
Piecewise Modelling with State Subtypes 

Friedrich Steimann and Thomas Kühne 

Lehrgebiet Programmiersysteme 
Fernuniversität in Hagen 

D-58084 Hagen 
steimann@acm.org 

Fachgebiet Metamodellierung 
Technische Universität Darmstadt 

D-64289 Darmstadt 
kuehne@informatik.tu-darmstadt.de

Abstract. Models addressing both structure and behaviour of a system are usu-
ally quite complex. Much of the complexity is caused by the necessity to distin-
guish between different cases, such as legal vs. illegal constellations of objects, 
typical vs. rare scenarios, and normal vs. exceptional flows of control. The re-
sult is an explosion of cases causing large and deeply nested case analyses. 
While those based on the kinds of objects involved can be tackled with standard 
dynamic dispatch, possibilities for differentiations based on the state of objects 
have not yet been considered for modelling. We show how the handling of class 
and state-induced distinctions can be unified under a common subtyping 
scheme, and how this scheme allows the simplification of models by splitting 
them into piecewise definitions. Using a running example, we demonstrate the 
potential of our approach and explain how it serves the consistent integration of 
static and dynamic specifications. 

1 Introduction 

In the age of model-driven development, models are required to specify both structure 
and behaviour of a system. Although there will always be the case for coarse abstrac-
tions omitting many particulars, a large class of models must address the specification 
of detail. Such models have to deal with considerable complexity introduced by the 
necessity to distinguish between many cases of alternative collaboration and control 
flow. Particular problems present cases of undefinedness, i.e., illegal constellations of 
objects or method invocations with which no reasonable behaviour can be associated. 
Excluding such cases through many explicit conditions disrupts the primary concern 
of a model, the depiction of what is right and what should be done. As a result, mod-
els are more difficult to write, to read, and to maintain than they should be. 

In this paper, we suggest to use subtyping and overloading of relations (where rela-
tions include associations, attributes, and operations) as a means for structuring a do-
main into defined and undefined cases, and to provide modular, piecewise definitions 
for the defined cases. Our approach shares some similarity with multi-dispatching 
known from programming languages, but significantly extends it with the possibility 
to take the dynamic state of objects into account. By doing so, our approach not only 
allows simpler models, it also improves the integration of static and dynamic specifi-
cations that were previously thought to be rather isolated. 

In the remainder of this paper we first we show how the declaration of relations is 
used as an essential ingredient of type-level specifications, and how systematic over-
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loading can be used to refine the information conveyed (Section 2). Following the 
concept of multi-dispatch, we show how attaching definitions to different (over-
loaded) branches of a declaration can eliminate the need for certain types of case dis-
tinctions (Section 3). We extend this idea to cover the state of objects, by introducing 
state subtypes and overloading relation declarations on these (Section 4). Further-
more, we show how state subtypes can be automatically derived from the statecharts 
associated with classes, and how in general statecharts can be integrated with struc-
ture and sequence diagrams. In Section 5, we elaborate process issues associated with 
our approach. We then present a discussion of the limitations of our approach and a 
comparison with related work (Section 6), and conclude with Section 7.  

2 Modelling with Declarations 

In object-oriented modelling, declarations are an accepted form of specification on the 
type level. For instance, an excerpt from a static structure (class) diagram such as 

DocumentPrinter
print

DocumentPrinter
print

 
expresses that documents and printers can engage in a relation1 named print. Its tex-
tual equivalent is the declaration of the signature of a relation: 

 print: Printer × Document  (1) 

Following the general understanding in programming (which suggests that the types 
in a declaration must be substitutable by all of their subtypes), such a declaration is 
usually (mis)interpreted as a statement of total definedness, i.e., it is assumed that 
printing is defined for all combinations of printers and documents. Looking at the 
problem domain more closely, however, one notices that there are such different enti-
ties as diagrams and texts, as well as line printers and plotters, and that texts are 
printed only on line printers, while diagrams are printed only on plotters. This refine-
ment can be modelled by overloading the declaration of print, either graphically by 

DocumentPrinter

Text

Diagram

LinePrinter

Plotter

print

print

print

DocumentPrinter

Text

Diagram

LinePrinter

Plotter

print

print

print

 
or textually by 

 print: Plotter × Diagram 
 print: LinePrinter × Text 

(2) 

