

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

From Behaviour Preservation to Behaviour Modification:
Constraint-Based Mutant Generation

Friedrich Steimann

Lehrgebiet Programmiersysteme
Fakultät für Mathematik und Informatik

Fernuniversität in Hagen
D-58084 Hagen

steimann@acm.org

Andreas Thies
Lehrgebiet Programmiersysteme

Fakultät für Mathematik und Informatik
Fernuniversität in Hagen

D-58084 Hagen

andreas.thies@fernuni-hagen.de

ABSTRACT
The efficacy of mutation analysis depends heavily on its capabil-
ity to mutate programs in such a way that they remain executable
and exhibit deviating behaviour. Whereas the former requires
knowledge about the syntax and static semantics of the program-
ming language, the latter requires some least understanding of its
dynamic semantics, i.e., how expressions are evaluated. We pre-
sent an approach that is knowledgeable enough to generate only
mutants that are both syntactically and semantically correct and
likely exhibit non-equivalent behaviour. Our approach builds on
our own prior work on constraint-based refactoring tools, and
works by negating behaviour-preserving constraints. As a proof of
concept we present an enhanced implementation of the Access
Modifier Change operator for Java programs whose naive imple-
mentations create huge numbers of mutants that do not compile or
leave behaviour unaltered. While we cannot guarantee that our
generated mutants are non-equivalent, we can demonstrate a con-
siderable reduction in the number of vain mutant generations,
leading to substantial temporal savings.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – testing
tools. D.3.3 [Programming Languages]: Language Constructs
and Features – constraints.

General Terms
Languages, Experimentation.

Keywords
Mutation Analysis, Refactoring, Testing, Accessibility, Con-
straints, Object-Oriented Programming.

1. INTRODUCTION
Mutation analysis (often also referred to as mutation testing) is
the effort of detecting insufficient test coverage by making small

changes to a program and observing whether these changes are
caught by the present test cases [3, 7]. For a program mutation to
be useful it must respect the syntactic and the semantic rules of
the programming language (as checked by a compiler) while at
the same time have the potential to change the observable mean-
ing of the program (where observable here means observable by
means of testing). The efficiency of mutation analysis crucially
depends on the effectiveness of mutation operators in creating
mutated programs — called mutants — that satisfy both condi-
tions.

Refactoring is the process of changing the design of a program
without changing its observable behaviour [5]. Refactoring usu-
ally involves a set of preconditions deciding whether an intended
refactoring is at all possible, and a set of steps (referred to as its
mechanics) prescribing the necessary program changes. While the
required meaning preservation makes refactoring appear the con-
verse of mutation analysis, both share the necessity to obey the
language’s syntactic and semantic rules.

Constraint-based refactoring [19–21] utilizes techniques bor-
rowed from constraint programming to formulate and check the
preconditions of a refactoring, and to ensure that performing it has
the desired effect. It builds on a set of constraint rules that, when
applied to a given program and its intended refactoring, produce a
set of constraints whose satisfiability decides the applicability of
the refactoring, and whose solution drives its mechanics.

In this paper, we show how the constraint rules of constraint-
based refactorings can be adapted in such a way that they system-
atically generate syntactically and semantically correct mutants
that likely exhibit changed behaviour. Intuitively, this can be
achieved by negating precisely those constraints that are to guar-
antee meaning preservation in the case of refactoring — by keep-
ing all other constraints unchanged, generated mutants are guaran-
teed to compile, saving the mutation process numerous vain at-
tempts. As a proof of concept, we present experimental data ob-
tained from applying our approach to a set of sample programs,
and compare its performance to that of using a compiler for filter-
ing out invalid mutants. Results indicate that we are not only up
to two orders of magnitude faster than the compiler, but also re-
ject large numbers of mutants that are provably equivalent.

The remainder of this paper is organized as follows. In Section 2
we motivate our work by giving an impression of the problem of
generating non-equivalent program mutations and by discussing

how this has been addressed by related work. As an example and
for much of the rest of this paper, we resort to mutations changing
the accessibility of declared program entities, a problem identified
in [12] as a prominent source of error in object-oriented pro-
gramming; however, it should become clear that our approach is
not restricted to precisely these kinds of mutations. In Section 3
we go into the details of our approach, and explain how it works
for several different kinds of mutations. Section 4 shows how
when we fail to generate mutants directly, we can still select from
mutants generated by other means those that are potentially useful
for mutation analysis. In Section 5, we demonstrate the effective-
ness of our method by generating mutants for a number of sample
programs, and comparing the results with those of a naive ap-
proach. A brief discussion of possibilities for further development
concludes our work.

One more word before we start: In this paper, we refrain from for-
mally introducing the constraints and constraint rules we used,
since their sufficient explanation would have forced us to use up
much of the available space. The technically interested reader is
referred to [20, 21] for the origins and general working of con-
straint-based refactoring, and to [19] for the constraint rules rele-
vant for the work presented here.

2. MOTIVATION
Applying mutation operators to a program without a prior specific
program analysis can produce large numbers of useless mutants.
Indeed, in [14] Offut reports that the fraction of useless mutants
generated can grow as high as 99.97%, a negative record that has
been set by his Access Modifier Change (AMC) mutation opera-
tor:

The AMC operator usually creates useless mutants. If the
access is strengthened (for example, public to private), the
mutated program usually does not compile — the mutant
tries to use a variable that is out of scope. If the access is
weakened, the mutated program is often equivalent — the
mutant can still use the same variables. [14]

At the same time, Offut recognizes that using the wrong access
modifier is a relevant source of error:

In our experience in teaching OO software development
and consulting with companies that rely on OO software,
we have observed that access control is one of the most
common sources of mistakes among OO programmers.
The semantics of the various access levels are often
poorly understood, and access for variables and methods
is often not considered during design. This can lead to
careless decisions being made during implementation. It
is important to note that poor access definitions do not
always cause faults initially, but can lead to faulty behav-
ior when the class is integrated with other classes, modi-
fied, or inherited from. [12]

Indeed, selecting the correct access modifiers in Java can become
quite tricky. To see this, consider the following simple example in
which the invocation of m("def") in the main method of class B on
an instance of a class A is meant to bind to A.m(String), but really
binds to m(Object):

class A {
 private void m(String s) { … }
 void m(Object o) { m("abc"); }
}

public class B extends A {
 void m(String s) { … }
 public static void main(String args[]) {
 A a = new A(); a.m("def");
 A b = new B(); b.m(true);
 }
}

To change binding, accessibility of A.m(String) must be increased
[6, §6.6.2.1]. However, this also changes the dynamic binding of
the invocation of m("abc") on an instance of B in A.m(Object),
which now binds to B.m(String) rather than A.m(String) as before.

