
E Bodden, F Forster, F Steimann “Avoiding infinite recursion with stratified aspects” in:
R Hirschfeld, A Polze, R Kowalczyk: Proceedings of NODe GI LNI P-88 (2006) 49–64.

Avoiding Infinite Recursion with Stratified Aspects

Eric Bodden

Sable Research Group
McGill University

3480 University Street
H3A 2A7 Montréal, PQ, CA

bodden@acm.org

Florian Forster

LG Programmiersysteme
Fernuniversität in Hagen

Universitätsstraße 1
D-58097 Hagen

florian.forster@feu.de

Friedrich Steimann

LG Programmiersysteme
Fernuniversität in Hagen

Universitätsstraße 1
D-58097 Hagen

steimann@acm.org

Abstract: Infinite recursion is a known problem of aspect-oriented programming
with AspectJ: if no special precautions are taken, aspects advising aspects can eas-
ily and unintentionally advise themselves. We present a compiler for an extension
of the AspectJ programming language that avoids self reference by associating as-
pects with levels, and by automatically restricting the scope of pointcuts used by an
aspect to join points of lower levels. We report on a case study using our language
extension, and provide numbers of the changes necessary for migrating existing
applications to it. Our results suggest that we can make programming with AspectJ
simpler and safer, without restricting its expressive power unduly.

1 Introduction

AspectJ lets aspects advise aspects, including themselves. In previous work, we have
argued on theoretical grounds that this self reference can lead to paradoxical expressions
if an aspect changes its own meaning [FS06]. In programming practice, self reference of
aspects, whether paradoxical or not, can lead to infinite recursion, and is almost always
unintended, that is, a programming error [AT].

AspectJ programmers have identified unintended recursion as a common problem and
have developed an idiomatic workaround: in order for an aspect A to not advise itself or
methods that it calls, its pointcuts are conjoined with !cflow(within(A)). This ensures
at runtime that the advice only executes if the current point of execution is not in the
dynamic control flow of one of the join points in A. Although one can keep the necessary
runtime overhead to a minimum by using smart compilation techniques [Av05b], it is in
the responsibility of the programmer to add this check, which he may forget. In practice
one often fails to discover the need for such guards until the debugging phase of a pro-
ject.

In our previous paper, which was inspired by the works of Bertrand Russell and Alfred
Tarski, we suggested the introduction of type levels to aspect-oriented programs [FS06].
More specifically, we suggested use of a meta modifier to tag aspects with the type (or
meta) level they reside in, and to tag pointcuts with the level they apply to. By requiring
that aspects can apply only to program elements from a lower level (a property that can
be checked statically, i.e., at compilation time), we can avoid unintended recursion that
derives from the self reference of aspects. A question that remains is whether this ap-

50

proach also prohibits intended recursion. However, our only mildly successful search for
practical examples of aspects that are to advise themselves suggests that such is a rare
requirement. More frequent seem to be cases in which aspects are to advise each other
mutually, but not themselves; this is indeed prevented by our approach, but, as shown in
Section 4.3 and further argued in Section 6.4, can be made possible by a simple trick.

The contribution of this paper is twofold:

1. we present an implementation of our suggested system of “stratified aspects” for
AspectJ in the AspectBench Compiler (abc) [Av05a], and

2. we demonstrate the feasibility of our approach by reporting on the refactoring of
several existing AspectJ programs suffering from self-reference problems to adopt
the new syntax.

As a side effect, we find that stratification of aspects is not only a useful concept for
avoiding recursion, but is sometimes also a natural property of the crosscutting concerns
they represent.

Our results indicate that the amount of refactoring necessary to adopt stratification is
reasonable, ranging from simply removing !cflow/within expressions to additionally
inserting a few meta modifiers and additional disjuncts in pointcut specifications. In
addition, for one program, namely the Law-of-Demeter checker described in [LLW03],
we show that a simple copy&paste transformation of aspects allows the checker to check
itself. This is in contrast to the fact that the original developers of the checker experi-
enced serious problems with avoiding recursion in making the checker check other as-
pects, and gave up on making it check itself (personal communication with Karl Lieber-
herr).

The remainder of this paper is organized as follows. First we use a small example to
show how our language extension, named AspectJ* in the sequel, changes the way of
dealing with infinite recursion caused by aspects. Then, we describe the AspectJ* lan-
guage in general and its implementation in the abc compiler. In Section 4, we walk
through a case study based on the aforementioned Law-of-Demeter checker. In Section
5, we quantify the cost and benefit of our approach, by reporting on the number of added
and saved expressions in a small number of sample applications. In Section 6, we justify
our language design, name its limitations, discuss our work in the context of others’, and
point to future work.

