the
fuzzy courses of Fig. 2 b) and c). Note how most of the events are detected during
hand-bagging.

Figure 4: Detecting changes in 12-hour period with floating level trend detection (input smoothed by a median
filter); range of blood pressure is 50–90 mm Hg, range of heart rate is 150–190 bpm

F. Steimann: The Interpretation of Time-Varying Data with DIAMON-1

appeared in: Artificial Intelligence in Medicine 8:4 (1996) 343–357 6



4. Tracing developments on the symbolic level
The development and course of a disease is sometimes described as a sequence of characteris-
tic stages, possibly with alternative branches and turning points. Such a disease naturally lends
itself to being modelled by a state transition diagram. A patient’s progression through the
stages can then be traced by means of a corresponding finite state machine or automaton; a
state of the automaton corresponds to the stage of the disease or status of the patient, a transi-
tion links two potentially consecutive stages, and the event causing the transition corresponds
to a clinically significant condition or development found in the patient.

In cases where the pathogenesis is so simple that it does not require a model the employment
of automata may still be worthwhile: whereas the input of a monitor is usually rather unsteady,
its output, the diagnosis, should show temporal stability. In particular, a minor fluctuation in
the input should not cause a diagnosis to be revised. The required inertia in behaviour—also
known as hysteresis—can easily be implemented by means of automata; it is achieved if the re-
versal of transition from one state to another, if at all allowed, is triggered by differing
findings.

The automaton as a disease model is flawed by its digital nature: upon fulfilment of a condition
the current state of the automaton leaps from one state to the next, discretely and without any
indication of the forthcoming event. This abrupt change is not natural; rather, most transitions
take their time, taking place gradually and continuously. Indeed, an appropriate framework of
disease tracking would have to

report the tendency of the patient to change state and the change’s continuous
progress to the observer so countermeasures can be taken as soon as deemed
necessary (smooth transitioning)5, and
report and record mild occurrences of pathophysiological states and regard them in
the derivation of future states of the patient (gradation in severity).

The latter is particularly important as not all patients exhibit the full symptomatology of a dis-
ease, and mild occurrences may be just as noteworthy as fully developed.

Smooth transitioning requires intermediate states, snapshots of the patient’s being in between
states. An intermediate state can be specified by means of a fuzzy subset of the automaton’s
set of states. Such a fuzzy state is reached upon partial fulfilment of the condition triggering
the transition, specified in the form of a fuzzy event. For example, a state between normal and
reduced blood pressure can be specified by {(normal blood pressure, 0.4), (reduced blood
pressure, 0.6)}. It is reached as the result of the automaton formerly being in the state
{( normal blood pressure, 1)} and then transitioning on detection of the trend falling blood
pressure with a degree of compatibility of 0.6. Even if there is no physiological measure to de-
termine the patient’s true status relative to the states of the model, continuous transition from
one state to the next as implied by the increasing fulfilment of the triggering condition could
well be visualized as a spatial transition in the diagram, the interpretation being left to the ob-
server [34].

Formally, a fuzzy automaton is obtained by application of the extension principle [13] to the
automaton’s transition function. The extended function maps a fuzzy state and input onto the
next fuzzy state [32]. The advantage of this approach over other fuzzy automata (e.g. [11]) is
that the specification of the automaton itself is not fuzzy—the fuzziness is brought into the
automaton solely through its fuzzy input. Disease models can thus be designed in their ideal
form without worrying about fuzzy aspects.

5 This is particularly true for (closed-loop) therapy control, where early low-dosed counteraction can
help to keep the patient stable by avoiding drastic measures and, consequently, reactions.
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The employment of fuzzy automata in the dense data environment of critical care requires a
few adjustments described in [32, 34]. The adjustments include measures to maintain a full de-
gree of membership of at least one state in the current (fuzzy) state in order to avoid member-
ship depletion and oscillation. In case of the following example, the automaton has been
modified to leave its current state only if its successor state has gained full set membership.

Revisiting the previous example (Fig. 4), the falling blood pressure during hand bagging can be
attributed to reduced venous return as a result of increased intrathoracic pressure. This inter-
pretation suggests that hand bagging is a little too vigorous. The rise in heart rate observed at
the same time can be explained as a compensatory mechanism maintaining cardiac output;
whereas a rise in heart rate alone may be indicative of some other perturbation, in this case it is
a direct consequence of the drop in blood pressure and thus indirectly linked to hand bagging.

The state transition diagram of an automaton classifying a rise in heart rate following falling
blood pressure during hand bagging as compensating is shown in Fig. 5; apart from two car-
diovascular states, it also maintains states to indicate the period of mechanical ventilation
(idle) and that of unperturbed hand bagging (alert).