However, there is no way to explicitly declare that  

 ¬print: LinePrinter × Diagram (3) 

Instead, declaration (1) seems to warrant the printability of diagrams on line printers, 
a misunderstanding that results from the erroneous interpretation of declarations as 
definitions. In fact, in mathematics, a declaration such as (1) expresses that 

                                                           
1  We deliberately speak of relations here and not of associations, since following [20] we take 

relations to cover associations, attributes, and methods. 
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 print ⊆ Printer × Document  (4) 

i.e., that the extension of print is a subset of the Cartesian product of the domains of 
its places (which subset exactly typically being subject to further definition). The Car-
tesian product Printer × Document provides merely an upper bound, which is too high 
in our example since as mentioned above there are combinations of documents and 
printers that will never engage in the print relation. In fact, least upper bounds are 
usually non Cartesian, as illustrated by Fig. 1(a). 

Moreover, in modelling and programming we have an additional temporal dimen-
sion, which means that the extension of print  grows and shrinks with time. So how 
are the declarations (1) and (2) to be interpreted? Generally, we assume that more 
specific declarations (i.e., declarations of the same relation, but involving subtypes) 
are intended to overrule the more general ones. In fact, we go as far as requiring that 
only minimal overloadings of a declaration (i.e., overloadings such that there is no 
other overloading that involves only subtypes of the first) may have tuples. This al-
lows us to define relations whose domain is not Cartesian, but rather a hypercube with 
(hypercubic) holes (cf. Fig. 1), with each tuple of the relation binding to a minimal 
overloading (not necessarily precisely one; cf. the discussion in Section 6.4). In Sec-
tions 3 and 4, we will attach specifications2 to minimal overloadings and show how 
they represent branches of a piecewise definition of the relation within the model. 
One might be tempted to conclude that any tuple for which a minimal declaration ex-
ists is defined – however, as argued in Section 6.1 this is not necessarily the case. 

Returning to the meaning of the declarations (1) and (2): they now bound the ex-
tension of print by the union of the Cartesian products of its minimal declarations: 

 print ⊆ (Plotter × Drawing) ∪ (LinePrinter × Text) (5) 

Since relations include attributes (see Footnote 1) we can furthermore write 

                                                           
2  A more appropriate term would be “implementation”, but this word is problematic in the 

context of modelling. “Definition” is another alternative; however, this would make our defi-
nition of definedness appear circular. 
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Fig. 1. (a) Definition holes (dark – or red – squares) induced by undefinedness of certain class 
combinations. (b) Additional holes imposed by dynamic conditions. The relation’s domain is ir-
regular and can only be declared piecewisely; besides, it cannot be declared using static classi-
fication (classes) alone. 
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 myPrinter: Document → Printer (6) 

in order to declare an attribute myPrinter with value type Printer for Document as a 
special relation where the arrow separates the last argument of the relation (the value) 
from the rest. Again, this declaration must not be interpreted as statement of total de-
finedness, since (6) can be overloaded as in (2), e.g., with the branches 

 myPrinter: Diagram → Plotter 
 myPrinter: Text → LinePrinter 

(7) 

defining the range of the attribute as being dependent on its domain (cf. the discussion 
of dependent types in Section 6.4). 

3 Attaching Definitions to Declarations 

To illustrate how piecewise definitions based on overloaded declarations can simplify 
modelling, we extend our printing example by first adding a print manager that prints 
documents on printers. Second, we let texts consist of pages and let them be printed 
page by page, in contrast to diagrams, which are printed on a single page each. Last 
but not least, a printer can run out of paper in which case all printing attempts fail 
(i.e., are undefined), the only exception being the printing of an empty text (i.e., a text 
that has no pages). Later, we will be confronted with a niggling user who is dissatis-
fied with the undefinedness of the out-of-paper situation; fortunately, thanks to our 
piecewise definition approach pleasing him will turn out to be easy. 

The static structure of our domain is modelled by the class diagram in Fig. 2. 
PrintManager is a singleton that acts as a façade to the printing module. Its sole pur-
pose is to accept printing requests and forward them to the printer. Printer and Docu-
ment are linked by an association print, which represents the same print relation as 
expressed by the operation print(Document) in class Printer, but shows additionally 
how it is overloaded. Since Printer and Document are both abstract, the print relation 
must recruit its elements (tuples) from its concrete subtypes. Following our binding 
rules from Section 2, missing combinations (e.g., Text × Plotter) are undefined. 