2 Introducing AspectJ*

To present our language extension and the problems it addresses, we resort to a simple
example. Consider the following tracing aspect:

aspect Tracing {
 Object around(): execution(* *(..)) {
 System.out.println("Entering:" + thisJoinPoint);
 return proceed();
 System.out.println("Leaving: " + thisJoinPoint);
 }
}

51

Now we decide to refactor the aspect, by extracting println(.) to a separate method:
aspect Tracing {
 private void show(String msg) {
 System.out.println(msg);
 }
 Object around(): execution(* *(..)) {
 show("Entering:" + thisJoinPoint);
 return proceed();
 show("Leaving: " + thisJoinPoint);
 }
}

The problem with the so refactored aspect is that its pointcut matches the execution of
show(.), which it calls itself so that an infinite recursion results. (Note that were the
aspect weaver allowed to weave into system libraries, the pointcut would also match
println(.). For the sake of this example, we assume common practice, i.e., that it is
not.) To avoid the recursion, we can change the aspect’s pointcut to

execution (* *(..)) && !within(Tracing)

In AspectJ* the additional condition in the pointcut is not necessary, because pointcut
primitives such as execution(.) by definition only match join points on a lower level,
in this case the class level, thereby avoiding all recursion arising from join points within
aspects.

Next consider that we wish to extend our tracing aspect so that it also traces advice exe-
cution. For this, the pointcut of the aspect is extended to

execution(* *(..)) || adviceexecution()

However, this pointcut matches the execution of the advice using it, entailing another
infinite recursion. Again, adding !within(Tracing) would help (assuming that Tracing
was not meant to trace its own execution, not even once; we shall return to this in Sec-
tion 4.3). However, in AspectJ* an aspect cannot advise aspects on the same level, in-
cluding itself – in fact, adviceexecution() on the (unmodified) aspect level is a seman-
tic error detected by the compiler. To fix it, i.e. to let Tracing advise other aspects, it
must be raised to the meta level, which is done by modifying the aspect with meta, as in

meta aspect Tracing {
 …
}

Now we have one disjunct of the pointcut matching method executions on the class level
(execution(* *(..))) and one disjunct matching advice execution (adviceexecu-
tion()). What is lacking is a disjunct matching method executions on the aspect level
(i.e., methods that are defined within an aspect, such as show(.) in the non-meta aspect
Tracing above). If desired, this behaviour can be added by writing

execution(* *(..)) || adviceexecution() || meta execution(* *(..))

instead of the above pointcut. Note that we do not modify adviceexecution() with
meta because it applies to advice and thus is already one level above non-modified
pointcuts (see Figure 1). Also note that AspectJ* allows us to express the targets of ad-
vice on a finer level than possible in AspectJ: for instance, by omitting the meta execu-
tion (* *(..)) disjunct from the pointcut we can exclude the advising of methods
defined within aspects; by omitting execution(* *(..)) we can constrain the aspect’s

52

advising to advice and methods defined within aspects only (used in our case study in
Section 4.3). In AspectJ, execution(* *(..)) would match on classes and aspects and a
finer granularity could only be achieved through naming conventions.

3 Implementation of AspectJ*

In order to evaluate the usefulness of our approach, we implemented the proposed syntax
as an extension to the AspectBench Compiler (abc) [Av05a], an open compiler for lan-
guage research in aspect-oriented software development. The extension consists of the
following parts, which we describe in detail below:

• an extension to the lexer and grammar in order to recognize the new syntax;

• an extension to the type checker, ensuring that only valid uses of meta pointcuts
pass the compilation; and

• an extension to the matcher, implementing the semantics of the meta modifier.

3.1 Syntax of AspectJ*

In order to accommodate our extension, we altered the existing AspectJ grammar in abc
in the following way. First of all, we provided a mechanism to annotate aspects with
meta levels. abc allows for the addition of new production rules via the extend keyword.
The additional syntax is highlighted.

extend aspect_declaration ::=
 [modifiers] meta [level] aspect identifier
 [super_spec] [interface_spec] [perclause] aspect_body
level ::= "(" integer_literal ")" | ε

Consequently, each aspect definition can be preceded by a modifier meta (denoting meta
level 1) or meta(i) for an integer i.1 We used the same syntax to extend the definition of

1 Note that meta level 1 corresponds to level 2 in Figure 1.

aspect

meta aspect

meta2 aspect

class

PCD

meta PCD
adviceexecution()

meta2 PCD
meta adviceexecution()3

2

1

0

le
ve

l

advice pointcut primitive
has available

quantifies over

source
target{

Figure 1: Stratified aspects, their admissible pointcut primitives, and their potential matches.

53

basic pointcuts. Basic pointcuts are all those pointcuts which have no inner pointcuts.
This rules out cflow pointcuts, named pointcuts and pointcuts used for Boolean combi-
nations.

extend basic_pointcut_expr ::= meta [level] basic_pointcut_expr

In addition, we had to modify the lexer so that it allows us to use integer constants in all
positions in which the meta keyword may occur.

3.2 Type checking stratified aspects

In AspectJ* each well-typed aspect has to adhere to the following rules:

1. meta(i) is only legal for i ≥ 0. In the following, meta is shorthand for meta(1)
and absence of a meta modifier is equivalent to meta(0).

