
M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 117–120, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Declared Type Generalization Checker:
An Eclipse Plug-In for Systematic Programming with

More General Types

Markus Bach, Florian Forster, and Friedrich Steimann

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
bach.markus@gmx.net, florian.forster@fernuni-hagen.de,

steimann@acm.org

Abstract. The Declared Type Generalization Checker is a plug-in for Eclipse’s
Java Development Tools (JDT) that supports developers in systematically find-
ing and using better fitting types in their programs. A type A is considered to fit
better than a type B for a declaration element (variable) d if A is more general
than B, that is, if A provides fewer members unneeded for the use of d. Our
support comes in the form of warnings generated in the Problem View of
Eclipse, and associated Quick Fixes allowing elements to be re-declared auto-
matically. Due to the use of Eclipse extension points, the algorithm used to
compute more general types is easily exchangeable. Currently our tool can use
two publicly available algorithms, one considering only supertypes already pre-
sent in a project, and one computing new, perfectly fitting types.

1 The Problem: Too Strong Coupling Due to Overly Specific
Types

A class C is coupled to a type B if one or more declaration elements of C (i.e., fields,
formal parameters, local variables, or methods with non-void return types) are de-
clared with B as their type. Even though coupling between types cannot be eliminated
completely (because without any coupling a type would be isolated from the rest of
the system and therefore useless [1]), there is often a certain amount of unnecessary
coupling which can be reduced in many cases by using a more general type than B. In
fact, unnecessary coupling between C and B arises when a declaration element d in C
is declared with B as its type and B offers more members than actually needed by d.
In [2] we have shown that developers rarely use the best fitting type available in a
program for typing declaration elements, and that by introducing new, better fitting
types unnecessary coupling can be reduced to a minimum. However, we believe that
developers cannot be blamed for not using more general types in a project as long as
proactive tool support for indicating where which types can be used is lacking: pro-
grammers tend to think of their objects more in terms of the classes from which they
are instantiated, and less in terms of the generalizations they posses (which are often
unknown, or at least not known to be useable in a given context).

118 M. Bach, F. Forster, and F. Steimann

2 The Solution: The Declared Type Generalization Checker

To support developers in becoming aware of — and in using — more general types,
we implemented a tool, called the Declared Type Generalization Checker, as a plug-in
for the Eclipse Java Development Tools (JDT) [6, 7]1. This plug-in provides a new
type of warning for the Problem View, which informs developers of unnecessary cou-
pling arising from overly specific declaration elements (i.e., elements declared with
types providing more members than actually needed). At the same time, the plug-in ex-
tends Eclipse’s Quick Fixes by one that lets programmers re-declare elements with bet-
ter fitting types. To compute these types and to perform the re-declaration, currently
one out of two available algorithms for type generalization (and their associated
refactorings) can be selected in the project properties tab of the plug-in.

2.1 Generation of Warnings

The Declared Type Generalization Checker is implemented as a builder that, if acti-
vated in a project’s properties, is automatically started after each compilation of the
project. Since compilation in Eclipse is itself implemented as a builder, the Declared
Type Generalization Checker can take advantage of Eclipse’s incremental build proc-
ess — in particular, after a change only the compilation units affected by that change
are rebuilt. This helps shorten checking times considerably (cf. Section 3).

The builder visits each declaration element of a compilation unit and invokes the
algorithm selected for checking for possible generalizations (see Section 4). The re-
sults of each check are communicated to the IDE using its standard interface for
builders.

2.2 Provision of Quick Fixes

With each warning a Quick Fix can be associated that triggers a refactoring introduc-
ing a more general type (thus resolving the warning). Whether such a Quick Fix exists
depends on the algorithm chosen to generate the warning, which is selected in the pro-
ject property settings. Currently, two such algorithms are available.

2.3 Algorithms Computing More General Types

For every project, the programmer can choose the algorithm the checker uses to gen-
erate the warnings. Currently, the available algorithms are the standard algorithms
delivered with their corresponding refactorings, which also provide the Quick Fixes.

Generalize Declared Type. Generalize Declared Type is a standard refactoring of
Eclipse distributed with JDT. After invocation of the refactoring on a declaration
element d the developer is presented the type hierarchy for the declared type of d. In
this hierarchy, every supertype that can be used in the declaration of d (because it
includes all members required from d) is highlighted and can be selected as the new
type of d. Note that this refactoring does not necessarily reduce coupling to a
theoretical minimum, as the new type may still contain excessive members, and the

1 http://www.eclipse.org

 Declared Type Generalization Checker 119

perfect generalization may not (yet) have been introduced (and therefore is not among
the presented supertypes). Nevertheless, as [2] has shown, even if generalizations are
available in a project, they are often not used.

