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ABSTRACT 
The efficacy of mutation analysis depends heavily on its capabil-
ity to mutate programs in such a way that they remain executable 
and exhibit deviating behaviour. Whereas the former requires 
knowledge about the syntax and static semantics of the program-
ming language, the latter requires some least understanding of its 
dynamic semantics, i.e., how expressions are evaluated. We pre-
sent an approach that is knowledgeable enough to generate only 
mutants that are both syntactically and semantically correct and 
likely exhibit non-equivalent behaviour. Our approach builds on 
our own prior work on constraint-based refactoring tools, and 
works by negating behaviour-preserving constraints. As a proof of 
concept we present an enhanced implementation of the Access 
Modifier Change operator for Java programs whose naive imple-
mentations create huge numbers of mutants that do not compile or 
leave behaviour unaltered. While we cannot guarantee that our 
generated mutants are non-equivalent, we can demonstrate a con-
siderable reduction in the number of vain mutant generations, 
leading to substantial temporal savings. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – testing 
tools. D.3.3 [Programming Languages]: Language Constructs 
and Features – constraints. 

General Terms 
Languages, Experimentation. 

Keywords 
Mutation Analysis, Refactoring, Testing, Accessibility, Con-
straints, Object-Oriented Programming. 

1. INTRODUCTION 
Mutation analysis (often also referred to as mutation testing) is 
the effort of detecting insufficient test coverage by making small 

changes to a program and observing whether these changes are 
caught by the present test cases [3, 7]. For a program mutation to 
be useful it must respect the syntactic and the semantic rules of 
the programming language (as checked by a compiler) while at 
the same time have the potential to change the observable mean-
ing of the program (where observable here means observable by 
means of testing). The efficiency of mutation analysis crucially 
depends on the effectiveness of mutation operators in creating 
mutated programs — called mutants — that satisfy both condi-
tions. 

Refactoring is the process of changing the design of a program 
without changing its observable behaviour [5]. Refactoring usu-
ally involves a set of preconditions deciding whether an intended 
refactoring is at all possible, and a set of steps (referred to as its 
mechanics) prescribing the necessary program changes. While the 
required meaning preservation makes refactoring appear the con-
verse of mutation analysis, both share the necessity to obey the 
language’s syntactic and semantic rules. 

Constraint-based refactoring [19–21] utilizes techniques bor-
rowed from constraint programming to formulate and check the 
preconditions of a refactoring, and to ensure that performing it has 
the desired effect. It builds on a set of constraint rules that, when 
applied to a given program and its intended refactoring, produce a 
set of constraints whose satisfiability decides the applicability of 
the refactoring, and whose solution drives its mechanics. 

In this paper, we show how the constraint rules of constraint-
based refactorings can be adapted in such a way that they system-
atically generate syntactically and semantically correct mutants 
that likely exhibit changed behaviour. Intuitively, this can be 
achieved by negating precisely those constraints that are to guar-
antee meaning preservation in the case of refactoring — by keep-
ing all other constraints unchanged, generated mutants are guaran-
teed to compile, saving the mutation process numerous vain at-
tempts. As a proof of concept, we present experimental data ob-
tained from applying our approach to a set of sample programs, 
and compare its performance to that of using a compiler for filter-
ing out invalid mutants. Results indicate that we are not only up 
to two orders of magnitude faster than the compiler, but also re-
ject large numbers of mutants that are provably equivalent. 

The remainder of this paper is organized as follows. In Section 2 
we motivate our work by giving an impression of the problem of 
generating non-equivalent program mutations and by discussing 



how this has been addressed by related work. As an example and 
for much of the rest of this paper, we resort to mutations changing 
the accessibility of declared program entities, a problem identified 
in [12] as a prominent source of error in object-oriented pro-
gramming; however, it should become clear that our approach is 
not restricted to precisely these kinds of mutations. In Section 3 
we go into the details of our approach, and explain how it works 
for several different kinds of mutations. Section 4 shows how 
when we fail to generate mutants directly, we can still select from 
mutants generated by other means those that are potentially useful 
for mutation analysis. In Section 5, we demonstrate the effective-
ness of our method by generating mutants for a number of sample 
programs, and comparing the results with those of a naive ap-
proach. A brief discussion of possibilities for further development 
concludes our work. 

One more word before we start: In this paper, we refrain from for-
mally introducing the constraints and constraint rules we used, 
since their sufficient explanation would have forced us to use up 
much of the available space. The technically interested reader is 
referred to [20, 21] for the origins and general working of con-
straint-based refactoring, and to [19] for the constraint rules rele-
vant for the work presented here. 

2. MOTIVATION 
Applying mutation operators to a program without a prior specific 
program analysis can produce large numbers of useless mutants. 
Indeed, in [14] Offut reports that the fraction of useless mutants 
generated can grow as high as 99.97%, a negative record that has 
been set by his Access Modifier Change (AMC) mutation opera-
tor: 

The AMC operator usually creates useless mutants. If the 
access is strengthened (for example, public to private), the 
mutated program usually does not compile — the mutant 
tries to use a variable that is out of scope. If the access is 
weakened, the mutated program is often equivalent — the 
mutant can still use the same variables. [14] 

At the same time, Offut recognizes that using the wrong access 
modifier is a relevant source of error: 

In our experience in teaching OO software development 
and consulting with companies that rely on OO software, 
we have observed that access control is one of the most 
common sources of mistakes among OO programmers. 
The semantics of the various access levels are often 
poorly understood, and access for variables and methods 
is often not considered during design. This can lead to 
careless decisions being made during implementation. It 
is important to note that poor access definitions do not 
always cause faults initially, but can lead to faulty behav-
ior when the class is integrated with other classes, modi-
fied, or inherited from. [12] 

Indeed, selecting the correct access modifiers in Java can become 
quite tricky. To see this, consider the following simple example in 
which the invocation of m("def") in the main method of class B on 
an instance of a class A is meant to bind to A.m(String), but really 
binds to m(Object): 

class A { 
  private void m(String s) { … } 
  void m(Object o) { m("abc"); } 
} 
 

public class B extends A { 
  void m(String s) { … } 
  public static void main(String args[]) { 
    A a = new A(); a.m("def"); 
    A b = new B(); b.m(true); 
  } 
} 

To change binding, accessibility of A.m(String) must be increased 
[6, §6.6.2.1]. However, this also changes the dynamic binding of 
the invocation of m("abc") on an instance of B in A.m(Object), 
which now binds to B.m(String) rather than A.m(String) as before. 

