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Abstract: Among the diagnostic problems that require a retrospective assessment of the
time an event occurred is that of screening for primary infection with Toxoplasma gondii
during pregnancy. We suggest a method to derive the possible times of onset of infection
from a small sequence of serological samples by matching them against the knowledge
about possible courses of infection. Special care is taken to properly address the relative
change (gradient) of consecutive samples, a nontrivial problem when reasoning about
sparsely sampled courses. To demonstrate the practicability of our approach we conducted
an evaluation based on the samples of 394 pregnancies selected at random from our toxo-
plasmosis database; we could show an accuracy of 95.7%.
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1. Introduction
Certain diagnostic problems require an assessment of the time some triggering event occurred.
This is problematic if the event itself remains obscure (asymptomatic) or is not an issue at its
time of occurrence. Such is usually the case when a woman becomes infected with the parasite
Toxoplasma gondii. If that woman is also pregnant, she risks transmitting the pathogen to her
unborn child, seriously endangering its life and health. In some countries, screening programs
have therefore been implemented to routinely test pregnant women for postconceptional infec-
tion with Toxoplasma gondii. Because this procedure has to differentiate postconceptional
from preconceptional infections, it inevitably involves some kind of temporal reasoning.

The method we present performs the required reasoning by deriving all possible times of onset
of infection from the available serological evidence. It does so by matching the findings against
the serological knowledge about possible courses of infection. We take special care to proper-
ly address the problem of reasoning about the relative change between consecutive findings
(which is inherently difficult with sparse sampling) and show the theoretical soundness of our
solution. That it is also practically efficacious is demonstrated in an evaluation based on the
samples of 394 pregnant women selected at random from our routine screening database. To
investigate the dynamic performance of our method we simulate its behaviour in prospective
employment.

2. Problem
An estimated more than 20% [Lappalainen 93] of the world population and countless animals
are infected with the parasite Toxoplasma gondii. Its main mode of transmission is by inges-
tion of oocysts, toxoplasma cells excreted by cats and spread around by flies and other insects,
and by consumption of raw meat from infected animals [McCabe 83].

Once acquired, the pathogen spreads throughout the body via lymphatics and the bloodstream
and infests tissue cells, mostly those of the central nervous system, heart, and muscles. After
this acute phase of infection (also referred to as recent infection), cell-mediated and humoral
immune response eliminate the parasite from the bloodstream, leaving viable organisms only to
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persist encysted in the host tissue. This latter chronic or latent stage of infection is assumed to
last for the whole lifetime of the host. [McCabe 83, Desmonts 85]

Toxoplasmosis is the clinical disease associated with an infection with Toxoplasma gondii. It is
not an obligatory consequence of acute infection—only in about 10% of the population post-
natal infection is symptomatic. Typical signs of postnatal toxoplasmosis are those of mononu-
cleosis, namely malaise, fever, headache and swollen lymph nodes. Because it is generally well
controlled by the immune system, toxoplasmosis is not life-threatening for the immunocompet-
ent person. More recently, however, postnatal toxoplasmosis has gained in significance, as the
number of immunocompromised (such as transplant recipients and other immunosuppressed
patients) and immunodeficient (AIDS!) individuals increases.

Prenatal toxoplasmosis, on the other hand, has longer been a matter of concern: transplacen-
tally transmitted pathogens causing congenital toxoplasmosis in the foetus can destroy the un-
born’s developing tissue and cause irreparable damage. This fact gives rise to toxoplasma
screening of pregnant women; more on this below.

2.1. Serological tests, courses of infection and serodiagnosis

For practical reasons, diagnosis of toxoplasma infection is largely based on indirect serological
tests detecting specific toxoplasma antibodies. These tests vary in the type of antibody and in
the quality they respond to. Most frequently used are the tests for the determination of IgG
and IgM antibody concentrations. More recently, tests to measure IgG antigen-binding avidity
[Lappalainen 93] and IgA [Bessièrs 92] have come to support serodiagnosis.

Our laboratory, the Toxoplasmosis Laboratory of the University Children’s Hospital in
Vienna, Austria, currently uses three tests:

1. Sabin-Feldman dye test (DT), the World Health Organization reference test measuring
mostly specific IgG antibodies;

2. immunosorbent agglutination assay (ISAGA, Bio-Merieux) for the detection of IgM
antibodies; and

3. solid-phase enzyme immunoassay for the determination of IgG antibody avidity.

All test results are obtained and interpreted in their quantitative form, i.e., the DT as a titer in
steps of fourfold dilution ranging from 0 to , IgM ISAGA as an index in the range of1 : 65536
0–12, and IgG avidity as a percentage.