Tests revealing such (potentially unintended) changes of bindings
clearly have value, and so has mutation analysis showing that cor-
responding test cases are missing.

2.1 The Problems of Generating Mutants
Automatically creating mutants exhibiting a lack of test coverage
from access modifier change requires rather intimate knowledge
of the Java language specification [6]. For example, Java syntax
mandates that not all access modifiers can be used in all places:
reducing accessibility of a method declared in an interface to a
level below public (the default) causes a compile error, since all
interface methods must be publicly accessible; changing accessi-
bility of a top-level class to protected causes an error, since pro-
tected is not allowed for top-level classes; and so forth.

While such vain applications of the AMC operator can be pre-
vented by obeying rules of Java syntax, others require a deeper,
semantic analysis. For instance, while increasing accessibility of
method m() in class A from default (no access modifier given) to
protected or public presents no problem, reducing it to private
will lead to a compile error, since m() is no longer accessible from
B (the example assumes that A and B reside in the same package):

class A {
 void m(){ … }
}

class B {
 void n(){
 (new A()).m();
 }
}

Preventing vain applications of this kind is more difficult than in
the examples based on syntax only, since it requires an analysis of
the program with regard to references to the declared entity whose
accessibility is to be changed. However, while this task may be
time-consuming, it is not technically demanding, and therefore
could also easily be incorporated in a mutation analysis tool that
has AMC in its repertoire.

As it turns out, however, checking for existing references does not
suffice to ensure the validity of an access modifier change. For
example, the subtyping rules of Java mandate that the declared
accessibility of an overriding method must not drop below that of
the method it overrides [6, §8.4.8.3]. Therefore, if the above code
example is extended by

class C extends A {
 void m(){ … }
}

in the same package, raising accessibility of method m() in A
above default would lead to a compile error.

While this problem is still fairly obvious (and easy to check),
there are others that are far more obscure, particularly if they in-
volve chains of relationships. For instance, given the Java code

interface I {
 void m();
}

class A {
 public void m() { }
}

class B extends A implements I {}

reducing accessibility of m() in A to protected would lead to a
compile error because A.m() contributes to implementing the in-
terface I in A’s subclass B and therefore has to be declared public.
Although all problems of this kind will eventually be caught by
the compiler, (ab)using the compiler as an oracle deciding
whether a generated mutant presents a valid program and is thus
acceptable, is rather expensive, especially if the rejection rate is
high (Section 5 will present concrete numbers corroborating this).

However, generating valid mutants, i.e., mutants that represent
programs that are free from syntactic and semantic errors1, is only
the first hurdle in mutation analysis; the second, and at least as
demanding, is to generate mutants that actually change the mean-
ing of a program. To see why this is a problem (again for the case
of changing accessibility), the following example is instructive:

public class A {
 void m() { … }
 public static void main(String args[]) {
 A a = new B();
 a.m();
 }
}

public class B extends A {
 public void m() { … }
}

If A and B reside in the same package, increasing the accessibility
of m in A to protected or public is valid, but useless for the pur-
pose of mutation analysis, since it does not change the meaning of
the program (the invocation of m() on a in A is bound to B.m() be-
fore and after the mutation). If however A and B reside in different
packages, an increase of accessibility changes binding (the call of
m() on a in A is bound to A.m() before and to B.m() after the muta-
tion), potentially changing the meaning of the program. Whether
the latter is actually the case depends on whether the implementa-
tions of m() in A and B have different effects, which escapes
analysis in the general case (and in any case is not our topic here);
however, since a change of binding is a change of program the
programmer should at least be aware of, we call such mutants
relevant. For the remainder of this paper, the goal is to compute
relevant mutants; we leave it to further inspection to decide
whether a relevant mutant is equivalent to the original program or
calls for additional test cases.

Note that, while the AMC operator may seem somewhat exotic to
focus on, the problems it reveals are representative of a much
broader class of errors in object-oriented programming, namely
the wrong binding of references in the context of overloading and
overriding (and, through a trick, also hiding). Changing access
modifiers is a particularly simple way to provoke such errors, and
would therefore be an effective means to generate mutants reveal-
ing a lack of test coverage — if it were not for the high number of
irrelevant mutants commonly produced.

1 We use the term “semantic error” here to denote errors reported

by the semantic analysis performed by the compiler (i.e., typing
errors etc.). They are not to be confused with logical errors.

2.2 Related Work
Budd and Angluin showed that even in the limited domain of test-
ing, it is in generally undecidable whether a mutated program
generates the same output as its original [2]. Despite this funda-
mental insight, and because non-equivalence is crucial for muta-
tion analysis, several attempts have been undertaken to reduce the
human effort of eliminating generated mutants that are useless.

Early attempts go back to Baldwin and Sayward [1], who have
used compiler optimization techniques to filter out equivalent mu-
tants. The main idea behind this is that code optimization tasks
done by the compiler (as prescribed by code optimization rules)
effectively produce equivalent mutants. Vice versa, an equivalent
mutant can be described as a compiler optimisation: if a mutant
falls under a compiler optimisation rule (either as input or as out-
put), it is equivalent. However, a later implementation of this ap-
proach [13] showed only low success rates: in an empirical analy-
sis, only 10 % of equivalent mutants could be detected.

