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ABSTRACT 
Unless explicitly prevented, aspects can apply to themselves and 
can therefore change their own behaviour. This self-adaptation 
can lead to syntactically correct programs that express antino-
mies, i.e., that are meaningless (have no intuitive semantics). 
Drawing the parallel to mathematical logic, we suggest adopting 
the classical solution presented by Russell and Tarski, i.e., the 
separation of language into different levels. We propose a simple 
static type system for AOP that is based on such stratification and 
that not only helps avoid certain common programming errors, 
but also reflects on its inherent nature. 

Categories and Subject Descriptors 
D.3.1 [Programming Languages]: Formal Definitions and The-
ory – Semantics, Syntax 

D.3.3 [Programming Languages]: Language Constructs and 
Features – Recursion  

General Terms 
Languages, Theory, Verification. 

Keywords 
Aspects, aspect-oriented programming, meta-programming, self-
referentiality, antinomy, paradox, types 

1. INTRODUCTION 
AOP [4] [11] evolved out of meta programming [12]. It packs 
intercession, i.e., the possibility to intercept certain events in the 
course of a program and to insert event-specific behaviour, into a 
new language construct, the aspect. 

Aspects are extremely powerful. In fact, they are so powerful that 
most contemporary implementations restrict their expressive 
power through certain syntactical constraints. For instance, most 
AOPLs do not let aspects advise other aspects (or even them-
selves). AspectJ [1][10], which has a primitive pointcut advice-
execution() that covers all executions of advices, provides con-
structs such as cflow(.) and within(.) (or, rather, !within(.)) 

that can be used to prevent self-reference and hence infinite recur-
sion. However, these restrictions and by-passes are usually ad hoc 
in nature and not argued for on conceptual grounds; in fact, the 
general approach of language development seems to be that 
AOPLs are evolved according to their users’ needs, and problems 
are fixed once they are discovered. 

In this paper, we take a more principled approach to restricting 
the expressive power of AOPLs by revisiting a famous series of 
problems in logic and drawing the analogy to AOP. For this, we 
briefly recapitulate an ancient paradox known as the antinomy of 
the liar, and present certain variations of it that can be trans-
formed into aspect-oriented programs (Section 2). Following the 
reasoning of the logicians who first solved the problem, we argue 
that any formal language allowing the expression of such antino-
mies is unsound, and needs mending (Section 3). In Section 4 we 
present several technical variants of a surprisingly simple solution 
that not only avoids all paradoxes of the discussed kind, but also 
other unwanted recursion of aspect application that until today 
can only be avoided by explicitly introducing certain run-time 
checks. In the discussion we compare our approach to related 
work, and find that it sheds some light on the nature of AOP. 

2. FAMOUS ANTINOMIES AND THEIR 
TRANSLATION TO AOP 
One of the oldest and also best known antinomies is that of the 
liar: when Epimenides the Cretan said that all Cretans are liars, 
and everything else they said was in fact untrue1, he begged the 
question whether he himself told the truth, or lied. While the an-
tinomy in Epimenides’ utterance depends on certain assumption 
concerning the meaning of words, the paradox in it its simplest 
reduction, 

“This sentence is false.” 

is fairly obvious: if the sentence is true, then by its meaning it 
must be false, and if it is false, the opposite of its meaning must 
be true, i.e., it must be true, thereby contradicting the presupposi-
tion. 

This antinomy, which could not be resolved for some 2,500 years, 
has many incarnations. For instance, consider the following two 
sentences which, each one for itself being easy to understand, 
form an unpleasant loop ([8], p. 21): 

                                                                 
1 quoted after Bertrand Russell [13]. The original statement of 

Epimenides does not appear to have been formulated to provoke 
a contradiction. 
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1. The following sentence is false. 
2. The preceding sentence is true. 

Interpreting the first sentence as true makes the second sentence 
false which, assuming a binary (Boolean) logic, would make the 
first sentence false, thus making the second sentence true. Inter-
preting the second sentence as true makes the first one true and 
thus makes itself, the second sentence, false, and so on. There is 
no way out of this. 

2.1 Formulations in AOP 
Translating the above two sentences to an AspectJ program is 
almost straightforward. All we have to do is to replace the truth 
values true and false with execution and non-execution, respec-
tively. Sentence 1 then translates to 
public aspect S1 { 
  void around(): adviceexecution() && within(S2) { 
  } 
} 

i.e., the advice of S1 negates the execution of S2’s advice (because 
it contains no proceed()). Accordingly, sentence 2 translates to 
public aspect S2 { 
  void around(): adviceexecution() && within(S1) { 
    proceed(); 
  } 
} 

i.e., the advice of S2 confirms the execution of S1’s advice. The 
intuitive semantics of these two aspects would imply that when-
ever the advice of S1 is to be executed, it does not get executed, 
because the proceed() in the advice of S2 (which would com-
mence its execution) is cancelled by S1. Now if one accepts that 
execution of S1’s advice is cancelled, the advice of S2 (the pro-
ceed()) does not get cancelled (by S1), so that there is not reason 
why S1 should not get executed in the first place. 
Starting the loop with the advice of S2, the picture is not much 
different: before S2’s advice can get executed, that of S1 is exe-
cuted, which cancels the execution S2’s advice and with it, 
through cancellation of proceed(), also cancels the execution of 
S1’s advice. 
The operational semantics of AspectJ (as implemented by its 
compiler) has a simple solution to this paradox: since it calls the 
advices of both aspects in alternating order before it does any-
thing (i.e., call or not call proceed()), it never comes to the core 
of the problem, but rather causes a stack overflow. 
One might argue that S2 is really a non-aspect, since it does not 
do anything other than intercept an invocation of S1’s advice and 
then continue with it. In fact, the following reduced aspect S could 
be thought of as inlining S2 in S1: 
public aspect S { 
  void around(): adviceexecution() && within(S) { 
    // do something, but do not proceed 
  } 
} 