In response to primary contact with antigens, first specific IgM and then IgG antibodies are
produced by the immune system. Repeated testing makes visible the course of infection: Fig-
ure 1 is an adaptation of courses published in [Desmonts 85, Bessières 92, Lappalainen 93].
Different tests of the same antibody quality display different courses; serodiagnosis therefore
heavily relies on knowing the properties of the employed tests.

Figure 1: Typical course of antibody production after primary infection with Toxoplasma gondii as observable
through various tests (adapted from [Desmonts 85, Bessières 92, Lappalainen 93])
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The pre-eminent property of the DT is its high sensitivity and specificity: positive titers prove
toxoplasma infection while a negative (zero) titer excludes it. Unfortunately, its capability of
discriminating acute from chronic infections based on a single serum is limited: individual im-
mune response to toxoplasma antigen varies so considerably in both strength and speed that
reliable assessment of acuteness can only—if at all—be based on the relative change of paired
sera. Originally intended as a confirmatory test, the IgM ISAGA has only potential to rule out
acute infection: whereas high indices can occur with both acute and latent infections (high titer
persistencies), a negative IgM is never found with an acute infection. The IgG avidity test, a
new technique for the measurement of the antigen-binding avidity (functional affinity) of IgG,
distinguishes low-affinity antibodies at an early stage of infection from those with a higher
binding affinity reflecting pre-existing immunity [Lappalainen 93]. Other than the DT and the
IgM ISAGA, its outcome is monotonically increasing with the age of infection, i.e., in an indi-
vidual patient each finding is reversibly related to one and only one time after infection.

Typical courses of reinfection with Toxoplasma gondii have not been published—apparently,
repeated contact with the parasite leaves the antibody concentration unaltered. This is maybe
because cysts leak and so emit antigens to the bloodstream, thus keeping immune activity on a
certain level. Be it as may, a significant increase in antibody concentration appears to be symp-
tomatic of acute infection and acute infection only. This fact is heavily relied on in
serodiagnosis.

2.2. Congenital toxoplasmosis

Because the foetus's immune system is still undeveloped, transplacental transmission of the
parasite may result in congenital toxoplasmosis. Congenital toxoplasmosis is known to cause
severe damage ranging from foetal death and stillbirth through hydrocephalus to clinically
healthy newborns with an 80% chance of developing ocular toxoplasmosis and blindness in
adulthood. It is therefore to be avoided.

Practically, only mothers with primary infection acquired during pregnancy (so-called postcon-
ceptional or gestational primoinfections) are at risk2. If infection is acquired before conception
(so-called preconceptional infection), no practical risk of transmission exists [McCabe 83].
Figure 2 visualizes the terminology.

Figure 2: Naming of infections

In the context of congenital toxoplasmosis it is thus not the acuteness of infection that matters,
but its time of onset relative to the date of conception. It is important that acute and postcon-
ceptional infection are not confused, nor latent and preconceptional infection. For example, a
woman with evident toxoplasmic lymphadenopathy (diseased lymph nodes diagnosed by, e.g.,
biopsy, as due to acute toxoplasma infection) who becomes pregnant is acutely, yet precon-
ceptionally, infected and therefore bears no risk of transplacental transmission.

2 which further depends on the gestational age [Remington 90]
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2.3. Screening of pregnant women

Routine screening for toxoplasma infection as implemented in France and Austria aims at pre-
venting congenital toxoplasmosis [Aspöck 92]. To achieve prevention, all pregnant women
with postconceptionally acquired infection must be identified and treated.

The efficacy of toxoplasma screening has been demonstrated in several studies, for example
[Aspöck 92, Lappalainen 93]. With early diagnosis and treatment, the incidence of congenital
toxoplasmosis can be reduced from 2.4–7‰3 to less than 0.1‰. These figures imply that only
few cases of postconceptional infection are overlooked, which means that the diagnostic pro-
cedure currently employed in screening is highly sensitive. Figures from our toxoplasmosis
laboratory, however, suggest that it is not very specific, as of approximately 180 treatments
per 10,000 births 110–156 cases (61%–87%) are treated in excess of what would have been
necessary.

This observation is corroborated by theoretical considerations. As noted in [Aedes 91], cur-
rent screening tests of recent infection are unlikely to be both sensitive and predictive. The
reason lies in the wide spread of individual courses of infection, plaguing the onset determina-
tion with inevitable inaccuracy. This inaccuracy is also reflected in the meaning of the diagnos-
tic terms recent and latent infection: if, for example, recent infection means acquired during
the last six months, this diagnosis is unsatisfactory for the first 24 weeks of gestation, because
postconceptional infection can neither be excluded nor confirmed.

