
 13

Towards the Systematic Use 
of Interfaces in JAVA Programming 

Friedrich Steimann 
Institut für Informationssysteme 

Wissensbasierte Systeme 
Universität Hannover, Appelstraße 4 

D-30167 Hannover 

steimann@kbs.uni-hannover.de 

Wolf Siberski 
Learning Lab Lower Saxony 

Universität Hannover 
Expo Plaza 1 

D-30539 Hannover 

siberski@learninglab.de 

Thomas Kühne 
Fachgebiet Metamodellierung 

Technische Universität Darmstadt 
Wilhelminenstraße 7 
D-64283 Darmstadt 

kuehne@informatik.tu-darmstadt.de 
 
 

ABSTRACT 
JAVA’s interface construct is widely perceived as a weak 
surrogate for multiple inheritance. Consequently, it should come 
as no surprise that despite their potential for writing highly 
decoupled code, interfaces are used rather sparingly. We have 
devised a conceptual framework for the utilization of interfaces in 
JAVA programs, and suggest tool support lessening the coding 
effort induced by the introduction and maintenance of additional 
interfaces, as well as a metrics suit measuring how and to which 
extent interfaces are actually used. 

1. INTRODUCTION 
It has been noted many times that variables (including instance 
variables and formal parameters) should be declared with inter-
faces, not classes as their types [1, 2]. This has the advantage that 
access to an object through a variable can explicitly be limited to 
those features of the object actually needed from within the ac-
cessing context, and that the actual class of the object is insignifi-
cant as long as it guarantees to implement the interface. Such is of 
particular importance in the development of frameworks, where a 
user’s classes have to fit in at various plug points of the design, 
and in component-based programming. 
The JAVA programming language comes with a type system that 
not only offers classes and interfaces as distinct syntactic con-
cepts, but which also allows a single class to implement several 
otherwise unrelated interfaces. This offers the opportunity to use 
interfaces as partial types, i.e., as types that specify only one 
aspect (out of potentially many) of their implementing classes. 
Even though the type hierarchy of a program statically specifies 
which aspects each class may have, the set of aspects under which 
an object is being viewed at a certain point in time will change 
with the context in which it is being used, i.e., with the interface-
typed variables that refer to it. Seen this way, an object can adopt 
different types in different contexts. 
Despite this appealing property of JAVA’s type system, it appears 
that in practice its interfaces are not used as one would expect. 

Indeed, the figures from Table 1 suggest that extensive use of 
interfaces is far from being reality: the ratio of class-typed to 
interface-typed variables in the JAVA packages we took a look at 
is 4:1 on average. In practice, it seems, the use of classes in vari-
able declarations still clearly dominates over that of interfaces, 
begging the question why this is so. We speculate that it is partly 
due to the fact that introducing and maintaining interfaces in JAVA 
means considerable effort on part of the programmer, and partly 
due to the fact that an intuitive conceptualization of interfaces — 
comparable to that of classes — is still lacking. 

2. A USEFUL CONCEPTUALIZATION OF 
JAVA’S INTERFACES 
It has been noted over and over that many application domain 
types are roles, not classes [4]. The omnipresent Customer for 
example, or Student, Employee, and Manager, are all roles 
which can be adopted and dropped by instances of class Person. 
That they can be adopted and dropped, that is, dynamically ac-
quired and abandoned, is characteristic for roles. The perennial 
class Person on the other hand is somewhat more static: once a 
person, always a person. But not only dynamicity distinguishes 
roles from classes: whereas a class can stand alone, roles are in-
variably defined in the context of relationships. No Customer 
without a Supplier, no Student without a University, 
and so forth. 
The concept of a role is quite old. Stemming from the world of 
theatre, it is used heavily today in disciplines as diverse as sociol-
ogy and linguistics. Consistent with all uses of the term is that a 
role defines a certain behaviour or protocol demanded in a con-
text, independently of how or by whom this behaviour is to be 
delivered. For instance, a role in a play describes text to be ut-
tered and actions to be performed by an actor, but many other 
properties the actor may possess remain unspecified. A social role 
is associated with responsibilities towards and expectations by 
others, and any individual ready to cope with these should be able 
to fill the role. A semantic role is a logical position in a sentence 
set up by its predicate, which must be filled by a complement 
capable of assuming that role or function in the sentence, but 
whose nature can vary greatly. There appears to be consensus that 
a role specifies a certain protocol expected in a given context, 
without saying by what kind of entity it is to be delivered, or what 
else this entity should be capable of.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee. 
2nd Int. Conf. on the Principles and Practice of Programming in Java 
PPPJ 2003 (Kilkenny City, Ireland 2003) 13–17. 
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00. 