It could be interpreted as the programmatic form of “This sen-
tence is false”. Its intuitive semantics again would imply that 
whenever the advice of S is to be executed, it does not get exe-
cuted, because the proceed() in the advice of S is lacking. With-
out a non-executed proceed(), however, there is no reason why S 
should not get executed. Admittedly, this is taking intuition a little 

far, but on the other hand, what is aspect S to express? Should it 
“do something”, do nothing, or recur infinitely?2 
Finally, the antinomy of the liar can be paraphrased in program-
ming terms beginning with “all routines returning a truth value are 
always (i.e., for all calls) wrong”. The passionate AO programmer 
might believe that this could easily be corrected by introducing a 
repair aspect, namely by 
aspect Negate { 
  Object around(): execution(* *(..)) 
      || adviceexecution() { 
    Object c = proceed(); 
     if (c instanceof Boolean && c!= null) 
 return !((Boolean) c);  
     else 
       return c; 
   } 
} 

However, since the aspect would also have to correct itself, it is 
unclear what it should return in this case: upon execution, the 
above AspectJ code does the best it can — it runs into an infinite 
recursion, thus refusing to give an answer to the question. 

2.2 Antinomies That Currently Cannot Be 
Expressed 
There are also variations of the antinomy that cannot be expressed 
in AspectJ. Among the most famous is the barber who shaves all 
and only the people who do not shave themselves: assuming the 
barber shaved himself he would disregard the condition to shave 
only the people who do not shave themselves; assuming that he 
did not shave himself on the other hand he would, by the premise 
of his job description, have to shave himself. One way or another, 
the barber fails to meet the requirements of his task. 

At first glance, this antinomy can be easily transcribed to AOP, 
namely to the following, informally defined aspect: 

“Aspect Barber advises all and only the aspects 
that do not advise themselves.” 

In AspectJ, that a concrete aspect A advises itself, i.e. its own 
pieces of advice, is expressed by the following pointcut: 
adviceexecution() && within(A) 

Conversely, that the aspect A does not advise itself is expressed by 
adviceexecution() && !within(A) 

The difficulty comes from generically expressing all aspects that 
advise, or do not advise, themselves. Due to existing language 
restrictions, AspectJ currently has no means of checking if an 
aspect advises itself. Whether intentional or not, this restriction 
saves AspectJ from being able to express the Barber’s antinomy. 

2.3 Non-Paradoxical Recursion 
That the adviceexecution() pointcut designator can lead to infi-
nite recursion is a well-known problem. In fact, in [6] it is stressed 
that 

                                                                 
2 As it turns out, it will recur infinitely as the advice is executed 

(“called”) even though it does nothing. An optimizing aspect 
compiler might however change this semantics. 
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[t]he preferred way to use the adviceexecution() point-
cut is to pair it with within(YourAspect), thus limiting its 
scope to advice appearing in the body of YourAspect. 

 “The AspectJ Programming Guide” [3] gives a concrete example 
of this and shows how to avoid it: 
aspect TraceStuff { 
  pointcut myAdvice(): adviceexecution() &&   
    within(TraceStuff); 
  before(): call(* *(..)) && !cflow(myAdvice()) { 
    // do something matching call(* *(..)) 
  } 
} 

However, the recursion that would occur in the application of 
TraceStuff if !cflow(myAdvice()) were not included in the 
pointcut of the before advice can be considered a plain program-
ming error.3 In particular, it does not give rise to antinomies of the 
above kind, and its interpretation by the AspectJ compiler is not at 
conflict with its intuitive semantics. On the other hand, it is a 
programming error that is easily overlooked, one that would be 
nice if the language definition prevented the programmer from. 
We will return to this issue in Section 4. 

2.4 Aspect Recursion Not Involving the Ad-
vising of Advice 
Finally, we point the reader to the fact that there is a form of (usu-
ally unintended, i.e., erroneous) recursion that is caused by aspect 
application, but that does not involve the advising of aspects. The 
following gives an example of this: 
public class Innocent { 
   public void someMethod() { 
     ... 
   } 
} 
 
public aspect Naughty { 
   before(Innocent a): 
       execution(void Innocent.someMethod()) 
       && target(a) { 
     a.someMethod(); 
   } 
} 

Note that recursion does not involve an adviceexecution() point-
cut. 
This kind of problem occurs when aspects access elements of the 
base program, thereby triggering (other) aspects including them-
selves. This however is of a different quality than the problems 
induced by the self-referentiality of aspects discussed above, and 
we make no proposals suggesting how to avoid such problems. 

3. GREAT ESCAPES 
It was one of the most significant mathematical discoveries of the 
early 20th century that antinomies of the presented kind are not the 
result of some linguistic sophistry, but rather question the funda-
mentals of all mathematical reasoning. In fact, mathematicians of 
that time (including Russell) seriously considered abandoning set 
theory altogether (and with it the concept of classes and relation-
ships). Luckily for us, they did not, but instead came up with sev-
eral solutions that avoided these problems. One of the earliest was 
                                                                 
3 In fact, in [2] the authors note that “circular adviceexecution() 

applications are very rare, and usually pathological and a symp-
tom of an error in the program.” 

formulated by Russell himself as his “theory of types”, the essen-
tial idea of which, the distinction of different levels of proposi-
tions, was later repeated in Tarski’s contemplations regarding the 
notion of truth. As it turns out, Russell’s and Tarski’s solution 
makes a useful contribution to AOP, but before transferring it to 
our problem, we briefly revisit the original works, one by one.   

