
* presented at: OOPSLA 2002 Workshop on Distributed Pair Programming

Proposing Mobile Pair Programming*

F Steimann, J Gößner, U Thaden
Institut für Informationssysteme, Universität Hannover , Germany

{steimann, goessner, thaden}@kbs.uni-hannover.de

1 Background
Learning in small groups is deemed highly effective. Given this observation, pair programming
appears to be a natural setting for learning how to program. However, even in groups learning
takes considerable time and pair programming has some prerequisites that are not easily met, not
even in a university setting: it requires suitable facilities where students can work on a computer
sitting side-by-side, discussing aloud without disturbing others, and it requires sufficiently long
time slots during which students actually have the opportunity to meet. Restrictions of this kind
are not only present in a university setting; they equally apply to many industrial scenarios, in
which the search for sources of increased productivity and quality dominates over learning is-
sues.
Given these problems and given that more and more (German) universities consider transition-
ing to a notebook university1, mobile pair programming based on specially equipped laptops
appears to be a viable alternative. Local and motion independence increases the possibility of
collaboration, the more so if campuses are widely distributed, students commute long distances
or are otherwise separated; at the same time, ad-hoc networks allow collaboration over short dis-
tances (eg, for two collaborators travelling in a train).

2 Prior experience with stationary pair programming
2.1 Setup
We have conducted a first small experiment among 60 students of a regular 200 h object-oriented
programming project held during the 4th semester of an applied informatics curriculum. Students
were asked to divide up into ten equal-size groups, and each group was subsequently provided
with four exercises, each comprised of six more or less independent tasks. Students were encour-
aged to process their tasks as pair programmers (two tasks for one pair) but could also solve
them alone (one task per individual). After completion of each task, each student was asked to fill
in a questionnaire asking for her/his experience, duration of task processing, and whether (s)he
preferred pair programming over working alone. In order to avoid bias based on personal sym-
pathy/antipathy, we required pairs to rotate within each group after each block.
Although we never intended to declare our experiment a serious study, we had at least hoped to
arrive at comparative results of some credibility. Unfortunately, outcome was basically incompa-
rable, so that our experiment collapsed to a rather general pair programming acceptance test.
However, we’d like to stress here that this was not an inherent flaw in our initial study design,
but rather owing to a common software engineering problem: although we had originally in-
tended to provide a complete suit of unit tests with each task and automate the extraction of time
and quality metrics, we had to give up on this venture due to personnel shortcomings (beware
Boehm’s software risk #1).

2.2 Results
In a first quick survey half way through our project, almost three quarters of our students said
that they preferred pair programming over working alone. Only 15% explicitly stated that they
disliked pair programming. 85% said that they had actually learned something during their pair
programming activities; this may be considered rather strong evidence that pair programming is
conceived as effective by learners, although proof of actual learning progress is of course lacking,
as is that of increased quality or productivity.

1 not to mention companies equipping their buildings with WLAN and their staff with laptops

 2

However, as it turned out a detailed analysis of the questionnaires conducted at the end of the
project showed that actual pair programming times were much shorter than suggested by the
initial enthusiasm: only one third of all tasks were actually solved in pairs. Even though students
are obviously open to pair programming, its actual acceptance is disappointingly low; as one
student put it, “pair programming only makes sense […] with better opportunities to meet and
work together at the face“. It seems that meeting is a severe obstacle to (co-located) pair pro-
gramming.

3 A controlled experiment demonstrating the effects of mobile pair program-
ming

It has been noted that software engineering often lacks the scientific rigor expected from an engi-
neering discipline [4]. This is often excused by the supposed softness of software, its related proc-
esses and required skills. Indeed, many scientific endeavours in our field are concluded with a
proof-of-concept demonstration, showing that what has been elaborated so carefully in the theo-
retical part of one’s work at least doesn’t fail completely in practice. By introducing mobile pair
programming, we hope to improve the software process, an achievement that cannot be proven
on formal grounds. Therefore, the first step in our investigation must be to come up with a care-
fully designed experiment.

3.1 Context
We have set up a pilot project (named UBICAMPUS) at our home university in the course of which
260 students will be equipped with (partially sponsored) notebooks within the next year.2 These
students will be obligated to take part in a number of innovative classes building heavily on the
concepts of ubiquitous and wireless computing. One of these classes is the software project that
has already led to the above described experiences with pair programming. As part of the UBI-
CAMPUS project, we hope to demonstrate improvements in the collaborative (= pair program-
ming) efforts among students and thus in a learning effect which can be attributed to the intro-
duction of wirelessly linked notebooks to the pair programming process. Validity of results will
not be bound to a university setting, however; lessons learnt should be applicable to industrial
scenarios, too.