Tests revealing such (potentially unintended) changes of bindings 
clearly have value, and so has mutation analysis showing that cor-
responding test cases are missing. 

2.1 The Problems of Generating Mutants 
Automatically creating mutants exhibiting a lack of test coverage 
from access modifier change requires rather intimate knowledge 
of the Java language specification [6]. For example, Java syntax 
mandates that not all access modifiers can be used in all places: 
reducing accessibility of a method declared in an interface to a 
level below public (the default) causes a compile error, since all 
interface methods must be publicly accessible; changing accessi-
bility of a top-level class to protected causes an error, since pro-
tected is not allowed for top-level classes; and so forth. 

While such vain applications of the AMC operator can be pre-
vented by obeying rules of Java syntax, others require a deeper, 
semantic analysis. For instance, while increasing accessibility of 
method m() in class A from default (no access modifier given) to 
protected or public presents no problem, reducing it to private 
will lead to a compile error, since m() is no longer accessible from 
B (the example assumes that A and B reside in the same package): 

class A { 
  void m(){ … } 
} 
 

class B { 
  void n(){ 
    (new A()).m(); 
  } 
} 

Preventing vain applications of this kind is more difficult than in 
the examples based on syntax only, since it requires an analysis of 
the program with regard to references to the declared entity whose 
accessibility is to be changed. However, while this task may be 
time-consuming, it is not technically demanding, and therefore 
could also easily be incorporated in a mutation analysis tool that 
has AMC in its repertoire. 

As it turns out, however, checking for existing references does not 
suffice to ensure the validity of an access modifier change. For 
example, the subtyping rules of Java mandate that the declared 
accessibility of an overriding method must not drop below that of 
the method it overrides [6, §8.4.8.3]. Therefore, if the above code 
example is extended by  

class C extends A { 
  void m(){ … } 
} 

in the same package, raising accessibility of method m() in A 
above default would lead to a compile error. 

While this problem is still fairly obvious (and easy to check), 
there are others that are far more obscure, particularly if they in-
volve chains of relationships. For instance, given the Java code 



interface I { 
  void m(); 
} 

class A { 
  public void m() { } 
} 

class B extends A implements I {} 

reducing accessibility of m() in A to protected would lead to a 
compile error because A.m() contributes to implementing the in-
terface I in A’s subclass B and therefore has to be declared public. 
Although all problems of this kind will eventually be caught by 
the compiler, (ab)using the compiler as an oracle deciding 
whether a generated mutant presents a valid program and is thus 
acceptable, is rather expensive, especially if the rejection rate is 
high (Section 5 will present concrete numbers corroborating this). 

However, generating valid mutants, i.e., mutants that represent 
programs that are free from syntactic and semantic errors1, is only 
the first hurdle in mutation analysis; the second, and at least as 
demanding, is to generate mutants that actually change the mean-
ing of a program. To see why this is a problem (again for the case 
of changing accessibility), the following example is instructive: 

public class A { 
  void m() { … } 
  public static void main(String args[]) { 
    A a = new B(); 
    a.m(); 
  } 
} 

public class B extends A { 
  public void m() { … } 
} 

If A and B reside in the same package, increasing the accessibility 
of m in A to protected or public is valid, but useless for the pur-
pose of mutation analysis, since it does not change the meaning of 
the program (the invocation of m() on a in A is bound to B.m() be-
fore and after the mutation). If however A and B reside in different 
packages, an increase of accessibility changes binding (the call of 
m() on a in A is bound to A.m() before and to B.m() after the muta-
tion), potentially changing the meaning of the program. Whether 
the latter is actually the case depends on whether the implementa-
tions of m() in A and B have different effects, which escapes 
analysis in the general case (and in any case is not our topic here); 
however, since a change of binding is a change of program the 
programmer should at least be aware of, we call such mutants 
relevant. For the remainder of this paper, the goal is to compute 
relevant mutants; we leave it to further inspection to decide 
whether a relevant mutant is equivalent to the original program or 
calls for additional test cases. 

Note that, while the AMC operator may seem somewhat exotic to 
focus on, the problems it reveals are representative of a much 
broader class of errors in object-oriented programming, namely 
the wrong binding of references in the context of overloading and 
overriding (and, through a trick, also hiding). Changing access 
modifiers is a particularly simple way to provoke such errors, and 
would therefore be an effective means to generate mutants reveal-
ing a lack of test coverage — if it were not for the high number of 
irrelevant mutants commonly produced. 

                                                                 
1  We use the term “semantic error” here to denote errors reported 

by the semantic analysis performed by the compiler (i.e., typing 
errors etc.). They are not to be confused with logical errors. 

2.2 Related Work 
Budd and Angluin showed that even in the limited domain of test-
ing, it is in generally undecidable whether a mutated program 
generates the same output as its original [2]. Despite this funda-
mental insight, and because non-equivalence is crucial for muta-
tion analysis, several attempts have been undertaken to reduce the 
human effort of eliminating generated mutants that are useless.  

Early attempts go back to Baldwin and Sayward [1], who have 
used compiler optimization techniques to filter out equivalent mu-
tants. The main idea behind this is that code optimization tasks 
done by the compiler (as prescribed by code optimization rules) 
effectively produce equivalent mutants. Vice versa, an equivalent 
mutant can be described as a compiler optimisation: if a mutant 
falls under a compiler optimisation rule (either as input or as out-
put), it is equivalent. However, a later implementation of this ap-
proach [13] showed only low success rates: in an empirical analy-
sis, only 10 % of equivalent mutants could be detected. 