Other advanced approaches use control flow graphs to detect
equivalent mutants [16]. Especially, knowledge of infeasible
paths can help to reduce the total amount of equivalent mutants
because mutating an unreachable statement will not change the
semantics of the program. In this context, constraint-based ap-
proaches were first mentioned [16]. Firstly, the reachability of a
node depending on the input in the original program can be for-
mulated with constraints. Secondly, constraints can be generated
that judge whether a certain mutant will change the state of the
program after execution of the mutated statement [16]. This latter
technique has also been used to generate test data automatically
[4]. In subsequent work, an implementation was given that detects
equivalent mutants using these principles [15], and it has been
shown in an accompanying empirical study that this approach
leads to a detection rate of almost 50 % of all equivalent mutants.
The main disadvantage of this approach is that it only considers
the state of the program immediately after execution of the mu-
tated statement (where it may remain unobservable). In particular,
it cannot tell whether the change of state is propagated to the pro-
gram’s output (so-called weak mutation testing [10]).

To tackle this latter problem program slicing has been suggested
[9]. The basic idea here is to reduce the size of problem by slicing
techniques so that only the relevant part of code on which a mu-
tant might have impact has to be analyzed. Basically, this helps
the programmer to decide faster and more reliably if a so-called
stubborn mutant [8] (i.e., a mutant that changes the state of the
program but has no impact on the program’s output) not detected
by the constraint-based approach is equivalent or not.

Another technique enhancing the constraint-based approach of
[15] is based on program dependence analysis [8]. For this, a tool
is offered to assist the programmer in detecting equivalent mu-
tants by pointing out certain variables of interest. Also, it is shown
how a dependence analysis can help to avoid a special kind of
equivalent mutants before the constraint analysis.

A recent approach to filtering out equivalent mutants relies not on
checking constraints, but on checking program invariants: The
JAVALANCE-Tool [18] first learns invariants from runs of non-
mutated programs and then checks for violations of these invari-
ants by mutated programs. An empirical evaluation conducted on
several open source programs showed that mutants violating mul-
tiple invariants are likely non-equivalent.

All techniques mentioned above have in common that they target
imperative programming constructs without taking object oriented
principles such as dynamic method binding and encapsulation
into account. The results of first experiments on equivalence rates
of mutation operators designed specifically for object-oriented
programs can be extracted from [12]. In this work, a large number
of different mutation operators for Java have been proposed that
account for several object-oriented principles, and it was assumed
that some of these operators will generate significantly more
equivalent mutants than others. Empirical evidence corroborating
these assumptions has been given in a subsequent study [14], in
which the equivalence rates ranged from 99.97 % for the Access
Modifier Change operator to 0.22 % for an operator which deletes
explicit calls of a parent’s constructor. It remains unclear from
this work, however, how equivalence was decided, in particular,
how much manual effort this involved.

3. CONSTRAINT-BASED PROGRAM MU-
TATION
As mentioned in the introduction, program mutation shares with
refactoring the condition that executability of programs must be
maintained, and differs from it by its need to change behaviour.
Leaving syntactic and semantic errors aside, what is a failure for
refactoring is thus a success for program mutation. To explain
how we exploit this relationship systematically, we first take a
brief look at refactoring, specifically constraint-based refactoring.

3.1 Constraint-based Refactoring
In constraint-based refactoring, a set of constraint generation rules
is applied to a program and its intended refactoring. The con-
straint rules represent the syntactic and semantic rules of the pro-
gramming language and the generated constraints represent these
rules as applied to those elements of the program that are involved
in the intended refactoring. For instance, a basic rule of Java re-
quires that if a name, r, references a declared entity, d, the entity’s
declared accessibility, d , must be at least private if r resides in
the same class, at least default if it resides in a different class, but
same package, and so forth. This is expressed as a constraint

d   ((r), (d))

in which  is a function mapping program elements to their loca-
tions in the program (usually the body of a package or type) and 
is a function computing the minimum required accessibility of the
second location to be accessible from the first. Note that in Java,
access modifiers are totally ordered, but constraints can also be
formulated for unordered access modifier sets, and even for lan-
guages without access modifiers (such as Eiffel) [19].

By putting them into relation with each other or with constant
values, each generated constraint constrains one or more con-
straint variables. Constraint variables represent changeable prop-
erties of program elements; these are typically the types of de-
clared entities, the locations where they are declared, or their ac-
cessibility ((r), (d), and d  in the above example).

All constraint variables have initial values, which are derived
from the program as is; in the previous example, the values corre-
spond to the actual declared accessibility of d and the actual loca-
tions of r and d. Taking this initial variable assignment, the con-
straint system (set of generated constraints, consisting of a single
constraint in the above example) is always solved (or the con-
straint rules are inconsistent with the language specification, or

the program is syntactically or semantically incorrect, i.e., does
not compile).

The principle behind constraint-based refactoring is that a refac-
toring may assign the variables of the generated constraints new
values (representing the changes of the refactoring) as long as the
constraint system remains solved; if it does not, the refactoring is
illegal and cannot be performed. A refactoring intending to
change one or more variable values (for instance by changing
type, accessibility, or location of one or more declared entities)
therefore has to check whether this invalidates the generated con-
straint system; if so, the refactoring must either be refused or
search for new values for the constraint system’s other variables
that make it solved again. The new values then represent addi-
tional changes to be performed by the refactoring.

If all generated constraints must be satisfied for a refactored pro-
gram to maintain its executability (i.e., freeness of compile-time
errors) and behaviour, it follows that if a constraint is violated, the
program has lost at least one of these properties. Deliberately vio-
lating certain constraints by assigning constraint variables suitable
values can thus lead directly to relevant mutants. The question is
which constraints to violate.

3.2 Generating Relevant Mutants from Ac-
cessibility Constraints
In previous work of ours on improving accessibility-related refac-
torings [19], we have identified a set of 16 constraint rules that
capture access control of Java. Of the 16 rules, 11 prevent
changes of accessibility that would lead to a compile error; trans-
ferred to the problem of mutant generation, they serve to prevent
invalid mutants and therefore must be left untouched. Of the re-
mainder, four rules prevent changes of binding that, unless cov-
ered by corresponding test cases, will go unnoticed; in our current
setting, they would prevent changes of access modifiers represent-
ing relevant mutants and thus what we are interested in. Changing
these constraint rules by negating the generated constraints would
invert their effect, i.e., generate constraints that are satisfied if and
only if the binding changes; they would lead us directly to rele-
vant mutants. The last constraint rule prevents changes of acces-
sibility that, depending on the actual program, either lead to a
compile error or to a change of binding; it will be treated sepa-
rately in Section 3.2.3.