2. meta(i) aspects may only extend meta(i) aspects. In particular, no aspect may
extend a class. In programs in which this happens, the extended class has to be
refactored to an abstract aspect.

3. meta(i) pointcuts may only be used in meta(j) aspects if i ≤ j.

4. meta(i) adviceexecution() pointcuts may only be used in meta(j) aspects if
i < j.

The first two rules are easy to check by standard mechanisms: we extended the type
nodes for aspect declarations and basic pointcuts so that they can hold a meta level. The
type checker was then altered to check for each aspect that its meta level is in the valid
range and that it does not extend a class and, if it does extend an aspect, that this aspect
has the same meta level.

The last two rules however were harder to handle correctly. The problem here is that it
does not matter in which aspect a pointcut is declared: since pointcuts may be imported
from other aspects or even classes, it is legal to declare them anywhere. However, they
may only be used by advice on the correct level! For instance, the aspect PointcutData-
base in

aspect PointcutDatabase() {
 pointcut aspectMethodExecutions(): meta execution(* *(..));
}

aspect ShouldBeMeta{
 after(): PointcutDatabase.aspectMethodExecutions() {
 //the preceding line will raise a compilation error
 }
}

is allowed to declare meta pointcuts even though it is not itself on the meta level; how-
ever, ShouldBeMeta must be declared as a meta level aspect in order to use them.

This means that we cannot check type-correctness until advice matching takes place,
because it is here where named pointcuts are inlined. Hence we had to insert our addi-
tional type check at an unusual location, namely in the inline method of the aspect info
for pointcut nodes. (An “aspect info” is the semantic equivalent of each valid syntactic

54

AspectJ construct in abc.) At this place, we can conveniently refer to the aspect using the
meta pointcut and hence issue meaningful error messages.

3.3 Extending the matcher

Extending the matcher proved relatively easy. First we had to assign a default meta level
(aspect level for adviceexecution() and class level for any other basic pointcut) to any
basic pointcut that was not given an explicit meta level by the programmer. We could
easily achieve this with a visitor pass over the abstract syntax tree.

Then in the matcher, before checking whether or not a basic pointcut matches a given
join point shadow, we first check if the meta level of this pointcut equals the one of the
class/aspect we match against. Only if this is the case, we proceed by matching the ac-
tual pointcut.

We made our implementation available at http://www.sable.mcgill.ca/~ebodde/meta,
including source, several test cases to try it out and the code of the case studies which
follow. It should be noted that our extension to abc can easily be used by other extenders
to build their tools on top of our extension, directly making use of the semantics of strati-
fied aspects. We give an example for this in Section 5.3.

4 The Law-of-Demeter checker case study

In reaction to our theoretical work described in [FS06] the Law-of-Demeter checker
described in [LLW03] was brought to our attention. It checks for a running program
whether the Law-of-Demeter is adhered to on the object level, i.e., whether or not object
references are used in such a way that the shortest available path for accessing another
object (counted as the number of consecutive indirections) is no greater than one. The
project consists of a small number of abstract classes and aspects that implement the
checker, and of a base program for which the law is checked. As its authors reported
(personal communication), all attempts to make the checker check itself resulted in infi-
nite recursion. Therefore, the implementation of the checker uses the !cflow/within
idiom to constrain its pointcuts to the base program, thus excluding the checker itself
(consisting of a few aspects and abstract classes containing pointcut definitions, advice
and helper methods) from being checked. This is done by grouping all checker classes
and aspects in a package called lawOfDemeter:

package lawOfDemeter;

public abstract class Any {
 public pointcut scope():
 !within(lawOfDemeter..*)
 && !cflow(withincode(* lawOfDemeter..*(..)));
 …
 public pointcut MethodCallSite():
 scope()
 && call(* *(..));
 public pointcut MethodCall(Object thiz, Object targt):
 MethodCallSite()
 && this(thiz)
 && target(targt);

55

 // and so forth; set of pointcuts matching Java constructs
 // for which the Law of Demeter can be checked
}
…
public aspect Check {
 private pointcut IgnoreCalls():
 call(* java..*.*(..));
 …
 after(Object thiz,Object targt):
 Any.MethodCall(thiz,targt) && !IgnoreCalls() {
 if (!ignoredTargets.containsKey(targt) &&
 !Pertarget.aspectOf(thiz).contains(targt))
 { objectViolations.put(thisJoinPointStaticPart,
 thisJoinPointStaticPart);
 }
 }
}

To avoid that the call to objectViolations.put(.,.) in the advice of Check is matched
by the pointcut Any.MethodCall(thiz, targt) on which it depends, this pointcut ex-
plicitly excludes all join points from the lawOfDemeter package, by conjoining the
pointcut Any.scope().

4.1 Avoiding recursion without !cflow/within

The use of the !cflow/within idiom is necessary even in absence of adviceexe-
cution() because the aspects contain join points, and make use of methods containing
join points, that would otherwise be matched by the aspects’ own pointcuts. This is so
because the Law-of-Demeter checker implements a dynamic program analysis targeted
at the use of general language constructs (rather than types of join points specific to the
base application) and the control logic in the aspects is implemented using the very same
language constructs. As a result, the checker would naturally attempt to check itself,
leading to infinite recursion.

