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Abstract: In this paper, a framework for an intelligent bedside monitor is
presented. The monitor derives an abstraction of the current status of a
patient by fuzzy state transitions on pre-processed input continuously sup-
plied by clinical instrumentation. So far, an implementation called
DIAMON-1 has been used for off-line evaluation of data of patients suffer-
ing from the adult respiratory distress syndrome (ARDS).
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Introduction

As new devices for on-line sampling of physiological data become available, intensive
care monitors display more and more information. However, instead of the clinical
staff being relieved, they are faced with a different problem, that of monitoring the
monitor. Perception and interpretation of a multitude of time-varying parameters is
difficult for humans [2, 5, 10], even if the parameter values are displayed in an ergo-
nomic style. The situation is further complicated when parameters interact such that
only certain constellations provide hints for critical conditions, or when the meaning of
a value depends on the patient history, i.e., on what has happened before. Context-spe-
cific alarms for which no absolute thresholds can be established are a good example of
this [2, 9].

This paper presents a formal framework for the design of monitors that exhibit the fol-
lowing properties:

abstraction from objectively observed (quantitative) parameters to (qualitative)
stages of a disease,

early indication of improvement in or deterioration of the patient´s state by
providing smooth transitions between stages, and

consideration of previous events, i.e., history-based interpretation of data.

Definition of a state monitor

A state monitor as defined in the following employs concepts that stem from automata
theory [3]: inputs, states, and transitions. A state monitor is an instrument that traces
the patient´s change of state with time, i.e., that records the progress of his illness and,
hopefully, of his improvement. In this context, a state is considered to be an abstrac-
tion of the patient´s status which accounts for a specific stage of a disease. Transitions
provide possible paths from one state to the next. They depend on input, events that
need to occur or conditions that need to be satisfied for a transition to take place. The
input is obtained by processing objectively and preferably automatically acquired data.

The design of a state monitor is dominated by the nature of the monitored disease: it is
intended to be an abstract model of the medical knowledge in that specific area.

1 appeared in Fuzzy Sets and Systems 61 (1994), pp. 37–42
1



Because medical decision making is based on knowledge that has to take uncertainty
such as physiological variability into account, judgement of the current state of a pa-
tient is often a matter of degree [1]. Consequently, transition from one stage of a dis-
ease to the next is hardly ever abrupt but usually smooth. To allow for smooth
transitions, a state monitor is based on a fuzzy automaton rather than on a conven-
tional one.

Definition 1 (fuzzy automaton)
A fuzzy automaton is a quadruple 

A
∼ = (Q, q∼0, I,δ)

 where
Q is a finite set of states, 

 is a fuzzy subset of Q called the fuzzy initial state, q∼0

I is a finite set of input symbols, and 
is a transition function that maps states and inputs onto states.δ : Q × I → Q

δ is extended to fuzzy arguments by the extension principle [4, 12] such that

q∼ t+1 = δ∼(q∼ t, i
∼ ) = ΣQ×I min(µq∼t (q), µ i

∼ (i))/δ(q, i)

where for each q∈Q

. (1)µq∼t+1(q) =







δ(q ,i)=q
max min(µq∼t (q ), µ i

∼
t
(i))

0 if δ−1(q) = ∅








If  denotes the set of all fuzzy subsets of  A, . A fuzzy℘∼ (A) δ∼ : ℘∼ (Q) × ℘∼ (I) → ℘∼ (Q)
state  is said to be included in the fuzzy state   if .q∼ q∼ (q∼ ⊆ q∼ ) ∀q ∈ Q : µq∼(q) ≤ µq∼ (q)

 is said to be strictly included in  if . A state  is said to beq∼ q∼ (q∼ ⊂ q∼ ) q∼ ⊆ q∼ ∧ q∼ ≠ q∼ q∼
empty if . A sequence of fuzzy states is denoted by  and said∀q ∈ Q : µq∼(q)=0 < q∼ t >
to be increasing if   for all t.q∼ t+1 ⊇ q∼ t

