
Fuzzy Support for 
Serodiag nosis: 
The ONSET Program 
I nfection with Toxoplasma gondii, a former are described here only to an extent 
parasite widespread all over the world, is necessary to understand the latter. 

usually of little danger to the immunocom- 
petent person. However, deliberately im- Performed Serological Tests 
munosuppressed Organ transplant For the detection of toxoplasma-spe- 
recipients or patients with acquired im- cific antibodies, a variety of tests are avail- 
mune deficiency syndrome (AIDS) are able. Tests differ in the type of antibody 
exposed to its devastating effects. Further- they respond to (e.g., IgG, IgM, IgA, or 
more, and the subject of this article, patho- IgE), and in the quality of their response 
gens of a postconceptionally infected [7]. 
mother (acute gestational primoinfection) In our study, three tests were em- 
may Cross the placental barrier and afflict ployed: 
the unbom 71. Clinical Symptoms of 1 .  Sabin-Feldman dye test (DT), the 

infection range from death arid reference IgG test suggested by the World 
stillbirth to clinically healthy newboms ~ ~ ~ l ~ h  organization (WH()), 
with an 80% chance of developing ocular 2.  immunosorbent agglutination assay 
toxo~lasmosis arid blindness in (ISAGA) for the detection of IgM antibod- 
hood. General toxoplasmosis screening ies, arid 
programs to detect acute infection of preg- 
nant women have therefore been devised. 3. enzyme immunOassay 

for the determination of IgG antibody 

Problem avidity. 

While acute toxoplasma infection All test results were obtained and fur- 

often remains asymptomatic arid methods ther processed in their quantitative form, 
i.e., IgG DT as a titer, IgM-ISAGA as an 

for direct detection of antigen are not rou- index, and IgG avidity as a percentage. 
tinely available, tests reactive to specific 

DT is highly sensitive and specific, i.e., 
antibodies in human serum provide indi- 

positive titers prove toxoplasma infection 
rect serological evidence of infection [7]. while negative exclude it. Because this test 
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ably be linked with a time of onset, so that monly med to rule Out Or confirm 

assessment is intrinsically difficult pected acute infection. In the initial phase 

to achieve. of infection, this test yields high positive 
results that soon become negative with 

In this article, we present a Computer- ongoing infection. However, because oc- 
based method that encUcles the time of casional high titer persistency lasting for 
onset of infection as closely as possible. It several years is documented, its predictive 
is based upon combination 0f evidence is also limited. Finally, IgG avidity 
from serological findings. test is a new technique for the measure- 

ment of the antigen-binding avidity (func- 
Methods tional affinity) of I ~ G ,  distinguishing 

Both serological and computational low-affinity antibodies at an early stage of 
methods are involved in our study. The infection from those with a higher binding 
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affinity reflecting preexisting immunity 
[6]. Because this test is not yet commonly 
accepted, it has only been included in this 
study for cases involved in a field trial also 
conducted at our laboratory. 

Figure 1 depicts the ideal course of 
infection as obsemable through the men- 
tioned tests. 

From Serological Findings to the 
Onset of Infection 

If an individual's exact course of anti- 
body production in response to primary 
infection were known, times of onset 
could easily be determined by matching 
serological findings with the course: Fig. 
2 illustrates the matching process for two 
findings, vi and v2 observed at times tl and 
t2, respectively. 

Mathematically, the matching problem 
can be stated as follows. The course of 
immune response as observable through 
an antibody test is defined by a function 
C: T+ V that maps time, T, (modelled by 
the real line) into a respective value space, 
V. For convenience. we assume that the 
course is left-aligned to time Zero so that 
the onset corresponds to the origin. If the 
test results obtained from a patient are 
interpreted as points (ti, vi), ..., (t„ V,) 
within the time-value space, onsets of in- 
fection are determined by finding offsets 
t, such that all points lie on c translated by 
tfi i.e., V (ti, vi) , 1 i I n : ~ ( t i  - to) = Vi 

(see Fig. 2 for illustration). 
However, due to a wide physiological 

variability, there is no unique course of 
infection: some individuals respond with 
a rather vivid antibody production, while 
others exhibit comparatively moderate re- 
actions. Because there are no analytical or 
statistical models available based upon 
which the course could be predicted,-the 
real course of an individual's immune re- 
sponse is never known in advance. Never- 
theless, if only sufficient information is 
available, an experienced clinician can re- 
stnct the range of possible onsets by ap- 
plying general knöwledge about typical 
and possible courses. The following pro- 
vides means to explicate the clinician's 
knowledge and reasoning. 