 14

 
Roles, it seems, are partial specifications of objects; they share 
this property with JAVA’s interfaces.1 

2.1 Role vs. Class Types: An Ontological 
Distinction  
Guarino has provided us with a crisp ontological distinction mak-
ing a fairly unambiguous separation between roles and natural 
types [3]. This distinction may be paraphrased in object-oriented 
terms as follows: 
– a type is a role type if  

1. for an object to belong to the extension of the type it 
must engage in a relationship associated with the type, 
and 

2. entering or leaving the extension of the type does not 
alter the object’s identity; 

– a type is a natural type if  
1. belonging to the type is independent of being engaged 

in a relationship (except for, perhaps, whole-part; see 
below) and 

                                                                 
1 As has been argued elsewhere, the roles of modelling can indeed 

be equated with interfaces in JAVA programming [5]. 

2. an object cannot leave the extension of the type without 
losing its identity.2 

Note how the definition of natural type nicely matches the class 
construct of mainstream object-oriented programming languages: 
the definitions of classes are outside the context of any relation-
ships, and their instances keep their types for their lifetimes. In 
fact, the ontological foundation of the class concept may be seen 
as perfect justification for the lack of object migration in main-
stream object-oriented programming languages. However, it does 
not explain the absence of a role construct.3 

                                                                 
2 Having said this, one should be aware that which concept is a 

class and which is a role depends on the specific universe of 
discourse. User for instance — a typical role — may be a class 
if it is the only representative of persons in a problem domain. 
Conversely, Queue — a typical class — can be represented as 
a role of Vector without problems (see below). Nevertheless, 
the ontological distinction remains valid; only the universe it is 
applied in changes. 

3 So, one might be tempted to blame the lack of role support in 
our OOPLs on the unavailability of object migration: if only an 
instance could change its type dynamically, it could enter the 
extension of role types as needed. This however misses one im-

Table 1: Use of interfaces in widely used programming libraries and frameworks 

 JDK 1.4 java.* only javax.* only org.jboss.* org.eclipse.* 
Types 5585 (100%)  1582(100%) 1867 (100%) 2584 (100%) 7584 (100%) 
    Classes 4736 (85%) 1340 (85%) 1662 (89%) 2035 (79%) 6554 (86%) 
    Interfaces 849 (15%) 242 (15%) 205 (11%) 549 (21%) 1030 (14%) 
    Ratio 5.6 : 1 5.5 : 1 8.1 : 1 3.7 : 1 6.4 : 1 
Implements* 2906 702 1175 1666 3076 
Implemented  
   Interfaces/Class 

0.6 0.5 0.7 0.8 0.5 

Variables 88790 (100%) 31291 (100%) 28542 (100%) 30070 (100%) 127014 (100%) 
    Class typed 42930 (48%) 13416 (43%) 13914 (49%) 18905 (63%) 58597 (46%) 
    Interface typed 9510 (11%) 2061 (7%) 4043 (14%) 5094 (17%) 28857 (23%) 
    Ratio 4.5 : 1 6.5 : 1 3.4 : 1 3.7 : 1 2.0 : 1 
    Instance variables 10334 (100%) 3212 (100%) 3530 (100%) 5163 (100%) 19956 (100%) 
        Class typed 4747 (46%) 1293 (40%) 1654 (47%) 3036 (59%) 9851 (49%) 
        Interface typed 1030 (10%) 197 (6%) 496 (14%) 945 (18%) 3568 (18%) 
        Ratio 4.6 : 1 6.6 : 1 3.3 : 1 3.2 : 1 2.8 : 1 
    Parameters** 78456 (100%) 28079 (100%) 25012 (100%) 24907 (100%) 107058 (100%) 
        Class typed 31793 (49%) 12123 (43%) 12260 (49%) 15869 (64%) 48736 (46%) 
        Interface typed 8480 (11%) 1864 (7%) 3547 (14%) 4149 (17%) 25289 (24%) 
        Ratio 5.3 : 1 6.5 : 1 3.5 : 1 3.8 : 1 1.9 : 1 
*   sum of the number of interfaces implemented by each class 
** return type counted as additional parameter 



