

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

Systematically Refactoring Inheritance to Delegation in JAVA

Hannes Kegel

ej-technologies GmbH
Claude-Lorrain-Straße 7

D-81543 München
hannes.kegel@ej-technologies.com

Friedrich Steimann

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
steimann@acm.org

Abstract
Because of the strong coupling of classes and the proliferation of
unneeded class members induced by inheritance, the suggestion to
use composition and delegation instead has become common-
place. The presentation of a corresponding refactoring in the lit-
erature may lead one to believe that such a transformation is a
straightforward undertaking. However, closer analysis reveals that
this refactoring is neither always possible, nor does it necessarily
achieve its desired effect. We have therefore identified the neces-
sary preconditions and realizable postconditions of the refactor-
ing, and built a tool that can perform it completely automatically.
By applying this tool to all subclasses of several open-source
projects, we have collected evidence of the applicability of the
refactoring and of its capability to deliver on its promises. The
refactoring builds on constraint graphs originally developed for
type inference to check the preconditions and to compute the nec-
essary delegation as well as the subtype relationships that must be
maintained.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Coding Tools and Techniques – object-oriented pro-
gramming. D.3.3 [Programming Languages]: Language Con-
structs and Features – inheritance, patterns, polymorphism.

General Terms Design, Experimentation, Languages.

1. Introduction
Favor object composition over class inheritance.

Second principle of object-oriented design from [7]

A subclass uses only part of a superclasses interface or does not
want to inherit data.

Create a field for the superclass, adjust methods to delegate to
the superclass, and remove the subclassing.

Synopsis of the REPLACE INHERITANCE WITH DELEGATION
refactoring from [5]

Inheritance in object-oriented programs is both a blessing and a
curse. It is a blessing because it allows reuse of implementation
with minimal effort; it is a curse because it establishes a strong
coupling between classes and because it tends to bloat the inter-
faces of subclasses with unneeded members. The latter is particu-

larly a problem in languages like JAVA, whose notion of subclass-
ing mixes the concepts of inheritance and subtyping so that the
former cannot be enjoyed without the latter.

One way out of this dilemma is to replace inheritance with
delegation [5, 7, 8, 10, 14, 15, 23]. This delegation, which builds
on object composition, is captured by the so-called DELEGATION

PATTERN [10] according to which an object receiving requests, the
delegator, passes them on to another, the delegatee1, which it
privately owns and which does the actual work. In programs using
inheritance, this pattern is introduced through a corresponding
refactoring prescribing all necessary checks and changes. Such a
refactoring, named REPLACE INHERITANCE WITH DELEGATION by
Fowler [5], has been described by several authors in the literature
(e.g., [5, 8, 15]); however, the descriptions remain rather cursory.

Experience has taught that the systematic application of infor-
mally described refactorings to concrete programs brings a num-
ber of problems and pitfalls to light. In fact, much like for many
other type-related refactorings [31], it turns out that for REPLACE

INHERITANCE WITH DELEGATION the devil is in the details. It is
therefore highly desirable that the refactoring be formalized by
giving its exact preconditions and postconditions, and that the
necessary program transformations be automated by a correspond-
ing refactoring tool.

This paper reports on the results of such an endeavour. More
specifically:

• We perform an informal analysis of the REPLACE INHERITANCE

WITH DELEGATION refactoring as described by Fowler and
others and identify a list of preconditions and postconditions
of its application (Section 3).

• We present the implementation of a corresponding refactoring
tool that builds on type constraints to determine the amount of
delegation and subtyping needed (Section 4).

• We demonstrate the viability of this refactoring by presenting
concrete numbers on the frequency of its applicability and the
effect of its use in several sample projects (Section 5).

A discussion of the results and a comparison with related work
conclude our paper.

2. Why to replace inheritance with delegation
Inheritance is a wonderful thing, but sometimes it isn’t what
you want. Often you start inheriting from a class but then
find that many of the superclass operations aren’t really true
of the subclass. In this case you have an interface that’s not
a true reflection of what the class does. Or you may find that

1 We use delegatee rather than the more common delegate to refer to the
object to which is delegated, since the word delegate has a different,
misleading connotation in everyday language.

you are inheriting a whole load of data that is not appropri-
ate for the subclass. Or you may find that there are protected
superclass methods that don’t make much sense with the
subclass.

You can live with the situation and use convention to say
that although it is a subclass, it’s using only part of the su-
perclass function. But that results in code that says one thing
when your intention is something else — a confusion you
should remove.

By using delegation instead, you make it clear that you
are making only partial use of the delegated class. You con-
trol which aspects of the interface to take and which to ig-
nore. The cost is extra delegating methods that are boring to
write but are too simple to go wrong. [5, p. 352]

Everyone who has used a contemporary IDE and who has ex-
tended an existing application framework such as AWT with it
has experienced the problem of bloated class interfaces: automatic
code completion offers literally hundreds of members for an in-
heriting class to choose from, even though only a small fraction of
these will actually be used. Beyond mere nuisance, this can be-
come a real problem if inherited methods break the contract of a
class. The prototypical example of this is the class Stack from the
java.util library, which inherits from Vector and its superclass
AbstractList 45 methods, many of which (such as insertElement-
At(.,.)) are inappropriate for stacks. In presence of subtyping
(which is tied to inheritance in JAVA) the problem is worsened by
the fact that contract violations need not appear directly in the
code: since a Stack object can be assigned to a Vector variable,
violation can also occur through an unsuspiciously typed alias.
These problems are easily solved by replacing inheritance with
delegation [5] (sometimes also referred to as replacing inheri-
tance with composition [8] or aggregation [23]), i.e., by dropping
the inheritance relationship (and with it the inappropriate subtyp-
ing), by composing the Stack object of an instance of Vector in-
stead, and by forwarding all legal requests from the stack to the
vector. Figures 1 and 2 show the situation before and after the
refactoring; note that access from clients (including subclasses) to
inherited, but not overridden members (such as access to size()

from StackUser) requires additional delegation, as do calls on
super from within Stack (not shown).

Quite obviously, the refactoring cannot always be applied. For
instance, if Superclass2 is abstract, it will not work since abstract
classes cannot be instantiated so that no delegatees can be created.
On the other hand, a primary purpose of abstract classes (at least
in JAVA, which has interfaces as an alternative supertype con-
struct) is to let other classes inherit their (incomplete) implemen-
tations, so that removing inheritance should not be an issue in
these cases. However, as we will see below there are other obsta-
cles to replacing inheritance with delegation.

Besides removing inappropriate subtyping and with it the
bloating of class interfaces, the refactored code has other advan-
tages when compared to the original version. One is that delega-
tion preserves encapsulation of Delegator and Delegatee, whereas
inheritance breaks that of Superclass and Class [23] (the so-called
inheritance [11] or specialization interface [26], whose implicit-
ness is at the heart of the fragile base class problem [22]; see also
Section 3.1.2). Another is that delegation allows dynamic re-
placement of the delegatee [20], which cannot be done with the
superclass in most object-oriented programming languages. Last
but not least, replacing an existing inheritance relationship with
delegation allows the introduction of a new one, and is therefore
an effective means of emulating multiple inheritance in single
inheritance languages.