The sequence of actions required to process a printing request is shown in the se-
quence diagram of Fig. 3. Although the overall behaviour is rather simple, the many 
case distinctions make the diagram appear complex. Note that the branches depend on 
the type of the arguments of the print relation (as expressed by the instanceof opera-
tor) and on the state of the individual involved objects (whether or not the printer is 

Fig. 2. Static structure of the printing example. 
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empty, whether or not the text has more pages). With growing detail in the modelled 
scenarios the number of special cases needed to be considered steadily increases, 
quickly leading to a combinatorial explosion. Since nested branches are known to be 
extremely error-prone (both in programming and in modelling), significant improve-
ments can be expected from any modelling construct that does away with them. 

This is where our overloaded declarations come into play. They allow us to split 
the sequence diagram of Fig. 3 into the two pieces shown in Fig. 4, one for each ad-
missible combination of documents and printers. A message print(doc, prn) sent to a 
print manager pm is then bound to one of the two diagrams, or rejected as undefined. 
We thus have separated defined from undefined cases and provided alternative defini-
tions depending on the types of arguments. 

4 Introduction of State Subtypes 

The sequence diagrams of Fig. 4 still contains undesirable case analyses, but this 
time, the distinctions are induced by the states of the involved objects. If we could 
capture the states of the objects with corresponding (sub)types, we could use the same 

pm:PrintManager

print(doc, prn)

print(doc)

[prn instanceof Plotter and doc instanceof Diagram]

[prn.empty()]

IllegalState

[not prn.empty()]

rawPrint(doc)
done

[prn instanceof LinePrinter and doc instanceof Text]

[not doc.hasMorePages()]
done

[not prn.empty() and doc.hasMorePages()]

nextPage()

pg:Page

done

IllegalState

altalt

altalt

altalt

[else]

rawPrint(pg)

print(doc)

[else]
IllegalArgument

prn:Printer doc:Document

Fig. 3. UML sequence diagram handling printing requests for arbitrary printers and documents. 



6      Friedrich Steimann and Thomas Kühne 

technique as before, namely overloading and piecewise definition, to further reduce 
the complexity of each sequence diagram. Assuming that we declare the state sub-
types and the new minimal branches of print as shown in Fig. 5, we can extend Fig. 
1(a) to 1(b) and replace the sequence diagrams of Fig. 4 with those of Fig. 6. Note 
that each object may only be in one state at a time; hence we have marked the classes 
that have state subtypes (Plotter, LinePrinter, and Text) as abstract.  

If a state subtype does not engage in an overloading then this subtype contributes 
no elements to the relation. For instance, the absence of an overloading involving 
Plotter|empty and Diagram expresses that diagrams cannot be printed on empty plot-
ters. Note that we use a vertical bar to create a state subtype’s name from the name of 
the class it subtypes and the name of the state. 

The diagram in Fig. 6 (c) raises an important issue. Because the state types of doc 
and prn may change after each printed page, the types specified in the lifelines heads 

pm:PrintManager

print(doc, prn)

doc:Diagram

print(doc)

[prn.empty()]
IllegalState

[not prn.empty()]

rawPrint(doc)
done

altalt

prn:Plotter

pm:PrintManager

print(doc, prn)

prn:LinePrinter doc:Text

[not doc.hasMorePages()]
done

[not prn.empty() and
doc.hasMorePages()]

nextPage()

pg:Page

done

IllegalState

altalt

[else]

rawPrint(pg)

print(doc)

print(doc)

(a)

(b)

Fig. 4. Same specification as that of Fig. 2, with type-based branching replaced by binding.
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may no longer be valid. However, subsequent relation tuples (i.e., method sends, in-
cluding the recursive print(prn, doc)) will then bind to branches based on the new 
state subtypes. This allows us to elegantly model the printing of pages until either the 
printer is empty or all pages of the text have been printed, where all the control logic 
is implicit in the binding of message sends. Not inserting a new binding after possible 
state changes would require explicit tests and branching (in our example, a loop with 
explicit loop conditions), which are still possible but cumbersome. 

Note that the change in state could be reflected by using a state invariant on the 
lifeline of the object, a feature of UML 2.0 [15]. As we will see below, possible state 
changes can be automatically derived from statecharts modelling the state transitions 
of objects. 