Other advanced approaches use control flow graphs to detect 
equivalent mutants [16]. Especially, knowledge of infeasible 
paths can help to reduce the total amount of equivalent mutants 
because mutating an unreachable statement will not change the 
semantics of the program. In this context, constraint-based ap-
proaches were first mentioned [16]. Firstly, the reachability of a 
node depending on the input in the original program can be for-
mulated with constraints. Secondly, constraints can be generated 
that judge whether a certain mutant will change the state of the 
program after execution of the mutated statement [16]. This latter 
technique has also been used to generate test data automatically 
[4]. In subsequent work, an implementation was given that detects 
equivalent mutants using these principles [15], and it has been 
shown in an accompanying empirical study that this approach 
leads to a detection rate of almost 50 % of all equivalent mutants. 
The main disadvantage of this approach is that it only considers 
the state of the program immediately after execution of the mu-
tated statement (where it may remain unobservable). In particular, 
it cannot tell whether the change of state is propagated to the pro-
gram’s output (so-called weak mutation testing [10]). 

To tackle this latter problem program slicing has been suggested 
[9]. The basic idea here is to reduce the size of problem by slicing 
techniques so that only the relevant part of code on which a mu-
tant might have impact has to be analyzed. Basically, this helps 
the programmer to decide faster and more reliably if a so-called 
stubborn mutant [8] (i.e., a mutant that changes the state of the 
program but has no impact on the program’s output) not detected 
by the constraint-based approach is equivalent or not. 

Another technique enhancing the constraint-based approach of 
[15] is based on program dependence analysis [8]. For this, a tool 
is offered to assist the programmer in detecting equivalent mu-
tants by pointing out certain variables of interest. Also, it is shown 
how a dependence analysis can help to avoid a special kind of 
equivalent mutants before the constraint analysis. 

A recent approach to filtering out equivalent mutants relies not on 
checking constraints, but on checking program invariants: The 
JAVALANCE-Tool [18] first learns invariants from runs of non-
mutated programs and then checks for violations of these invari-
ants by mutated programs. An empirical evaluation conducted on 
several open source programs showed that mutants violating mul-
tiple invariants are likely non-equivalent. 



All techniques mentioned above have in common that they target 
imperative programming constructs without taking object oriented 
principles such as dynamic method binding and encapsulation 
into account. The results of first experiments on equivalence rates 
of mutation operators designed specifically for object-oriented 
programs can be extracted from [12]. In this work, a large number 
of different mutation operators for Java have been proposed that 
account for several object-oriented principles, and it was assumed 
that some of these operators will generate significantly more 
equivalent mutants than others. Empirical evidence corroborating 
these assumptions has been given in a subsequent study [14], in 
which the equivalence rates ranged from 99.97 % for the Access 
Modifier Change operator to 0.22 % for an operator which deletes 
explicit calls of a parent’s constructor. It remains unclear from 
this work, however, how equivalence was decided, in particular, 
how much manual effort this involved. 

3. CONSTRAINT-BASED PROGRAM MU-
TATION 
As mentioned in the introduction, program mutation shares with 
refactoring the condition that executability of programs must be 
maintained, and differs from it by its need to change behaviour. 
Leaving syntactic and semantic errors aside, what is a failure for 
refactoring is thus a success for program mutation. To explain 
how we exploit this relationship systematically, we first take a 
brief look at refactoring, specifically constraint-based refactoring. 

3.1 Constraint-based Refactoring 
In constraint-based refactoring, a set of constraint generation rules 
is applied to a program and its intended refactoring. The con-
straint rules represent the syntactic and semantic rules of the pro-
gramming language and the generated constraints represent these 
rules as applied to those elements of the program that are involved 
in the intended refactoring. For instance, a basic rule of Java re-
quires that if a name, r, references a declared entity, d, the entity’s 
declared accessibility, d , must be at least private if r resides in 
the same class, at least default if it resides in a different class, but 
same package, and so forth. This is expressed as a constraint 

d   ((r), (d )) 

in which  is a function mapping program elements to their loca-
tions in the program (usually the body of a package or type) and  
is a function computing the minimum required accessibility of the 
second location to be accessible from the first. Note that in Java, 
access modifiers are totally ordered, but constraints can also be 
formulated for unordered access modifier sets, and even for lan-
guages without access modifiers (such as Eiffel) [19]. 

By putting them into relation with each other or with constant 
values, each generated constraint constrains one or more con-
straint variables. Constraint variables represent changeable prop-
erties of program elements; these are typically the types of de-
clared entities, the locations where they are declared, or their ac-
cessibility ((r), (d ), and d  in the above example). 

All constraint variables have initial values, which are derived 
from the program as is; in the previous example, the values corre-
spond to the actual declared accessibility of d and the actual loca-
tions of r and d. Taking this initial variable assignment, the con-
straint system (set of generated constraints, consisting of a single 
constraint in the above example) is always solved (or the con-
straint rules are inconsistent with the language specification, or 

the program is syntactically or semantically incorrect, i.e., does 
not compile). 

The principle behind constraint-based refactoring is that a refac-
toring may assign the variables of the generated constraints new 
values (representing the changes of the refactoring) as long as the 
constraint system remains solved; if it does not, the refactoring is 
illegal and cannot be performed. A refactoring intending to 
change one or more variable values (for instance by changing 
type, accessibility, or location of one or more declared entities) 
therefore has to check whether this invalidates the generated con-
straint system; if so, the refactoring must either be refused or 
search for new values for the constraint system’s other variables 
that make it solved again. The new values then represent addi-
tional changes to be performed by the refactoring. 