However, inheritance is not only used for code reuse as in the
Stack example, it is also a means of extending white-box frame-
works into applications [4, 7, 14]. In these cases, subtyping is
mandatory to let the subclasses enjoy the functionality provided
by the framework. For instance, replacing inheritance of the class
ActiveTestSuite from class TestSuite in the JUNIT unit testing
framework [16] with delegation breaks the code, since due to the
lost subtype relationship ActiveTestSuite can no longer be plug-
ged into the framework (so that methods of ActiveTestSuite can-

2 In the following, Class and Superclass refer to the roles the classes play
before the refactoring, and Delegator and Delegatee to the ones after (cf.
Figures 2 and 3).

class StackUser {
 Stack s = new Stack();
 …
 s.push(…);
 if (s.size() …
}

// class Stack before the refactoring
public class Stack extends Vector {
 public Stack() {}
 public Object push(Object item) {
 addElement(item);
 return item;
 }
}

// class Stack after the refactoring
public class Stack {
 protected Vector delegatee;
 public Stack() {
 delegatee = new Vector();
 }
 public Object push(Object item) {
 delegatee.addElement(item);
 return item;
 }
 public int size() {
 return delegatee.size();
 }
}

Figure 1. A stack user and two alternative stack implementations,
one using inheritance, the other delegation. See also Figure 2.

«Superclass»

Vector

«Class»

Stack
«Client»

StackUser
«Delegatee»

Vector
«Delegator»

Stack
«Client»

StackUser

Figure 2. Dependencies and subclassing before and after the
refactoring (UML notation). Note that the roles of the classes have
changed: Stack has changed role from Class to Delegator, and
Vector has changed role from Superclass to Delegatee.

Figure 3. Replacing inheritance with delegation where subtyping
is required (example taken from JUNIT 3.8 [16]).We will see in
Section 3 that this refactoring breaks the code. Can you tell why?

«Interface»

Test

«Superclass»

TestSuite

«Caller»

TestRunner

Inversion of Control Framework

«Class»

ActiveTestSuite

«Interface»

Test

«Delegatee»

TestSuite

«Caller»

TestRunner

Inversion of Control Framework

«Delegator»

ActiveTestSuite

not be invoked through the framework; a so-called inversion of
control [4]). However, inspection of the JUNIT source code re-
veals that it is sufficient for ActiveTestSuite to subtype the Test
interface (which is a supertype of TestSuite), so that the refactor-
ing shown in Figure 3 produces no typing errors. As we will learn
in Section 3.1.2, it introduces another error, though.

It is not the task of the refactoring to decide whether the sub-
typing that goes along with inheritance is desired (as in the Ac-
tiveTestSuite example) or a flaw (as in the Stack example). In-
stead, the refactoring must try to achieve its purpose, replacement
of inheritance, while at the same time make sure that the refac-
tored program is still type correct and that it behaves the same.
The above examples already suggested that to ensure this, per-
forming the refactoring requires a prior program analysis to de-
cide which subtyping relationships can be abandoned from a pro-
gram without breaking it. However, this is not the only problem;
in fact, the correct specification of the refactoring is all but trivial.

3. Specification of the refactoring
In the above examples, the changes required by the REPLACE IN-

HERITANCE WITH DELEGATION refactoring are limited to the class
for which inheritance is to be replaced. We believe this to be es-
sential for the adoption of the refactoring (if only because one
does not always have access to all clients of a class), and pose it
as a postcondition3 of it. Another postcondition is that the inheri-
tance is removed. But no gain without pain: as the above exam-
ples have suggested, application of the refactoring also has some
hard preconditions. This requires a careful analysis.

3.1 Analysis

Since one goal of the refactoring is to reduce the size of the proto-
col of Class (the class to be refactored), an immediate question is
which methods Delegator (the refactored class) must maintain.
This set of methods can be derived from the program by means of
a type inference analogous to the one described in [17, 27], i.e.,
by computing the smallest interface of Class that can replace it in
all variable declarations. The methods contained in this interface
are the ones for which delegating methods must be introduced.
However, Class may have subclasses, in which case their needs
(as expressed by their clients and by their own reliance on inher-
ited methods) must also be taken into consideration when deter-
mining the needed delegation. Furthermore, use does not decide
alone over which methods the refactored class must possess — the
subtyping present in the program also poses its requirements.

3.1.1 Subtyping

As noted in Section 2, removing inheritance breaks the supertype
chain, but subtyping may be needed to maintain type correctness.
In particular, if an assignment of an instance of Class to a variable
of type Superclass (or a corresponding method return) exists, the
refactoring is impossible, since the necessary assignment com-
patibility (subtyping!) is removed by the refactoring. The same is
true if an upcast to Superclass or a corresponding type test (such
as instanceof) exists in the program. Also, there can be type con-
straints derived from generic types that have equivalent effect
([17]; see Section 4.1).

Things are different if only assignment compatibility to super-
types of Superclass is required: as suggested by the example of
ActiveTestSuite (Figure 3), this can be restored by letting Class

3 In the literature, refactorings are often specified using preconditions
alone. We add the postconditions here in order to specify the exact behav-
iour of the refactoring.

subtype them directly. However, if these types are interfaces,
Class must deliver implementations for their methods, independ-
ently of whether they are actually needed by its clients. If one of
these types is a class, Class must subclass this class (thus inherit-
ing its methods) and deliver implementations for all abstract
methods, again independent of any actual need. It follows that the
subtyping required by the program can impose methods on the
refactored class unneeded by its clients (so-called dead methods).4

The case in which Class must subclass a superclass of Super-
class requires some extra attention. It means that Class inherits
members that are also inherited by Superclass. While this is no
problem for behaviour if all methods required from Class for-
merly inherited from Superclass are overridden with delegating
methods, it could be a problem for state: the fields defined in the
superclass are now available in both Class and Superclass. The
refactoring must therefore make sure that the methods defined in
Class do not depend on fields inherited from its new superclass.
As we will see below (Section 3.1.3), certain preconditions of the
refactoring ensure that this is automatically the case, unless de-
pendence on state is implicit. This however is only the case for
certain built-in language constructs, such as synchronization.