4.1 Definition of State Subtypes 

By definition, subtypes add to the intension of their supertypes: they add properties to 
and pose additional constraints on their elements. Hence, the extension of a subtype is 
always a subset of that of its supertypes, implying that relations that are only partially 
defined on supertypes may be totally defined on subtypes. 

We define a state subtype as a subtype of a class that collects all objects of that 
class that are in a certain state. A state subtype adds to the intension of a class by re-
stricting the range of attribute values, and by restricting the associations3 and methods 
its objects can engage in. Although state subtypes need not generally be mutually ex-
clusive, those that are (because they are generated from the same statechart; see be-
low) provide a complete partition of the class’s extension (cf. also Fig. 1(b)). 

State subtypes allow piecewise total definitions of otherwise partial relations using 
subtyping and overloading, even if definedness depends on dynamic conditions. For 
instance, the relation print from above is totally defined for all objects of state subtype 

                                                           
3  Indeed, the fact that an object plays a certain role (sits in the place of a relationship) can be 

considered (part of) its state. 

Text|¬HasMorePages

Text|hasMorePages

Text|¬HasMorePages

Text|hasMorePages

Plotter|empty Plotter|¬EmptyPlotter|empty Plotter|¬Empty

LinePrinter|empty

LinePrinter|¬Empty

LinePrinter|empty

LinePrinter|¬Empty

DocumentPrinter

Text

Diagram

LinePrinter

Plotter

Page
1 0..*

print

print

print

1

1..*

1

1..*

printprint

printprint

printprint

printprint

Fig. 5. Addition of state subtypes and corresponding overloadings (marked by arrows). Note 
the missing link from Plotter|empty to Diagram. Also, the multiplicity of the aggregation be-
tween Text and Page has been restricted for Text|hasMorePages, while Text|¬hasMorePages 
does not relate to Page. 
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Plotter|¬empty (but not for all objects of class Plotter4). Like the subclasses from Fig. 
2, state subtypes may serve to express definition holes by overloading relations. 

4.2 Integration with Statecharts 

One might argue that the static structure diagram of Fig. 5 has taken over much of the 
complexity removed from the sequence diagram of Fig. 3. Particularly larger exam-
ples may cause such structure diagrams to quickly become unwieldy. Fortunately, the 
latter can be automatically generated from much simpler diagrams. 

The key to only specify a regular class diagram and obtain the additional informa-
tion contained in Fig. 5 for free is to exploit supplementary statecharts. Fig. 7 shows 
three simple statecharts, describing the behaviour of the objects of classes Plotter, 
LinePrinter, and Text respectively. Note that the states from each statechart partition 
the dynamic extension of the class it is associated with since each object of a class 
must be in exactly one state at a time. Furthermore, the events of Fig. 7 code the de-
finedness of relations in each state: they correspond to the minimal overloaded decla-
rations of Fig. 5 as well as to the method signatures found in Fig. 6. This allows us to  
automatically derive the state subtypes and overloadings of print in Fig. 5 from Fig. 7. 
In addition, the transitions of Fig. 7 specify which possible state changes need to be 

                                                           
4  At first glance, our notion of state subtypes seems to contradict the idea of subtyping, be-

cause objects of a (state-) subtype can no longer substitute for those of its supertype. How-
ever, we remind the reader that the (assumed) all-quantification of a declaration (cf. Section 
2) is untenable anyway: a stack cannot be popped if it is empty, no matter what the declara-
tion of the class promises. Since at any point in time every instance of a class is also an in-
stance of one of its state subtypes, the notion of substitutability can only involve those prop-
erties that are independent of state. 

pm:PrintManager

print(doc, prn)

doc:Diagram

print(doc)

rawPrint(doc)

done

prn:Plotter|¬empty

pm:PrintManager

print(doc, prn)

prn:LinePrinter doc:Text|¬hasMorePages

done

print(doc)

pm:PrintManager

print(doc, prn)

prn:LinePrinter|¬empty doc:Text|hasMorePages

nextPage()

pg:Page

done

rawPrint(pg)

print(doc)

print(doc)

(a)

(b)

(c)

Fig. 6. Further simplification of behaviour specification made possible by the introduction of 
state subtypes. Note that Figs. 5 and 6 are equivalent to Figs. 2 and 3. 
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considered in a sequence diagram, e.g., that the state subtype of both a text and a line 
printer may change after printing each page (cf. section 4).  Last but not least, the se-
quence diagram specifies the interaction between objects, i.e., it binds the different 
statecharts together by showing which events in one statechart lead to which events in 
another (print of LinePrinter leads to nextPage of Text). It follows that state subtypes 
are natural pivotal points for the integration of static and dynamic specifications. 