If all generated constraints must be satisfied for a refactored pro-
gram to maintain its executability (i.e., freeness of compile-time 
errors) and behaviour, it follows that if a constraint is violated, the 
program has lost at least one of these properties. Deliberately vio-
lating certain constraints by assigning constraint variables suitable 
values can thus lead directly to relevant mutants. The question is 
which constraints to violate. 

3.2 Generating Relevant Mutants from Ac-
cessibility Constraints 
In previous work of ours on improving accessibility-related refac-
torings [19], we have identified a set of 16 constraint rules that 
capture access control of Java. Of the 16 rules, 11 prevent 
changes of accessibility that would lead to a compile error; trans-
ferred to the problem of mutant generation, they serve to prevent 
invalid mutants and therefore must be left untouched. Of the re-
mainder, four rules prevent changes of binding that, unless cov-
ered by corresponding test cases, will go unnoticed; in our current 
setting, they would prevent changes of access modifiers represent-
ing relevant mutants and thus what we are interested in. Changing 
these constraint rules by negating the generated constraints would 
invert their effect, i.e., generate constraints that are satisfied if and 
only if the binding changes; they would lead us directly to rele-
vant mutants. The last constraint rule prevents changes of acces-
sibility that, depending on the actual program, either lead to a 
compile error or to a change of binding; it will be treated sepa-
rately in Section 3.2.3. 

3.2.1 Loss of Dynamic Binding 
The first constraint rule whose negation2 leads to relevant mutants 
is one that prevents a loss of dynamic binding. Basically, it states 
that if a method d' is to override a method d, the declared accessi-
bility of d must be at least the accessibility that is required for an 
access of d from the location of d'. For the sample program  

class A { 
  void m() { … } 
  void n() { m(); } 
} 
 

class B extends A { 
  void m() { … } 
} 

                                                                 
2  In the following, when we speak of negating a constraint rule, 

we mean that the rule is changed to produce a constraint that is 
the negation of the constraint produced by the original rule. 



the generated constraint is 

A.m()  ((B.m()), (A.m())) 

in which  evaluates to default if both classes reside in the same 
package. Negating this constraint (i.e., replacing  with <) sug-
gests either lowering the accessibility of A.m() to private or mov-
ing B to another package (so that  evaluates to protected ), both 
with the effect that a call of m() in n() on instances of B is no 
longer dispatched to B.m(). Other constraint rules (which are not 
negated) take care that neither change leads to an invalid mutant 
(i.e., to a mutant that does not compile); for instance, if A.m() is 
referenced from outside of A, a corresponding constraint would 
prevent lowering the accessibility of A.m() to private as a possible 
mutation. 

3.2.2 Introduction of Dynamic Binding 
The converse of losing dynamic binding is introducing it where it 
was previously absent, which can also change the meaning of a 
program. The corresponding constraint rule from [19] states that if 
a method d' in a subclass exists whose signature is a subsignature 
[6, §8.4.2] of a method d in a superclass, but d' does not override 
d, declared accessibility of d must not be increased to values al-
lowing it to be accessed from the location of d' (since then d' 
would override d ). For the program 

class A { 
  private void m() { … } 
  void n() { m(); } 
} 
 

class B extends A { 
  void m() { … } 
} 

(again both classes in same package), the generated constraint is 

A.m() < ((B.m()), (A.m()))   (= default) 

If the negated rule is applied to the program every solution to the 
generated constraint set would have to increase the declared ac-
cessibility of A.m() to values above private, thus introducing the 
dynamic binding of m() for instances of B. Again, that such a mu-
tation does not invalidate the program for other reasons is 
checked by other constraints. 

3.2.3 Static Re-binding in Presence of Overloading 
In Java, a change of binding due to a change of accessibility is not 
limited to the dynamic case. For instance, in the program 

class A { 
  void m(Object o) {…} 
  private void m(String s) {…} 
} 
 

class B { 
  void n() { (new A()).m("abc"); } 
} 

raising the accessibility of A.m(String) above private will re-bind 
the call of m(String) from C, potentially changing the meaning of 
the program. For the refactoring case, this is prevented by a con-
straint rule saying that accessibility of an overloading method that 
is more specific (in terms of its formal parameter types; here: 
A.m(String)) than the one a method call currently binds to (here: 
A.m(Object)) must remain on a level that leaves it inaccessible for 
the location of the method call: 

A.m(String) < ((B.n()), (A.m(Object))) 

Again, negating this constraint means demanding a change of ac-
cessibility and therefore leads to a change of binding, potentially 
changing the meaning of the program. Thus, by replacing the 
original constraint rule with its negation, a constraint solver can 
generate relevant mutants directly. 

As in the dynamic binding cases above, re-binding to an overload-
ing method due to its increased accessibility has a converse that 
results from restricting accessibility. This follows directly from 
the previous example, when the increased accessibility of 
A.m(String) is set back to private. However, in the refactoring set-
ting we did not prevent this change of binding by a special con-
straint rule: there, the general accessing rule (used as an example 
in Section 3.1) requiring that a called method remains accessible 
from the call site suffices. For the purpose of mutation analysis, 
however, for which a change of binding is to be forced if possible, 
two cases must be differentiated: whether a call binds to a method 
for which a less specific overloading exists to which the call could 
bind alternatively, or whether no such alternative binding possi-
bility exists. In the first case, the constraint demanding accessibil-
ity must be inverted (to force a change of binding), while in the 
second it must be maintained as is (to prevent a compile error). 
This case analysis means that if the same set of constraint rules is 
to be used for both purposes (refactoring and mutation analysis), 
the accessibility constraint rule has to be split in two, one with the 
additional antecedent that an overloading suitable for a re-binding 
is present, the other with the same additional antecedent negated. 
Note that in the refactoring case, this split has no effect (the ante-
cedents complement each other and the consequent is the same). 
In the mutation analysis case, the former rule must be negated, 
while the latter must remain as is. 