3.2.1 Loss of Dynamic Binding
The first constraint rule whose negation2 leads to relevant mutants
is one that prevents a loss of dynamic binding. Basically, it states
that if a method d' is to override a method d, the declared accessi-
bility of d must be at least the accessibility that is required for an
access of d from the location of d'. For the sample program

class A {
 void m() { … }
 void n() { m(); }
}

class B extends A {
 void m() { … }
}

2 In the following, when we speak of negating a constraint rule,

we mean that the rule is changed to produce a constraint that is
the negation of the constraint produced by the original rule.

the generated constraint is

A.m()  ((B.m()), (A.m()))

in which  evaluates to default if both classes reside in the same
package. Negating this constraint (i.e., replacing  with <) sug-
gests either lowering the accessibility of A.m() to private or mov-
ing B to another package (so that  evaluates to protected), both
with the effect that a call of m() in n() on instances of B is no
longer dispatched to B.m(). Other constraint rules (which are not
negated) take care that neither change leads to an invalid mutant
(i.e., to a mutant that does not compile); for instance, if A.m() is
referenced from outside of A, a corresponding constraint would
prevent lowering the accessibility of A.m() to private as a possible
mutation.

3.2.2 Introduction of Dynamic Binding
The converse of losing dynamic binding is introducing it where it
was previously absent, which can also change the meaning of a
program. The corresponding constraint rule from [19] states that if
a method d' in a subclass exists whose signature is a subsignature
[6, §8.4.2] of a method d in a superclass, but d' does not override
d, declared accessibility of d must not be increased to values al-
lowing it to be accessed from the location of d' (since then d'
would override d). For the program

class A {
 private void m() { … }
 void n() { m(); }
}

class B extends A {
 void m() { … }
}

(again both classes in same package), the generated constraint is

A.m() < ((B.m()), (A.m())) (= default)

If the negated rule is applied to the program every solution to the
generated constraint set would have to increase the declared ac-
cessibility of A.m() to values above private, thus introducing the
dynamic binding of m() for instances of B. Again, that such a mu-
tation does not invalidate the program for other reasons is
checked by other constraints.

3.2.3 Static Re-binding in Presence of Overloading
In Java, a change of binding due to a change of accessibility is not
limited to the dynamic case. For instance, in the program

class A {
 void m(Object o) {…}
 private void m(String s) {…}
}

class B {
 void n() { (new A()).m("abc"); }
}

raising the accessibility of A.m(String) above private will re-bind
the call of m(String) from C, potentially changing the meaning of
the program. For the refactoring case, this is prevented by a con-
straint rule saying that accessibility of an overloading method that
is more specific (in terms of its formal parameter types; here:
A.m(String)) than the one a method call currently binds to (here:
A.m(Object)) must remain on a level that leaves it inaccessible for
the location of the method call:

A.m(String) < ((B.n()), (A.m(Object)))

Again, negating this constraint means demanding a change of ac-
cessibility and therefore leads to a change of binding, potentially
changing the meaning of the program. Thus, by replacing the
original constraint rule with its negation, a constraint solver can
generate relevant mutants directly.

As in the dynamic binding cases above, re-binding to an overload-
ing method due to its increased accessibility has a converse that
results from restricting accessibility. This follows directly from
the previous example, when the increased accessibility of
A.m(String) is set back to private. However, in the refactoring set-
ting we did not prevent this change of binding by a special con-
straint rule: there, the general accessing rule (used as an example
in Section 3.1) requiring that a called method remains accessible
from the call site suffices. For the purpose of mutation analysis,
however, for which a change of binding is to be forced if possible,
two cases must be differentiated: whether a call binds to a method
for which a less specific overloading exists to which the call could
bind alternatively, or whether no such alternative binding possi-
bility exists. In the first case, the constraint demanding accessibil-
ity must be inverted (to force a change of binding), while in the
second it must be maintained as is (to prevent a compile error).
This case analysis means that if the same set of constraint rules is
to be used for both purposes (refactoring and mutation analysis),
the accessibility constraint rule has to be split in two, one with the
additional antecedent that an overloading suitable for a re-binding
is present, the other with the same additional antecedent negated.
Note that in the refactoring case, this split has no effect (the ante-
cedents complement each other and the consequent is the same).
In the mutation analysis case, the former rule must be negated,
while the latter must remain as is.

3.3 Generating Mutants by Introducing or
Deleting Entities
Somewhat related to a change of static binding due to overloading
is the change of binding caused by hiding [6, §8.4.8.2].3 It is dif-
ferent, however, in that hiding does not depend on the choice of
access modifiers: it is necessary and sufficient for hiding that the
hiding element is present (and for a lack of hiding that it is ab-
sent).

For the refactoring case, we were able to treat hiding under the
umbrella of accessibility by introducing a fifth, smallest access
modifier, which we call absent [19]. It represents complete inac-
cessibility of a declared program element. Being able to assign
this value to a constraint variable representing accessibility with-
out violating a constraint means that the corresponding declared
element can be deleted without altering the compileability or be-
haviour of the program; a constraint requiring that a variable has
absent as its value either means that the corresponding element
must be deleted (if it is present) or that it must not be introduced
(if it is not yet present). However, as we will see next, unlike for
refactoring, constraints of the latter kind cannot be generated for
mutation analysis.

3 Similarity extends to the degree that like overloading, hiding

requires a splitting of the general accessing rule (which is suffi-
cient for the refactoring case) into one that is required to pre-
vent compile errors and one to prevent a change of binding.

3.3.1 The Difficulty of Introducing Elements with
Constraints
In order to prevent hiding of a declared element (field or static
method) in the course of a refactoring, a constraint must be gener-
ated that requires the hiding element’s accessibility to have the
value absent. Negating such a constraint would mandate introduc-
ing a declared entity that hides another, which would indeed be a
relevant mutation operator (for the case of fields called Hiding
Variable Insertion in [12]). However, since the program entity is
absent in the original program, there is no constraint variable as-
sociated with it whose value could be set to an accessibility level
above absent.