3. Method
Rather than striving to reach impossible precision, methodical information processing should
recognize the inaccuracy as an inherent part of the problem and its solution. Objective sero-
diagnosis then has to differentiate at least three possible situations: preconceptional infection,
postconceptional infection, and uncertain. As will be shown, such can be done with high
accuracy. The remaining downside, that the diagnosis uncertain is not satisfactorily specific,
may appear unfortunate, yet has to be put up with unless better serological tests become
available.

The method is based on the following considerations. Biological inter-patient variability hind-
ers us from accurately determining the time of onset on the basis of sparse4 serological
samples. Yet, this variability is within limits, and our knowledge about these limits allows us to
exclude certain times of onset, and this with certainty. For example, as we know that the DT
reaches its peak titers—which are always greater than 1:256—eight to nine weeks after onset
of infection, a titer as low as 1:64—without saying much about the true onset of infection
—immediately rules out an infection that is eight weeks old. By combination of such indirect
evidence obtained from different tests and sera we can encircle the possible times of onset on
which the final diagnosis is based.

3.1. Reasoning about the absolute course

The exclusion of possible times of onset can be formalized as follows. Let x be a serological
test. The results of x depend on the patient and the time of sampling. x may thus be viewed as
a (pointwisely defined, partial) function mapping the set of patients P and time T (the real line)
into x's range, , the set of possible test results;Vx

.x : P × T → Vx

For some patient  and time ,  then denotes the sample (test result) takenpi ∈ P t0 ∈ T x(pi , t0)
of  at . Further letpi t0

3 wide spread partly due to different decades and regions from which figures stem
4 Casually speaking, sampling is sparse if the original signal cannot be reconstructed from the samples.
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cx
− : T → Vx andcx

+ : T → Vx

be two functions such that  is the least possible outcome of test x at  after the onset ofcx
−(t0) t0

infection and  is the greatest. (Without loss of generality we assume thatcx
+(t0)
 for all , which is in accordance with serology.) For any given samplecx

−(t0) = cx
+(t0) = 0 t0 ≤ 0

,  is then a possible time of onset of infection only ifx(pi , t0) tΩ

. x(pi , t0) ∈ [cx
−(t0 − tΩ), cx

+(t0 − tΩ)]
In particular, if ,  is definitely ruled out as ax(pi , t0) < cx

−(t0 − tΩ) or x(pi , t0) > cx
+(t0 − tΩ) tΩ

time of onset. By testing this condition for all , intervals of possible times of onset cantΩ ∈ T
be identified, as shown in Figure 3. The corresponding diagnosis is obtained by relating the de-
rived intervals with the date of conception; it can be looked up in Table 1.

Figure 3: Deriving possible times of onset; dot and scale on the right mark the finding, grey boxes and scale
on the left indicate the possible times of onset (π = 1); dashed lines represent ;cx

−(t − tΩ) andcx
+(t − tΩ)

in this particular case, times of onset both before and after conception are possible, the diagnosis thus being
uncertain (see Table 1)

Table 1: Mapping possible times of onset to diagnoses

ONSET POSSIBLE DIAGNOSIS

BEFORE

CONCEPTION

AFTER

CONCEPTION

AT LEAST ONE POSITIVE

FINDING
yes no preconceptional infection

no yes postconceptional infection

yes yes uncertain

no no inconsistent data

ALL FINDINGS NEGATIVE no infection

Table 1 reflects the clinical perspective of serodiagnosis. Theoretically, if all DT samples re-
main negative during pregnancy, infection is possible only postpartum, which is also after con-
ception. Within the context of screening, however, possible infections after delivery are of no
concern (unless they coincide with another pregnancy), so that the diagnosis of a DT serone-
gative patient is no infection (before or during this pregnancy). Hence the subdividing of Table
1.

As suggested by the example of Figure 3, serodiagnosis based on a single sample is rather un-
specific. To reduce the degree of indecision, clinical practice resorts to the combination of evi-
dence obtained by the employment of additional tests and follow-up serology.

But how is the evidence to be combined? Because a single sample cannot prove a hypothe-
sized time of onset, but only exclude it, evidence obtained from different samples must be
combined in a conjunctive fashion. More specifically, if one sample excludes infection at a cer-
tain time, it overrules other samples allowing an infection at that time. The possibility π of time

 being the onset of infection regarding all samples is thus obtained by joining the possibilitiestΩ
derived from the single samples with a logical and. Formally, for n samples of patient pi

x

time
0

1

π

 tΩ conception
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.5π(tΩ) =
1≤j≤n

cxj
− (tj − tΩ) ≤ xj(pi , tj) ≤ cxj

+ (tj − tΩ)

The following examples schematically demonstrate the derivation of diagnoses from typical
findings.