By using AspectJ* instead of AspectJ, the aspects of the checker and the abstract classes
they extend (which have to be declared as abstract aspects in AspectJ*) are automatically
one level above the base program, and the pointcuts they contain are automatically re-
stricted to classes as the base. Therefore, the aspects cannot possibly apply to them-
selves, so that all occurrences of the !cflow/within idiom can be removed. Indeed, after
dropping all references to !cflow/within (basically the pointcut scope()), the program
ran as before, reporting the same number of Law-of-Demeter violations in the base pro-
gram. Note that dropping the contained !cflow/within clauses is possible, but not nec-
essary: because they all refer to the lawOfDemeter package and thus the aspect level,
they become superfluous. On the other hand, using AspectJ* means that the unmodified
checker cannot check other aspects, simply because they are on the same level as the
checker. To remedy this, we have to move the checker aspects up one level.

4.2 Checking the Law-of-Demeter in Aspects and Classes

The modifications necessary to do this were minor. First, we prefixed all checker aspects
with the meta modifier. Next, we added adviceexecution() primitives to the pointcuts

56

(to match the advice of aspects) and prefixed copies of the other used primitives (execu-
tion(.), set(.), etc.) with meta (to match corresponding join points in aspects). Note
that had we preferred a simpler language design (as discussed in Section 6.1), we could
have spared ourselves the change of pointcuts, albeit only at the price of a loss of flexi-
bility, which will be needed in the next subsection.

The changed program, which checks the Law of Demeter for all classes and non-meta
aspects, reads as follows:

public abstract class Any {
 public pointcut scope(): !within(lawOfDemeter..*)
 && !cflow(withincode(* lawOfDemeter..*(..)));
 …
 public pointcut MethodCallSite():
 call(* *(..)) || meta call(* *(..));
 public pointcut MethodCall(Object thiz, Object targt):
 MethodCallSite()
 && ((this(thiz) && target(targt))
 || (meta this(thiz) && meta target(targt)));
 …
}
…
public meta aspect Check {
 private pointcut IgnoreCalls():
 call(* java..*.*(..)) || meta call(* java..*.*(..));
 …
}

Note that, as a process issue, if one adds the meta modifiers to the pointcuts first, the
type checking pass of the compiler issues an error message if any meta modifiers for
aspects are forgotten.

4.3 Making the checker check itself

After having moved all aspects of the project one level up, there were no aspects left on
the non-meta level that the checker could check. Therefore, we added the original
checker aspects to the changed project. After the necessary renaming of packages (the
meta modifier does not affect name or namespace of the modified aspects, so that an
aspect and its copy modified with meta cannot coexist in the same namespace), the pro-
gram compiled smoothly. However, running it did not only discover four additional
violations of the Law of Demeter (all occurring in the aspects that were designed to
check it), but also resulted in all violations in the base program being reported twice,
because both the original checker and the meta checker checked it. We were however
easily able to fix this, simply by removing all components quantifying over the class
level in the pointcut definitions used by the meta checker. We were thus left with

a) a checker that checks the Law of Demeter for base programs (excluding aspects) and

b) an almost identical checker that checks the Law of Demeter for all non-meta aspects.

Quite obviously, unless we explicitly want the checker to check itself (or, rather, a copy
of itself), we would prefer the variant described in the previous subsection, i.e., to have
one checker that checks base programs and aspects (but not itself). For the creation of
aspects that can advise themselves (without running into an infinite recursion), we pro-
pose a more systematic approach in Section 6.4 as future work.

57

Finally, note that the same principle of letting the Law-of-Demeter checker check a copy
of itself could have been realized in plain AspectJ; however, this would have required a
number of additional !cflow/within expressions.

5 Refactoring to stratified aspects

The previous sections suggested that refactoring programs so that they make use of
stratified aspects is not a big deal. Here, we briefly recapitulate what is necessary to turn
AspectJ programs into AspectJ* programs of same functionality.

5.1 The refactoring procedure

As indicated above, refactoring existing programs to rely on stratified aspects (that is, to
turn AspectJ programs to AspectJ* programs) is relatively easy:

1. For all programs in which no aspect advises other aspects, nothing needs to be done.
Remaining (i.e., still undiscovered) sources of infinite recursion resulting from self-
reference of aspects are automatically disabled, and for those that have been pre-
vented by using the !cflow/within idiom, the guards can be removed.

2. For all programs in which aspects advise other aspects, the aspect-advising aspects
must be moved up one level, by modifying them with the meta modifier. If these as-
pects advise only aspects and no classes, each of the pointcuts they refer to (except
those involving adviceexecution()) must also be modified with meta. If these as-
pects advise aspects and classes, each pointcut disjunct must be duplicated, and the
duplicate must be modified with meta.