3.1.2 Forwarding vs. delegation

A characteristic property of object-oriented programming is that
the clients of a class are not the only ones accessing it: its super-
classes and subclasses also do, via the inheritance or specializa-
tion interface [11, 26]. This interface has two sides: the subclass’s
side, defining which members of the superclass are being “im-
ported” via inheritance, and the superclass’s side, defining which
members of the subclass the superclass accesses via the late bind-
ing of methods called on this. This latter phenomenon, which is
often overlooked, is sometimes referred to as open recursion [25]:
it is the basis of many important design patterns (most promi-
nently, TEMPLATE METHOD [7]), but also at the heart of the fragile

4 If Class declares to implement interfaces directly, this is not changed by
the refactoring: removal of what is sometimes called interface inheritance
is no goal (because there is nothing inherited, only subtyping, which is
likely present for good reasons). This means that Class must continue to
deliver implementations for the methods required by its interfaces, even if
they are actually dead. Cf. Section 4.1.3.

public class TestSuite implements Test {
 …
 public void run(TestResult result) {
 for (Test test : fTests) {
 …
 runTest(test, result);
 }
 }
 public void runTest(Test test, TestResult result) {
 test.run(result);
 }
 …
}

public class ActiveTestSuite extends TestSuite {
 …
 public void run(TestResult result) {
 …
 super.run(result);
 …
 }
 public void runTest(final Test test,
 final TestResult result) {
 …
 test.run(result);
 …
 }
}

Figure 4. Excerpt from the JUNIT 3.8 unit testing framework.

base class problem [22]. When replacing inheritance with delega-
tion, care must be taken that both sides of the interface are con-
sidered.

The code fragment from JUNIT 3 [16] shown in Figure 4 illus-
trates the problem. When the framework calls run on an instance
of ActiveTestSuite, it calls, via super, run in TestSuite. This in
turn calls runTest, but because the receiver, this, is an instance of
ActiveTestSuite, the overridden version in ActiveTestSuite is in-
voked (Figure 5, left). Once the inheritance is removed, however,
this in TestSuite points to a different object (the delegatee) than
this in ActiveTestSuite (pointing to the delegator) so that run in-
vokes runTest in TestSuite rather than in ActiveTestSuite (Figure
5, middle). And indeed, after removing inheritance from Active-
TestSuite and replacing it with delegation as in the Stack example
of Figure 2, JUNIT no longer passes its own unit tests.

In the context of languages in which delegation completely re-
places inheritance (such as SELF [32]), a careful distinction is
made between delegation and forwarding: under delegation, this
always points to the delegator, while under forwarding, this al-
ways points to the receiver of a method [20] (Figure 6). To
achieve delegation in languages without a native implementation
of the concept (such as JAVA), a reverse delegation (or, rather, a
reverse forwarding) must be introduced: methods of Class for-
merly called from Superclass via open recursion must now be
explicitly dispatched to Delegator. However, this would either
require changing the implementation of Superclass to hold a ref-
erence to Delegator, which is not desired (if only because the
changed implementation would affect and get inherited by other
subclasses of Superclass for which inheritance is not to be re-
placed, so that open recursion must remain intact), or an intercep-
tion of the problematic method calls. Fortunately, the latter is
possible in JAVA via a simple trick.

The trick is to have an inner class of Delegator subclass Su-
perclass, and to add reversely forwarding methods for all methods
formerly overridden in Class or any of its subclasses to this new
class (Figure 7). Since in JAVA an instance of a non-static inner
class is always tied to an instance of its outer class (the so-called
enclosing instance [9]), and because this instance can be accessed
from the enclosed instance via <OuterClass>.this, reverse forward-
ing requires no extra fields or initialization. (Note that the re-
versely forwarding calls are dynamically bound, so that methods
overridden in subclasses of Class are also reached.) Also, because
the inner class inherits from Superclass, it can serve as Delegatee
in much the same way as Superclass does for the forwarding
sketched in Figure 2. The only caution that needs to be taken is
that constructors of Delegatee do not call methods of Delegator
(via reverse delegation) that themselves delegate to the delegatee
(since the delegatee is not yet defined), and that a method call on
super in Class must not be refactored to a call on the delegatee in
Delegator if a corresponding reverse delegation exists in Delega-
tee, because this would block execution of the method in Super-
class (the target of the initial call) and might even lead to infinite

recursion. In case such calls to super occur in Class, Delegatee
must have additional methods delegating to super, which are then
called from Delegator (Figure 5, right; the same is necessary for
methods reversely delegated to Delegator because one of Class’s
subclasses, but not Class itself, overrode it, so that reverse delega-
tion calls the original method in Superclass if invoked on an in-
stance of Class). Figure 8 shows the result of this refactoring ap-
plied to ActiveTestSuite; note that an infinite recursion would
occur had the call to super not been treated specially.

Not surprisingly, the price of the increased applicability of the
refactoring is a loss of some of its promised gains: because inheri-
tance is not removed, only hidden, encapsulation of Superclass is
still broken, the fragile base class problem persists, and the possi-
bilities to exchange the class of the delegatee at runtime are
greatly reduced (all candidates must be inner classes of Delegator;
but see the discussion in Section 6). Given these drawbacks, the
refactoring should always try to use forwarding if possible (in

public class ActiveTestSuite implements Test {
 private class Delegatee extends TestSuite {
 …
 public void run(TestResult result) {
 ActiveTestSuite.this.run(result);
 }
 public void runTest(Test test, TestResult result) {
 ActiveTestSuite.this.runTest(test, result);
 }
 public void _super_run(TestResult result) {
 super.run(result);
 }
 …
 }
 private final Delegatee delegatee;
 …
 public ActiveTestSuite() {
 delegatee = new Delegatee();
 }
 public void run(TestResult result) {
 …
 delegatee._super_run(result);
 …
 }
 public void runTest(final Test test,
 final TestResult result) {
 …
 }
 …
}

Figure 8. Refactored version of Figure 4 with reverse delegation
from an inner subclass and delegation to super.

«Superclass»

«Class»

«Subclasses»

«Superclass»

«Delegator»
«Delegatee»

«Subclasses»

«Clients»
«Clients» «Clients»

«Clients»

Figure 7. Refactoring using an inner subclass and reverse dele-
gation to achieve true delegation and enable open recursion.

forwarder forwarded

this/self this/self

forwarding
delegator delegatee

this/self

delegation

this/self

Figure 6. Difference between forwarding and delegation as im-
plemented in prototype-based languages (UML object diagram).

Figure 5. Left: before the refactoring. Middle: changed seman-
tics after the refactoring; runTest in ActiveTestSuite is never
called. Right: reverse delegation restoring original semantics.

:Delegatee

super.run

this.runTest

:ActiveTestSuite

run
delegatee.run

:TestSuite

this.runTest

:ActiveTestSuite

run delegatee
._super_run

:ActiveTestSuite

run
super.run

this.runTest
ActiveTestSuite

.this.runTest

fact, forwarding is what is suggested by the descriptions of the
refactoring found in the literature, so that it should have really
been named REPLACE INHERITANCE WITH FORWARDING); only if
not it should resort to (true) delegation. Fortunately, forwarding
seems to be sufficient in most practical cases; at least this is what
is suggested by the results of our experiments presented in Section
5.1.