3.3 Generating Mutants by Introducing or 
Deleting Entities 
Somewhat related to a change of static binding due to overloading 
is the change of binding caused by hiding [6, §8.4.8.2].3 It is dif-
ferent, however, in that hiding does not depend on the choice of 
access modifiers: it is necessary and sufficient for hiding that the 
hiding element is present (and for a lack of hiding that it is ab-
sent). 

For the refactoring case, we were able to treat hiding under the 
umbrella of accessibility by introducing a fifth, smallest access 
modifier, which we call absent [19]. It represents complete inac-
cessibility of a declared program element. Being able to assign 
this value to a constraint variable representing accessibility with-
out violating a constraint means that the corresponding declared 
element can be deleted without altering the compileability or be-
haviour of the program; a constraint requiring that a variable has 
absent as its value either means that the corresponding element 
must be deleted (if it is present) or that it must not be introduced 
(if it is not yet present). However, as we will see next, unlike for 
refactoring, constraints of the latter kind cannot be generated for 
mutation analysis. 

                                                                 
3  Similarity extends to the degree that like overloading, hiding 

requires a splitting of the general accessing rule (which is suffi-
cient for the refactoring case) into one that is required to pre-
vent compile errors and one to prevent a change of binding. 



3.3.1 The Difficulty of Introducing Elements with 
Constraints 
In order to prevent hiding of a declared element (field or static 
method) in the course of a refactoring, a constraint must be gener-
ated that requires the hiding element’s accessibility to have the 
value absent. Negating such a constraint would mandate introduc-
ing a declared entity that hides another, which would indeed be a 
relevant mutation operator (for the case of fields called Hiding 
Variable Insertion in [12]). However, since the program entity is 
absent in the original program, there is no constraint variable as-
sociated with it whose value could be set to an accessibility level 
above absent. 

In the case of refactoring, we have solved this problem by not ap-
plying the constraint rules to the program as is, but to the program 
with the intended refactoring applied, which may try to introduce 
the declared entity in a location (or rather move an existing one to 
a location) in which it is not allowed. A constraint generated from 
the changed program saying that this entity should be absent then 
leads to a conflict that cannot be resolved, so that the refactoring 
is refused. Because this requires foresight of the refactoring, we 
have called these applications of constraint rules foresight appli-
cations [19]. 

Unfortunately, foresight applications of rules are not suitable for 
the purpose of generating mutants, since the required foresight 
would need to know the program change the (negated) rule’s ap-
plication is to provoke. However, as we will see in Section 4, 
foresight applications of rules can nevertheless contribute to gen-
erating relevant mutants, by rejecting the irrelevant ones from a 
set of mutants generated by other means. 

3.3.2 Deleting Entities with Constraints 
The converse of introducing declared entities is deleting them. 
Deletion of an entity is accepted by the compiler if the references 
to it can be re-bound to another entity, for instance one that was 
hidden by the deleted entity. Deleting entities can therefore also 
generate relevant mutants; the corresponding mutation operators 
have been called Overloading Method Deletion, Hiding Variable 
Deletion, and Overriding Method Deletion in [12]. 

Deleting a declared entity can be seen as a stronger form of 
changing its accessibility to a value so low that it becomes inac-
cessible. Indeed, there are situations in which accessibility of an 
entity cannot be reduced further, but in which it can be deleted: 
for instance, in 

class A { int i = 1; } 
class B extends A { 
  private int i = 2; 
  void m() { if (i == 2) … } 
} 

deletion of i in B is possible (but leads to a change of binding). 

Exploiting our (virtual) access modifier absent, our accessibility 
constraint rules from the previous sections can also be used to 
generate relevant mutants that result from deleting declared enti-
ties. This is possible by making the constraint solver consider ab-
sent as a possible value for the declared accessibility of an ele-
ment in question. However, including absent as a possible, small-
est value of accessibility requires adaptation of certain constraint 
rules: for instance, while subtyping mandates that the accessibility 
of an overriding method must not drop below that of the method it 

overrides, absent (which is lower than private) may be a possible 
value (if other generated constraints permit). 

3.4 Generating Relevant Mutants from Type 
Constraints 
Our approach to generating relevant mutants from negated refac-
toring constraints works not only for accessibility — it can also 
be transferred to other types of constraints. For instance, the type 
generalization refactorings GENERALIZE DECLARED TYPE and USE 

SUPERTYPE WHERE POSSIBLE [20] change the values of constraint 
variables representing the types of declared entities from their 
current types to supertypes (if possible). Similar to changing ac-
cessibility, changing the type can lead to a change of binding, as 
the following example demonstrates: 

public class A { 
  A a; 
  void m(Object o) { … } 
  void m(B b) { b.m(a); } 
} 

public class B extends A {} 

Here, the type of the formal parameter b in method A.m(B), B, 
must not be changed to A, but not because A is not a sufficient ab-
straction (generalization) of B for the needs of b (only m(Object) 
is required of b, and this is defined in A), but because changing 
the signature of A.m(B) to A.m(A) leads to a re-binding of the call 
b.m(a) in m(B) (from m(Object) to m(A)), thus changing the mean-
ing of the program. Negating the constraint rule that prevents the 
generalization in such cases directly produces relevant mutants of 
this kind. 

3.5 Completeness of Constraint-based Mutant 
Generation 
One question that remains is whether our approach is complete in 
that it generates all relevant (and therefore also all non-
equivalent) mutants resulting from access modifier changes. Pro-
vided that our constraint solver generates all solutions for a gen-
erated constraint system, this question boils down to the question 
whether our constraint rules completely and correctly model the 
language specification with regard to accessibility. While proofs 
of this kind are generally difficult to provide, we maintain that our 
accessibility constraint rules, which are generally application-in-
dependent, have been tested extensively in the context of refactor-
ing [19], and tested further in this present work, by checking that 
running the regression tests for compiling mutants that have been 
rejected as irrelevant indicate no change of behaviour. 