5 Process Issues 

Model Evolution.   Modelling is an iterative, incremental process, and the usability 
of modelling languages that do not support this development style is severely limited. 
Modelling with piecewise definitions based on subtypes and overloading supports in-
cremental development rather well, as the following considerations suggest. 

When modelling, we must distinguish two different kinds of undefinedness: natu-
ral undefinedness and as-yet undefinedness (as-yet with respect to the progress of the 
modelling process). An example of the former is the printing of a diagram on a line 
printer, and example of the latter is the printing of a document on an empty printer. 
While natural undefinedness will persist right to the final version of the model, as-yet 
undefinedness is usually removed while the model progresses: it is a form of “tempo-
rary omission”. In terms of supporting model evolution, the question is how much re-
arrangement of the model is required to remove such temporary omissions. 

In the case of printing on an empty printer, the corresponding refactoring is trivial: 
all that needs to be added is a branch that lets the printer wait until paper is refilled; 
no interaction with other objects is required. Note how this added behaviour also fixes 

empty¬ empty

print(Text)

print(Text|hasMorePages)

print(Text|¬hasMorePages)
LinePrinter

empty¬ empty

print(Text)

print(Text|hasMorePages)

print(Text|¬hasMorePages)
LinePrinter

Fig. 7. Statecharts for classes Plotter, LinePrinter, and Text. States correspond to the state sub-
types in Fig. 4, events correspond to the overloaded declarations in Fig. 4 and to the methods in 
Fig. 5; their absence determines which method is undefined for which state. Note that UML’s 
semantics for statecharts is different: events for which no transitions are shown are ignored. 

¬ hasMoreP.hasMoreP.

nextPage()

nextPage()

Text

¬ hasMoreP.hasMoreP.

nextPage()

nextPage()

Text

empty¬ empty

print(Diagram)

print(Diagram)

Plotter

empty¬ empty

print(Diagram)

print(Diagram)

Plotter

pm:PrintManager prn:Plotter/!empty doc:Text/hasMorePages

print(doc)print(doc, prn)

done

nextPageAsDiagram()

dg:Diagram

rawPrint(dg)

print(doc)

Fig. 8. Added behavior specification for printing texts on plotters. No interference with other 
specifications must be considered. 
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the undefinedness problem of a text having more pages than the printer has paper. 
Also the decision that texts cannot be printed on plotters can be easily revoked. 

Fig. 8 shows the corresponding new collaboration which can be added without inter-
fering with the rest of the model. These “low impact changes” are possible because 
we extend the definition of relations rather than that of single classes, thereby allow-
ing a form of refinement that is automatically coordinated among classes. Our ap-
proach thus fulfils the old promise of object-orientation, namely to be able to refine 
models locally through subtyping. 

Tool Support.   Just as programming today is unthinkable without programming en-
vironments, the quality of models is an increasing function of the quality of modelling 
tools used. However, this is only true if a modelling language allows tools to contrib-
ute to the quality of models. In particular, consistency and completeness checks 
should be supported; otherwise tools are reduced to mere drawing aids. 

Fortunately, our framework offers a wealth of opportunities for tool support. Com-
puting the coverage of minimal declarations of the domain spanned by the most gen-
eral declaration of a relation shows potential definition holes, which can then be 
marked by the modeller as either natural or as as-yet undefined. Overlapping of 
minimal declarations can also be flagged: for instance, if default behaviour for all 
empty printers is added as suggested above, the resulting overlap with the specifica-
tion for printing empty texts (cf. Fig. 1(b)) can be discovered. In fact, we envision a 
relationship browser that presents the definition of relations in a form similar to that 
of Fig. 1, collecting all piecewise definitions and allowing their quick access and edit-
ing. Also, consistency of statecharts with associated structure and sequence diagrams 
can be automatically checked, and changes in one diagram may propagate directly to 
changes in the others. Last but no least, the state transitions of statecharts can be used 
to check whether possible state changes are adequately accounted for in the sequence 
diagrams. This may include the computation of sets of operations that are admissible 
in all possible post-states of a previous operation.  