3. For all programs in which two or more aspects should advise all others, but not
themselves, as well as for programs in which one or more aspects should advise all
aspects (including themselves), we have to refer the reader to our future work (de-
scribed in Section 6.4).

We expect the majority of cases to be of category 1. First evidence justifying this expec-
tation is presented next.

5.2 Cost and benefit of the refactoring

Now that we have seen that refactoring to AspectJ* requires a variable number of neces-
sary steps, it would be interesting to know how much work we have to expect in the
average case, and what the expected saving is. Therefore, we have conducted further
case studies.

In order to identify projects in which aspects deliberately advise aspects, we looked for
programs containing the adviceexecution() primitive. Unfortunately, we only found
three. (The low availability of non-trivial AspectJ programs for benchmarking and other
experiments is a known problem of the still young community.) Therefore, we added to
our survey a few other programs (not using the adviceexecution() primitive) of which

58

we knew that they suffered from recursion induced by self-application of aspects. The
results of refactoring these projects to AspectJ* are summarized in the following table
and discussed in detail below. (See Appendix for references to the sources of the pro-
jects.)

number of: pr
oj

ec
t:

tra
ci

ng
 fr

om
 A

sp
ec

tJ
 d

is
tri

bu
tio

n

G
la

ss
bo

x
In

sp
ec

to
r

tra
ci

ng
 fr

om
 G

la
ss

bo
x

In
sp

ec
to

r

D
es

ig
n-

by
-C

on
tra

ct
 c

he
ck

er

Te
tri

s

ba
nk

in
g

ap
pl

ic
at

io
n

La
w

-o
f-

D
em

et
er

 c
he

ck
er

§

classes (total) n† 15 n n 8 2 n+1/+1/+2 project
size aspects* 2 24 1 1 8 3 4/4/8

occur. of adviceexecution() 0 2 1 m₤ 0 2 0/1/1 before
refactoring scope limitations using within‡ 3 15 1 m 4 2 9/10/9

scope limitations using within 0 12 2 0 2 0 0/0/0
meta modifiers 0 20/3$ 1 0 0 0 0/18/18

after
refactoring

additional pointcut disjuncts 0 18/0 1 0 0 0 0/16/2
§ for the variants checking classes only, checking classes and aspects excluding itself, and checking
 everything (by means of two stacked aspects, each extending only to the level immediately below it)

† number of classes depends on the particular base application, which can be swapped
* including abstract aspects and classes extended by aspects
₤ one per assertion to be checked
‡ including !within, !cflow/within, etc.
$ smaller numbers obtained by letting unmodified pointcuts cover all lower levels (see text)

Most notably, almost all explicit scope limitations (using some variant of within) could
be avoided. Those that remained represent explicit restrictions of aspects to classes or
packages (Glassbox Inspector), or resulted from the declaration of warnings for certain
procedure calls from within specific packages (Tetris). This suggests that using AspectJ*
one can successfully mitigate the problem of structural pointcut matching based on nam-
ing conventions [SG05]; AspectJ* is one step into the direction of using more semantic
matching constructs.

Another interesting observation is that meta aspects and additional pointcut disjuncts
were only required in the refactored version where adviceexecution() occurred in the
original code. Interestingly, although both the Design-by-Contract checker and the bank-
ing application did contain adviceexecution(), this was only used to prevent the con-
taining pointcuts from matching advice and could be dropped in the corresponding As-
pectJ* program, requiring no additional modifications. Note that the relatively high first
numbers of necessary pointcut modifiers (20) and additional disjuncts (18) for the Glass-
box Inspector resulted from our language design decision to require pointcuts to be ex-

59

plicit about which level they apply to. Had we adopted a policy of letting all pointcuts
used by an aspect on level n automatically apply to join points of all levels from 0 to n–1
(as discussed in Section 6.1), only the second number of changes (3 and 0) would have
been necessary. Last but not least, the relatively high numbers of required meta modifi-
ers and additional pointcut disjuncts given for the second and third version of the Law-
of-Demeter checker reflect its altered behaviour: the second version extends checking to
other aspects, and the third extends it to everything (including itself).

As an aside, when refactoring the Glassbox Inspector we noted a natural stratification of
aspects. The Glassbox Inspector distinguishes between general aspects, aspects for log-
ging, and aspects for error handling. All general aspects are advised by the logging as-
pects, which explicitly exclude themselves and the error handling aspects from being
logged. All general and the logging aspects in turn are advised by the error handling
aspects, which do not advise themselves. By using AspectJ*, this implicit hierarchy of
aspects is naturally reconstructed in explicit form: error handling is a meta meta
(meta(2) in AspectJ* syntax) aspect, logging is a meta aspect, and all others are ordinary
aspects. Note that a similar observation has been made in [RS05]; it is discussed in Sec-
tion 6.3.

One might argue that the moderate effort necessary to perform the refactoring is relativ-
ized by the moderate gains that can be expected. We counter this argument by stressing
that our focus is not on refactoring. With using AspectJ*, infinite recursion resulting
from self reference need not be avoided – it can no longer occur. Therefore, we suggest
that programmers consider stratifying their aspects right from the beginning of their
projects.