3.1 Russell’s Theory of Types 
In the year 1901 Russell discovered a fundamental problem in the 
naïve form of set theory that at that time was thought to be the 
basis of mathematics. In [13] he formulated “the class of all those 
classes which are not members of themselves”: 

}|{ XXXM ∉=  

The problem with this definition is that whichever of the two 
possible alternatives M ∈ M and M ∉ M one assumes, the oppo-
site follows: 

MMMM
MMMM
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Russell noted that the problem can only be avoided by agreeing 
that “[w]hatever involves all of a collection must not be one of 
the collection”. However, the problem is that it is unobvious how 
to specify such a condition, since  

[w]e cannot say: “When I speak of all propositions, I 
mean all except those in which ‘all propositions’ are men-
tioned”; for in this explanation we have mentioned the 
propositions in which all propositions are mentioned, 
which we cannot do significantly. […] The exclusion 
[therefore] must result naturally and inevitably from our 
positive doctrines, which must make it plain that “all 
propositions” and “all properties” are meaningless 
phrases. [13] 

Russell solved this problem constructively by introducing a “hier-
archy of types”: 

A type  is defined as the range of significance of a pro-
positional function, that is, as the collection of arguments 
for which the said function has values. Whenever an ap-
parent variable occurs in a proposition, the range of val-
ues of the apparent variable is a type, the type being 
fixed by the function of which “all values” are con-
cerned. The division of objects into types is necessitated 
by the reflexive fallacies which otherwise arise. These 
fallacies, as we saw, are to be avoided by what may be 
called the “vicious-circle principle”, that is, “no total-
ity can contain members defined in terms of itself”. 
This principle, in our technical language, becomes: 
“Whatever contains an apparent variable must not 
be a possible value of that variable”. Thus whatever 
contains an apparent variable must be of a different type 
from the possible values of that variable; we will say 
that it is of a higher type. Thus the apparent variables 
contained in an expression are what determines its type. 
This is the guiding principle in what follows. [13] 

Transferred to our problem of self-reference in AOP, the function 
advice(joinpoint) 

defines as a type the set of possible values the variable joinpoint 
may adopt. The value of advice(joinpoint) however must be of a 
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higher type, so that it cannot be a value of joinpoint. It follows 
that no advice can serve as its own join point or, phrased differ-
ently, that no advice can advise itself. We will exploit this in our 
typing system for AOP described in Section 4. 
It is interesting to note that Russell’s type theory was only later 
generalized into sorted (and also order-sorted) predicate logic, 
whose sorts map closely to the types we know from typed pro-
gramming languages. Since logic is usually restricted to first or-
der, its sorts are all of Russell’s type 1, i.e., they are sets of indi-
viduals (the objects). Our type system suggested in Section 4 lifts 
this restriction. 

3.2 Tarkski’s Distinction between Object 
Language and Meta-Language 
In his discussion of the semantic conception of truth [17] Tarski 
analyzed the assumptions which lead to the antinomy of the liar, 
and observed the following: 

I. We have implicitly assumed that the language in 
which the antinomy is constructed contains, in addi-
tion to its expressions, also the names of these expres-
sions, as well as semantic terms such as the term 
“true” referring to sentences of this language; we 
have also assumed that all sentences which determine 
the adequate usage of this term can be asserted in the 
language. A language with these properties will be 
called “semantically closed.”  

II. We have assumed that in this language the ordinary 
laws of logic hold.  

[…] Since every language which satisfies both of these 
assumptions is inconsistent, we must reject at least one of 
them. [17] 

Because the ordinary laws of logic are hard to renounce, it seems 
that semantic closedness cannot be upheld. Now if we agree 

not to employ semantically closed languages, we have to 
use two different languages in discussing the problem of 
the definition of truth and, more generally, any problems 
in the field of semantics. The first of these languages is the 
language which is “talked about” and which is the sub-
ject matter of the whole discussion; the definition of truth 
which we are seeking applies to the sentences of this lan-
guage. The second is the language in which we “talk 
about” the first language, and in terms of which we wish, 
in particular, to construct the definition of truth for the 
first language. We shall refer to the first language as “the 
object language,” and to the second as “the meta-
language.” [17] 

Tarski further argues that in order to make statements about state-
ments formulated in the object language, “the meta-language must 
be rich enough to provide possibilities of constructing a name for 
every sentence of the object language.” Regarding truth, the meta-
language must also contain terms of general logic such as AND, 
OR and NOT. 
It springs to mind that the meta-language of Tarski and aspect 
languages (AspectJ in particular) have a lot in common. Quite 
obviously, since AspectJ extends Java, every sentence of the ob-
ject language (Java) can occur in the meta-language (AspectJ). 
Names for expressions in the object language can be constructed 

by using pointcuts (the fact that it is not possible to construct a 
pointcut for every element of the object language is merely a limi-
tation of the implementation). Last but not least, the meta-
language contains logical terms for the formulation of pointcuts. 
Because we were able to reconstruct the antinomies in AspectJ, 
we conclude that it is semantically closed; in order to avoid them, 
we have to introduce a clear distinction between object language 
and meta-language. 

4. TYPE-SAFE AOP 
We will start the presentation of our solution with a practical ex-
ample. It contains a recursion analogous to those presented in 
Section 2.3 and [3], but no antinomy. However, as we will elabo-
rate later our solution is powerful enough to also avoid all an-
tinomies we were able to express in Section 2.1, as well as ones 
that cannot (yet) be formulated, enabling certain future language 
extensions that seem too risky today. 
One of the best known (and most often cited) applications of as-
pects is tracing: if the execution paths of a program become un-
obvious, a trace may help to find out what exactly is going on. 
However, because of its obliviousness property AOP comes with 
its very own tracing demands: the programmer might be particu-
larly interested when a certain aspect (or all aspects) are executed 
or, more challenging, in which order certain conflicting pieces of 
advice are executed on the same join point4.  
Writing an advice that traces all method executions and advice 
executions seems an easy exercise. The first solution a program-
mer might propose, namely 
public aspect Tracing { 
  void around(): adviceexecution()  

    || execution
5
 (* *(..)) { 

    System.out.println("Entering:" +   
      thisJoinPoint); 
    proceed(); 
    System.out.println("Leaving: " +  
      thisJoinPoint); 
  } 
} 

as a tracing aspect that traces both method and advice executions, 
as for instance 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 

and 
public class Base { 
  public void doSomething() {...} 
} 

does not work. Taking a closer look reveals that the pointcut at-
tached to the tracing advice selects the tracing advice itself (by 
means of the unrestricted primitive pointcut adviceexecution()), 
sending AspectJ into infinite recursion. This is clearly a pro-
gramming error, which has to be fixed somehow. 