Example: (postconceptional seroconversion)
Initially, when no information is available, the onset of infection seems equally possible at
all past and future times. The corresponding distribution of possible times of onset is shown
in Figure 4 a). With the first DT sample, however, the picture changes drastically. If it is
negative, the patient is not yet infected so that only future infection remains possible, a fact
that is reflected in the distribution of Figure 4 b). (If it were positive, the patient would al-
ready be infected, and future primoinfection would be excluded.) A subsequent positive
finding excludes later onset of infection, so that possible onsets are restricted to times be-
tween the samples, as shown in Figure 4 c).

◊

a) b) c)

 π  π  π
DT DT DT

time time timeconception conception conception
0

11

0

1

0

Figure 4: Distribution of possibility of times of onset a) when nothing is known, b) after a negative sample,
and c) after a seroconversion

Example: (preconceptional infection)
If the first DT performed during pregnancy is positive, infection is evident, yet may have
equally possibly been acquired at times before and after conception, as shown in Figure 5
a). Note that the titer height alone is not indicative of the recency of infection—both high
and low titers can be found in acute and latent infections. An IgM ISAGA performed on
the same serum may provide a different picture: as Figure 5 b) demonstrates, if the sample
is negative, the patient is either not (yet) infected or infection is latent. Only in combination
with the DT of Figure 5 a) can the infection be dated back to times before conception, as
shown in Figure 5 c).

◊

5 Note that neither the tests xj nor the sampling times tj need be pairwisely different, as the same test
may be (and usually is) repeated at later times and different tests may be performed at the same time.
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Figure 5: Same as Figure 4 for 
a) a positive DT, 

b) a negative IgM ISAGA, and 
c) the combination of both

3.2. Reasoning about relative change

Conjunctive combination of evidence is logically consequential—yet, alone it is insufficient to
challange human expert interpretation of paired sera as it fails to exploit the information imma-
nent in the relative change of successive findings of the same test. Indeed, if the spread of

 is only wide enough, sequences of findings suggestive of a falling developmentcx
−(t) andcx

+(t)
match with the rising phase of the course (and vice versa), a problem that is visualized in Fig-
ure 6 a). This theoretical consideration was confirmed by a first retrospective evaluation of the
approach which showed that this problem caused 86% of the total misclassifications [Steimann
94]. Note that constraining the divided difference of two consecutive samples is no remedy: if
sampling intervals are long, nothing can be said about the gradient of the course at either
sampling time, so that reasoning about the gradient is invariably speculative. An example of
two significantly different courses competing in the explanation of a pair of samples is given in
Figure 6 b).

Figure 6: Diagnosis based on paired sera; a) possible misinterpretation of findings suggestive of a latent (and
preconceptional) infection due to the wide spread of possible courses; b) long intervals between samples

disallowing assumptions about the gradient (first derivative, momentary rate of change) of findings

These problems led to the employment of so-called explaining courses [Steimann 95a, Stei-
mann 95c], hypothetical continuous-time functions meeting all the findings of a given patient
and test so that their sampling at the given times would produce the findings, hence explaining
them. Because the explaining courses are continuous, they can be differentiated, and the result

a)
DT

a)

b)

 π

DT

ISAGA

time

conception

conception

conception

a)

c)

 π

 π

DT

time

time

 1

 0

 1

 0

 1

 0

x

time

 π

 tΩconception

x

time

 π

conception

 1

 0

 1

 0
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can be matched with a pair of functions constraining the first derivative of the course of
infection.

Let  be two such functions constraining the first derivative of possible coursesdx
−(t) anddx

+(t)
of infection, i.e.,  is the least gradient possible at  after onset and  is the greatest.dx

−(t0) t0 dx
+(t0)

Again we assume that  for all . Given the sequence of samplesdx
−(t0) = dx

+(t0) = 0 t0 ≤ 0
,  is a possible time of onset only if there exists a differentiable func-〈x(pi , t1), ...,x(pi , tn)〉 tΩ

tion  such thatxe : T → Vx

(1)xe(tj) = x(pi , tj) for all 0≤ j ≤ n

and

, (2)dx
−(t − tΩ) ≤ xe(t) ≤ dx

+(t − tΩ) for all t

where  have been defined to reflect the fact that a test must betj = tΩ for j = 0 andx(pi , tΩ) = 0
zero (negative) at the time of onset.

Note how this approach elegantly solves both problems outlined in Figure 6. In Figure 6 a) the
derivative of every explaining course must be negative at some time between the first and the
second sample. This is in contrast to the fact that during the initial (acute) phase of infection,
both  will be non-negative, thus rendering recent times of onset impossible. Ondx

−(t) anddx
+(t)

the other hand, after the acute phase of infection both  will be non-positive,dx
−(t) anddx

+(t)
thus allowing an earlier onset of infection in the case of Figure 6 a) and both a latent and a re-
cent infection in Figure 6 b), the latter with a peak between samples.