3.1.3 JAVA specific issues

There are also several JAVA specific issues that limit the applica-
bility of the refactoring. Among these are:

Fields In JAVA, the fields of a class can be directly accessible to
its clients and its subclasses. This accessibility extends to inher-
ited fields. If inheritance is removed, the inherited fields vanish
from the interface of the class. Because JAVA cannot wrap field
access via properties (as, e.g., C# or EIFFEL can), there is no way
of redirecting field access to the delegatee without changing the
clients. It follows that if access to the fields of a class that are not
declared in the class itself is required, the refactoring is not appli-
cable. Note that applying the ENCAPSULATE FIELD refactoring [5]
first can remove this impediment (but see Section 5.1).

Non-public members Once inheritance is removed, members of
a superclass that are declared protected become invisible if the
superclass is not in the same package as the inheriting class. It
follows that access to protected members from different packages
prevents simple forwarding as for Stack in the example above
(Figure 1). However, if delegation as suggested by Figure 7 is
used instead, Delegatee (which inherits from Superclass) can
provide access to all inherited methods, by providing a public
method delegating to super.

Static members In JAVA, static members are also inherited and,
depending on their access modifiers, accessible by the clients of a
class. Again, removal of inheritance means that prior direct access
to inherited members is lost. However, calls of static methods can
be forwarded to the former superclass. For static fields, the restric-
tions above apply.

Since static methods are statically bound in JAVA, they cannot
be overridden (only hidden) [9]. This prevents openly recursive
calls among static methods, which in turn avoids the necessity of
reverse delegation. This is fortunate, since static methods in inner,
non-static classes are not allowed in JAVA ([9], cf. Section 6).
However, the same restrictions as for non-static members apply.

Constructors Since Delegator must be able to create and initial-
ize a Delegatee instance, all constructors of Delegatee called from
Class via super and also, if implicitly called before the refactor-
ing, the default constructor, must be accessible from Delegator.
This is only a problem for forwarding and protected constructors,
since with delegation, the inner subclass gains access through
inheritance (see non-public members above).

Subclassing exceptions The JAVA language specification dic-
tates that exceptions must remain subtypes of Throwable, and
unchecked exceptions must remain subtypes of an unchecked
exception. In particular, subclasses of Error and RuntimeException
must not be changed to extend Throwable or Exception directly,
unless all throws of such exceptions are either caught or declared.
However, replacing inheritance among exceptions with delegation
does not seem useful generally, so that we exclude it from the
refactoring.

Synchronization After replacing inheritance with delegation an
object and its delegatee are different instances, with different

monitors. This is a problem if synchronization methods such as
wait() or notify() are called in both Class and Superclass methods,
because this now points to different objects.

3.2 Specification

Based on the previous analysis, a set of preconditions can be
specified that limit the general applicability of the refactoring, and
decide over whether forwarding is sufficient or (true) delegation is
required. If the preconditions are satisfied, the mechanics of the
refactoring must change the program in such a way that the refac-
toring’s postconditions are satisfied, the pair thus giving a com-
plete specification of the refactoring.

3.2.1 Preconditions

It is in the nature of the refactoring that its application is limited
to classes, and more specifically to direct subclasses of another
class than Object. Also, the class to be refactored must be change-
able, i.e., the source code must be under the control of the devel-
oper. Last but not least, the program using the class must be ana-
lysable, i.e., its source code must be available and the use of the
class must not occur through reflection. Besides these trivial in-
sights, the problems identified above lead to the following pre-
conditions:

1. Superclass must not be abstract.

2. No type constraint requiring that Class be a subtype of Super-
class must be derivable from the program.

3. For forwarding, there must be no instances of open recursion
in Superclass. For delegation, there must be no open recursion
in constructors of Superclass involving access to the (not yet
existent) delegatee.

4. Clients of Class and its subclasses must not access fields in-
herited by Class. Class may only access inherited fields if
public or located in the same package.

5. For forwarding, Class or its subclasses must not require access
to protected members inherited from Superclass.

6. For forwarding, the default constructor of Superclass and the
constructors called via super must be accessible from Class af-
ter subclassing is removed.

7. Class must not be a subclass of Throwable.

8. Synchronizing method calls must not be split among Class
and Superclass.

3.2.2 Postconditions

1. Delegator does not extend Delegatee or Superclass.

2. Delegator has a new private final field that holds an instance
of Delegatee.

3. In case of delegation, Delegator has a new inner class extend-
ing Superclass and containing the necessary reversely delegat-
ing methods and the methods forwarding to super as described
in Section 3.1.2.

4. Delegator contains delegating methods for all methods called
by its clients or subclasses that were formerly inherited from
Superclass (and therefore not implemented in Class).

5. Delegator’s accesses to fields formerly inherited are qualified
with delegatee field or (for static fields) its class.

6. In case of forwarding, all calls on super (including those to
super in constructors) are replaced by calls on Delegatee; in
case of delegation, those for which reverse delegation exists

are replaced by calls to methods forwarding to super in Dele-
gatee instead (see Postcondition 3).

7. Delegator extends former indirect superclass if corresponding
type constraint has been derived from the program.

8. Delegator implements all interfaces for which corresponding
type constraints have been derived from the program.

9. All other classes and types of the program have not changed.

It follows that the only members of Delegator other than the new
delegatee field and possibly the inner subclass are those

a) required by its clients,

b) implemented in Class before the refactoring (including con-
structors),

c) inherited from another superclass (cf. Postcondition 7 above),

d) required by abstract methods of other supertypes (including
interfaces; cf. Postconditions 7 and 8 above),

e) required by subclasses of Delegator, either directly or by way
of a) or d) applied accordingly.

However, the user of the refactoring can always include additional
members to be delegated, if so desired.

Note that except for numbers 3 and 6, postconditions are iden-
tical for forwarding and delegation. Also note that Postcondition 9
makes the refactoring applicable even in cases in which subclasses
of Class cannot be altered, as is for instance the case when refac-
toring a framework whose client code is unavailable for change
(although read access is required for the whole-program analysis).

4. Implementation of the refactoring
Logically, the refactoring falls into four parts: checking of pre-
conditions, computation of the required forwarding methods (in-
cluding reverse forwarding and forwarding to super), computation
of the required subtyping, and changing the source code. Of these,
the first three require a comprehensive program analysis, while
the last amounts to a rather straightforward manipulation of the

abstract syntax tree of the program. We will focus on the steps
requiring analysis here.

4.1 Type constraint based analysis

As it turns out, the necessary analysis can be based on type con-
straints derived from the declarations, assignments, and type casts
found in a program, combined with checks of properties (accessi-
bility, abstractness, etc.) of individual program elements. Type
constraints have successfully been used for type-inference based
solutions of various other refactoring problems (e.g., [6, 17, 18,
19, 24, 27, 30, 31]); however, the refactoring described here re-
quires new constraints for accessing fields and non-public meth-
ods as well as for the handling of this and super.5 Also, constraint
variables have to be annotated with package and accessibility
information.