Figure 5: Finite automaton monitoring the cardiovascular response to hand bagging (initial state is idle)

When fed with the output of Fig. 4 complemented by two variables indicating the onset (h-b
on) and ending of hand bagging (h-b off), the automaton’s state changes as shown in Fig. 6.
Each line depicts over time on a scale from 0 to 1 the degrees of membership of the corre-
sponding state in the automaton’s sequence of fuzzy states.

Figure 6: Interpretation of the trends of Fig. 4 through the automaton of Fig. 5

During the first four episodes of hand bagging the patient exhibits reduced blood pressure as
well as a compensating heart rate, albeit the latter only to a certain degree during the second
and third episode (gradation in severity). Note how one can observe the state reduced blood
pressure building up slowly during session number two, reflecting a smooth transition to that
state. The falling blood pressures in context of hand bagging session number five and six do

idle alert
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not trigger a transition because the trend is detected only after hand bagging has ended, the
automaton therefore returning to idle before a transition to reduced blood pressure can take
place. Note the temporal stability of the output as a sign of effective information reduction.

The chosen example is debatable to some respect, as the automaton does not model the behav-
iour of one variable; rather, it combines the internal states of a device specially designed to
avoid multiple alarms pertaining to the same cause with the values of an abstract physiological
variable cardiovascular status. If needed, the automaton can be split into two, the state of the
first (tracking the mode of ventilation) serving as input for the second.

5. Related work and discussion
Performing signal-to-symbol conversion and state-based sequence analysis, the presented
methods are at the intersection of signal processing, time series analysis, and AI. Although the
output of both is symbolic, it may diverge from what one might expect: rather than producing
propositions such as “temperature rising” assigned to temporal intervals, the output too has
signal character, i.e., consists of a sequence of samples, only that the samples are on a higher
level of abstraction. This is a required property within the framework of DIAMON-1, where all
systems’ output must be in a form consumable by other systems as input. If desired, interval-
based abstractions can be generated from the output, for example by use of temporal abstrac-
tion methods such as the ones presented in [20, 27].

The methods presented find analogies in several other monitoring projects discussed in the fol-
lowing. It must be understood, however, that formal comparison is difficult, as each project
focuses on its own set of problems. In fact, the problems encountered in clinical monitoring
are so numerous that no single approach can be expected to solve all of them.

VM [15] was not only one of the first attempts to tackle the clinical monitoring problem, it
also made use of the basic concepts picked up in this paper: the classification of time-varying
data by extending parameter intervals by a temporal dimension; and the employment of finite
state machines to model admissible state transitions. In fact, the TIMEEXP premise function
of VM is a special case of trend detection as presented in this article. VM’s finite state ma-
chine, however, is used to specify possible changes in therapy, namely the change of ventila-
tion modes. This is in contrast to the tracking of disease histories put forward in this article.

Direct high-level diagnostic use of automata-like structures has been made in DYNASCENE
[9] and ICM [14]. Both systems identify clinically meaningful constellations and interpret the
sequence of their occurrence. However, they both lack concepts of smooth progression or
gradual illness as made possible by fuzzy automata. As a result, their all-or-nothing nature
renders them likely to miss out or overvalue developments in individual patients
(sensitivity/specificity trade-off).

Other approaches use Chomsky-type grammars to classify temporal patterns that can be coded
as a sequence of discrete events, for example [5, 19]. In [5] a context-free grammar is
employed to detect heart arrhythmia by analysing sequences of fuzzy beat labels. The fuzzy
beat labels are derived in a fuzzy classification process described in [4]; the result of parsing is
the certainty with which a derived sequence of labels belongs to an arrhythmia. Another two-
level approach to real-time diagnosis and control, in this case of fermentation processes, is
taken in [23]; the upper level, basically a finite state machine, traces the stage of the fermenta-
tion process and so determines the choice of applied control strategies. The transition between
stages is triggered by the detection of trends via temporal shape analysis [24].

Generally, the employment of automata in monitoring has several benefits. It allows con-
clusions only to be drawn in consequence of others, thus making interpretation of findings
sensitive to history. This may be necessary in situations where the same condition found in a
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patient can have different meanings depending on what happened before; the increase in heart
rate as a consequence of a drop in blood pressure is an example of this. Also, as shown in
[34], automata can reduce the volatility in the output of a monitor, producing temporally
stable interpretations of unsteady input.

Last but not least, the history an automaton has encountered is comprised in its current state.
This is particularly beneficial if the monitor operates in a transient display mode: while basic
variables such as blood pressure only report momentary readings, the current state of an auto-
maton conveys the significant events and turning points of the past, all at one glance.