5.3 Savings for generated aspects

AspectJ is not only used as a source programming language, it can also be the target
language of code generators. Such generators instrument ordinary (including non-ao)
programs, e.g. for the purpose of dynamic analysis or runtime verification. Programs
developed in this field often consist of two parts: a structured instrumentation engine and
a backend which processes an event stream generated by the instrumentation. At least
two of those programs, namely the runtime verification tools J-LO [Bo05, SB06] and
EAGLE [Ba04] conduct their instrumentation by reducing an original (temporal) require-
ments specification to AspectJ aspects. For those aspects it is a natural requirement that
they should not instrument themselves, but only the base application.

We wanted to evaluate if stratified aspects could be used in order to prevent unintended
recursion automatically. Indeed, when J-LO was first developed by us about one year
ago, we did experience such recursion and so had to alter our code generation strategy in
order to include !within conjuncts. Adding such constructs during code generation is
particularly painful because one operates on an abstract syntax tree (AST) rather than on
a textual representation of the AspectJ program. Methods adding AST nodes for such
purposes can easily occupy a full page of code. Moreover this is a redundant task for all
such verification tools and it would be very beneficial, could it be avoided.

60

Fortunately, J-LO itself is also implemented as an extension to abc. By making J-LO
extend AspectJ* instead of AspectJ within abc, we got the semantics of AspectJ* for free
for the aspects generated by J-LO, preventing unintended recursion automatically. As a
J-LO developer, we simply knew that any aspect generated by J-LO was safe with re-
spect to that matter and this without writing any line of code in order to achieve this
property, since those semantics are entirely handled by the AspectJ* extension. We con-
clude that that stratified aspects and AspectJ* are a good basis for the design of aspect
code generators.

6 Discussion

6.1 Language design decisions

In the design of our language extension, we had to take several choices. Firstly, we had
to decide whether or not the pointcuts used by an aspect should be explicitly meta-
modified, or whether they should derive their type level from the aspect using it (which
would be closer to our role model, Russell’s type theory). Although the latter would have
simplified the language considerably, it would have meant that pointcuts must always
apply to all levels below that of the aspect, which can sometimes be contrary to what one
wants. For example, it would be impossible to express that an aspect advises only other
aspects (including the methods defined within these aspects), and no classes (which is
also impossible to specify generically, i.e., without resorting to naming conventions, in
current AspectJ).

Another design decision is that we do not allow subtyping across levels. In particular,
this means that an aspect cannot inherit from a class. While we do not consider this to be
a big loss (what does it mean for an aspect to specialize a class? is the class a proper
abstraction of an aspect?), it means that AspectJ* is not backward compatible to AspectJ.
However, letting inheritance cross levels would have bloated our typing system with
numerous exceptions to its simple rules.

Last but not least, we decided to make no attempts to avoid recursion resulting from an
aspect accessing members of a lower level. This will be discussed next.

6.2 Where we must fail: limitations of our approach

We cannot avoid all recursion with our approach. In particular, we cannot avoid recur-
sion resulting from an aspect accessing elements of lower levels (including classes),
because for us, these accesses are indistinguishable from accesses by program elements
on the same level, which are to be advised. Such can only be achieved by distinguishing
types of join points on the same (meta) level as described in [FS] (see also related and
future work below), or by explicit guards such as !cflow/within expressions, which we
wanted to avoid. However, our compiler could produce a warning wherever an aspect
crosses levels by accessing elements from a lower level and this may result in recursion.
In fact, the cflow analysis [Av05b] built into abc could be used to statically compute
those warnings.

61

Another problem of our approach arises when different concerns are to be implemented
that are to advise each other. For instance, it could be that we want the Law-of-Demeter
checker and an aspect debugger implemented as an aspect to coexist, mutually advising
each other, but not themselves. Incidentally, this was not the case for all applications that
we looked at, presumably because they were all proof-of-concept of an implementation
for a single concern. In practical scenarios however, this may well be the case. We seek
to further explore this problem in future work (Section 6.4).

6.3 Related work

Open Modules [Al05] provide means to decompose an aspect-oriented piece of software
into multiple modules in such a way that certain assumptions can be made about their
interaction. In particular, for a join point to be visible to a given aspect, this join point
has to be explicitly exposed to it by a module interface specification. The idea differs
from ours in that Open Modules provide a means for decomposing the set of join points
of an application horizontally, without resorting to (vertical) layers. Therefore, the two
approaches appear to be orthogonal to each other. The question is whether the modules
of Open Modules can also be used to prevent unintended recursion. Because internal join
points are matched without an explicit export required, we do not see how this could be
achieved for direct recursion. Indirect recursion on the other hand, involving two or
more aspects that are not “friends of” [On06] the same module, can be prevented, simply
by avoiding circular dependencies between modules. However, we doubt that the desire
to avoid unintended recursion would really justify the separation of a system into mod-
ules.