6 Discussion 

6.1 Total and Partial Relations, and Error Propagation 

At first glance it appears that our piecewise definition approach is capable of turning 
all partially defined relations into totally defined ones, by separating out the undefined 
cases. However, this need not always be the case: even though the minimal branch 
print: LinePrinter|¬empty × Text|hasMorePages appears to be OK, printing text on a 
non-empty line printer is in fact undefined if the text has more pages than the printer 
has sheets of paper (see Fig. 6). Unfortunately we cannot solve this problem by intro-
ducing a finite number of new state subtypes, since the number of pages is generally 
not limited. In fact, total definedness of a branch is granted if and only if 

1. its specification does not rely on other branches, or  
2. it involves only branches that are themselves totally defined. 

In other words, the partiality of a branch automatically propagates to all specifications 
that depend on it. While this is a feature of our approach (because it frees the modeller 
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from dealing with partiality explicitly), it is also a problem, because undefinedness 
can creep into seemingly innocuous parts of a model.  

We address this problem by making definition holes explicit, for instance by add-
ing exceptions to the signature of relations. These exceptions could be interpreted as 
the names of sets of tuples that are to be subtracted from the domain of a relation. For 
instance, we could write 

 print: LinePrinter|¬empty × Text|hasMorePages \ TooManyPages (8) 

in order to denote that the set labelled TooManyPages must be subtracted from the 
domain of print. This set would contain all pairs of texts and printers of which the text 
has more pages than the printer has paper denotes; its specification could either be left 
implicit, or tied to the fact that the printing results in an empty printer with pages left 
to print. Relations that depend on print will inherit the exception, as for instance the 
ternary version of print that is associated with the print manager (see Fig. 3). We can 
unify this explicit form of error propagation with the implicit one (the inability to bind 
a tuple to a branch) since the latter can be automatically translated to explicit excep-
tions. 

6.2 Open Problems 

Although we could demonstrate some appealing properties, our approach certainly 
deserves further elaboration. For instance, in order to eliminate all explicit branches 
of a model, large numbers of small specifications will have to be provided. While this 
is considered good practice in object-oriented programming, it may lead to models 
that are difficult to trace (the negative impact dynamic binding may have on program 
understanding applies accordingly). Also, many of the opportunities for model inte-
gration suggested here depend on simple diagram languages. Given the complexity of 
UML’s current statechart specification, it would be naïve to believe that integration 
with sequence diagrams can remain as simple as shown here. Another problem we did 
not touch on is that a single class can have several statecharts attached, and that the 
resulting state subtypes need not be unrelated, so that possible interdependencies be-
tween statecharts must be considered (for instance through attributes whose range is 
constrained by states of more than one statechart). 

6.3 Possible Improvements 

Many basic states such as empty occur over and over, as do the transitions linking 
them. Rather than specifying one statechart for each class separately, one could envi-
sion the definition of “abstract” statecharts that are “implemented” by various classes, 
each possibly adding variations. For instance, the statecharts for LinePrinter and Plot-
ter in Fig. 7 are sufficiently similar to think about deriving them from a common gen-
eralization. However, a corresponding investigation is beyond the scope of this paper. 

The notion of state subtypes and piecewise definition could also be extended to 
other diagram types, for instance activity diagrams. As the latter – together with se-
quence diagrams – are a popular means to formalize use cases, this immediately 
points out a path to piecewise definitions of use cases as well. Note that the “extends” 
relationship between use cases may already be considered as an existing way to 
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piecewisely specify exceptional or alternative behaviour, clearly demonstrating the 
need for modularity in use case specifications. 

Last but not least, an automatic translator of models into declarations of a statically 
typed language with (checked) exceptions (such as Java) could be devised. This trans-
lator may automatically add illegal argument and illegal state exceptions as shown in 
Fig. 3 to method signatures, and translate subtype information of overloaded declara-
tions to preconditions firing these exceptions. For more sophistically typed languages, 
the generation of dependent types should also prove to be a fairly simple exercise. 