3.2 Goal
The goal of our work is to establish criteria and conditions for and to conduct a repeatable experi-
ment designed to demonstrate the effect of independent mobility (a more general form of dispersal)
on the acceptance of pair programming.

3.3 Study design
As indicated earlier, the primary goal of our study is to show that pair programming is facilitated
by the possibility of mobile and – if desired – also distant pairing, ie, that students equipped with
interconnected mobile laptops “meet” (virtually or real) and collaborate more often and/or for
longer periods than those tied to a fixed workplace. Only secondarily we intend to investigate
productivity as measured by duration and quality3 of task accomplishment. More precisely, we
want to investigate

whether or not the acceptance A of pair programming in our given software project
depends on the mode of collaboration M, which may be mobile (MPP) or stationary
pair programming (SPP).

The independent variables of our experiment are:
o difficulty/complexity of each given task
o prior programming skills of the participants
o prior experience of the participants with pair programming

2 Project sponsor: BMBF Förderprogramm Neue Medien in der Bildung, Ausschreibung “Notebook-University”,
Förderkennzeichen 08NM222A
3 In an experiment testing the test-first approach, Müller and Hagner could not find an improvement in software
quality, but in software understanding as measured by the reuse of (number of calls to) methods [2].

 3

The dependent variables of our experiment are:
o time needed to solve the given tasks by each individual/pair4
o time of actual cooperation among each pair
o quality of the solutions as measured by

o the number of errors remaining
o readability and other external metrics (measures yet to be identified)

To determine the effect, we intend to conduct a controlled trial with a control group pair-
programming the usual way. Although measurement of interaction among collaborators is no
true problem if communication is exclusively carried out over the network, we face severe practi-
cal limitations when recording the interaction for the co-located participants, since talking,
changing keyboard etc. escapes all practical measurement. We will offer the students a chess
clock to record swapping of roles, but there can be no guarantee that this will be used as de-
manded.
Admittedly, studies of this kind are difficult to conduct, because human factors are invariably
hard to account for. However, others have already collected sufficient experience with similar
trials [1, 2]; learning from their experience will help us conduct a study with repeatable results.

3.4 Test group
Participants of the test group are equipped with notebook computers with Internet access en-
abled via WLAN (802.11b), Ethernet cable and modem. MS Messenger is used as the basis for
application sharing and voice communication. WLAN access points are distributed over parts of
the campus and computer science buildings. Cooperation in peer-to-peer mode is also possible
and the connection of choice if participants reside in close proximity, even side-by-side.5
Pair programming activities are initiated and monitored through a special tool wrapping the re-
quired IDE sharing and communication functionality. Task switches between driver and naviga-
tor are recorded as well as individual communication times. The numbers and times of submis-
sion of an intended solution to the test suite are also recorded; this is the same as in the control
group.

3.5 Control group
Participants of the control group are assigned workplaces and work times in a university com-
puter room, but are also allowed to work at home. Particularly this last point is debatable, since
one might argue that in extreme cases – if participants work solely at home and alone – there is
no difference in the test and the control group. However, nothing prevents mobile pair pro-
grammers from sitting side-by-side in a university room, so that a certain overlap in the condi-
tions is unavoidable. Note that control group participants must co-locate in order to count as pair
programmers; thus, our experiment also compares co-located versus dispersed pair program-
ming, only that the latter has a mobile freedom added to it.

4 Evaluation
The experiment will be carried out during the summer semester 2003. The expected number of
participants in the hypothesis and control group is 40 students each. Results will be published by
fall 2003.

5 References
[1] P Baheti, L Williams, E Gehringer, D Stotts, J McC Smith “Distributed pair programming: empirical
studies and supporting environments” TR02-010, Dept. CS, University of North Carolina.
[2] M Müller, O Hagner “Experiment about test-first programming” in: EASE – Conference on Empirical As-
sessment in Software Engineering (2002).
[3] M Müller, W Tichy “Case study: Extreme Programming in a university environment” in: International
Conference on Software Engineering ICSE (Toronto, 2001) 537–544.
[4] WF Tichy “Should computer scientists experiment more?” IEEE Computer 31:5 (1998) 32–40.

4 Since we want to measure acceptance, we do not require students to work in pairs, but only suggest it.
5 This could be used for the two-screen pair-programming mode described in [3].