In the case of refactoring, we have solved this problem by not ap-
plying the constraint rules to the program as is, but to the program
with the intended refactoring applied, which may try to introduce
the declared entity in a location (or rather move an existing one to
a location) in which it is not allowed. A constraint generated from
the changed program saying that this entity should be absent then
leads to a conflict that cannot be resolved, so that the refactoring
is refused. Because this requires foresight of the refactoring, we
have called these applications of constraint rules foresight appli-
cations [19].

Unfortunately, foresight applications of rules are not suitable for
the purpose of generating mutants, since the required foresight
would need to know the program change the (negated) rule’s ap-
plication is to provoke. However, as we will see in Section 4,
foresight applications of rules can nevertheless contribute to gen-
erating relevant mutants, by rejecting the irrelevant ones from a
set of mutants generated by other means.

3.3.2 Deleting Entities with Constraints
The converse of introducing declared entities is deleting them.
Deletion of an entity is accepted by the compiler if the references
to it can be re-bound to another entity, for instance one that was
hidden by the deleted entity. Deleting entities can therefore also
generate relevant mutants; the corresponding mutation operators
have been called Overloading Method Deletion, Hiding Variable
Deletion, and Overriding Method Deletion in [12].

Deleting a declared entity can be seen as a stronger form of
changing its accessibility to a value so low that it becomes inac-
cessible. Indeed, there are situations in which accessibility of an
entity cannot be reduced further, but in which it can be deleted:
for instance, in

class A { int i = 1; }
class B extends A {
 private int i = 2;
 void m() { if (i == 2) … }
}

deletion of i in B is possible (but leads to a change of binding).

Exploiting our (virtual) access modifier absent, our accessibility
constraint rules from the previous sections can also be used to
generate relevant mutants that result from deleting declared enti-
ties. This is possible by making the constraint solver consider ab-
sent as a possible value for the declared accessibility of an ele-
ment in question. However, including absent as a possible, small-
est value of accessibility requires adaptation of certain constraint
rules: for instance, while subtyping mandates that the accessibility
of an overriding method must not drop below that of the method it

overrides, absent (which is lower than private) may be a possible
value (if other generated constraints permit).

3.4 Generating Relevant Mutants from Type
Constraints
Our approach to generating relevant mutants from negated refac-
toring constraints works not only for accessibility — it can also
be transferred to other types of constraints. For instance, the type
generalization refactorings GENERALIZE DECLARED TYPE and USE

SUPERTYPE WHERE POSSIBLE [20] change the values of constraint
variables representing the types of declared entities from their
current types to supertypes (if possible). Similar to changing ac-
cessibility, changing the type can lead to a change of binding, as
the following example demonstrates:

public class A {
 A a;
 void m(Object o) { … }
 void m(B b) { b.m(a); }
}

public class B extends A {}

Here, the type of the formal parameter b in method A.m(B), B,
must not be changed to A, but not because A is not a sufficient ab-
straction (generalization) of B for the needs of b (only m(Object)
is required of b, and this is defined in A), but because changing
the signature of A.m(B) to A.m(A) leads to a re-binding of the call
b.m(a) in m(B) (from m(Object) to m(A)), thus changing the mean-
ing of the program. Negating the constraint rule that prevents the
generalization in such cases directly produces relevant mutants of
this kind.

3.5 Completeness of Constraint-based Mutant
Generation
One question that remains is whether our approach is complete in
that it generates all relevant (and therefore also all non-
equivalent) mutants resulting from access modifier changes. Pro-
vided that our constraint solver generates all solutions for a gen-
erated constraint system, this question boils down to the question
whether our constraint rules completely and correctly model the
language specification with regard to accessibility. While proofs
of this kind are generally difficult to provide, we maintain that our
accessibility constraint rules, which are generally application-in-
dependent, have been tested extensively in the context of refactor-
ing [19], and tested further in this present work, by checking that
running the regression tests for compiling mutants that have been
rejected as irrelevant indicate no change of behaviour.

4. CONSTRAINT-BASED MUTANT
REJECTION
Constraints cannot only be used to systematically generate rele-
vant mutants, they can also be used to reject as irrelevant mutants
generated by other means. This capability is of particular interest
to us when relevant mutants cannot be generated by negating con-
straint rules, as was described in Section 3.3.1.

To get an impression of how this works, assume that we have a
mutant generator that uses some heuristics to make changes to a
program by inserting new program elements. Essentially, if these
heuristics do not capture at least the knowledge about the target
language that is captured in refactoring constraints, it is bound to

produce mutants that are invalid or irrelevant. For instance, given
the program (all types in same package)

class A {}

interface I { static int i = 2; }

class B extends A implements I {
 void m() { int j = i; }
}

such a mutant generator might insert the declaration static int i
into A, which would lead to a compile error (access to i in B be-
comes ambiguous). As it turns out, such a change of program is
rejected by a corresponding constraint rule defined in [19]; apply-
ing this constraint with foresight of the introduction leads to the
constraint

A.i < ((B.m()), (A.i)) (= default)

which is not satisfied for A.i = default and thus signals an inva-
lid mutant.

Now a mutant generator respecting the syntactic and semantic
rules of Java (i.e., restricting itself to generating mutants that
compile) applied to the above example might still insert static int
i into B. How, then, can be known that such an insertion produces
a mutant relevant for mutation analysis? Again, evaluating the
constraints generated for refactoring of accessibility will indicate
that a corresponding refactoring could not be performed, but this
time the failing constraint

B.i = absent

is one resulting from foresight application of the rule preventing
hiding that was described in Section 3.3.1 as non-negatable; be-
cause it is a meaning preserving rule, its violation identifies a
relevant mutant.

Note that even without resorting to foresight rules, constraints can
be used for rejecting irrelevant mutants. The idea here is that if
evaluating the constraints generated after a mutation suggest that
undoing the mutating change (for instance by removing an in-
serted entity, by setting its accessibility to absent) potentially
changes the meaning of the program and therefore would have to
be rejected in the refactoring case, then it follows that the muta-
tion potentially changed the meaning in the first place, and there-
fore produced a relevant mutant. Note that this approach works
without the negation of constraint rules; however, it requires a
new constraint generation after each mutation and is therefore
more expensive (cf. its evaluation below).