From the computational standpoint it is important to know that a suitable explaining course
—if it exists—can be derived systematically from the samples and , thereby al-dx

−(t) anddx
+(t)

lowing a simple test for the possibility of any hypothesized time of onset. In fact, an explaining
course with the time of onset  satisfying (1) and (2) exists if and only iftΩ

. (3)∫
tj−tΩ

tj+1−tΩ

dx
−(t)dt ≤ x(pi , tj+1) − x(pi , tj) ≤ ∫

tj−tΩ

tj+1−tΩ

dx
+(t)dt for all 0≤ j < n

The proof can be found in the Appendix.

4. Acquisition of the serological knowledge
One problem that remains to be solved is the acquisition of the serological knowledge in terms
of the functions bounding naturally occurring courses of infection and their derivatives. Stan-
dard deviations from the published courses of Figure 1 are not appropriate, because for the
presented method to be 100% sensitive it requires an assessment of all possible courses. We
therefore decided to found this assessment on serological data from the evident acute pri-
moinfections documented at our laboratory.

Briefly,  are acquired by reversing the above onset determination process. Forcx
−(t) andcx

+(t)
this purpose, a clinician was asked to assess an interval  of possible times of onset of[tpi

− , tpi
+ ]

infection for each of  acutely infected cases , based on the findings  obtainedn = 42 pi x(pi , tj)
through the DT, IgM ISAGA and IgG avidity, as shown in Figure 7 a). From this assessment
follows (by aligning the specified times of onset to ) that for each test x,  is a poss-t = 0 x(pi , tj)
ible finding in the interval  after the onset of infection, as depicted in Figure 7[tj − tpi

+ , tj − tpi
− ]

b).
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Figure 7: Acquisition of possible courses of infection
a) assessments of possible times of onset for evident acute infections by an expert

b) translation of these assessments to intervals of possible findings
c) superposition and envelope of possible findings

The bounding functions  are then defined for each test x so that they include allcx
−(t) andcx

+(t)
translated findings of that test, as shown in Figure 7 c).

To derive the bounding derivatives we proceeded analogously, only that we based them on the
divided difference of each pair of consecutive samples, assigned to the center of the sampling
interval.

Applied to the samples of DT and IgM ISAGA this procedure led to the courses shown in Fig-
ure 8. It should be clear that the courses have a subjective component, as they reflect the clini-
cian’s conception of possible courses on which he bases his routine diagnosis, explicated in his
assignment of intervals. Because the true time of onset of infection is only known in very few
cases, it is possible that these courses do not comply with reality.6 The bounding functions of
IgG avidity reflect a modified7 form of the diagnostic criteria published in [Lappalainen 92] as
presented in Table 2. Note the coarseness of the rules revealed in their graphical translation; it
will be returned to in the discussion.

6 The fact that neither of the courses takes the delayed onset of measurable immune response into
account hints at such a discrepancy.
7 Modifications are minor and partly reflect deviating criteria published by the same authors.
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Figure 8: Bounding functions of possible courses of acute primary infection as observable through DT, IgM
ISAGA and IgG avidity (the latter adapted from decision criteria published in [Lappalainen 92]); the slope of

the DT's explaining courses is additionally restricted by minimum and maximum titer gradients; time in
months

Table 2: Interpretation of IgG avidity results

IGG AVIDITY CLASSIFICATION INTERPRETATION

≤ 15% low infection acquired within last three months

16–29% borderline no statement possible

≥ 30% high infection more than six months ago

5. Evaluation
Based on the graphs of Figure 8 and the diagnostic criteria of Table 1 we implemented a com-
puter program called ONSET that derives the diagnoses automatically from serological data re-
corded in a database. To evaluate ONSET's diagnostic performance we selected the samples of
1,000 women having follow-up serology, chosen at random from our screening database. Out
of these, 606 cases remained seronegative throughout pregnancy; because their diagnosis no
infection (cf. Table 1) is trivial, they are not included in this evaluation. The remaining pres-
ented with the number of samples shown in Table 3.

Table 3: Number of samples available from the 394 cases involved in the evaluation

TEST 1ST
 SERUM 2ND

 SERUM 3RD
 SERUM 4TH

 SERUM 5TH
 SERUM TOTAL

DT 394 394 70 19 3 880

IGM ISAGA 208 164 36 11 2 421

IGG AVIDITY 102 59 8 2 0 171

1:65536

0

1:4

  2   2  4   4  6   6  8   810 1012 12onset onset

DT [titer]

 48

  8
  0

-4

DT gradient [steps/month]

0
  2   4   6   8 10 12onset

IgM ISAGA [index]

12

  2   4   6   8 10 12onset

IgG avidity [%]

0

15

30

 100

 1:256

4

8
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5.1. Retrospective evaluation

All 394 cases were diagnosed by ONSET and by a clinician. The clinician was urged not to ques-
tion the correctness of individual findings (e.g., to blame aberrant findings on measurement
error and thus ignore them) and declare all cases of which he felt that data was erroneous as
inconsistent data. The only exception that both the clinician and ONSET were allowed to make
was to regard an increase in DT by one step (which is a frequent consequence of test inherent
imprecision colliding with the slope restriction of the latent stage of infection, see Figure 8) as
constant.