                                                                 
4  Note that by the current definition of advice precedence in As-

pectJ this order might be impossible to determine. Even worse, 
it may change in between two compiler runs. [5] 

5  Although we consistently use the pointcut designator execu-
tion(.) for referring to the base program throughout the fol-
lowing, it should be understood that it could be replaced by 
other pointcut designators such as set(.) or get(.). 
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An immediate solution would appear to be using the pointcut 
designator within(<TypePattern>), where <TypePattern> iden-
tifies a number of classes, interfaces and/or aspects. The for-
merly unrestricted pointcut adviceexecution() can then anded 
with (restricted by) !within(Tracing), i.e. only pieces of advice 
which are not in the lexical scope of the aspect Tracing are se-
lected, as the following example shows. 
public aspect Tracing { 
  void around(): (adviceexecution() 
    && !within(Tracing))  
    || execution (* *(..)) { 
    ... 
  } 
} 

As it turns out, however, this construction cannot avoid indirect 
recursion. In fact, when applying it to aspect S1 from Section 2.1, 
it must remain ineffective, since within(S2) implies !within(S1). 
Therefore, one has to check explicitly whether S1 has already 
been activated, a test that can be performed with the aid of the 
cflow() function. Hence, in order to be sure that self application 
is under all circumstances avoided, one has to include the verbose 
construct presented in Section 2.3. Thus, our tracing aspect be-
comes the clumsy 
public aspect Tracing { 
  pointcut guard(): adviceexecution() &&  
    within(Tracing); 
  void around(): (adviceexecution() 
    || execution (* *(..))) && 
    !cflow(guard()) { 
    ... 
  } 
} 

It seems that the introduction of adviceexecution() as a means to 
let aspects apply to aspects has made necessary a programming 
pattern that serves to fix the resulting problems. However, this 
pattern means that the infinite recursion introduced by advice-
execution() has to be explicitly detected and broken, and this at 
runtime. What would be desirable instead is that adviceexecu-
tion(), while allowing certain (wanted) recursion, can never 
mean the (generally nonsensical) infinite recursion to itself.6 In 
the following, we build such a solution on a theory of types as 
proposed by Russell or, equivalently, on a theory of object lan-
guage and meta-language as proposed by Tarski. We develop the 
solution in a stepwise manner, by first presenting a programming 
pattern using annotations to introduce type (or meta) levels, then 
sketching a preprocessor utility for AspectJ that frees the pro-
grammer from the coding overhead and error-proneness of the 
pattern, and finally by suggesting the addition of a new keyword 
meta to AspectJ whose semantics does the job all automatically. 

4.1 Step 1: Using Annotations and a Simple 
Programming Pattern 
The basic idea of the solutions of Tarski and Russell was the in-
troduction of different levels of language. What we need, there-
fore, is a way to organize the elements of an aspect-oriented pro-
gram into several levels. With the new annotation feature of Java 
                                                                 
6  Note that this cannot be achieved simply by excluding every 

occurrence of adviceexecution() from its own scope, since the 
recursion may be indirect. Cf. also Russell’s comment on the 
impossibility of explicit avoidance of self-reference in Section 
3.1. 

5.0 and AspectJ5 one can introduce such stratification, thereby 
simulating the distinction of Java as the object language and As-
pectJ as the meta-language, or the type levels of Russell. 
We declare the annotation needed for this purpose as follows: 
@Retention(RetentionPolicy.SOURCE) 
@Target(ElementType.TYPE) 
public @interface TypeLevel { 
   int value() default 0; 
} 

Note that our annotating TypeLevel with the built-in meta-
annotation @Retention(RetentionPolicy.SOURCE) implies that 
we evaluate the annotations statically (in contrast to cflow(), 
which can only be evaluated dynamically!). A second built-in 
meta-annotation, @Target, is set to ElementType.TYPE; it prevents 
the annotation of elements other than types, i.e. classes, inter-
faces, and aspects, by prompting a corresponding compilation 
error. 
Our TypeLevel annotation has one argument which represents the 
meta-level of the annotated element. By definition the elements 
(class or interface) of the object language will have a meta-level 
of 0, meaning that they must be annotated with @TypeLevel(0), 
and the elements (aspects) of the meta-language addressing ele-
ments of the object language (i.e., advice without an adivce-
execution() in its pointcut) will have a meta-level of 1, meaning 
that they must be annotated with @TypeLevel(1).7 Thus, the base 
of our aspect Tracing must be annotated as 
@TypeLevel(0) 
public class Base { 
  public void doSomething() {...} 
} 
 
@TypeLevel(1) 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 

When moving to the next higher level, the (former) meta-
language becomes the (new) object language, so that the (new) 
meta-language ranges at level 2: advice with an adviceexecu-
tion() in its pointcut is to be annotated with @TypeLevel(2) or 
higher: 
@TypeLevel(2) 
public aspect Tracing { 
  void around(): adviceexecution() {...} 
} 

The problem that remains is how to restrict the scope of the ad-
viceexecution() pointcut to aspects of levels lower than that of 
its enclosing aspect. As it turns out, AspectJ 5 is equipped with 
the @within(Annotation) pointcut designator that matches only 
join points belonging to a type annotated with Annotation. By 
adding @within(TypeLevel) plus the explicit guard 
if(TypeLevel.value() < 2) to the pointcut, our tracing aspect 
can be formulated as  
@TypeLevel(2) 
public aspect Tracing { 
  void around(): (adviceexecution() 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2)) 
    || execution (* *(..)) { 
    System.out.println("Entering: " +  