A fuzzy prototypical course is a formal 
representation of the expert's under- 
standing of possible courses of infection 
as observable through a particular test. It 
provides the basis for deriving a degree or 
grade of compatibility of a time of onset 
with a series of findings. The degree re- 
flects how close these findings are to the 
expected course starting at that time. The 
fuzzy prototypical course may be visual- 
ized as a band, the borders of which are 
blurred rather than sharp, so that transition 

Y' ue IgG DT 

IgM-ISAGA 

- lgG avidity 

onset time 1 
1. Idealized antibody response to acute toxoplasma infection (adapted from [3] and 
161) 

onset time 

2. Deriving the time of onset by matching the course with findings, a) patient's 
course of infection as observable through a test (DT), b) matching by "sliding" the 
course over the findings 

3. A fuzzy prototypical course assigning a degree to every time-value pair 

from full compatibility with the course 
(degree = 1) to no compatibility (degree = 
0) is gradual. Figure 3 shows a three-di- 
mensional depiction of such a course. 

Formally, a fuzzy prototypical course, 
E, is defined by a fuzzy relation, that 
assigns a degree of membership, pj to 
every pair (t, v) of the time-value space. 
Again, the course is left-aligned so that t 
= 0 corresponds to the onset of infection. 
The degree of compatibility of a time of 
onset to, with an infection characterized by - 
n points pi = (ti, V,), 1 2 i 2 n in C is then 

defined as: W(ti - to, vi), where A 
l G < n  

denotes a suitable fuzzy conjunctive con- 
nective, a so-called t-norm (41. 

Deriving the times of onset from fuzzy 
prototypical courses and findings is analo- 
gous to the non-fuzzy case depicted in Fig. 
2: the course is "slid" over the findings, 
and the respective degrees of compatibil- 
ity are recorded along the time-scale, re- 
sulting in a distribution of degrees of 

compatibility over time, as shown in Fig. 
4. 

If more than one test is performed on a 
patient, the method is applied to all tests 
and the resulting distributions are com- 
bined to arrive at a single assessment. As 
rule of combination, we adopted the ex- 
pert's reasoning, which combines evi- 
dence in a conjunctive fashion: if one test 
excludes infection at a certain time, then it 
ovemles other tests-even if they suggest 
a possible infection at that time. Figure 5 
depicts the result of combination using the 
minimum operator on a case involving 
two of the tests employed in our study. 

So far, definition of fuzzy prototypical 
courses merely reflects a clinician's intui- 
tive understanding; next we will demon- 
strate how it can be based upon or derived 
from real cases. 

Obtaining Fuzzy Prototypical 
Courses 

Even for an expert in the field of 
toxoplasmosis, it is a nontrivial task to 
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4. Degree of compatibility of given findings with a fuzzy prototypical course relative 
to possible onsets 

5. Combination of evidence as obtained from different tests (in this case excluding 
postconceptional infection) 

6. "Learning" a fuzzy prototypical course from an acute infection a) possible onsets 
assessed for a seroconversion b) fragmentary course constructed from a) 

specify appropriately the required proto- 
typical courses. In particular, a reasonable 
trade-off between sensitivity (reflected in 
a wide spread leading to unspecific re- 
sults) and specificity (with narrow ranges 
excluding rare yet possible cases) is hard 
to find. We therefore propose a simple 
method to support the specification proc- 
ess, based on data obtained from patients 
where acute infection is evident. 

When presented with an obvious case 
of acute infection, a clinician feels confi- 
dent of correctly assessing possible times 
of infection onset. To account for gradu- 

ation in the degree of compatibility, we 
asked the clinician to designate two nested 
temporal intervals [a,d and [b,c] ,  the 
outer one to denote those times starting at 
which a course could at all be called com- 
patible (with degrees above zero), and the 
inner one specifying those times of onset 
starting at which the course would be fully 
compatible (with a degree of one). These 
intervals, interpreted as trapezoidal fuzzy 
sets as depicted in Fig. 6 a), specify the 
result expected of ONSET when presented 
with the given findings. 