To give an idea of the problems to be solved, we resort to the
sample program shown in Figure 9. From this program, the type
constraints of Table 1, which are restricted to the ones needed for
our analysis, are derived. The refactored class Sub is shown in
Figure 10.

4.1.1 Precondition checking

Checking the first two preconditions is trivial: the first is a simple
lookup of the abstractness of Super, and the second amounts to
searching for (a combination of) type constraints requiring that
Sub be a subtype of Super. Both checks are negative in the given
example.

To detect instances of open recursion (Precondition 3), an
analysis similar to that sketched in [2] is necessary. For this, a
new constraint is introduced which captures the methods called on
this in all superclasses of Sub (here: Super.over in line 13). If such
a method is overridden in Sub or any of its subclasses (here: in
Sub), open recursion has been detected. Indirect open recursion,
i.e., that a superclass passes this to another class which then calls
late-bound methods on it (double dispatching [12]) is covered by
the constraints derived from assignments of this to other variables.

Precondition 4 is checked by searching for constraints like that
derived from line 24. If such a constraint has been derived from a
client of Sub (a fact stored as an annotation of the constraint), or if
it has been derived from Sub and the field is not declared public
and Sub and Super are not in the same package, the refactoring is
rejected. However, in our example this is not the case.

Since forwarding is ruled out for the refactoring (because open
recursion has been detected), Preconditions 5 and 6 are not appli-
cable. Precondition 7 is trivial again (and is checked without re-
sorting to constraints). Precondition 8 is checked by searching for
synchronized methods implemented by Sub and its subclasses. If
Super or one of its superclasses also has synchronized methods,
the refactoring is not performed. In the given example, this is not
the case.

5 Note that the constraints between generic types can be nontrivial, espe-
cially in presence of type bounds and wildcards [17].

01 public interface I {
02 void recur();
03 }
04 public class Super implements I {
05 protected float f;
06 Super() {
07 f = 1;
08 }
09 Super(float v) {
10 f = v;
11 }
12 public void recur() {
13 over();
14 }
15 void over() {
16 f = 3;
17 }
18 }
19 public class Sub extends Super {
20 Sub() {
21 super(2);
22 }
23 void over() {
24 f = 4;
25 }
26 }
27 public class Client {
28 void use() {
29 I i = new Sub();
30 i.recur();
31 }
32 }

Figure 9. Sample program from which the type constraints of
Table 1 are generated

Table 1. Type constraints derived from the program of Figure 9.
LINE CONSTRAINTS

13 This(Super) ≤ Decl(Super.over)
21 Super(Sub) ≤ Decl(Super.Super)
24 This(Sub) ≤ Decl(Super.f)
29 [i] = I, [new Sub()] ≤ [i], [new Sub()] = Sub
30 [i] ≤ Decl(recur)

4.1.2 Computation of required forwarding

The constraints derived from lines 29 and 30 imply that Sub ≤
Decl(recur) and thus that recur must be a method of Sub. Since
Sub does not implement recur (it is inherited from Super), Sub
must introduce a corresponding forwarding method (Figure 10,
line 9). By collecting all constraints of this kind for Sub (including
those in which it is represented by this or super), Sub’s set of for-
warding methods is computed.

The constraint derived from line 24 implies that Sub accesses f.
Since f is inherited from Super, it must be replaced with delega-
tee.f (Figure 10, line 7).

Computation of the necessary reverse forwarding is based on
the same constraints as used for the detection of open recursion:
since This(Super) ≤ Decl(Super.over) and over is overridden in
Sub, a reversely forwarding method is introduced in Delegatee
(Figure 10, line 16). Methods and constructors forwarding to
super result in constraints like that derived from line 21; it implies
that Sub needs access to the constructor of Super, which is
achieved by forwarding to Delegatee (Figure 10, line 4). If re-
verse forwarding with same signature exists in Delegatee, a new
method prefixed with _super_ is introduced, to which is for-
warded instead (see Section 3.1.2 for an example).

4.1.3 Computation of required subtyping

While checking Precondition 2 showed that Sub need not subtype
Super, the same type constraints (here all derived from line 29)
express that Sub must subtype I. A corresponding implements
clause is therefore added to Sub (Figure 10, line 1). For all meth-
ods of I that are not implemented by Sub, forwarding to Delegatee
is added. In the given example, this is method recur, which was
already identified by the steps above.

4.2 Testing

We have tested our refactoring tool by applying it to all subclasses
of various publicly available JAVA packages with good coverage
by JUNIT tests. We especially looked for projects making intense
use of generics, since type constraints for these are particularly
difficult to get right (cf. Footnote 5). The packages, which are
partly the same as those used in [19], were:

• JUNIT 3.8.1 and 4.4 (JU3 and JU4, http://junit.org)

• JAKARTA COMMONS COLLECTIONS 4.01, a popular replacement
of Java’s collections (JCC, http://larvalabs.com/collections/)

• JHOTDRAW 6.0 beta 1, a drawing editor framework and source
of patterns (JHD, http://jhotdraw.org)

• JPAUL, a collection of algorithms widely used in program
analysis (http://jpaul.sourceforge.net)

After each refactoring, we compiled the program to make sure that
no typing constraints were violated, and ran all test cases to check
that no behavioural changes were induced.

4.3 Verification

Because of the incompleteness of testing, we cannot be sure that
the refactoring preserves semantics in all cases; for this, a formal
proof using the complete language specification of JAVA would
have been necessary, which exceeded our possibilities. In fact,
even for restricted languages such proofs are difficult, which is
why sketches are usually delivered instead (cf. Section 7). How-
ever, whenever we believed that we had made correctness of the
refactoring plausible, testing it on a new project revealed a new
problem we had not previously thought of. Therefore, we refrain
from all proof attempts here.

4.4 Availability

We have implemented the refactoring as described here as a plug-
in to the ECLIPSE IDE. It utilizes ECLIPSE’s built-in refactoring
framework, including full preview to all changes and undo func-
tionality. The plug-in and a brief description of its use are avail-
able from http://www.fernuni-hagen.de/ps/prjs/RIWD.

5. Evaluation of applicability and effect
To get an impression of the practical relevance of the REPLACE

INHERITANCE WITH DELEGATION refactoring, we measured its ap-
plicability (in terms of the preconditions satisfied) and its effect
(in terms of the decreased size of the protocol). For this, we
logged the fulfilment of preconditions and sizes of protocol before
and after each refactoring, using the same packages and applica-
tion procedure as for testing.

5.1 Applicability

Table 2 summarizes the applicability of the refactoring. The given
reasons for non-applicability are not mutually exclusive; usually,
more than one led to a rejection of the refactoring. Since delega-
tion is always possible if forwarding is, the number of successful
applications is listed under “delegation possible”.