Open Modules were only recently integrated in the abc compiler [On06]. An interesting
question is now whether Open Modules can emulate stratified aspects. For this, it would
be necessary that a module can export its join points selectively to certain other modules.
The classes and aspects of an application could then be decomposed into modules rather
than levels, and each module could make sure that exactly the modules representing
higher levels have access to its contained pointcuts, simply by exporting to those only.
The resulting interface specification would be massive (because all join points must be
exported) and extremely sensitive to changes within the module. Also, interface specifi-
cations could not be reused (or shared) among different levels, since an aspect on a
higher lever must be able to distinguish between join points from different lower levels.
All in all, even if the simulation of levels might be possible using Open Modules or
some minor variation thereof, such is clearly not in the spirit of the approach. In our
opinion, a good symbiosis would be to have base code and non-meta aspects organized
by open modules and then address integration concerns (as described in [RS05]) by
using meta-aspects which organize those modules.

In [St05] the last author of this paper has argued that aspects are second-order constructs,
a view that is not universally shared in the AOP community. However, it works in fa-
vour of our approach, which views aspects as concepts confined to the second and higher
orders. There are of course other, more advanced type systems for programming lan-
guages that we could have looked into. However, we believe that the one we have sug-

62

gested suffices for our purposes, and because it is also rather simple (and should thus be
quickly embraced by programmers, which is not necessarily the case for all type sys-
tems!), we see no reason to replace it for another.

In [RS05], Rajan and Sullivan also argued in favour of hierarchical layering of aspects,
so as to be able to cleanly modularize what they call higher-order crosscutting concerns:
“In effect, [in AspectJ] higher-order concerns are all squashed down into – and conse-
quently scattered across and tangled into – the single available aspect layer.” [RS05] In
their proposed programming language Eos-U, they (re)unite the class and aspect con-
cepts to so-called classpects, representing aspects as objects (rather than classes) that can
be bound to others, acting as their advisors. Advice is replaced by ordinary (named)
methods, which are bound to join points of the advised objects using the pointcut expres-
sion syntax from AspectJ. Because advisors can advise advisors, hierarchies of aspects
(or, rather, aspect objects) can be created. However, these hierarchies are expressed
dynamically, through the composition of objects; in particular, no hierarchy on the type
level is induced. Hence no guarantees about possible recursion can be given at compile
time.

Accidental recursion due to a conflation of meta-levels has also been observed by Chiba
et al. [CKL96]. The authors maintain that if a programming language with a meta object
protocol fails to provide means of separating meta-levels explicitly, meta-circularity of
the programming language may lead to control-flow circularity (i.e., recursion) on the
implementation level. To solve this problem, the authors introduce an implemented-by
relationship that complements the usual instance-of and subclass-of relationships of
object-oriented programming by one that captures “the relationship between imple-
mented and implementing objects and class metaobjects” [CKL96]. Translated to AOP,
this implemented-by relationship could be interpreted as an advises relationship between
an aspect and its base. Interestingly, the authors of [CKL96] perceived the introduction
of a “special purpose test that prevents the infinite recursion” as seeming ad hoc, possi-
bly difficult to reason about, and not effective in general. This is in contrast to the fact
that currently, AspectJ (on whose design at least one of the authors of [CKL96] has
considerable influence) offers only such a test (namely!cflow/within guards) for avoid-
ing circularity (or self-referentiality [FS06]) in aspect-oriented programs.

6.4 Future work

Although aspects that should advise themselves are rather rare, our copy&paste with
meta approach, which effectively limits the levels of recursion to one, is only a work-
around. One possibility to avoid it would be to parameterize aspects on the meta level,
i.e., to use a type level variable N in the definition of an aspect, as in

meta[N] aspect Tracing …

Like a template in C++, the variable N could be instantiated to yield an aspect at the
specified level. The compiler would then produce a copy of this aspect with the type
variable replaced by its value. However, this would require that the levels of the point-
cuts used by the aspect are also parameterized. Since the levels are not necessarily iden-
tical to that of the aspect, relative levels would have to be specified, as in

63

meta [N-1] pointcut …

This however implies that instantiation of a template can fail, namely when a relative
level drops below zero. While this could be avoided by dismissing explicit pointcut
levels altogether (as discussed in Section 6.1), we want to collect more practical experi-
ence with the use and usefulness of meta aspects in general, before we address this par-
ticular problem.

A variant of the problem of the aspect that should advise itself, but only once (i.e., with-
out running into a recursion), is that in which two or more aspects should mutually ad-
vise each other, but not themselves (an example is mentioned in Section 6.2). This is also
problematic, because indirect recursion can be the result. The aspects cannot be brought
into appropriate order, since whichever resides a level above the other(s) cannot be ad-
vised by the other(s). The solution is analogous to what we have proposed above: simply
instantiate the aspects for two consecutive levels. In fact, this workaround may be
needed so often that it might be useful to extend the language so that the compiler gener-
ates the meta-aspects automatically, for instance directed by using self as an (addi-
tional) modifier. However, more experiments have to be done here.