ONSETcan now ieam the fuzzy proto- 

typical courses by reversing the assess- 
ment provided by the clinician: rather than 
the onset being regarded as the variable of 
the course, it is aligned to time Zero and a 
fragmentary fuzzy prototypical course is 
constructed by translating the findings by 
the assessed times a, b, C ,  and d, as de- 
picted in Fig. 6b). 

Note that when applied to the whole 
series of findings or to any single one of 
its points, the matching procedure de- 
scribed above arrives at the same degrees 
of compatibility as initially specified by 
the clinician. Additional courses are also 
covered, as neither the relative temporal 
distance between any two nor the number 
of findings itself needs tobe maintained to 
achieve a match. 

A complete fuzzy prototypical course 
can now be obtained by constructing a 
fuzzy envelope, including all fragmentary 
courses derived as above from evidently 
acute cases. The more cases are included, 
the more general the obtained course will 
be. Note that constructing the envelope 
does not take relative frequency into ac- 
Count- due to relatively small numbers 
of documented acute infections, this does 
not seem worth consideration. 

Evaluation 
To evaluate the performance of ONSET 

a retrospective study was conducted in- 
volving 1000 patients randomly chosen 
from our intemal database who had fol- 
low-up serology. From these patients, a 
total of 2373 sera had been drawn and just 
as many IgG Sabin-Feldman dye tests, 
425 IgM-ISAGA, and 172 IgG avidity 
tests had been performed. 

Congruence of the results produced by 
ONSET with the clinician's diagnosis is 
difficult to measure: while a clinician is 
used to clear statements such as "acute" or 
"latent infection", the outcome of ONSET 
Covers a continuous spectrum of finely 
graduated diagnoses (cf. Fig. 5). Although 
ihis may be an advantage in clinical prac- 
tice-a high resolution compatibility dis- 
tribution is more differentiated than a 
binary yeslno-answer and can provide the 
basis for discussion and estimation of 
risk-it presents a problem to the evalu- 
ation process. We therefore mapped ON- 
SET'S output onto diagnostic classes 
representing clinically relevant diagnoses. 

Depending on the compatibility of 
findings with onsets before and after the 
date of conception, five mutually exclu- 
sive cases canbe identified, each of which 
establishes one diagnostic class: 

1. If test results indicate infection and 
constrain the onset to times after concep- 
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tion, then acute infection is certain. This 
case is called acute. 

2. If times of onset both before and 
after conception are compatible with the 
findings, acute infection cannot be ex- 
cluded. To be on the safe side, this case is 
called suspected acute. 

3. Compatibility of onset with times 
before conception only excludes acute in- 
fection. This case is called latent. 

4. The Status where all Sera remain 
negative throughout pregnancy is de- 
scnbed as seronegative. 

5. If none of the above applies, i.e., at 
least one Serum is positive but no onset is 
compatible with the findings, then the 
conclusion must be inconsistent data. 

Results 
ONSET diagnosed the selected cases 

with a total accuracy of 91.4%. Table 1 
summarizes the diagnostic performance 
of ONsET contrasted with that of a clini- 
cian. 

Most notably, none of the acute cases 
was misclassified. In a binary classifica- 
tion scheme in which acute and suspected 
acute are compnsed as one and the re- 
mainder as its compiement,  ONSET 
achieved a sensitivity of 97.5% and a 
specificity of 9 1.9%. Table 2 lists sensitiv- 
ity, specificity, and accuracy as obtained 

Discussion 
Comparatively low accuracy for the 

classes latent and suspected acute goes 
back to 74 latent cases falsely classified by 
ONSET as suspected acute, though their 
initially low titer did not nse significantly 
in follow-up serology, a sign cornrnonly 
agreed to exclude acute infection. This 
result was put into relaion by the fact that 
in most of these cases, o ~ s ~ ~ c o u l d  derive 
only little evidence for acute infection, 
reflected in low degrees of compatibility 
for onsets after the date of conception, as 
shown in Fig. 7. However, due to the rigid 
assignment to diagnostic classes these 
subtleties were lost. 