However, all approaches based on automata suffer from their limited expressive power. Se-
quence is their only temporal relationship, ignoring the fact that the temporal interval between
findings can be of great importance. YAQ [35] overcomes this deficiency by linking state
transitions to explicit history lookups which can reference past values and query additional
temporal information. The price being paid is that the regular formalism is left, requiring all
history lookups to be hard-coded. Attributed formalisms such as augmented transition net-
works may be a way out of this dilemma.

Some work has also been done at the intersection of high-level disease tracking and low-level
trend detection. For example, some approaches regard the course of a perturbation as a se-
quence of primitive trend segments. The problem of trend detection is then decomposed into
two subproblems:

1. the detection of trend primitives; and
2. the identification of the transition from one primitive to the next.

GUARDIAN employs a real-time, on-line segmented trend detection method based on a fuzzy
temporal pattern recognition (TFPR) [12]. TFPR performs a strictly sequential, non-optimal
segmentation of trends based on local maxima in the matching process. Specifically, TFPR
considers a segment switch for each new sample based on a comparison of its degree of
membership in the current and the next segment. An expected higher degree of match gained
by a segment switch, however, may turn out to be a dead end, in which case continuation of
the previous segment might have produced a better result. Despite this imperfection, the opti-
mal segmentation algorithm presented in the same work is considered too expensive to be
used in practice.

Another sophisticated trend detection method addressing the temporal variability and seg-
mentation of trends is TRENDX [18]. It uses so-called trend templates to define and detect
trends in sequences of samples. A trend template is a collection of temporal intervals each of
which constrains a number of parameters (either through value constraints or by regression,
see below). The temporal intervals can be of indeterminate length, the bounds are then related
to other intervals or landmark points through temporal constraints.

Trends are detected in TRENDX by assigning samples to suitable intervals. For this purpose,
TRENDX maintains competing hypotheses, instantiations of trend templates whose intervals’
parameters are set to fit the samples’ times and values. Each hypothesis is then a possible in-
terpretation of the findings.

It may be objected that the segmentation of trends, although an appealing theoretical issue,
renders trend detection a highly time-consuming task, the practical necessity of which is not
entirely plausible. Indeed, in [33] it is shown that a single fuzzy course can cover a wide spec-
trum of individual developments including considerable variability in the duration of the trend.

The trend detection method based on fuzzy courses has an obvious competitor in statistics: re-
gression. Regression is made the basis of trend detection in several monitoring projects, for
example [24, 25, 31, 18]. Interestingly, in earlier versions of TRENDX function-based value
constraints similar to fuzzy courses, only non-fuzzy, were employed [17]. A more recent
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version favours low order regression, and the author notes that regression-based TRENDX,
yielding a gradual measure of fit, is more robust and allows ranking of hypotheses, as opposed
to its constraint-based predecessor, where a single sample out of bounds sufficed to reject a
hypothesis [18]. It may be added that using fuzzy constraints such as fuzzy courses would
have had a similar effect.

There is a certain relationship between trend detection via regression and trend detection via
fuzzy courses as defined above. Suppose that  is a polynomial with fixed coefficients andxa(t)
that

E =
n

max xa(tn) − x[tn]

is the measure of deviation. Then

,xa(t) + E
∼

where  is a convex fuzzy set of reals symmetrically centred around zero, defines a fuzzyE
∼

course, and

µE
∼(E)

is the degree of compatibility of a sequence with the trend. However, the reader will agree that
this has little in common with common regression. Besides, as suggested by the tunnel meta-
phor, trend detection based on fuzzy courses puts forward a graphical approach, where spec-
ification of a trend is intuitive and highly flexible at the same time.

Kalman filters and their multi-state extensions have also successfully been employed to detect
trends in biomedical signals, for example in [7, 16, 26, 29, 30]. It appears that Kalman filters
are particularly good at very early detection of a trend (or, rather, deviation from a trend), a
property they have in common with more primitive forecasting methods such as cumulative
sums [2, 3]. This makes them particularly suited for the critical care environment, where other
trend detection methods including the ones based on regression are certainly slower to react.
However, because of the filter process model’s recursive definition involving a limited past,
the effectiveness of trend detection through Kalman filtering is restricted to domains where a
trend manifests itself in very few samples, and not in overall developments involving long se-
quences of samples. By contrast, trend detection based on fuzzy courses has been shown to
work well in all cases [34].

Finally, it must be noted that none of the discussed approaches properly address the problem
of superposition and interacting diseases: an observed variable may be influenced by different
underlying developments the effects of which superimpose on one another. Sophisticated diag-
nostic monitoring systems should be able to take account of possible superposition, for
example by utilizing correlation with other, non-superimposed variables or by employing ex-
plicit models of superposition. The latter is explored in [10]; however, because it is tightly
geared to qualitative simulation, its potential influence on quanitative or symbolic methods is
rather limited.
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