A set of final states that can usually be found in the definition of automata has been
omitted on purpose, as monitoring is a continuous process that is rather terminated on
the exhaustion of input data than on arrival at a certain state. As opposed to other de-
finitions of fuzzy automata [3, 4, 8, 11], the transition function is not itself fuzzy; in-
stead, the uncertainty expressed in a fuzzy input alone results in a partial transition
from one state to another, without any possibility for a general statement about how
strongly two states can at most be related. Thus, the design of a fuzzy automaton is
not itself fuzzy: apart from the fuzzy initial state the fuzzification of the automaton is
completely covered by the extension principle. Non-fuzzy tabular and graphical forms
of defining an automaton can still be used–all the fuzziness is brought into the system
through fuzzy inputs (compare figure 2).

Despite its very similar definition, a fuzzy automaton exhibits properties quite different
from those of its crisp counterpart. Firstly, being a fuzzy set, the current state is a dis-
tribution over several crisp states. Consequently, the automaton can perform different
(partial) transitions simultaneously and therefore track parallel paths. Secondly, while
crisp automata report an error on input not accounted for at the current state, a fuzzy
automaton reacts on low or zero membership grades in the fuzzy input with continu-
ously decreasing membership grades in its current state as obtained by (1) and depicted
in figure 3.b), a depletion of certainty that seems coherent with all repeated applica-
tions of fuzzy set operations.
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However, a fuzzy automaton alone is not very appropriate to perform monitoring:
firstly, automatically acquired data is generally precise and hence no source of fuzzy
input as required by the automaton defined above. Secondly,  if every single parameter
value acquired represented an input on its own, the automaton would a) explode be-
cause of an excessive number of possible input symbols all needing to be accounted
for, and b) continuously change its state in order to react to a certain input (if it did
not, the input would remain unconsidered and thus become lost). The data is therefore
pre-processed by a function that abstracts from single input parameters by generating
fuzzy events that are passed on to the automaton.

Definition 2 (state monitor)
If  is a fuzzy automaton as defined above, n is the number of para-A

∼ = (Q, q∼0, I,δ)
meters observed, R1 through Rn are the parameter ranges,  is the para-P = R1 × ...× Rn

meter value space, and  is a function that maps parameter tuples to fuzzyf : P → ℘∼ (I)
subsets of the input alphabet of , then  is a state monitor.A

∼
M
∼ = (A∼, P, f )

fuzzy automatonmapping f

fuzzy statesfuzzy input

state monitor

digitized data

abstraction

staff
patient &
instrumentation

clinical

pre-processing interpretation

Figure 1: environment, components, and data flow of a state monitor

Technically,  specifies the interface between pre-processing of data through f and℘∼ (I)
interpretation of input through . f can therefore be replaced by any computableA

∼

method that yields a fuzzy set suitable for input to , regardless of being a functioni
∼

A
∼

or some other evaluation such as trend analysis, integration, or any other.

Peak hold

The definition of  and the extension of δ in (1) guarantee that state membership va-A
∼

lues  other than those of   can only be introduced through fuzzy input . Ifµq∼ t (q) q∼0 i
∼

the set of all fuzzy inputs fed to a fuzzy automaton is finite, then the set of fuzzy states
it can take on is also finite. Particularly:

Lemma 1
If a fuzzy automaton  is repeatedly fed with constant fuzzy input , the set of fuzzyA

∼
i
∼

states it transitions between is finite.
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Proof follows directly from (1).

Note: If the range of membership grades is discrete, the set of fuzzy states of  is alsoA
∼

finite (proof omitted).