The fundamental problem of determin- 
ing the time of onset of infection relative 
to the date of conception is illustratively 
discussed in [I]. There, all attempts to 
arrive at a sufficiently precise assessment 
of onset solely based on serological tests 
are questioned from a mathematical stand- 
point. Even if idealized models of the 
course of infection applied, simple deci- 
sion rules would inevitably lead to errone- 
ous results. 0N~E~gracef~l ly  accounts for 
this circumstance by delivering acompati- 
bility distribution of onsets rather than an 
error-prone definite diagnosis. 

The problem addressed by ONSET is a 
special case of a general trend detection 

Clinician + acute Suspected Latent Sero- lnconsistent 
onset J, Acute negative Data 

1 Acute 5 0 0 0 0 i 

gradual class assignment problem based 
on fuzzy sets [8, 91. In this particular ap- 
plication, only one trend-the fuzzy pro- 
totypical course-is specified per 
performed test. The goal of trend detection 
is not the classification of the obserned 
course, but rather the determination of 
onsets, making the findings compatible 
with that trend. On-line detection of trends 
in a real-time environment, i.e., the multi- 
ple gradual assignment of an observed 
course to a collection of trends, where the 
time of onset of a trend is predetermined 
by the actual time and the duration of each 
trend, is the contrary problem. 

Ot her Approaches 
A comprehensive survey of trend-de- 

tection methodologies in biomedical 
monitoring Systems is provided in [2]. 
This review addresses a wide range of 
mathematical methods and their applica- 
bility to trend analysis and forecasting of 
densely observed variables in a noisy en- 
vironment. Although serological test re- 
sults are inevitably subject to "noise" (due 
to variability in the quality of test material 
as well as imprecise evaluation methods 
such as cell counts), they are undoubtedly 
typical representatives of sparse sampling, 
which makes them unsuited for the re- 
viewed methods. 

TrenDx [5] is a well-devised approach 
to trend detection from sparse samples, 
explicitly accounting for different phases 
of a trend. It decomposes each trend into 
a collection of temporal intervals, each of 
which constrains a number of Parameter 
values. Temporal internals may be of in- 
determinate length, their bounds are then 
related to other intervals or landmark 

I Suspected Acute 0 37 77 0 1 1 15 points through additional temporal con- 

Latent 0 1 259 0 2 262 1 
Seronegative 0 0 0 606 0 606 1 
lnconsistent Data 0 0 5 0 7 12 

C 5 38 341 606 10 1000 

I- -  - - - 
-- . . -- 

Table 2 
Sensitivity, specifiity and accuracy of ONSET - - - - - - -- - - - - - - - - - - - - - - --.- - 

Diagnostic , Sensitivity (%) Specificity (X)' Accuracy (%) 
Class 

Acute 100.0 100.0 100.0 

straints. 
Trends are detected by assigning time- 

stamped data to suitable intervals. For this 
purpose, TrenD, recursively generates 
and prunes hypotheses, instantiations of 
trend templates whose intervals are 
adapted to fit the data times and values. 

Although TrenD, aims at the classifi- 
cation of Courses rather than the determi- 
nation of the onset of a trend, it can also 
be used to generate hypotheses, leading to 
different onsets. However, due to its inter- 
val-based explicit temporal logic, genera- 
tion of all feasible hypotheses, particularly 
with a resolution comparable to ONSETS, 
is computationally expensive. 

1 iatent 76.0 99.5 91.5 1 Conclusion 
Seronegative 100.0 

lnconsistent Data 70.0 

ONSET derives its diagnosis from the 
combined evidence of contemporaneous 
and successive findings, which is in ac- 
cordance with the behaviour of a clinician. 
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7. Frequent faise diagnoses of ONSET 

Although it does not increase the diagnos- 
tic capabilities in principle, i.e., it cannot 
perform better than an expert reasoning on 
the basis of the same knowledge, compu- 
tational power can be exploited to perform 
the matches and combine the results with 
greater precision, resolution, reliability, 
and transparency. Fundamental improve- 
ments of diagnosis, however, can only be 
expected from better serological tests or 
increased testing frequency. 

O ~ s ~ ~ r e i i e s  on domain knowledge ex- 
plicated in a non-verbalized, analytical 
form. Knowledge representation-al- 
though mathematical-is intuitively clear 
and easy to conceive, making it equally 
accessible to both man and machine, and 
hence subject to objective evaluation and 
criticism. 
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