5. EVALUATION
To get an impression of the effectiveness of our approach to con-
straint-based mutant generation, we have applied it to several
open source programs. The chosen programs are listed in Table 1;

the accompanying test suites were only used to test our approach,
i.e., to check whether any of the mutants classified as irrelevant
caused a failing test case (which would have been indicative of a
false classification; cf. the discussion in Section 3.5).

Table 2 shows the filtering performance of all constraint rules
governing the change of access modifiers (including those that
keep a program compilable and those that keep its binding un-
changed, the latter negated) when jointly applied to the projects
from Table 1. The number of mutations is the number of access
modifier changes that is at all possible (counted naively, i.e.,
without considering even the simplest syntactic rules such as that
interface methods must be public). The columns labelled “inva-
lid” counts those mutations that must be filtered out because the
resulting programs will not compile, for either syntactic or seman-
tic reasons (cf. Section 2.1). The columns labelled “valid” count
those mutants that will compile, differentiating between those in
which the binding remains unchanged (which is why they are ir-
relevant to mutation analysis) and those with changed binding. It
is this last column that reveals the value of our approach.

As can be seen from Table 2, the syntactic constraints (which any
reasonable mutation operator would be expected to respect) are
only sufficient for filtering out one quarter of all mutants; the re-
maining three quarters must be subjected to deeper analysis. Con-
straints covering the (static) semantics (accessing, subtyping, etc.)
eliminate another 30% of all mutants; achieving this effect re-
quires a whole-program analysis that most mutant generators
would leave to the compiler (which will reject invalid mutants,
albeit only at a high price: see Table 3 for the time required by the
compiler as compared to our constraint approach). The compiler
will however not be able to filter out those mutants that are syn-
tactically and semantically correct (“valid”), but do not lead to a
change of binding and thus meaning (“irrelevant”): these cases,
which make up for more than two fifth of all mutations, present
the greatest challenge for mutant generators — and yet, using our
approach they are classified on the same basis as all others. The
remaining less than 1% of all possible mutants are the only ones
worth looking into — all other mutants are generated in vain. The
savings made possible by our approach are thus considerable.

Table 3 shows the performance of our approach when compared
to elimination of invalid mutants as performed by the compiler
(all times measured on a 2.1 GHz Intel dual core processor with
2 GB of main memory, running Windows XP and the Eclipse 3.4
compiler in incremental mode). To be fair, we fed only syntacti-
cally valid mutants into the evaluation (as argued above, their fil-

Table 1. Sample projects used for the evaluation

Project

Number
of

classes

Number
of test
cases

Source

JUnit 3.8.2 102 102 junit.org

JHotDraw 6.01b 405 1160 www.jhotdraw.org

Draw2D 3.4.2 347 173 www.eclipse.org/gef

Jaxen 1.1.1 213 2030 jaxen.org

HTMLParser 1.6 165 669 htmlparser.sourceforge.net

Table 2. Results for naive changes of access modifiers

Mutants

invalid valid
Project

Number
of muta-

tions synt. sem. irrelev. relevant

JUnit 3063 1089 625 1346 3

JHotDraw 14977 5841 3548 5536 52

Draw2D 14280 2421 4453 7374 32

Jaxen 6159 1562 2689 1903 5

HTMLParser 8478 1993 2714 3754 17

total 46957 12906 14029 19913 109

 100% 27% 30% 42% 0,23%

tering is so simple that it can easily be performed by even the
most naive mutant generators). On top of that, we did not restrict
evaluation of the constraints to those equivalent to the semantic
rules checked by the compiler, but included them all, resulting in
a much higher rejection rate. As can be seen, even under these
unequal conditions, the constraint-based approach is between 43
and 102 times faster than using the compiler. This is substantial.

Since we must assume that not all constraint rules contribute to
the results equally [11, 19], we have also evaluated them sepa-
rately. Table 4 shows the results of negating the constraint rules
preventing a loss of dynamic binding (Section 3.2.1), preventing
its accidental introduction (Section 3.2.2), and preventing a
change of static binding in presence of overloading (Section 3.2.3;
no cases in which increasing accessibility would have changed
binding were found). The column headed “opportunities” counts
the number of applications of the negated constraint rule and is
thus a measure of the number of possibilities for generating rele-
vant mutants. The column headed “relevant mutants” counts the
number of cases in which the binding could actually be changed
by altering an access modifier. In all other cases, the alteration
violated syntax or semantics-preserving constraints and was thus
refused. “Time” measures the time needed to generate the mu-
tants; it includes generation of the constraints (including building
the AST), their negation, and solution of the constraint system.

As correctly predicted by Offut [15], the number of relevant mu-
tants produced, although rather unevenly distributed among the
different constraint rules, is generally small. Yet, one must bear in
mind that using our approach, the number of irrelevant mutants
potentially generated by other approaches is of no interest, and

that the produced relevant mutants are indeed representative of
common (and difficult to detect) programming errors. Therefore,
Offut’s conclusion, that implementing the AMC operator is not
worthwhile (because it “generates uncompilable, equivalent or re-
dundant mutants, and is [therefore] not needed in MuJava” [15]),
seems somewhat premature.

Table 5 shows the number of mutants that were generated by de-
leting overloading methods (the OMD operator [14]) or a hiding
entity (field or static method; cf. Section 3.3.2). Its results for
overloading include those of Table 4, since in all cases in which a
reduction of accessibility was possible, the method could also be
deleted. Note that by introducing the access modifier absent, and
viewing deletion as an extreme case of access restriction, the re-
dundancy in the results of the two mutation operators can be
avoided, simply by merging them into one. That this must not
lead to rejection of the AMC operator as suggested in [15] follows
from the other results of Table 4, which cannot be subsumed by
OMD.