The min in the definition of  further implies that no state can become more evidentδ∼

than the most evident of its predecessors and is further limited by the fuzzy input, as
depicted in figure 3.b). The sequence , where  is called<hgt(q∼ t) > hgt(q∼ t) = maxq µq∼t (q)
the height of the current state, is therefore decreasing reflecting a continuous loss of
certainty in the automaton. In practice the situation is further aggravated when the
monitor is provided input in rapid succession, as the height can fall rapidly even if the
input does not change, and once the current state is the empty set, it can never recover.
In fact, if the automaton does not contain any feedback loops, i.e., does not provide
circular transitions, it will arrive at the empty state after at most as many steps as there
are states, as demonstrated in figure 2.b). This is clearly not a desired property of a
state monitor. However, instead of leaving the responsibility for providing appropriate
feedback loops to the designer of the automaton, the following defines a property that
overcomes this inadequate behaviour:

Definition 3 (peak hold)
A fuzzy automaton is said to provide a peak hold if there is a transition for every state
to itself on every input that leads to that state, i.e., if

. (2)∀q , i, q : δ(q , i) = q → δ(q, i) = q

The condition implies that no state can be entered and left on the same input, otherwise
δ would no longer be deterministic. Semantically, the peak hold guarantees that the
maximum evidence for a state provided by its predecessors is memorized and held as
long as input of ingoing transitions can support it, as shown in figure 3.c). However,
because a state does not remember its predecessor, the peak hold may also be sus-
tained by an input other than the one that initially led to that state, and consequently
the grade of membership can unintentionally remain high. Careful design of the state
monitor is therefore necessary.

Figure 2:
a) fuzzy input  supported by two (crisp) input symbols i1 and i2i

∼
b) an automaton that is empty after at most three transitions on any input
c) circular transitions that can lead to oscillations on repeated input of i

∼

d) automaton with peak hold that cannot oscillate
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A positive side effect of the peak hold is that the automaton cannot oscillate on con-
stant input [11] (compare figures 2.c) and d)), a property that would clearly not be ac-
ceptable in the clinical context, as stable (i.e., not changing)  input should be reflected
in stable output. Instead, the following theorem holds:

Theorem 1 (stability)
The fuzzy state of a fuzzy automaton with peak hold always becomes stable after a fi-
nite number of repeats of the same input.

Proof
The proof is performed by showing that there is a step r such that

 (3)q∼ t ⊆ q∼ t+1 ⊆ ... ⊆ q∼ t+r = q∼ t+r+1 = ...

in two steps:

1.)  is increasing, i.e., < q∼ t > q∼ t ⊆ q∼ t+1 ⊆ ...
2.) . For all subsequent states (3) follows from  being a function.∃r : δ∼(q∼ t+r , i

∼) = q∼ t+r δ∼

1.) For every fuzzy state  following the initial state  and every input  (1) implies:q∼ t q∼0 i
∼

For every state q there is a transition that determines its membership value, i.e. 

. ∀q,δ−1(q) ≠ ∅ : ∃q , i : δ(q , i) = q∧ µq∼ t (q) = min(µq∼ t−1(q ),µ i
∼ (i))

Thus, and following . Repeated input of  andµq∼t (q) ≤ µ i
∼ (i) min(µq∼t (q),µ i

∼ (i)) = µq∼t (q) i
∼

 then impliesδ(q, i) = q

,µq∼t+1(q) = max(µq∼ t (q),
δ(q ,i)=q
max min(µq∼ t (q ), µ i

∼
t
(i)))

,µq∼t+1(q) ≥ µq∼t (q)

which is justifying the term peak hold, and consequently 

.q∼ t+1 ⊇ q∼ t

2.) (indirect) Lemma 1 implies that there is no infinite sequence of fuzzy states  < q∼ t >
such that . Therefore, there has to be a step r after whichq∼ t+1 = δ∼(q∼ t, i

∼ ) ∧ q∼ t+1 ⊃ q∼ t

. Because  is increasing,  must equal .q∼ t+r ⊆ q∼ t+r−1 < q∼ t > q∼ t+r q∼ t+r−1

In particular, the proof shows that  does not converge to the empty state. The< q∼ t >
reason why it can take several steps until  is stable is basically the fuzzy input  A

∼
i
∼

which, when supported by more than one input symbol, can cause a propagation of
higher grades of membership along a sequence of transitions. Note that non-fuzzy de-
terministic automata with peak hold are stable after one step. This is yet another
example of how fuzzification yields more general results.