For an alternative solution, we could once again resort to mathematical logic. The type
levels of Russell, although fully sufficient to avoid self reference, can be generalized to
sorts, i.e., to partitions of the universe of discourse that are independent of levels. In
particular, sorts allow partitions on the same level. If we can use sorts (or types) to ex-
plicitly declare sets of join points on the same level, and if we declare aspects with the
types of join points which they advise, we can also allow cross application of aspects on
the same level, avoiding recursion, albeit only at the price of obliviousness [FF04]. The
implementation of a corresponding proposal [FS] is still pending, as is the unification of
the corresponding type system with the one described here.

7 Conclusion

AspectJ programmers often face the problem that infinite recursion can result from unan-
ticipated pointcut matches. Not infrequently, the recursion is only discovered at the de-
bugging stage of a project, and then avoided by adding a programming idiom that tests
the call stack. In [FS06], we suggested a more principled approach to avoiding infinite
recursion, or letting it get caught by the compiler, by introducing levels of aspect appli-
cation.

In this paper, we have presented an extension of the abc compiler that realizes our lan-
guage extension, named AspectJ*, and discussed the cost and benefit of using stratified
aspects to replace for explicit guards. For this, we have collected data from all available
projects that use adviceexecution() as a potential source of infinite recursion, and a
few others that suffer from self-reference through other pointcuts. By applying it to the
Law-of-Demeter checker described in [LLW03], we demonstrated for a specific example
how AspectJ* simplifies program design, and makes aspect applications – including self
application – simple that were previously thought to be too difficult to get right.

64

References

[Al05] J Aldrich “Open Modules: modular reasoning about advice” in: ECOOP 2005 Springer
LNCS 3586 (2005) 144–168.

[AT] AspectJ Team The AspectJ™ Programming Guide Chapter 5: Pitfalls
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

[Av05a] P Avgustinov et al. “abc: an extensible AspectJ compiler” Transactions on Aspect-
Oriented Software Development (2005) 293–334.

[Av05b] P Avgustinov et al. “Optimising AspectJ” in: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI) (2005) 117–128.

[Ba04] H Barringer, A Goldberg, K Havelund, K Sen “Program Monitoring with LTL in
EAGLE” in: 18th International Parallel and Distributed Processing Symposium, Par-
allel and Distributed Systems: Testing and Debugging - PADTAD'04 (IEEE Computer
Society Press 2004).

[Bo05] E Bodden J-LO – A Tool for Runtime-Checking Temporal Assertions Diplomarbeit
(RWTH Aachen 2005).

[CKL96] S Chiba, G Kiczales, J Lamping “Avoiding Confusion in Metacircularity: The Meta-
Helix” in: 2nd International Symposium Object Technologies for Advanced Software
Springer LNCS 1049 (1996) 157–172.

[FF04] RE Filman, DP Friedman “Aspect-oriented programming is quantification and oblivi-
ousness” in: RE Filman et al. (eds) Aspect-Oriented Software Development (Addison-
Wesley 2004).

[FS] F Forster, F Steimann “Programming with join point types and polymorphic pointcuts”
unpublished manuscript http://www.fernuni-
hagen.de/ps/pubs/PolymorphicPointcuts.pdf.

[FS06] F Forster, F Steimann: “AOP and the antinomy of the liar” in: Workshop on the Foun-
dations of Aspect-Oriented Languages (FOAL) @ AOSD (2006).

[LLW03] KJ Lieberherr, DH Lorenz, P Wu “A case for statically executable advice: checking
the law of demeter with AspectJ” in: AOSD (2003) 40–49.

[On06] N Ongkingco et al. “Adding Open Modules to AspectJ” in: AOSD (2006) 39–50.
[RS05] H Rajan, KJ Sullivan “Classpects: unifying aspect- and object-oriented language de-

sign” in: ICSE (2005) 59–68.
[SB06] V Stolz, E Bodden “Temporal assertions using AspectJ” in: Fifth Workshop on Run-

time Verification (RV'05) ENTCS 144:4 (2006) 109–124.
[SG05] M Störzer, J Graf “Using pointcut delta analysis to support evolution of aspect-

oriented software” 21st IEEE International Conference on Software Maintenance
(2005) 653–656.

[St05] F Steimann “Domain models are aspect free” in: L Briand, C Williams (Eds) MoD-
ELS/UML 2005 Springer LNCS 3713 (2005) 171–185.

Appendix: URLs of the refactored projects

Tracing from AspectJ distribution: http://www.eclipse.org/ajdt/
Glassbox Inspector: https://glassbox-inspector.dev.java.net/
Tetris: http://www.sable.mcgill.ca/benchmarks/
Banking application: http://www.cs.hofstra.edu/~cscccl/csc123/aop/aopbank.java
Design by Contract checker: http://www.cs.tau.ac.il/~ohadbr/aop/DbcUsingAOP.ppt
Law-of-Demeter checker: http://www.ccs.neu.edu/research/demeter/demeter-method/
LawOfDemeter/AspectJCheckers/PaperObjectForm/