                                                                 
7  Note that both Russell and Tarski introduced no absolute, but 

only relative levels. However, since our domain is AOP, the 
level of the (non-aspect) base program is as low as we can get. 
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      thisJoinPoint); 
    proceed(); 
    System.out.println("Leaving: " +  
      thisJoinPoint); 
  } 
} 

without limiting its meaning unduly. 
Unfortunately, things are not as simple with the current imple-
mentation of AspectJ, as the following example shows: 
@TypeLevel(2) 
public aspect Tracing { 
  void around(): (adviceexecution() 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2)) 
    || execution (* *(..)) { 
      helpMethod(); 
    } 
  } 
  void helpMethod() {...} 
} 
 
@TypeLevel(1) 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 

When including in the aspect Tracing an arbitrary helper method 
(here: helpMethod()) and calling it from the aspect’s advice, as-
pect Worker (which advises all method executions) advises the 
execution of this method, and therefore indirectly also the aspect 
Tracing even though it is of a higher type level. This leads to an 
infinite recursion as the execution of Worker’s advice triggers the 
advice of Tracing’s which executes the method helpMethod() 
again. The only way out of this (without checking the call stack) 
is to exclude execution() from applying to methods defined 
within aspects.8 To achieve this, execution(.) pointcuts also 
have to be guarded:  
@TypeLevel(2) 
public aspect Tracing { 
  void around(): (adviceexecution() 
    || execution (* *(..))) 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2) { 
    helpMethod() 
  } 
  void helpMethod() {...} 
} 
 
@TypeLevel(1) 
public aspect Worker { 
  void around(): execution(* *(..))  
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 1) { 
    ... 
  } 
} 

The accidental recursion is thus removed. It follows immediately 
that annotating base type (classes and interfaces) with 
@TypeLevel(0) cannot be avoided, although at first glance this 
seems to be redundant (because the base has execution and other 

                                                                 
8  One may ask oneself why AspectJ, while granting advice exe-

cution a different status (“higher level”) than method execution, 
does not extend this to the methods defined within the aspect, in 
particular since inlining these methods should not change the 
meaning of the aspect. 

exclusive pointcut designators that cannot apply to pieces of ad-
vice, and because it cannot be caught by adviceexecution()).9 
Unfortunately, this solution has several problems. First, it only 
works if all types are tagged with their corresponding annotation, 
because if a type (class, interface, or aspect) is not annotated, a 
guarded pointcut will not select its join points, voiding all its as-
pects. Second, the programmer is responsible for ensuring the 
constraint that the value of the type guard of a pointcut is always 
lower than its own aspect’s type level (because there are no means 
to instruct the compiler to check annotation values). Last but not 
least, the required code is highly stereotypical (it is in fact a cod-
ing pattern), and experience teaches that the implied programming 
overhead will not be welcomed by practicing programmers, par-
ticularly if workarounds requiring less coding (the within(.)/ 
!cflow(.) pattern) are available. Since annotating types and 
guarding advice cannot be enforced by the compiler, it will most 
likely not be used. On the other hand, much of the task is so 
stereotypical that it can be delegated to a pre-processor, as dis-
cussed next.  

4.2 Step 2: Using a New Built-in Annotation 
The next major Java release (codenamed “Mustang”) will allow 
user-defined annotations to be included into the compilation proc-
ess by means of a special interface to the compiler [9]. Once 
available, this pre-processing facility should allow us to extend 
the compiler with a pre-processor reducing the work and respon-
sibility of the developer, and thus the likelihood of making errors. 
In this section we will therefore sketch such a pre-processor 
which, in concert with a correctly annotated program, statically 
ensures that the typing conditions of our language are satisfied.  
In our description, we assume a procedure for pre-processing 
described in the Annotation Preprocessing Tool Manual [16]. The 
pre-processor for the tagging task, making sure that every aspect 
is appropriately annotated, is straightforward to write:  
foreach type in program 
  if isTypeTagged(type) 
    do nothing 
  else 
    if (type == Class || type == Interface) 
      type.tagWithLevel(0) 
    if (type == Aspect) 
      type.tagWithLevel(1) 
endfor 

Therefore, when feeding an untagged program to the pre-
processor, it assumes that it consists of only base program and 
level 1 aspects, but no aspects advising aspects.10 After this pre-
processing step every type is, either by the pre-processor or by the 
developer, tagged with a TypeLevel annotation. 
In the next step the pre-processor must generate the guards which 
are required to complete stratification of our language. The fol-
lowing pseudo code attaches the code pattern 
@within(TypeLevel) && if(TypeLevel.value() < t), where t 
is the type level of the enclosing aspect, to every pointcut (un-
                                                                 
9  Note that if one insists that helpMethod() in Tracing is of type 

level 0 (the AspectJ view; cf. Footnote 8), i.e., part of the base, 
the resulting recursion is analogous to that discussed in Section 
2.4, meaning that it cannot be broken by our type system. 