Table 4: Performance of ONSET compared to a clinician

ONSET CLINICIAN

POSTCON-
CEPTIONAL

UNCERTAIN PRECON-
CEPTIONAL

INCONSISTENT

DATA

TOTAL

POSTCONCEPTIONAL 3 1 – – 4

UNCERTAIN 1 30 3 – 34

PRECONCEPTIONAL – 7 335 2 344

INCONSISTENT DATA 1 – 3 8 12

TOTAL 5 38 341 10 394

The overall accuracy of ONSET on the selected cases is 95.7%. Even more encouraging is the
fact that only 5 of the 18 deviating diagnoses were judged unacceptable by the clinician. Of
those,

all three cases classified uncertain by ONSET and preconceptional by the clinician
had low DT titers (  or ) at the end of pregnancy which have also1 : 1024 1 : 256
been found in evident acute infections and were thus included in the bounding
functions;
one postconceptional infection was considered inconsistent by ONSET because a
rapid increase (from  to  within twelve days, corresponding to a1 : 64 1 : 65536
slope of more than twelve steps per month) was not followed by higher titers, an
observation that is not compatible with the slope restriction of Figure 8 which
would require a further titer rise (for practical reasons titration usually ends at

 so that higher concentrations, even if present, are not observed); and1 : 65536
one preconceptional infection was classified as inconsistent by ONSET because the
DT decayed slightly faster than tolerated by the slope restriction.

Contrasted with the diagnostic performance of ONSET published in [Steimann 94], its current
implementation shows significantly increased congruence with the clinician’s diagnoses. Most
notably, no false classifications are due to the disregard of relative change, which presented a
major deficiency of the earlier version. The result is the more impressive as the courses were
updated to represent a wider range of acute infections, reflecting more general (and hence less
specific) serological knowledge. In numbers, employment of the slope restriction via explain-
ing courses influences ONSET’s diagnoses as shown in Table 5.

Table 5: Impact of slope restriction on ONSET’s diagnoses

DIAGNOSIS WITHOUT SLOPE

RESTRICTION

WITH SLOPE

RESTRICTION

postconceptional 3
  1

 44

4

uncertain 80 34

preconceptional 303 344

inconsistent data 8 12
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total 394 394

5.2. Simulated prospective evaluation

The retrospective nature of this evaluation allows both the clinician and ONSET to fully exploit
the availability of follow-up data. In everyday practice, however, a diagnosis must be made
after each serum, and this diagnosis is subject to confirmation or change after each follow-up.
To investigate the prospective performance of ONSET we simulated its routine employment by
diagnosing the same 394 cases incrementally, i.e., serum after serum.

To trace the dynamics of ONSET's diagnoses, we determined the number of changes from one
diagnostic class to another after each follow-up serum. The results presented in Table 6 show
that a high fraction (55.5%) of all preconceptional infections is classified as uncertain after the
first serum. Differentiation is highest with the second serum: almost half of all diagnoses made
at this stage are refinements (changes from uncertain to preconceptional or postconceptional
infection) of their previous diagnoses.

Table 6: ONSET's diagnoses after each serum. The first term of each sum counts the number of cases whose
diagnoses remain unchanged on follow-up, while the second counts the ones that change. Numbers on arrows
state the number of refinements to pre- or postconceptional with each new serum.

DIAGNOSIS AFTER 1ST

SERUM

AFTER 2ND

SERUM

AFTER 3RD

SERUM

AFTER 4TH

SERUM

AFTER 5TH

SERUM

postconcept. 2+0
  5

186

4+3

  4

2+0

  2

1+0

uncertain 41+195 36+5 10+2 5+0 1+0

preconcept. 152+2 338+0 48+0 11+0 2+0

inconsistent 2+0 8+0 8+0 2+0

total 197+197 386+8 68+2 19+0 3+0

Disappointingly, Table 6 does not provide any evidence that ONSET could save therapies. Quite
to the contrary, if all initially uncertain cases were treated, the treatment rate of the chosen co-
hort would be more than ten times higher than the average rate at our laboratory. On the other
hand, Table 6 suggests that 45.3% (220) of all follow-up examinations of seropositive mothers
could be saved if ONSET’s diagnoses were trusted. In particular, the prospective evaluation
shows that while a second serum makes a difference in 50% of all cases, the third and all
further sera are only seldom useful.