Last but not least, we have measured the performance of our ap-
proach for constraint-based mutant rejection as described in Sec-
tion 4, for the example of inserting hiding variables (the IHI mu-
tation operator [12]). For this, we have implemented a simple mu-
tant generator that inserts variable declarations in subclasses that
also exist in superclasses, and that makes sure that the generated
mutants are valid, i.e., still compile. Depending on the references
existing in the program, each such mutation may, but need not, in-
troduce hiding. We then check whether the obtained mutants are
relevant by checking whether our constraints allow the mutations
to be undone (the inserted variable to be removed); if so, the mu-

Table 3. Compiler vs. Constraints (times in secs)

Syntac-
tically
valid

mutants

Of these semanti-
cally invalid as

determined by the
compiler

Semantically invalid
or irrelevant as de-

termined by the con-
straints

Project abs. rel. time abs. rel. time

JUnit 1974 1714 87% 194 1971 99.8% 1.9

JHotDraw 9135 5841 64% 1330 9084 99.4% 30.8

Draw2D 11859 4453 38% 1431 11827 99.7% 17.8

Jaxen 4597 1903 41% 307 4592 99.9% 3.6

HTMLParser 6485 3754 58% 739 6468 99.7% 7.8

Table 4. Mutants dropping overriding, introducing overriding, and making an overloaded method inaccessible

Dropping overriding Introducing overriding Making an
overloaded method inaccessible

Relevant
mutants

Relevant
mutants

Relevant
mutants

Project

Opp-
ortu-
nities abs. rel.

Time
(secs)

Opp-
ortu-
nities abs. rel.

Time
(secs)

Opp-
ortu-
nities abs. rel.

Time
(secs)

JUnit 156 3 2% 2.2 0 0 2.5 2 0 0% 1.1

JHotDraw 2017 48 2% 27.4 4 3 75% 8.6 9 1 11% 1.3

Draw2D 1205 29 2% 18 0 0 6.4 5 3 60% 7.7

Jaxen 785 5 6% 3.6 0 0 3.0 0 0 2.5

HTMLParser 720 17 2% 7.6 0 0 3.7 0 0 3.8

total 4883 102 2% 58.8 4 3 75% 24.2 16 4 25% 16.4

Table 5. Mutants resulting from deleting an overloaded
method or a hiding entity

Opportunities Relevant mutants
Project overl. hiding absolute relative

JUnit 2 0 1 50%

JHotDraw 9 1 1 11%

Draw2D 5 2 5 71%

Jaxen 0 0 0

HTMLParser 0 0 0

total 16 3 7 37%

tant is irrelevant (does not introduce hiding), if not, it is indeed
relevant. The results of this procedure are shown in Table 6.

As can be seen, the constraints reject as irrelevant large numbers
of valid mutants inserting variables and are therefore again highly
effective. However, the times required for rejection are much
longer than for generation (cf. Tables 3–5): this is so because for
rejection, the constraint system has to be built anew for every mu-
tant (so that it can be checked whether undoing the mutation itself
makes a relevant mutation), whereas for generation, the constraint
system need be built only once, since for computing the different
mutants, only existing constraints are negated. And yet, when
comparing this time with the time saved by running test suites on
fewer mutants (for mutants proven to be irrelevant, running the
tests is useless: unless our constraints are flawed, there will be no
failures), the time required for constraint generation is well spent:
on average across all five sample projects, rejection takes only
slightly longer than running the test cases for irrelevant mutants.
In practice, there will be a huge saving, however: finding out that
a lack of failure of a test suite is not due to a lack of coverage, but
to the irrelevance of the mutant, will take indeterminately longer.
This is where the true saving of our approach comes from.

6. FURTHER DEVELOPMENT

6.1 Mutant Rejection Based on Other Refac-
toring Techniques
The idea of rejecting irrelevant mutants generated by other means
(Section 4) can also be transferred to the reasoning behind the
meaning-preserving mechanics of refactorings that are not con-
straint-based. For instance, in [17] Schäfer et al. developed the
mechanics for the RENAME refactoring necessary to maintain
binding of names to their originally referenced declared entities
that are hidden (by nesting or by inheritance) after the renaming,
by introducing sufficient qualification of names. Thus, when a
mutant is generated by renaming a program entity, it can be
checked whether this leads to a change of binding (this is the case
when the corresponding refactoring decides that a qualification is
necessary); in the positive case, a relevant (potentially useful) mu-
tant has been found; in the negative case, it is useless and can be
rejected.

6.2 Enhancing Mutant Reports
A conventional mutant generation tool would know what it
changed, but not necessarily why, or where, this change led to a

change of meaning of the program. For instance, if changing the
accessibility of a declared entity changes the binding of a refer-
ence, perhaps even one originally referring to another entity, this
is not at all obvious from the changed location. For instance, if the
mutant consists of changing accessibility of m(String) in

package a;
public class A {
 int m(String s) { … }
}

to public, it is not at all clear why, or where, this imposes a
change of meaning. Only by looking at the whole program, which
might include

package b;
public class B extends a.A {
 public int m(Object o) { … }
}

package a;
public class C {
 void n() {
 int i = (new b.B()).m("abc");
 }
}

the problem becomes clear: the (static) binding of the call of m in
C is changed to B.m(Object). Generally, the manifestations of a
change of meaning can be spread throughout the whole program
and may be nontrivial to detect. The manifestations are however
as interesting as the mutant itself, in particular if the goal is to
create new test cases (see below).

By negating a constraint that was to prevent a change of meaning,
we know up-front where the meaning is changed, namely the
place in the source code from which the constraint was generated.
In the previous example, the constraint generated from the refer-
ence to B.m(Object) in class C is that there must be no other (over-
loaded) version of m with more specific parameter type that the
reference can bind to, specifically that A.m(String) must remain
inaccessible:

A.m(String) < ((C.n()), (B.m(Object))) (= public)

Violation of this constraint guarantees us that the reference will
bind differently, which is the manifestation of the (potential)
change of meaning. The other information of interest, which
change caused the change of meaning (the increasing of the ac-
cess modifier of A.m(String)), is computed in the course of the so-
lution of the invalidated constraint system and can — as derived
information — also be displayed.

6.3 Deriving Missing Test Cases
The ultimate goal of mutation analysis is to generate missing test
cases. From the mutated source location alone, however, such
missing test cases may be hard, if not impossible, to derive: con-
tinuing the example from the previous subsection, from inspecting
the changed class, A, and its test cases, it is not at all clear if, and
if so which, test cases are missing. Certainly, one could write a
test case failing if accessibility is changed to what is suggested by
the mutant, but this test case would be meaningless in terms of
documentation, since it is unclear why it is there, and therefore
also when a change of program design would allow dropping it.