10  As we will see below, occurrence of an adviceexecu-
tion() pointcut in such a program will flag an error. 
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named or named) in the lexical scope of the aspect under investi-
gation. 
foreach aspect in program 
  foreach pointcut in aspect 
    t := getTypeLevel(aspect) 
    attachGuard(pointcut, t) 
  endfor 
endfor 

The generated guard allows the pointcut to select only join points 
occurring in the lexical scope of types annotated with a type level 
below its own. Thus our tracing advice  
@TypeLevel(2) 
aspect Tracing { 
  void around(): adviceexecution() 
    || execution (* *(..)) {...} 
} 

will be automatically extended to  
@TypeLevel(2) 
aspect Tracing { 
  void around(): (adviceexecution() 
    || execution (* *(..))) 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 2) {...} 

whereas  
@TypeLevel(1) 
aspect Tracing { 
  void around(): adviceexecution() 
    || execution (* *(..)) {...} 
} 

will be extended to  
@TypeLevel(1) 
aspect Tracing { 
  void around(): (adviceexecution() 
    || execution (* *(..))) 
    && @within(TypeLevel) 
    && if(TypeLevel.value() < 1) {...} 

which has an empty pointcut, because adviceexecution() only 
matches to program elements in the scope of type level 1 or 
higher. At this point, the pre-processor should flag a type level 
mismatch error. 
The annotation-based pre-processing suffers from one rather sub-
tle problem: it assumes that all pointcuts are intended to refer to 
program elements of any lower level. However, a programmer 
might want to specify that adviceexecution() should match ad-
vice at a particular level (and no other), and this level need not 
even be precisely 1 below itself. In such a case, an explicit guard 
(involving “=” rather than “<”) will be required. We will present a 
more elegant solution for this in the next step. 

4.3 Step 3: Extending the Language with the 
Meta Modifier 
Although the exploitation of “semantic” (i.e., built-in, but user-
defined) annotations reduces the programming overhead and the 
possibility to make mistakes, it is still only a precursor to full 
language support. In particular, it would be desirable for the com-
piler to detect and flag all errors related to the typing of aspects, 
just as it discovers other, conventional typing errors. Also, we 
believe that our suggested typing of aspects deserves the status of 
a new, native language construct, since it addresses a fundamental 
problem inherent in AO languages. Therefore, we propose a 
small, yet very effective extension to AspectJ which equips it 
with a type system à la Russell (not to be confused with the type 
system of Java) and Tarski, allowing the safe advising of advice. 

Frankly, in our extended language attempting to compile 
public aspect Tracing { 
  void around(): adviceexecution() ... 
} 

would result in an error message “type level mismatch error: con-
sider modifying aspect Tracing with meta”, because advice-
execution() may refer to itself. The keyword meta preceding an 
aspect definition lifts the so-declared aspect up one level, i.e., it 
declares it as an aspect of both aspects and base programs (where 
the former must themselves be aspects of base programs, not of 
aspects). For instance, 
meta aspect Tracing { 
  ... 
} 

makes Tracing a meta aspect that can apply to the base program 
and aspects (Base and Worker in the above example), but not meta 
aspects, thereby excluding self-reference. The pointcut definition 
of Tracing can remain as is; in particular, it need not be explicitly 
guarded: it can refer only to lower levels by the definition of the 
language. 
Now the lifting procedure can be applied repeatedly, raising the 
meta level of aspects even further. Although there will most likely 
be no need for having aspects on a level higher than 3 (given the 
usual four-layer architecture), there seems to be no obvious theo-
retical bound to meta levels. Therefore, rather that introducing 
ever new meta modifiers, we propose to denote the meta-meta 
level with meta^2, and generally concatenation of n metas by 
meta^n. meta is then simply shorthand for meta^1, and absence of 
meta is shorthand for meta^0. However, it is important to note that 
theoretically, for n > 0 each meta^n represents a different keyword 
of our language, and our shorthand notation is only introduced to 
allow the compiler to accept them as they are used in a program. 
We will return to this subtlety in Section 5.4. Here, we note that 
an aspect that is to apply to Tracing would have to be declared as 
meta^2 aspect GodAspect {...} 

or higher. 
Following Russell’s theory of types, we allow meta-aspects to 
apply to aspects as well as to base programs, rather than to aspects 
alone. We have no particular reason for this other than that we do 
not want to place unnecessary restrictions on the formalism. Had 
we decided that aspects can exclusively apply to program ele-
ments one level below them, no distinction between the execu-
tion() and the adviceexecution() pointcut designator would 
have been necessary: execution() would have sufficed (denoting 
base code or aspect execution, depending on the level of the de-
fining aspect). 
With the possibility of adviceexecution() pointcuts spanning 
arbitrary levels, we may wish to have increased precision avail-
able for expressing specifically to which level a pointcut applies. 
For instance, while we can already distinguish between base pro-
gram (execution(.)) and aspect (adviceexecution()) and thus 
between type level 0 and higher levels, we may wish to be able to 
differentiate in our pointcuts between type level 1 and 2. There-
fore, we allow that the pointcut designator adviceexecution() 
can also be modified with the keyword meta, specifying the exact 
type level to which the so-modified pointcut is to apply. The 
pointcut  
pointcut metaAdvice(): meta adviceexecution(); 
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would thus select only advice defined in aspects of type (or meta) 
level 2, like our aspect Tracing from above. The meaning of the 
(unmodified) pointcut designator adviceexecution() is then re-
stricted to aspects of type level 1, i.e., those that are not meta 
aspects. Our tracing aspect can thus be rewritten as 
public meta aspect Tracing { 
  void around(): adviceexecution() 
    || execution (* *(..)) { 
    ... 
  } 
} 
 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 
 
public class Base { 
  public void doSomething() {...} 
} 

Note that, as mentioned at the beginning of this subsection, using 
the pointcut designator adviceexecution() in an ordinary (i.e., 
non-meta) aspect or, generally, meta[^n] adviceexecution() in 
any aspect declared as meta[^m] with m ≤ n, would result in a 
compilation error, since it violates the typing rules of our lan-
guage extension. The following table summarizes what is possi-
ble. 

Aspect level allowed pointcut designators 
aspect execution() 

meta aspect execution(), adviceexecution() 

meta^2 aspect execution(),adviceexecution(), 
meta adviceexecution()  

meta^3 aspect execution(),adviceexecution(), 
meta adviceexecution(), 
meta^2 adviceexecution() 

… … 

This so modified AspectJ is now type safe in terms of the type 
theory of Russell, and the antinomies presented in Section 2 can-
not be formulated in it, as the following demonstrates. 