The high degree of indecision after the first serum is mostly due to the fact that for the slope
restriction to catch at least two samples (“paired sera”) are required. Some of the initially un-
certain cases would have been classified preconceptional if a (mostly negative) IgM had been
available. However, considering the fact that positive IgM results allow no absolute statement
about the onset of infection, the results impressively justify the serological necessity of follow-
up serology after a first positive sample.

It remains to be noted that the fraction of uncertain cases increases with the number of sera
taken, reflecting the laboratory’s search for evidence that would differentiate these cases.

6. Discussion
Despite its demonstrated diagnostic competence, the ONSET approach leaves considerable room
for improvements. Firstly, the imprecision of its input should be taken into account. As
touched on earlier, due to test-inherent sources of inaccuracy a DT titer of  may indeed1 : 4n

be compatible with one of  or one of . Secondly, qualitative findings such as1 : 4n−1 1 : 4n+1

high IgG as obtained by other labs should be allowed to add their share of evidence. Both
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aspects could be integrated by replacing discrete findings with corresponding intervals, in the
above examples  and, say, , and by adapting the reason-[1 : 4n−1, 1 : 4n+1] [1 : 4096, 1 : 65536]
ing method accordingly. Last but not least, the binary possibility distribution ONSET derives
could be enhanced by a probability distribution assigning a chance of postconceptional infec-
tion to each individual case.

6.1. Comparison with symbolic approaches

Much of the work that the medical informatics community has contributed to assist with the
interpretation of sparse clinical time series has been based on discrete logic. Only seldom re-
flected on is the fact that the discretization of analogue domains has its price. As a matter of
fact, in most realistic applications involving temporal developments the combinatorial ex-
plosion in the number of cases to be considered boosts the complexity of the problem space to
orders of magnitude far beyond human comprehension, as illustrated by the following
estimate.

Let n be the number of sera drawn, c be the combinatorial number of possible outcomes of the
different tests performed on one serum, and time be discrete with a resolution of one week. If
a pregnancy lasts 40 weeks, the number of theoretically possible combinations is

,cn


40
n




which amounts to 15,823,936,440 for 3 sera, 9 possible DT titers, and 13 possible IgM
ISAGA indices (not regarding IgG avidity).

In an effort to reduce the size of the problem space cases with similar outcome are usually
grouped together. To make the group or class specifications tractable, derived features are ex-
tracted from the raw data and numeric values are abstracted to qualitative terms or symbols
(called qualitative abstraction in [Clancey 85]), allowing classificatory rules of the kind "if the
titer is initially low and subsequently rising, infection is recent". However, strong points can be
made that doing so is unduly simplistic, not only because of the problems with the divided dif-
ference touched on in Figure 6 b). Firstly, qualitative abstraction—depending on the choice of
thresholds for the classification—is usually arbitrary. Secondly, as an untoward side effect of
discretization, the diagnostic mapping becomes discontinuous allowing similar findings to be
associated with disparate diagnoses; a fact that is hard to justify medically.

The latter point is illustrated by the graphical representation of the diagnostic criteria of IgG
avidity depicted in Figure 8. The reader may verify that the graph is an exact graphical transla-
tion of the rules implicit in Table 2 and that determining the times of onset based on this graph
is equivalent in effect to the application of the rules. For example, with an IgG avidity of 15%
either method would restrict the time of onset of infection to be within the last three months,
while with one of 16% it would be left entirely open; a discontinuity that is hardly natural.
However, while the graphical representation can easily be adapted to reflect the continuity of
natural courses of infection (as do the graphs of the other tests)8, the table cannot; this is
where the discrete approach loses.

Ironically, the diagnostic criteria of Table 2 were formulated only after a continuous mono-
tonic, if not linear, dependency of IgG avidity on the age of infection had been observed
[Lappalainen 93]. This reflects the predominant role of rules in communicating knowledge;
yet, in the present case rules are clearly a weak mental prosthesis and their use is a detour
leading to inferior results [Steimann 95b].

8 The continuity property of ONSET's graphical approach is even better developped in its fuzzy version
described in [Steimann 94d, Steimann 95a].
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Despite these objections several laborartory decision-support systems relying on discrete
symptom-disease mappings have successfully been deployed. For example, the HEPAXPERT-I
system [Adlassnig 95] directly maps the discrete sample space of hepatitis A and B serology
onto the set of possible diagnoses; the PRO.M.D. expert system shell for the interpretation of
clinical chemistry test results, building on the symbolic programming language Prolog, adheres
to the rule-based paradigm; it has been instantiated for disorders of lipid metabolism, syphilis
serology, thyroid hormone diagnostics, etc. [Pohl 88].