6.4 Related Work 

Interestingly, the UML standard does not even attempt to specify binding rules: “The 
dispatching method by which a particular behaviour is associated with a given mes-
sage depends on the higher-level formalism used and is not defined in the UML speci-
fication (i.e., it is a semantic variation point).” [15] It appears that specification of 
binding is deliberately left to the target programming language selected for the pro-
ject. The consequences of such a policy have been discussed in [1]; we add that UML 
still lacks an explicit notion of overloading (cf. the discussion in [19]). 

Avoiding case analyses caused by state-induced behaviour differentiation is also 
the goal of the State pattern [8]. Its application might be a viable alternative in the 
context of programming (e.g., with Java) but models should not contain explicit reali-
zation structures that are designed to address lacking language support. Applications 
of the State (addressing state-based dispatch) or the Visitor pattern (addressing multi-
dispatch) would introduce realization structures to models which are not induced by 
an original to be described or a system to be specified.  

Our approach has some similarity to order-sorted algebraic specifications [11], in 
particular the universal order-sorted algebras independently developed by Gogolla 
and others [10, 13]. This form of algebraic specification assumes that each operation 
symbol represents a single operation defined on a universe of individuals, with sorts 
corresponding to subsets of that universe. In this framework, overloaded operations 
whose domains overlap must be identical on the overlap (because they denote the 
same operation). This feature has particular appeal to us, since it saves the modeller 
from having to deal with such things as overriding and calls to super, programming 
constructs that are believed to increase the compactness of specifications, but really 
introduce a lot of problems. In fact, our requirement that specifications can only be at-
tached to minimal declarations should be seen as a first step towards congruent rela-
tion specifications (as it can flag possible inconsistencies, cf. Section 5). Conditions 
required so that all tuples bind to one minimal declaration unambiguously (corre-
sponding to the regularity of signatures simplifying the implementation of overloaded 
order-sorted algebras [10]) have not been formulated explicitly here, because they 
would have required a more formal exposition which we sacrificed in favour of a 
more readable description of our work. 

Also in the context of algebraic specifications, Gogolla et al. have introduced the 
distinction between unsafe and OK functions, the former of which may lead to errors 
[8]. Terms containing unsafe functions are themselves unsafe; in analogy to our rela-
tions that are specified in terms of other, partial relations. Interestingly, the partiality 
of operations and the propagation of errors remain hard problems for algebraic speci-
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fications [13]; given the analogies pointed out above, universal order-sorted algebras 
with exceptions can provide a nice formal semantics of our approach. 

Shang shares our view that is inadequate to interpret declarations as statements 
generally all-quantified over their parameters [18]. For instance, a declaration Ani-
mal.eat(Food) (where Animal and Food are supertypes) should not be read as “all 
animals eat all food”. He notes that what he calls component types (types of fields or 
of parameters to methods) are sometimes dependent on the type of the enclosing ob-
ject (e.g., the specific kind of food is dependent on the specific kind of animal), and 
that declarations on (abstract) supertypes should explicitly express this dependency. 
Piecewise definitions of relations as suggested above cover the idea of dependent 
types, but are more general: in particular, they do not require a statement of which pa-
rameter type depends on which (which would be somewhat arbitrary in our printing 
example). Also, dependent types do not account for state-induced case analyses. 

Castagna has argued the case for overloading by way of covariant redefinition and 
multiple dispatching in object-oriented programming [2]. In his λ&-calculus, he de-
fines a message as a set of methods, where each method defines a branch of a function 
distinguished by the types of its parameters. Castagna’s branches roughly correspond 
to our piecewise definitions, and his multi-dispatch to our binding rules. Castagna al-
lows contravariance of method parameters to ensure substitutability for parameters on 
which no dispatching is desired; by contrast, we prefer to treat all parameters equally. 
Like Shang, Castagna does not consider dynamic typing. 

Based on work by Ernst et al. [6], Millstein has extended Java with “predicate dis-
patch”, i.e., a generalization of method dispatch that not only includes the types of pa-
rameters (as in multi-dispatch), but also potentially their values [12]. The emphasis in 
this work is on creating a modular static type system and the automatic detection of 
ambiguous method definitions. For this purpose, Millstein considers structural types, 
integers, and Boolean values; although dispatch on state subtypes could be emulated, 
such is not explicitly addressed. 