4.4 Resolving the Antinomies 
With our new type system implemented, the code translation of 
the two contradictory sentences from Section 2.1 would now re-
sult in a type level mismatch (compilation) error, because the 
included (indirect) self-reference, i.e. adviceexecution(), while 
applying to type level 1, is in the lexical scope of an aspect of 
type level 1. In order to be well-typed, both S1 and S2 must be 
modified with meta as in 
public meta aspect S1 { 
  void around: adviceexecution() && within(S2) { 
  } 
} 
 
public meta aspect S2 { 
  void around: adviceexecution() && within(S1) { 
    proceed(); 
  } 
} 

This however automatically prevents the self-reference and thus 
the infinite recursion. In fact, both pointcuts do not select any join 
point, since adviceexecution() implicitly applies to type level 1 
whereas within(S2) and within(S1) apply to type level 2, so that 
the conjunction is always false. A corresponding compiler-
generated error, or at least a warning, to notify the developer of 
this problem would seem desirable. 

In the same vein, the recursions of all other paradoxical aspects 
presented above are naturally resolved. For instance, by modify-
ing the declaration of the Negate aspect to meta aspect Negate 
eliminates the possible self-reference, and thus the need to restrict 
adviceexecution() by means of other pointcuts like within(.) 
and cflow(.). The same holds for the unwanted recursion warned 
of in Refs. [3] and [6]. 

4.5 Handling of Aspect Members and Inter-
Type Declarations 
In Section 4.1 we mentioned that the weaving of AspectJ treats 
methods extracted from an advice as ordinary (base) methods, and 
showed how this can lead to indirect recursion. To solve this 
problem in our proposed extension of AspectJ, we assign to every 
join point in an aspect the type level of that aspect (cf. Footnote 
8). Therefore, it cannot be matched by pointcuts of the same or 
lower levels, breaking the recursion. 
To allow selective matching of the join points of an aspect ex-
posed by its members (methods and fields), we further extend 
AspectJ to allow modification of all other pointcut designators 
(i.e., call(.), execution(.), set(.), get(.), etc.) with meta^n. 
meta^n <pointcut> will select only join points occurring in the 
lexical scope of aspects of the corresponding level. Using meta^n 
<pointcut> in an aspect declared as meta^m with m < n will result 
in a (statically discovered) type level mismatch error. The com-
plete table of admissible pointcut designators in each aspect type 
level is the following:  

Aspect level allowed pointcut designators 
aspect current AspectJ pointcut designators ex-

cluding adviceexecution() 
meta aspect same as above plus adviceexecution() 

plus every other AspectJ pointcut designa-
tor modified with meta 

meta^2 aspect same as above plus meta adviceexecu-
tion() plus every other AspectJ pointcut 
designator modified with meta^2 

… … 

In order to catch all method executions in the base program and 
its (type level 1) aspects, our tracing aspect has to be rewritten as 
public meta aspect Tracing { 
  void around(): adviceexecution() 
    || meta execution (* *(..))  
    || execution (* *(..)) { 
    ... 
  }   
} 

It traces both the advice and the (helper) method of 
public aspect Worker { 
  void around(): execution(* *(..)) { 
    someMethod(); 
  } 
  void someMethod() {...} 
} 

For the convenience of the programmer it might prove useful to 
allow modification through meta^n also for defining the scope of 
named pointcuts. Instead of writing 
void around(): meta get(* *)  
  && meta set(* *) {...} 

one could then write 
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meta pointcut accessors(): set(* *) && get(* *); 
void around(): accessors() {...} 

One remaining issue is that of how AspectJ’s inter-type declara-
tions are to be integrated into our typing system. Returning to our 
tracing example once more, we extend the aspect Tracing with an 
introduction affecting the aspect Worker. 
public meta aspect Tracing { 
  void around(): adviceexecution() 
    || meta execution (* *(..))  
    || execution (* *(..)) { 
    ... 
  } 
  void Worker.doGood() {...}  
} 
 
public aspect Worker { 
  void around(): execution(* *(..)) {...} 
} 
 
public class Base { 
  public void doSomething() {...} 
} 

According to the current semantics of AspectJ the introduction 
Worker.doGood() is considered to be a member of the type it is 
introduced to, i.e., at least as regards join point matching it is 
equivalent to defining the method in the aspect Worker directly. 
This is in accord with our typing system: any aspect introducing 
elements to lower level types can also watch over their execution. 
For instance, in the above example the tracing aspect traces all 
executions of doGood() in Worker. Currently, we can see no need 
to restrict introductions to lower levels, i.e., introduction to same 
or higher levels should also be possible, with the restriction that 
these introductions can not be covered by pointcuts of the intro-
ducing aspect. 

4.6 Enabled Language Extensions 
With our type-level language extension defined as above, we are 
now ready to extend AspectJ safely with constructs allowing the 
expression of aspects that advise, or do not advise, themselves.11 
For instance, a special variable targetaspect can now be intro-
duced that refers to the (instance of) the aspect whose join point 
(as captured by an adviceexecution() pointcut) is currently han-
dled. Another special variable thisaspect can be added that re-
fers to the (instance of) the current (handling) aspect. Note that 
the type (level) of thisaspect is always the same as that of the 
advice in whose context (lexical scope) the variable occurs, while 
that of targetaspect is necessarily of a lower level; therefore, the 
expression of the aspect from Section 2.2 that advises all aspects 
that do not advise themselves, 
aspect Barber { 
  void around(): adviceexecution() {  
    if (targetaspect != thisaspect) { 
      proceed(); 
    else {} 
  } 
} 

causes a type level mismatch error in line 3. 

                                                                 
11 A similar request for language extension has been formulated in 

[14]. 