Our Declared Type Generalization Checker uses the type inference algorithm
employed by Generalize Declared Type to check whether a more general type is
available (the basis for a warning); also, it launches the refactoring itself as the corre-
sponding Quick Fix.

Infer Type. So-called type inference can compute type annotations for program
elements independently of whether or how they are actually typed [3–5]. We designed
our own type inference algorithm for Java [4] specifically to compute the most
general type that can be used for a declaration element, and this independently of the
types that already exist. Our algorithm is the basis of a new refactoring, called Infer
Type2, which can be characterized as an automatic version of the Extract Interface
refactoring distributed with Eclipse’s JDT and other Java IDEs. Since the types
computed by Infer Type are always maximally general (meaning that no member can
be removed without causing a static type error), types using only inferred types for
their declaration elements are always maximally decoupled.

The type inference algorithm underlying Infer Type is used by our Declared Type
Generalization Checker as an alternative to that of Generalize Declared Type in ex-
actly the same way as described above.

3 Performance Evaluation

Checking every declaration element of a program for the availability of a more gen-
eral type is a time-consuming task. To get an impression of how the systematic search
for type generalizations influences the development cycle, we performed the meas-
urements summarized in the following table.

PROJECT ALGORITHM
 Generalize Declared Type Infer Type

NUMBER OF

DECLARATION

ELEMENTS time warnings time warnings
JUnit 3.8.1 1501 ≈ 3.5 mins 205 ≈ 8 mins 315
JHotDraw 6.0b1 7788 ≈ 42 mins 1230 – –

These times (obtained on a ThinkPad run at 2 GHz) may appear unacceptable, espe-
cially for Infer Type, but since they refer to full builds, they rarely occur in practice.
What we found instead is that for average change/build cycles, the overhead incurred
by the Declared Type Generalization Checker is reasonable. As for Infer Type,
we hope to be able to present a more efficient implementation soon (see Section 5).

4 Extending the Declared Type Generalization Checker

As mentioned above, the algorithm used to compute more general types for declara-
tion elements is variable. In fact, our tool accommodates further extensions, by

2 http://www.fernuni-hagen.de/ps/prjs/InferType/

120 M. Bach, F. Forster, and F. Steimann

allowing one to add other algorithms and refactorings. The corresponding extension
point requires implementations of three methods, namely boolean check-

Type(...), boolean hasResolution(), and IMarkerResolution2 getRe-
solution(). The first, checkType, answers for a given declaration element and its
declared type whether a better matching type exists so that a corresponding warning
can be generated. If it does, hasResolution tells the plug-in whether the extension
can also offer a Quick Fix to resolve the issue (which is the case for both extensions
currently in offered). If so, the method getResolution delivers an object that,
through its run method, redeclares the declaration element in question (in the current
extensions by starting a refactoring).

5 Availability

The Declared Type Generalization Checker can be installed from the update site
http://www.fernuni-hagen.de/ps/prjs/DTGC/update/. It depends on the availability of
the Generalize Declared Type refactoring (which is part of the standard distribution)
and optionally also that of Infer Type (which is part of the Yoxos3 distribution, but
can also be installed separately from the link given in Footnote 2).

We are currently working on a new implementation of Infer Type that utilizes
Eclipse’s type constraint framework and that can handle Java generics. Once avail-
able, it will be offered as an alternative extension to our Declared Type Generaliza-
tion Checker.

References

1. E Berard Essays on Object-Oriented Software Engineering (Prentice-Hall 1993).
2. F Forster “Cost and benefit of rigorous decoupling with context-specific interfaces” in: Pro-

ceedings of the 4th International Conference on Principles and Practices of Programming in
Java (2006) 23–30.

3. J Palsberg, MI Schwartzbach “Object-oriented type inference” in: Proceedings of OOPSLA
(1991) 146–161.

4. F Steimann, P Mayer, A Meißner “Decoupling classes with inferred interfaces” in: Proceed-
ings of the 2006 ACM Symposium on Applied Computing (2006) 1404–1408.

5. T Wang,SF Smith “Precise constraint-based type inference for JAVA” in: Proceedings of
ECOOP (2001) 99–117.

6. D Bäumer, E Gamma, A Kiezun “Integrating refactoring support into a Java development
tool” in: OOPSLA’01 Companion (2001).

7. E Gamma, K Beck Contributing to Eclipse (Addison-Wesley Professional 2003).

3 www.yoxos.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