Chambers introduced the concept of predicate classes (corresponding to our state 
subtypes) to the programming language CECIL and demonstrates their utility with a 
number of examples [3], thereby validating the concept in a programming language 
context. Our work differs from and goes beyond the work by Chambers by suggesting 
the applicability of state subtypes in the context of modelling and by using piecewise 
definitions for a number of diagram types ranging from sequence diagrams to use case 
diagrams. Working in a modelling context we can draw on the existence of statecharts 
associated to classes and automatically derive state subtypes from them, thus advanc-
ing the integration of static and dynamic diagram types. We furthermore show how to 
unify the treatment of class and state-based behaviour with undefined behaviour and 
hint at potential support by modelling tools.  

FickleII is a proposed extension to the static type system of object-oriented pro-
gramming languages like Java that allows the type-safe, dynamic reclassification of 
aliased objects stored in temporary variables (including this) [5]. It uses state subtypes 
that extend so-called root types (classes) by adding and overriding members. The state 
type of an object can be changed at runtime, so that subsequent dispatches of same 
members on same variables may yield different results. Since different state subtypes 
of the same root can have different members, the contents of attributes that are not 
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common to all state subtypes are dropped upon state change. In contrast, our state 
subtypes can only restrict the ranges of attributes and the applicability of operations. 

Salzman and Aldrich have also suggested removing explicit branching by multi-
dispatch based on the state of objects [17]. However, they use prototypes rather than 
state subtypes for this, and do not cater for undefined constellations as we do, but in-
stead require that methods are provided for all possible parameter constellations, thus 
requiring explicit handling of undefinedness. Regarding natural “definition holes”, 
their approach is not as expressive as dependent types, or our work. 

Nierstrasz defines “regular types” by specifying (or at least approximating) their 
protocol through non-deterministic finite state machines [14]. Thanks to the existence 
of an equivalence test for this category of automata, he can check whether one type is 
a behavioural subtype of another type, with respect to their specified protocols. Al-
though Niersrasz’s work would be helpful for dealing with the inheritance of state-
charts (cf. Section 6.3), unfortunately we cannot directly draw on it since we must as-
sume more powerful automata types in general. 

Similar to Nierstrasz, Paech and Rumpe specify rules for behavioural subtyping re-
lationships but see their relevance predominantly in refining existing types in an in-
cremental model development process [16]. Similar to our discussion of covariantly 
redefined attribute values in Section 2, Paech and Rumpe also constrain the attribute 
values of objects, depending on which state (of an automaton) the object is in.  

DeLine and Fähndrich introduce type states to object-oriented programming in or-
der to make statements about object states through the help of a modular, static type 
system [4]. They use type states in pre- and postconditions, for instance, to guarantee 
the error free execution of methods. As a result, state transitions are scattered over 
methods and – in contrast to our explicit state diagrams – the corresponding state 
transition graph is only implicitly defined. DeLine and Fähndrich thoroughly investi-
gate state subtypes in the context of inheritance between classes, but do not consider 
the extension of dynamic binding to include the state (-types) of objects. 

The type system of ALLOY [7] computes for every model two kinds of types, called 
bounding types and relevance types. Bounding types restrict the possible set of values 
of expressions from above, whereas relevance types approximate the sets of elements 
that make a difference in the evaluation of an expression in a given context; contrary 
to our approach, they are a derived, rather than a declared, property. Empty relevance 
types flag modelling errors (since no object can make a difference). Non-empty rele-
vance types on the other hand do not indicate total definedness of an expression; in 
fact, ALLOY has no explicit relation declarations, and undefined expressions evaluate 
to the empty set (ALLOY has no exceptions). Interestingly, ALLOY also allows over-
loading and interprets it as union of relations; in addition, it resolves all non-abstract 
supertypes to abstract supertypes with one additional, (implicit) subtype containing 
the remainder. Issues of openness (and modularity) of a model are not addressed. 

7 Conclusion 

While much work remains to be done, we believe to have shown that state subtypes 
can significantly reduce the complexity of models. In particular, in combination with 
overloading they allow the definition of models in a piecewise fashion, thus avoiding 
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explicit case analyses. Hence state subtypes support incremental model development, 
allowing modellers to easily address temporary omissions by simply adding new local 
definitions, leaving the rest of the model unchanged. Our presented framework fur-
thermore enables a unified treatment of special type-based, state-based, and undefined 
behaviour. Finally, state subtypes turn out to be natural pivotal points for the integra-
tion of static and dynamic specifications. 
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