Overall, the refactoring is applicable in only 26% of all cases.
However, given that Precondition 1 (a non-abstract superclass)
prevents the refactoring in 55% of all cases, and that removing
inheritance from abstract superclasses is usually not an issue (cf.
Section 2), nor is subtyping Throwable (Precondition 7), there are
only 160 subclasses for which the refactoring can be considered
relevant. Of these, the refactoring is applicable in 63%.

Several other things can be observed from the data underlying
Table 2):

• Delegation is necessary in only 37% of the cases in which the
refactoring is applicable (without JHOTDRAW in only 15%).
Given that forwarding is preferred (since it avoids secret sub-
classing; cf. Section 3.1.2), this is good news.

• Across all projects, the reason for necessity of delegation is
presence of open recursion (Precondition 3) alone in 54%, ac-
cess to protected members across packages (Preconditions 5
and 6) alone in 14%, and both in the rest of the cases. Note
that increasing protected accessibility to public would turn the
inheritance interface into a client interface, allowing forward-
ing (Precondition 5). If a public (client) interface is not de-
sired, inheritance was probably the right design choice and
refactoring it is obsolete.

01 public class Sub implements I {
02 private final Delegatee delegatee;
03 Sub() {
04 delegatee = new Delegatee(2);
05 }
06 void over() {
07 delegatee.f = 4;
08 }
09 public void recur() {
10 delegatee.recur();
11 }
12 private class Delegatee extends Super {
13 Delegatee(float v) {
14 super(v);
15 }
16 void over() {
17 Sub.this.over();
18 }
19 }
20 }

Figure 10. Changes made to Sub as a result of the refactoring.

• Among the reasons for non-applicability, access to inherited
fields (Precondition 4) was exclusively responsible in only 6%
of all relevant cases. This relatively small number justifies our
decision to not encapsulate field access and change clients to
use the resultant accessors as part of the refactoring (cf. Sec-
tions 3.1.3 and 7). Adding an option to the refactoring tool
that would allow one to perform such encapsulation if it
makes the refactoring possible might be worthwhile, though.

• Another reason that can be removed by a corresponding refac-
toring, the need to subtype Superclass (Precondition 2), exclu-
sively accounted for 16% of all relevant rejections of applica-
tion. Again, this does not justify solving the subtyping prob-
lem as part of the refactoring (but cf. Section 6).

• Last but not least, split synchronization (Precondition 8) had
the least impact on applicability. This is good, since it is also
the most unrelated to the purpose of the refactoring and very
difficult to get around. On the other hand, it turned out to be
the only reason for non-applicability of the refactoring to class
Stack in the JDK 1.4.

5.2 Effect

Table 3 summarizes the effect of the refactoring. It lists the non-
private methods of all 160 relevant (see above) classes, both static
and non-static (a set referred to as the protocol of a class hereaf-
ter), before and after the refactoring, the number of delegating
methods introduced, the number of types that had to be subtyped
directly due to the found type constraints, and the number of
methods whose implementation was required by or inherited from
these supertypes, but are not otherwise needed (the dead methods
mentioned in Section 3.1.1). Again, a few comments are in place:

• The overall reduction in size of protocol of classes is by 50%.
The effect varies greatly among projects, from 31% (JCC) to
88% (JUNIT 4). Note that the large number of methods in
JUNIT 3 and also JHOTDRAW comes from their GUI classes
(which JUNIT 4 does not have) inheriting hundreds of methods
from their base classes in SWING and AWT.

• The fact that in general only few classes had to implement ad-
ditional interfaces came as a surprise to us. This may be due to
a general reluctance to use interfaces (of which JHOTDRAW is
a known exception) [27].

• With one exception, the case that a class had to subclass an-
other class was limited to JUNIT 3 and JHOTDRAW, and there

to GUI classes, which is explained by the fact that the GUI
frameworks SWING and AWT use classes as extension points.

• As can be seen from the number of dead methods, the subtyp-
ing constraints in a program counteract the purpose of the
refactoring. Unlike with improving applicability, to increase
the gain it does make sense to generalize the causing super-
types using the INFER TYPE refactoring [27] (cf. Section 6).

6. Discussion
While our evaluation has delivered concrete numbers of applica-
bility (including individual reasons for non-applicability) and an
impression of the effect achievable by the refactoring, it should be
clear that our results are purely technical — in particular, no in-
sights can be derived from them as to whether or when applying
the refactoring leads to better design. On the other hand, such an
effect is inherently difficult to asses, which is why we took the
suggestions from some of the authorities in the field of object-
oriented design referred to in the introduction for granted. How-
ever, one result of our evaluation is that inheritance has, and most
likely will keep, its place in object-oriented programming.

Although the presentation in this paper is based on JAVA, many
of the results can be transferred directly to other class-based, stati-
cally type-checked object-oriented programming languages, and
even for untyped languages such as SMALLTALK, type inference is
required to compute the necessary delegation. Some of the im-
plementation details, such as the reliance on inner classes and
enclosing instances, are specific to JAVA; however, a generalized
implementation that does not rely on the availability of these con-
cepts is possible.

Indeed, the somewhat compromised flexibility achieved with
delegating to an inner class (mentioned at the end of Section
3.1.2) and the dependence on JAVA specifics can be lifted by
changing the refactoring to introduce a top-level subclass of Su-
perclass as Delegatee. Instances of this class must then have ex-
plicit links to their delegators to allow reverse delegation. If sev-
eral such Delegatee classes are introduced and offer the same
interface, a delegator can choose from these alternatives and even
change its delegatee dynamically.

However, it is debatable whether the (hidden) subclassing of
Delegatee is acceptable for the purpose of the refactoring. After
all, it does not replace inheritance, but only moves it to a new
class. On the other hand, it effectively reduces the size of the in-
terface of the refactored classes, which alone is an often desired
effect. Whether this is worth the more complex design must be
decided by the developer.

The restriction that there must be no required assignment com-
patibility from Class to Superclass (Precondition 2) can be cir-
cumvented by inferring the common type of all variables to which
such an assignment exists (which will be a structural supertype of
Class), using this type in the variables’ declarations, and letting
both Class and Superclass subtype this type (Figure 11). Also, the

Table 2. Applicability of the refactoring

JU
3

JU
4

JC
C

JP
A

U
L

JH
D

T
O

T
A

L

number of subclasses 27 50 106 31 180 394
violated preconditions
#1: abstract superclass 10 31 65 28 82 216
#2: subtyping required 4 16 29 15 25 89
#3: open recursion 11 31 15 19 87 163
#4: access to inherited field 0 0 31 2 5 38
#5: access to protected member 6 1 21 0 34 62
#6: invisible constructor 2 2 28 4 22 58
#7: subclass of Throwable 2 9 3 1 3 18
#8: synchronization 3 0 1 0 10 14

forwarding possible 9 5 7 1 42 64
delegation possible 12 6 7 1 75 101
neither 15 44 99 30 105 293

Table 3. Effect of the refactoring

JU
3

JU
4

JC
C

JP
A

U
L

JH
D

T
O

T
A

L

methods before 3205 164 181 45 11873 15468
methods after 1962 19 124 18 5633 7756
delegating methods 53 9 83 15 1072 1232
new direct interfaces 3 3 4 1 46 57
new direct superclasses 7 0 1 0 11 19
imposed dead methods 1871 1 3 12 4649 6536

bloating possibly resulting from required interface implementa-
tions (both direct and indirect) can be reduced by generalizing the
implemented interfaces. However, these are different refactorings.