4. CONSTRAINT-BASED MUTANT 
REJECTION 
Constraints cannot only be used to systematically generate rele-
vant mutants, they can also be used to reject as irrelevant mutants 
generated by other means. This capability is of particular interest 
to us when relevant mutants cannot be generated by negating con-
straint rules, as was described in Section 3.3.1. 

To get an impression of how this works, assume that we have a 
mutant generator that uses some heuristics to make changes to a 
program by inserting new program elements. Essentially, if these 
heuristics do not capture at least the knowledge about the target 
language that is captured in refactoring constraints, it is bound to 



produce mutants that are invalid or irrelevant. For instance, given 
the program (all types in same package) 

class A {} 
 

interface I { static int i = 2; } 
 

class B extends A implements I { 
  void m() { int j = i; } 
} 

such a mutant generator might insert the declaration static int i 
into A, which would lead to a compile error (access to i in B be-
comes ambiguous). As it turns out, such a change of program is 
rejected by a corresponding constraint rule defined in [19]; apply-
ing this constraint with foresight of the introduction leads to the 
constraint 

A.i < ((B.m()), (A.i))   (= default) 

which is not satisfied for A.i = default and thus signals an inva-
lid mutant. 

Now a mutant generator respecting the syntactic and semantic 
rules of Java (i.e., restricting itself to generating mutants that 
compile) applied to the above example might still insert static int 
i into B. How, then, can be known that such an insertion produces 
a mutant relevant for mutation analysis? Again, evaluating the 
constraints generated for refactoring of accessibility will indicate 
that a corresponding refactoring could not be performed, but this 
time the failing constraint  

B.i = absent 

is one resulting from foresight application of the rule preventing 
hiding that was described in Section 3.3.1 as non-negatable; be-
cause it is a meaning preserving rule, its violation identifies a 
relevant mutant. 

Note that even without resorting to foresight rules, constraints can 
be used for rejecting irrelevant mutants. The idea here is that if 
evaluating the constraints generated after a mutation suggest that 
undoing the mutating change (for instance by removing an in-
serted entity, by setting its accessibility to absent) potentially 
changes the meaning of the program and therefore would have to 
be rejected in the refactoring case, then it follows that the muta-
tion potentially changed the meaning in the first place, and there-
fore produced a relevant mutant. Note that this approach works 
without the negation of constraint rules; however, it requires a 
new constraint generation after each mutation and is therefore 
more expensive (cf. its evaluation below). 

5. EVALUATION 
To get an impression of the effectiveness of our approach to con-
straint-based mutant generation, we have applied it to several 
open source programs. The chosen programs are listed in Table 1; 

the accompanying test suites were only used to test our approach, 
i.e., to check whether any of the mutants classified as irrelevant 
caused a failing test case (which would have been indicative of a 
false classification; cf. the discussion in Section 3.5). 

Table 2 shows the filtering performance of all constraint rules 
governing the change of access modifiers (including those that 
keep a program compilable and those that keep its binding un-
changed, the latter negated) when jointly applied to the projects 
from Table 1. The number of mutations is the number of access 
modifier changes that is at all possible (counted naively, i.e., 
without considering even the simplest syntactic rules such as that 
interface methods must be public). The columns labelled “inva-
lid” counts those mutations that must be filtered out because the 
resulting programs will not compile, for either syntactic or seman-
tic reasons (cf. Section 2.1). The columns labelled “valid” count 
those mutants that will compile, differentiating between those in 
which the binding remains unchanged (which is why they are ir-
relevant to mutation analysis) and those with changed binding. It 
is this last column that reveals the value of our approach. 

As can be seen from Table 2, the syntactic constraints (which any 
reasonable mutation operator would be expected to respect) are 
only sufficient for filtering out one quarter of all mutants; the re-
maining three quarters must be subjected to deeper analysis. Con-
straints covering the (static) semantics (accessing, subtyping, etc.) 
eliminate another 30% of all mutants; achieving this effect re-
quires a whole-program analysis that most mutant generators 
would leave to the compiler (which will reject invalid mutants, 
albeit only at a high price: see Table 3 for the time required by the 
compiler as compared to our constraint approach). The compiler 
will however not be able to filter out those mutants that are syn-
tactically and semantically correct (“valid”), but do not lead to a 
change of binding and thus meaning (“irrelevant”): these cases, 
which make up for more than two fifth of all mutations, present 
the greatest challenge for mutant generators — and yet, using our 
approach they are classified on the same basis as all others. The 
remaining less than 1% of all possible mutants are the only ones 
worth looking into — all other mutants are generated in vain. The 
savings made possible by our approach are thus considerable. 

Table 3 shows the performance of our approach when compared 
to elimination of invalid mutants as performed by the compiler 
(all times measured on a 2.1 GHz Intel dual core processor with 
2 GB of main memory, running Windows XP and the Eclipse 3.4 
compiler in incremental mode). To be fair, we fed only syntacti-
cally valid mutants into the evaluation (as argued above, their fil-

Table 1. Sample projects used for the evaluation 

Project 

Number 
of 

classes 

Number 
of test 
cases 

Source 

JUnit 3.8.2 102 102 junit.org 

JHotDraw 6.01b 405 1160 www.jhotdraw.org 

Draw2D 3.4.2 347 173 www.eclipse.org/gef 

Jaxen 1.1.1 213 2030 jaxen.org 

HTMLParser 1.6 165 669 htmlparser.sourceforge.net 

 

Table 2. Results for naive changes of access modifiers 

Mutants 

invalid valid 
Project 

Number 
of muta-

tions synt. sem. irrelev. relevant

JUnit 3063 1089 625 1346 3 

JHotDraw 14977 5841 3548 5536 52 

Draw2D 14280 2421 4453 7374 32 

Jaxen  6159 1562 2689 1903 5 

HTMLParser 8478 1993 2714 3754 17 

total 46957 12906 14029 19913 109 

 100% 27% 30% 42% 0,23% 

 



tering is so simple that it can easily be performed by even the 
most naive mutant generators). On top of that, we did not restrict 
evaluation of the constraints to those equivalent to the semantic 
rules checked by the compiler, but included them all, resulting in 
a much higher rejection rate. As can be seen, even under these 
unequal conditions, the constraint-based approach is between 43 
and 102 times faster than using the compiler. This is substantial. 