Both HEPAXPERT-I and PRO.M.D. provide for unknown values, which is a common feature of
rule-based systems. When dealing with sparsely sampled temporal developments such as the
course of toxoplasma infection, unknown values are indeed at the heart of the problem. If, for
example, the DT's value were known at all times, the time of onset of infection would be obvi-
ous (seroconversion!). Instead, however, it is not, and it is understood that a variable's value is
unknown at all times but the sampled. Feeding unknown values to a dynamic system like ONSET

is thus tautological. It is essentially the task of such a system to derive, if only approximately,
values of variables otherwise unknown; indeed, by naming possible and impossible times of
onset, ONSET constrains all serological variables' values at all times.

6.2. Alternative approaches

To account for temporal relationships, dynamic parameter models in the form of differential
equations have been suggested (e.g. [Pohl 94]). Other researchers have investigated the im-
pact of qualitative simulation on dynamic problems of the biomedical field, such as the moni-
toring of disturbances in the acid-base balance [Coiera 90, Ironi 90, Uckun 92]. In the pure
qualitative approach actual parameter developments are matched against the predictions of
qualitative models of alternative (patho)physiological hypotheses competing in the explanation
of the monitored situation. It is questionable, however, if the problem dealt with in this article
can at all be solved in qualitative terms: if not in the solution process, at least in its outcome
definite references to the time line must be made, which is in contrast to the very spirit of
qualitative simulation. Combined qualitative-quantitative models constraining qualitative si-
mulation [Uckun 92] appear more adequate to tackle this problem.

The rather small number of samples (usually less than three tests performed on seldom more
than three sera) renders several other symbolic approaches to the interpretation of clinical time
series inept to solve the given problem, basically because their reasoning mechanisms require
larger sample sizes. For example, temporal abstraction methods including the TOPAZ [Kahn
91], M-HTP [Larizza 92] and RÉSUMÉ [Shahar 93] systems are designed to handle the in-
formation overload encountered in long term patient monitoring. Their goal is to reduce large
amounts of time-stamped data to high-level propositions assigned to temporal intervals. Sero-
diagnosis of recent toxoplasma infection in pregnancies, however, is the contrary problem: it
has to make do with extremely few samples often lacking needed information and, in particu-
lar, leaving nothing to abstract.

Traditional numeric methods to identify temporal developments are mostly rooted in statistics
and time series analysis: regression analysis, adaptive forecasting and Kalman filtering have
successfully been applied to the interpretation of clinical time series [Allen 83, Gordon 86,
Gordon 88, Avent 90, Challis 90, Sittig 90, Sittig 92]. However, like the temporal abstraction
methods mentioned above these methods also rely on a minimum number of available samples.
This is particularly untoward in their prospective employment where a diagnosis must be made
after each sample including the first, a situation for which none of the statistical methods is
designed.
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7. Conclusion
We believe that the presented approach stands out with respect to its simplicity, naturalness
and efficacy. In using continuous numeric specifications of courses of infection, in deriving
temporal intervals of possible onsets and combining them through logical conjunction it is
somewhat intermediate between conventional discrete (symbolic) and numeric methods. Like
that of most other contemporary diagnostic support systems, its clinical relevance yet needs to
be proven in practice.
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Appendix: Proof
a) " "(1) ∧ (2) ⇒ (3)

dx
−(t − tΩ) ≤ xe(t) ≤ dx

+(t − tΩ)

⇒ ∫
tj

tj+1

dx
−(t − tΩ)dt ≤ ∫

tj

tj+1

xe(t)dt ≤ ∫
tj

tj+1

dx
+(t − tΩ)dt

⇒ ∫
tj−tΩ

tj+1−tΩ

dx
−(t)dt ≤ xe(tj+1) − xe(tj) = x(pi , tj+1) − x(pi, tj) ≤ ∫

tj−tΩ

tj+1−tΩ

dx
+(t)dt

b) " "(1) ∧ (3) ⇒ (2)
Surely there is an explaining course satisfying (1). Now suppose this  does not satisfyxe(t) xe(t)
(2). For each interval  for which (2) is violated replace[tj, tj+1]

(4)xe(t) := x(pi , tj) + Dx
−(t) +

x(pi , tj+1) − x(pi , tj) − Dx
−(tj+1)

Dx
+(tj+1) − Dx

−(tj+1)
(Dx

+(t) − Dx
−(t))

where

Dx
−(t) := ∫

tj

t

dx
−(u)du and Dx

+(t) := ∫
tj

t

dx
+(u)du

Verify that if (3) holds (4) satisfies (2).

n
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