Active states

Despite the peak hold property, the height of the current state of a fuzzy automaton is
still decreasing, as high grades of membership cannot be regained once they are lost. A
particular source of loss is a situation where the grade of membership of one state de-
cays while its successor´s rises, as depicted in figure 3.c).

This behaviour does not model the natural decision process correctly: once a decision
has been made, it is usually pursued rather uncritically until there is sufficient evidence
for another decision to be made.

The state monitor can be modified to adopt this kind of inertia in its behaviour:  if a
state is said to be active when its grade of membership in the current state exceeds a
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certain threshold α, then an active state is defined to remain active until there is a
transition that induces activity of one of its successors, i.e.,

(4)µq∼ t+1(q) =




µq∼t (q) if µq∼t (q) ≥ α ∧ ¬∃q , i : δ(q, i) = q ∧ µ i
∼

t
(i) ≥ α

(1) else





In other words, once a state has gained a certain grade of membership, it keeps it until
a transition can pass it on to one of its successors, a behaviour that is illustrated in fig-
ure 3.d). It implies that the height of the current state is always greater than α, a cer-
tain level of certainty thus always being maintained.

For α=1 (4) implies that  is always normalized, i.e., there is always at least one stateq∼ t

q such that . This accounts for the fact that the patient is considered to be atµq∼ t (q) = 1
least in one state at a time, even if only no successor with more evident support could
yet be determined.
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Figure 3: 
a) membership course of input signals i1 and i2,

b) membership grades of q1 and q2 where µ(q0)≡1, δ(q0, i1) = q1, and δ(q1, i2) = q2   
c) same as b) with peak hold, and   

d) same as b) with peak hold and active state level α

Note that the proof of theorem 1 is only slightly affected by (4):
1.)    is still increasing, as the peak hold also works for  and  < q∼ t > µq∼t (q) ≥ α µq∼ t (q)
can only once drop below α, namely on the first input of , andi

∼

2.) still holds because lemma 1 is not affected.

Also note that (4) without peak hold, although keeping the height above α, cannot
prevent the automaton from oscillation.

Conclusion

A formal framework has been presented that allows a clinical monitor to be defined
which abstracts from a continuous flow of input parameters by deriving a current state
that comprises both the actual input and the previous states of a patient. Based on the
simple concept of deterministic automata or finite state machines, a state monitor is
easily designed and straightforward to implement. It competes among other fuzzy
(e.g., [9]) and non-fuzzy (e.g., [5, 10]) approaches.
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Because automata do not provide adequate means of performing complex mathemat-
ical operations, trend and artefact detection as well as evaluation of derived parameters
are best placed in a function that pre-processes input before it is fed to the automaton.
This work split clearly separates the idea of state-based interpretation of events from
rather general problems such as trend analysis quite common to other medical expert
systems by introducing a layered architecture as suggested in [2, 5].

Originally, a diagnostic monitor DIAMON-1 very similar to the one introduced, with
peak hold but with a restriction to only one active state was developed and implem-
ented to retrospectively analyze data of patients suffering from the adult respiratory
distress syndrome (ARDS) [7]. The idea arose from the demand for standardized cri-
teria for the different stages of ARDS together with an objective evaluation technique,
as widely differing mortality rates were considered to be due to different definitions of
the syndrome itself as well as varying entry criteria for its possible therapies [6]. The
monitor is currently used in a multi-centre study with the aim of standardizing the
ARDS criteria of different clinical centres. Independently, the concept of fuzzy events
resulting in smooth transitions between states was judged to model human decision
making naturally, and prospective operating of the monitor promises to be of valuable
help to clinical staff.
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