Since we must assume that not all constraint rules contribute to 
the results equally [11, 19], we have also evaluated them sepa-
rately. Table 4 shows the results of negating the constraint rules 
preventing a loss of dynamic binding (Section 3.2.1), preventing 
its accidental introduction (Section 3.2.2), and preventing a 
change of static binding in presence of overloading (Section 3.2.3; 
no cases in which increasing accessibility would have changed 
binding were found). The column headed “opportunities” counts 
the number of applications of the negated constraint rule and is 
thus a measure of the number of possibilities for generating rele-
vant mutants. The column headed “relevant mutants” counts the 
number of cases in which the binding could actually be changed 
by altering an access modifier. In all other cases, the alteration 
violated syntax or semantics-preserving constraints and was thus 
refused. “Time” measures the time needed to generate the mu-
tants; it includes generation of the constraints (including building 
the AST), their negation, and solution of the constraint system.  

As correctly predicted by Offut [15], the number of relevant mu-
tants produced, although rather unevenly distributed among the 
different constraint rules, is generally small. Yet, one must bear in 
mind that using our approach, the number of irrelevant mutants 
potentially generated by other approaches is of no interest, and 

that the produced relevant mutants are indeed representative of 
common (and difficult to detect) programming errors. Therefore, 
Offut’s conclusion, that implementing the AMC operator is not 
worthwhile (because it “generates uncompilable, equivalent or re-
dundant mutants, and is [therefore] not needed in MuJava” [15]), 
seems somewhat premature. 

Table 5 shows the number of mutants that were generated by de-
leting overloading methods (the OMD operator [14]) or a hiding 
entity (field or static method; cf. Section 3.3.2). Its results for 
overloading include those of Table 4, since in all cases in which a 
reduction of accessibility was possible, the method could also be 
deleted. Note that by introducing the access modifier absent, and 
viewing deletion as an extreme case of access restriction, the re-
dundancy in the results of the two mutation operators can be 
avoided, simply by merging them into one. That this must not 
lead to rejection of the AMC operator as suggested in [15] follows 
from the other results of Table 4, which cannot be subsumed by 
OMD. 

Last but not least, we have measured the performance of our ap-
proach for constraint-based mutant rejection as described in Sec-
tion 4, for the example of inserting hiding variables (the IHI mu-
tation operator [12]). For this, we have implemented a simple mu-
tant generator that inserts variable declarations in subclasses that 
also exist in superclasses, and that makes sure that the generated 
mutants are valid, i.e., still compile. Depending on the references 
existing in the program, each such mutation may, but need not, in-
troduce hiding. We then check whether the obtained mutants are 
relevant by checking whether our constraints allow the mutations 
to be undone (the inserted variable to be removed); if so, the mu-

Table 3. Compiler vs. Constraints (times in secs) 

Syntac-
tically 
valid 

mutants 

Of these semanti-
cally invalid as 

determined by the 
compiler 

Semantically invalid 
or irrelevant as de-

termined by the con-
straints 

Project  abs. rel. time abs. rel. time 

JUnit 1974 1714 87% 194 1971 99.8% 1.9

JHotDraw 9135 5841 64% 1330 9084 99.4% 30.8

Draw2D 11859 4453 38% 1431 11827 99.7% 17.8

Jaxen 4597 1903 41% 307 4592 99.9% 3.6

HTMLParser  6485 3754 58% 739 6468 99.7% 7.8

 

Table 4. Mutants dropping overriding, introducing overriding, and making an overloaded method inaccessible 

Dropping overriding Introducing overriding Making an  
overloaded method inaccessible 

Relevant 
mutants 

Relevant 
mutants 

Relevant 
mutants 

Project 

Opp- 
ortu- 
nities abs. rel. 

Time 
(secs) 

Opp- 
ortu- 
nities abs. rel. 

Time 
(secs) 

Opp- 
ortu- 
nities abs. rel. 

Time 
(secs) 

JUnit 156 3 2% 2.2 0 0  2.5 2 0 0% 1.1 

JHotDraw 2017 48 2% 27.4 4 3 75% 8.6 9 1 11% 1.3 

Draw2D 1205 29 2% 18 0 0  6.4 5 3 60% 7.7 

Jaxen 785 5 6% 3.6 0 0  3.0 0 0  2.5 

HTMLParser 720 17 2% 7.6 0 0  3.7 0 0  3.8 

total 4883 102 2% 58.8 4 3 75% 24.2 16 4 25% 16.4 

Table 5. Mutants resulting from deleting an overloaded 
method or a hiding entity 

Opportunities Relevant mutants 
Project overl. hiding absolute relative 

JUnit 2 0 1 50% 

JHotDraw 9 1 1 11% 

Draw2D 5 2 5 71% 

Jaxen 0 0 0  

HTMLParser 0 0 0  

total 16 3 7 37% 

 



tant is irrelevant (does not introduce hiding), if not, it is indeed 
relevant. The results of this procedure are shown in Table 6.  

As can be seen, the constraints reject as irrelevant large numbers 
of valid mutants inserting variables and are therefore again highly 
effective. However, the times required for rejection are much 
longer than for generation (cf. Tables 3–5): this is so because for 
rejection, the constraint system has to be built anew for every mu-
tant (so that it can be checked whether undoing the mutation itself 
makes a relevant mutation), whereas for generation, the constraint 
system need be built only once, since for computing the different 
mutants, only existing constraints are negated. And yet, when 
comparing this time with the time saved by running test suites on 
fewer mutants (for mutants proven to be irrelevant, running the 
tests is useless: unless our constraints are flawed, there will be no 
failures), the time required for constraint generation is well spent: 
on average across all five sample projects, rejection takes only 
slightly longer than running the test cases for irrelevant mutants. 
In practice, there will be a huge saving, however: finding out that 
a lack of failure of a test suite is not due to a lack of coverage, but 
to the irrelevance of the mutant, will take indeterminately longer. 
This is where the true saving of our approach comes from. 