By systematically exploiting the information that is in knowing
which constraint was negated, and which program elements it was
generated from, a test case stub can be automatically generated
that points to the heart of the problem:

Table 6. Constraint-based rejection of irrelevant mutants in-
serting hiding variables, generated by other means

 Rejected as
irrelevant

Running time
of test suites

(secs)

Project

Valid
mutants

submitted

abs. rel.
time

(secs)
all

subm.
relev.
only

JUnit 67 67 100% 68 51 0

JHotDraw 815 801 98% 5179 2967 51

Draw2D 603 524 87% 4061 3534 463

Jaxen 87 82 94% 225 356 20

HTMLParser 182 165 91% 779 2844 266

 @Test
 public void testMString() {
 //TODO Auto-generated test object
 B b = null;
 //TODO Auto-generated test parameter
 String param = null;
 //TODO Auto-generated test expectation
 Integer expected = null;
 Assert.assertEquals(expected, b.m(param));
 }

Generally, however, our approach will not be able to provide the
necessary set up (fixture) of the test case, nor provide a suitable
test oracle.

6.4 Porting to Other Languages
Another inherent advantage of our approach is that it is easily
ported to other languages. As pointed out in [19], constraint-based
refactoring tools can easily be transferred to other programming
languages, simply by replacing the constraint rules representing
the language’s syntax and semantics. Given the close connection
between refactoring and mutation analysis which our approach
exploits, the constraint rules for the different languages need to be
generated only once, and can be used without further effort in
both applications.

7. CONCLUSION
We have argued that the knowledge about a programming lan-
guage’s syntax and semantics as captured in refactoring tools,
constrained-based ones in particular, can be reused to systemati-
cally mutate programs in such a way that the resultant mutants are
guaranteed to be executable, while at the same time likely exhibit
changed behaviour. Based on a set of sample programs and their
accompanying test suites, we have demonstrated that our ap-
proach is capable of producing mutants likely exhibiting changed
behaviour efficiently, avoiding the large numbers of vain mutant
generations other approaches are suffering from. Our results are
the more pleasing as reaching them is almost free: for most cases,
all that needs to be done is to negate the semantics-preserving
rules of existing formalized refactoring tools.

8. REFERENCES
[1] Baldwin, D., and Sayward, F. 1979. Heuristics for determin-

ing equivalence of program mutations. Technical Report
161. Yale University, Dept. of Computer Science.

[2] Budd, T., and Angluin, D. 1982. Two notions of correctness
and their relation to testing. Acta Informatica. 18, 1 (No-
vember 1982), 31–45.

[3] DeMillo, R., Lipton, R., and Sayward, F. 1978. Hints on Test
Data Selection: Help for the Practicing Programmer. Com-
puter 11, 4 (April 1978), 34–41.

[4] DeMillo, R., and Offutt, J. 1991. Constraint-based automatic
test data generation. IEEE Transactions on Software Engi-
neering 17, 9 (September 1991), 900–910.

[5] Fowler, M. 1999. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley 1999.

[6] Gosling, J., Joy, B., and Steele, G. 2005. The Java Language
Specification, Third Edition. Addison-Wesley.
http://java.sun.com/docs/books/jls/.

[7] Hamlet, R. 1977. Testing Programs with the Aid of a Com-
piler. IEEE Transactions on Software Engineering 3, 4 (July
1977), 279–290.

[8] Harman, M., Danicic, S., and Hierons, R. 2000. The Rela-
tionship Between Program Dependence and Mutation Analy-
sis. In Proceedings of Mutation 2000: Mutation Testing for
the New Century (2000), 5–13.

[9] Hierons, R., Harman, M., and Danicic, S. 1999. Using pro-
gram slicing to assist in the detection of equivalent mutants.
Software Testing, Verification and Reliability 9, 4 (Decem-
ber 1999), 233–262.

[10] Howden, W. E. 1982. Weak Mutation Testing and Com-
pleteness of Test Sets. IEEE Transactions on Software Engi-
neering 8, 4 (July 1982), 371–379.

[11] Kegel, H., and Steimann, F. 2008. Systematically refactoring
inheritance to delegation in Java. In Proceedings of the 30th
ICSE (May 2008), 431–440.

[12] Ma, Y., Kwon, Y., and Offutt, J. 2002. Inter-class mutation
operators for Java. 13th International Symposium on Soft-
ware Reliability Engineering. IEEE Computer Society Press
(November 2002), 352–363.

[13] Offutt J., and Craft, W. 1994. Using Compiler Optimization
Techniques to Detect Equivalent Mutants. In The Journal of
Software Testing, Verification, and Reliability 4, 3 (1994),
131–154.

[14] Offutt, J., Ma, Y., and Kwon, Y. 2006. The class-level mu-
tants of MuJava. In Proceedings of the international work-
shop on Automation of software test (2006), 78–84.

[15] Offutt, J., and Pan, J. 1997. Automatically detecting equiva-
lent mutants and infeasible paths. In The Journal of Software
Testing, Verification, and Reliability 7, 3 (1997), 165–192.

[16] Offutt, J., and Pan, J. 1996. Detecting equivalent mutants and
the feasible path problem. In Proceedings of the 11th Confer-
ence on Computer Assurance (1996), 224–236.

[17] Schäfer, M., Ekman T., and de Moor, O. 2008. Sound and
extensible renaming for Java. In Proceedings of the OOP-
SLA (2008), 277–294.

[18] Schuler, D., Dallmeier, V., and Zeller, A. 2009. Efficient
mutation testing by checking invariant violations. In Pro-
ceedings of the 18th international Symposium on Software
Testing and Analysis (2009), 69–80.

[19] Steimann, F., and Thies, A. 2009. From public to private to
absent: Refactoring Java programs under constrained acces-
sibility. In Proceedings of the 23rd European conference on
Object-Oriented Programming (2009), 419–443.

[20] Tip, F., Kiezun, A., and Bäumer, D. 2003. Refactoring for
generalization using type constraints. In Proceedings of the
OOPSLA (2003), 13–26.

[21] Tip, F. 2007. Refactoring using type constraints. In Proceed-
ings of the 14th International Static Analysis Symposium
(2007), 1–17.