One useful by-product of the type inference conducted in the
course of our refactoring is that it detects methods that are never
called. This is because it computes two sets of members that must
be offered by Delegator: those actually relied upon by clients or
its subclasses, and those required by the typing rules (subtyping
required to maintain assignment compatibility). The latter minus
the former is dead code and need not have a real implementation;
however, since removal of signatures may make changes in other
type definitions necessary, we leave this to other refactorings (see,
for instance, [29] and also the discussion in [27]). The user inter-
face of the refactoring can give corresponding hints, though, at no
extra cost.

A common concern with delegation (and with refactoring in
general) is decreased performance: explicit delegation requires a
method call, which especially under late binding has its price. The
greatest penalty is imposed by open recursion from Superclass on
an instance of Class where not Class, but one of its subclasses
overrides the called method. In this case, the call is first reversely
delegated to Class, then delegated back to the super-call in Dele-
gatee, and from there back to Superclass (see Section 3.1.2), the
net effect being zero. However, since Delegatee can be declared
final, an optimizing compiler can inline two of the three delega-
tion methods, leaving only one additional dynamic dispatch.

7. Related work
Replacing inheritance with delegation (or composition) is a recur-
rent theme in object-oriented programming textbooks and internet
forums. Contrary to its apparent popularity, it seems that it has not
been the subject of much investigation, with the notable exception
of the work conducted by the pioneers of refactoring [15, 23], and
by the prototype-based programming community [20, 28, 32].

Delegation as shown in Figure 6 has been recognized very
early by the prototype-based programming community as a viable
alternative to class-based inheritance [20]. In fact, delegation can
be viewed as inheritance among individuals, which is closer to the
biological concept of inheritance than inheritance among classes.
SELF [32] is perhaps the best known object-oriented programming
language that builds on delegation, but Sun’s interest in it was
superseded by that in JAVA, which promotes class-based reuse.
Stein [28] has pointed out that inheritance is delegation on the
class level if classes are viewed as prototypes: a member lookup
that failed for a class is delegated to the superclass. However, all
these insights have not helped delegation among objects become a
mainstream native language construct — today, it is mostly seen
as (and used in the form of) a pattern.6

Because of the many problems of class-based inheritance, sev-
eral alternatives for reuse on the class level have been proposed.

6 A delegate in C# is basically a type-safe pointer to a function bound to
an object and as such a different concept than the one discussed here.

So-called mixins [1] provide an alternative to standard (multiple)
inheritance by allowing the extension of different classes with the
same, reusable code (the mixin). Mixins can wrap methods de-
fined in a class by overriding them and accessing the overridden
methods via super, where super refers to different classes in dif-
ferent uses of the mixin. Because mixins suffer from some of the
same problems as subclassing [3], one could be tempted to re-
place them with delegation, too; as it turns out, in languages with-
out a native mixin construct they are emulated using the DECORA-

TOR pattern, which relies on forwarding [7].
Traits provide an alternative to mixins by providing class-like,

state-less behaviour specifications (basically sets of methods) that
can be used by other classes for reuse of implementation [3]. An
object using a trait is basically extended by the trait’s set of meth-
ods. The implementation of traits described in [3] is similar to
delegation in that method calls to an object are forwarded to the
trait. We conclude from this that even today, delegation appears to
be the one alternative to inheritance.

In his work on typed inheritance and the inheritance interface,
Hauck has shown how inheritance can be modelled as a special
kind of aggregation (aka composition; cf. below) [11]. For this, he
introduces two special fields, one (called super) in the subclass
that points to an instance of the superclass, and one (called self) in
the superclass that points to the instance of the subclass. Inherited
and overridden methods are called via delegation (using super)
and reverse delegation (using self), respectively; this is similar to
what we are doing in presence of open recursion, except for the
fact that we use an inner subclass to avoid changing the super-
class. Also, this buys us implicit links (the enclosing instance) for
the reverse delegation (cf. Figure 7).

Perhaps the best known reference for the REPLACE INHERI-

TANCE WITH DELEGATION refactoring is Fowler’s book [5], but as
already mentioned, it only scratches the surface. Genßler and
Schulz have presented a reengineering pattern that transforms
inheritance to delegation (or, as they call it, composition) [8],
mostly with the goal to introduce certain design patterns (namely
BRIDGE, STRATEGY, and STATE from the standard design pattern
catalogue [7]). However, their description of the transformation,
which is kept mostly language independent, also ignores many
problems: of the many practical issues we have identified above it
mentions only the static type checking problems encountered
when a delegator is to be used as (an instance of) its former super-
class (which has already been noted in [15]); even for this, it of-
fers no solution.

Perhaps the first (and also most analytical) treatment of the
refactoring can be found in Opdyke’s Ph.D. thesis [23], Chapter
8.9 (cursorily repeated in [15]). It avoids our Precondition 4 by
first performing the ENCAPSULATE FIELD refactoring [5] for all
inherited fields, which violates our Postcondition 9, namely that
the rest of the program remains unaffected. Also, it introduces
delegation in Delegator for all methods (including the new acces-
sors) formerly inherited from Superclass, no matter whether they
are actually needed, thereby failing to reduce the bloating of class
interfaces, one of the main goals of the refactoring. Last but not
least, it does not postulate absence of openly recursive calls as a
precondition, thereby either accepting changed program semantics
or requiring that references to delegating objects are made avail-
able (the description in [23] and also [15] is unclear in this re-
gard).

We are aware of one other implementation of the REPLACE IN-

HERITANCE WITH DELEGATION refactoring for JAVA, namely that
deployed with INTELLIJ IDEA [13]. Like our own implementation,
the tool performs a program analysis and resorts to inner classes if
deemed necessary. However, the program analysis is incomplete:
it ignores many assignments to superclasses contained in the pro-

«Clients»
«Superclass»

A
«Clients»

«Class»

B

«Clients»
«Interface»

IAB
«Clients»

«Delegatee»

A
«Delegator»

B

Figure 11. Making the refactoring possible in presence of type
constraints requiring Class to subtype Superclass, by making
clients depend on an inferred supertype instead.

gram (violating Precondition 2 and Postcondition 7), leading to
typing errors in the refactored programs; it ignores protected ac-
cessibility of members in the superclass (Postcondition 3), leading
to accessing errors; etc. The refactoring itself differs in that it
changes subclasses and clients of static members to reference
Delegatee directly, thereby violating our Postcondition 9 (the
refactoring even offers introduction of a getter for the delegatee so
that clients of Delegator can address their requests directly to
Delegatee). Also, it does not introduce reverse delegation as we
do, but rather moves the methods overridden in Class to the inner
class. This however prevents methods overridden in subclasses of
Class from being called, which changes program semantics fun-
damentally.