5. DISUSSION AND RELATED WORK 

5.1 Dependence of the Antinomies on a De-
clarative Interpretation 
When reconstructing the logical antinomies in AspectJ in Section 
2.1, we relied on what we called “intuitive semantics”. This as-
sumed intuitive semantics is basically a declarative one, i.e., we 
read the programs as assertions rather than as sequences of in-
structions. When looking at it with procedural glasses on, the 
advice of aspect S in Section 2.1 would read as “before executing 
any advice, call the advice of S”. Since “any advice” includes 
itself, the advice of S is called recursively before anything else is 
(not) done. Therefore, one might argue that there is no antinomy 
in the program, just an infinite recursion. However, the reader will 
agree that this procedural semantics (as defined by the AspectJ 
compiler) is non-obvious at best, and that in a well designed lan-
guage, intuitive semantics should match the operational one (the 
principle of least surprise). 
As an aside, it is interesting to note that the procedural semantics 
of aspects allows them to avoid self-reference through the 
cflow() construct. In fact, in a purely declarative interpretation, 
particularly without a notion of sequentiality and without having 
access to the history of execution, an exclusion of self-reference 
cannot be formulated (as noted by Russell in the quote of Section 
3.1). The price for this check is that it has to be done at runtime 
(and is in fact very expensive); by contrast, our type system al-
lows a static check, which (in terms of runtime overhead) is en-
tirely free. 

5.2 Typing to Prevent Programming Errors 
Even if one denies the existence of antinomies in the aspects con-
structed in Section 2.1, one will agree that a well-designed pro-
gramming language should save its programmers from program-
ming errors. In fact, type systems are generally accepted as serv-
ing this purpose; they discover many possible type mismatches at 
compilation time. However, the aspects of AspectJ, although syn-
tactically similar to classes, are untyped; therefore, current typing 
systems cannot prevent any errors related to advice application. 
We have adapted a typing system well-suited for this purpose 
from Russell’s theory of types and Tarski’s theory of object lan-
guage and meta-language; although it looks very different from 
that base language’s (i.e., Java’s) type system, it serves the same 
purpose: it prohibits the construction of illegal programs, and it 
prevents programming errors. 

5.3 The Orderedness of AOPLs 
It has been noted elsewhere that AOPLs are necessarily second-
order languages [15]. Second-orderedness by definition excludes 
self-referentiality, so that in all AOPLs that are true second order 
languages (as are all those languages that exclude aspects from 
being applied to aspects), the above antinomies cannot be ex-
pressed. However, as we have demonstrated here, at least AspectJ 
as its stands is an unordered language; like unordered logic, it 
allows the construction of Russell’s “vicious circles”. From all we 
can see, making AspectJ a well-ordered (“typed”) language as 
proposed here fixes the problems without imposing any undue 
restrictions. 
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5.4 Aspects of Aspects and the Closure of 
Languages 
The notion of aspects of aspects has stirred some theoretical con-
templation concerning the closedness of aspect languages. In  [7], 
the authors state that the goal of any aspect language should be 
that it be “closed with respect to aspectification (aspect closure)”. 
This is expressed by the equation A(L) = L, meaning that express-
ing aspect application to the language elements of L would make 
do with L, that is, would not require additional language elements. 
From this, they deduce that AspectJ as an instance of A(Java) is 
currently not closed, since obviously AspectJ ≠ Java, but also 
(currently) A(AspectJ) ≠ AspectJ. They argue in favour of such a 
closure since they observed that certain languages incorporating 
meta-programming, such as Smalltalk or CLOS, are also self-
contained, i.e., that there M(L) = L. However, they ignore that this 
is only possible because these languages resort to certain tricks: 
for instance, in Smalltalk the class MetaClass is an instance of 
itself. This however forbids the semantic interpretation of classes 
as sets and instances as elements of sets, since then the set of 
MetaClass would have to contain itself. At the same time, it is at 
odds with Tarski’s fundamental observation that the meta-
language must be richer than its object language, meaning that it 
cannot be “semantically closed”. 
Returning to the generic meta^n keyword discussion from Section 
4.3, we note that our language, although handled by a single com-
piler, is not semantically closed, since every new meta-level, i.e., 
A(L) where the highest type level in L is n, requires a new key-
word meta^n. In a similar vein, the syntax of predicate logic can 
encompass various orders (i.e., first order predicate logic, second 
order predicate logic, and so forth). 

5.5 Testing Advice 
In Ref. [14] it is argued that testing is a crosscutting concern, i.e., 
that testing code spreads across the whole system, and thus lends 
itself to being extracted to an aspect. All testing code can be en-
capsulated into one module which has privileged access to the 
original source without needing to modify it. Furthermore, the 
testing code is easily removed, by excluding it from compilation. 
As AOP seems to be well suited for testing object-oriented pro-
grams, the question arises whether it is also well suited for testing 
aspect-oriented programs. 
To focus the discussion, the authors distinguish between the “ap-
plication aspects”, i.e. aspects applying to the base program for 
some application-specific purpose, and “testing aspects”, i.e. as-
pect applying to the base program or application aspects for the 
purpose of testing them. With the aid of our type levels, one can 
syntactically separate these levels, by modifying testing aspects 
with meta. Also, our type-safeness opens the door for the exten-
sion of reflection mechanisms requested in [14] “so that informa-
tion about actual join points, pointcuts and advices can be ob-
tained”, without worrying about new problems (cf. Section 4.6).  

6. CONCLUSION 
As a form of meta-programming, aspects and AOP are so power-
ful concepts that their use must be regulated. In particular, possi-
ble self-application of aspects is a severe problem, since it cannot 
only cause infinite recursion, but also allows nonsensical expres-

sions. While the former should merely be prevented, the latter 
must be forbidden by any sound language definition. Based on the 
groundbreaking work of Russell and Tarski, we have proposed a 
simple language extension that equips AspectJ with a (formerly 
unavailable) typing system suitable to eliminate both kinds of 
problems through a simple static type check. Even though we 
based our argumentation on one specific implementation of AOP, 
the problem and the solution presented in this paper should be 
applicable to AOP in general. 
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