6. FURTHER DEVELOPMENT 

6.1 Mutant Rejection Based on Other Refac-
toring Techniques 
The idea of rejecting irrelevant mutants generated by other means 
(Section 4) can also be transferred to the reasoning behind the 
meaning-preserving mechanics of refactorings that are not con-
straint-based. For instance, in [17] Schäfer et al. developed the 
mechanics for the RENAME refactoring necessary to maintain 
binding of names to their originally referenced declared entities 
that are hidden (by nesting or by inheritance) after the renaming, 
by introducing sufficient qualification of names. Thus, when a 
mutant is generated by renaming a program entity, it can be 
checked whether this leads to a change of binding (this is the case 
when the corresponding refactoring decides that a qualification is 
necessary); in the positive case, a relevant (potentially useful) mu-
tant has been found; in the negative case, it is useless and can be 
rejected. 

6.2 Enhancing Mutant Reports 
A conventional mutant generation tool would know what it 
changed, but not necessarily why, or where, this change led to a 

change of meaning of the program. For instance, if changing the 
accessibility of a declared entity changes the binding of a refer-
ence, perhaps even one originally referring to another entity, this 
is not at all obvious from the changed location. For instance, if the 
mutant consists of changing accessibility of m(String) in  

package a; 
public class A { 
  int m(String s) { … } 
} 

to public, it is not at all clear why, or where, this imposes a 
change of meaning. Only by looking at the whole program, which 
might include 

package b; 
public class B extends a.A { 
  public int m(Object o) { … } 
} 

package a; 
public class C { 
  void n() { 
    int i = (new b.B()).m("abc"); 
  } 
} 

the problem becomes clear: the (static) binding of the call of m in 
C is changed to B.m(Object). Generally, the manifestations of a 
change of meaning can be spread throughout the whole program 
and may be nontrivial to detect. The manifestations are however 
as interesting as the mutant itself, in particular if the goal is to 
create new test cases (see below). 

By negating a constraint that was to prevent a change of meaning, 
we know up-front where the meaning is changed, namely the 
place in the source code from which the constraint was generated. 
In the previous example, the constraint generated from the refer-
ence to B.m(Object) in class C is that there must be no other (over-
loaded) version of m with more specific parameter type that the 
reference can bind to, specifically that A.m(String) must remain 
inaccessible: 

A.m(String) < ((C.n()), (B.m(Object)))   (= public) 

Violation of this constraint guarantees us that the reference will 
bind differently, which is the manifestation of the (potential) 
change of meaning. The other information of interest, which 
change caused the change of meaning (the increasing of the ac-
cess modifier of A.m(String)), is computed in the course of the so-
lution of the invalidated constraint system and can — as derived 
information — also be displayed. 

6.3 Deriving Missing Test Cases 
The ultimate goal of mutation analysis is to generate missing test 
cases. From the mutated source location alone, however, such 
missing test cases may be hard, if not impossible, to derive: con-
tinuing the example from the previous subsection, from inspecting 
the changed class, A, and its test cases, it is not at all clear if, and 
if so which, test cases are missing. Certainly, one could write a 
test case failing if accessibility is changed to what is suggested by 
the mutant, but this test case would be meaningless in terms of 
documentation, since it is unclear why it is there, and therefore 
also when a change of program design would allow dropping it. 

By systematically exploiting the information that is in knowing 
which constraint was negated, and which program elements it was 
generated from, a test case stub can be automatically generated 
that points to the heart of the problem: 

Table 6. Constraint-based rejection of irrelevant mutants in-
serting hiding variables, generated by other means 

 Rejected as 
irrelevant 

Running time 
of test suites 

(secs) 

Project 

Valid  
mutants 

submitted 

abs. rel. 
time 

(secs) 
all 

subm. 
relev.
only 

JUnit 67 67 100% 68 51 0 

JHotDraw 815 801 98% 5179 2967 51 

Draw2D 603 524 87% 4061 3534 463 

Jaxen 87 82 94% 225 356 20 

HTMLParser 182 165 91% 779 2844 266 

 



  @Test 
  public void testMString() { 
    //TODO Auto-generated test object 
    B b = null;  
    //TODO Auto-generated test parameter 
    String param = null;  
    //TODO Auto-generated test expectation 
    Integer expected = null; 
    Assert.assertEquals(expected, b.m(param)); 
  } 

Generally, however, our approach will not be able to provide the 
necessary set up (fixture) of the test case, nor provide a suitable 
test oracle. 

6.4 Porting to Other Languages 
Another inherent advantage of our approach is that it is easily 
ported to other languages. As pointed out in [19], constraint-based 
refactoring tools can easily be transferred to other programming 
languages, simply by replacing the constraint rules representing 
the language’s syntax and semantics. Given the close connection 
between refactoring and mutation analysis which our approach 
exploits, the constraint rules for the different languages need to be 
generated only once, and can be used without further effort in 
both applications. 

7. CONCLUSION 
We have argued that the knowledge about a programming lan-
guage’s syntax and semantics as captured in refactoring tools, 
constrained-based ones in particular, can be reused to systemati-
cally mutate programs in such a way that the resultant mutants are 
guaranteed to be executable, while at the same time likely exhibit 
changed behaviour. Based on a set of sample programs and their 
accompanying test suites, we have demonstrated that our ap-
proach is capable of producing mutants likely exhibiting changed 
behaviour efficiently, avoiding the large numbers of vain mutant 
generations other approaches are suffering from. Our results are 
the more pleasing as reaching them is almost free: for most cases, 
all that needs to be done is to negate the semantics-preserving 
rules of existing formalized refactoring tools. 
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