Formal specification and correctness proofs of refactorings
have been a desideratum from the beginning of the field [23].
They require a formal capture of preconditions and postcondi-
tions, as well as a proof that the postconditions follow from the
preconditions given the steps of the refactoring. This is analogous
to usual program verification, which is natural because refactoring
tools are meta-programs. However, only few works actually pro-
vide such proofs for nontrivial refactorings: [23] provides formal
preconditions (but no postconditions) and informal argumenta-
tions to make correctness plausible; [21] shows how such proofs
could be conducted using graph transformations, but it is not at all
clear that these proofs would be easier to arrive at than Hoare
style program verification.

Recently, type inference has become the basis of a number of
refactorings [31]. Starting with the type constraints described in
[30] (which build on the work of [24]), several new refactorings
using this technology have been developed (e.g. [6, 19]). The first
author of this paper has extended the type constraint framework
described in these works to cover most of the JAVA 5 language
specification [17]; it has become the basis of the re-implementa-
tions of other existing refactorings such as [27], and of new ones
such as INJECT DEPENDENCY and CREATE MOCK OBJECT [18].

8. Conclusion
While often advocated as a standard remedy, the replacement of
inheritance with delegation is neither always possible, nor gener-
ally trivial to perform. In fact, we found that popular descriptions
of the corresponding refactoring ignore many of its problems, and
that in fact it is applicable to only 26% of all subclasses, and to
63% of all subclasses for which the refactoring seems relevant.
Also, in 37% of all possible applications the refactored code ex-
poses so much technical overhead that the benefit of the refactor-
ing must be questioned. Last but not least, we found that one
value of the refactoring, the reduction of the number of members
of a class from what is inherited to what is actually needed, is
greatly diluted by necessary subtyping: while on average, only 8%
of all methods of a refactored class are actually needed by its cli-
ents or subclasses, another 42% must be maintained due to sub-
typing required by assignments to supertypes and other type con-
straints derived from the program.

References
[1] G Bracha, WR Cook “Mixin-based inheritance” in: Proc. of OOP-

SLA/ECOOP (1990) 303–311.

[2] S Demeyer “Analysis of overridden methods to infer hot spots” in:
ECOOP’98 Workshop Reader LNCS 1543 (1998) 66–67.

[3] S Ducasse, O Nierstrasz, N Schärli, R Wuyts, AP Black “Traits: A
mechanism for fine-grained reuse” ACM Trans. Program. Lang.
Syst. 28:2 (2006) 331–388.

[4] ME Fayad, DC Schmidt “Object-oriented application frameworks”
Communications of the ACM 40:10 (1997) 32–38.

[5] M Fowler Refactoring: Improving the Design of Existing Code
(Addison-Wesley 1999).

[6] RM Fuhrer, F Tip, A Kiezun, J Dolby, M Keller “Efficiently refac-
toring Java applications to use generic libraries” in: Proc. of ECOOP
(2005) 71–96.

[7] E Gamma, R Helm, R Johnson, J Vlissides Design Patterns — Ele-
ments of Reusable Software (Addison-Wesley, 1995).

[8] T Genssler, B Schulz “Transforming inheritance into composition —
A reengineering pattern” in: Pro. of 4th EuroPLoP (1999).

[9] J Gosling, B Joy, G Steele, G Bracha The Java Language Specifica-
tion (http://java.sun.com/docs/books/jls/).

[10] M Grand Patterns in Java 2nd edition (Wiley & Sons 2002).

[11] FJ Hauck “Inheritance modeled with explicit bindings: An approach
to typed inheritance” in: Proc. of OOPSLA (1993) 231–239.

[12] DHH Ingalls “A simple technique for handling multiple polymor-
phism” in: Proc. of OOPSLA (1986) 347–349.

[13] IntelliJ IDEA (http://www.jetbrains.com).

[14] RE Johnson, B Foote “Designing reusable classes” Journal of Ob-
ject-Oriented Programming 1:2 (1988) 22–35.

[15] RE Johnson, WF Opdyke “Refactoring and aggregation” in: Proc. of
ISOTAS LNCS 742 (1993) 264–278.

[16] JUnit unit testing framework (http://junit.org).

[17] H Kegel Constraint-basierte Typinferenz für Java 5 (Diplomarbeit,
Fakultät für Mathematik und Informatik, Fernuniversität in Hagen
2007).

[18] H Kegel, F Steimann “ITcore: A type inference Package for refactor-
ing tools” in: Workshop on Refactoring Tools @ ECOOP (2007).

[19] A Kiezun, MD Ernst, F Tip, RM Fuhrer “Refactoring for parameter-
izing Java classes” in: Proc. of ICSE (2007) 437–446.

[20] H Lieberman “Using prototypical objects to implement shared be-
havior in object-oriented systems” in: Proc. of OOPSLA (1986)
214–223.

[21] T Mens, N Van Eetvelde, S Demeyer, D Janssens “Formalizing
refactorings with graph transformations” J. Softw. Maint. Evol. 17:4
(2005) 247–276.

[22] Mikhajlov, E Sekerinski “A study of the fragile base class problem”
in: Proc. of ECOOP (1998) 355–382.

[23] W Opdyke Refactoring Object-Oriented Frameworks Ph.D. thesis
(University of Illinois at Urbana-Champaign, 1992).

[24] J Palsberg, MI Schwartzbach “Object-oriented type inference” in:
Proc. of OOPSLA (1991) 146–161.

[25] BC Pierce Types and Programming Languages (MIT Press 2002).

[26] R Stata, JV Guttag “Modular reasoning in the presence of subclass-
ing” in: Proc. of OOPSLA (1995) 200–214.

[27] F Steimann “The Infer Type refactoring and its use for interface-
based programming” Journal of Object Technology 6:2 (2007) 67–
89.

[28] LA Stein “Delegation is inheritance” in: OOPSLA (1987) 138–146.

[29] M Streckenbach, G Snelting “Refactoring class hierarchies with
KABA” in: Proc. of OOPSLA (2004) 315–330.

[30] F Tip, A Kiezun, D Bäumer “Refactoring for generalization using
type constraints” in: Proc. of OOPSLA (2003) 13–26.

[31] F Tip “Refactoring using type constraints” in: Proc. of Static Analy-
sis, 14th International Symposium (2007) 1–17.

[32] D Ungar, RB Smith “Self: The power of simplicity” in: Proc. of
OOPSLA (1987) 227–242.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