 15

2.2 Type Hierarchy and Inheritance 
Roles and classes are organized in separate hierarchies. These 
hierarchies are interconnected by the supports relationship, 
defining the instances of which classes can play which roles. 
However, only class hierarchies are the natural realm of inheri-
tance: the genes of a class (its implementation) are propagated 
from the general to the special. This regards not only the observ-
ables, but also and more characteristically the internals: inheri-
tance is inherently genetic. Roles, on the other hand, make no 
assumptions about how a certain piece of functionality is 
achieved. Quite the reverse: roles explicitly leave it open in-
stances of which natural types they are played by, allowing for 
genetically (i.e., in terms of inheritance) unrelated instances tak-
ing the same role. In a role hierarchy, only protocol is handed 
down from superrole to subrole. 

2.3 Intension and Extension of Types 
The intension of a class is its definition. The extension of a class 
is the set of its instances. While the intension of a class in JAVA is 
static, i.e., cannot change at runtime, its extension “breaths”: it 
grows and shrinks in response to instance creation and disposal. It 
is therefore useful to distinguish between a static and a dynamic 
extension, the static extension of a class being the set of all in-
stances of that class that can possibly exist, the dynamic exten-
sion being the set of instances existing at a certain moment in 
time (in a snapshot or state of the software system). Quite obvi-
ously, the dynamic extension of a class is always a subset of its 
static extension. As regards the class hierarchy, the extension of a 
class comprises the extensions of all its subclasses, both statically 
and dynamically. 
Like that of a class, the intension of a role is its definition. How-
ever, unlike classes, roles have no instances of their own (they are 
abstract in a sense), they must recruit them from the classes sup-
porting them. Like that of an abstract class, the static extension of 
a role is defined as the union of the static extensions of all the 
classes supporting it. This expresses that all instances of a sup-
porting class are — in principle at least — capable of playing the 
role. The dynamic extension of a role, however, is usually only a 
subset of the dynamic extensions of the classes supporting it, 
namely the set of instances actually playing the role at that time.4 
                                                                                                           

portant point: an object can play many different roles simulta-
neously, and this without ever giving up its natural type. But 
even if dynamic reclassification came in concert with multiple 
classification (allowing an object to be an instance of different 
classes at the same time), it would still lack the relationship as-
pect as one defining characteristic for the role concept. Instance 
migration is a concept for dynamic reclassification as a re-
sponse to significant state changes; as will be seen, it is unnec-
essary to cater for roles. 

4 That the dynamic extension of a role is only a subset of the dy-
namic extensions of the supporting classes is often erroneously 
interpreted as indication that a role is a subtype of the role-
playing class(es), which is wrong because statically they are 
not: all instances of a class supporting a role can, in principle, 
play the role, or they are not of the same type. That the dynamic 
extension of roles depends on the dynamic extensions of rela-
tionships is grounded in the ontological foundation of the con-
cept, as detailed above. 

Playing the role in this setting means that the instance is actually 
involved in a relationship, in that role. In programming terms 
being involved in a relationship means being assigned to a vari-
able, be it an instance variable or a formal parameter. Transferred 
to JAVA programming, the dynamic extension of an interface is 
the set of instances assigned to variables typed by that interface. 

3. THE PRAGMATICS OF USING 
INTERFACES 
While we agree that interfaces should be used extensively in vari-
able declarations, extensively does not mean exclusively. A good 
question to ask is therefore when to use interfaces and, equally 
important, when not to. 
A simple test to decide whether or not to use an interface in the 
declaration of a variable is to refer to the conceptualization of 
interfaces, roles. Does the relationship represented by the variable 
give rise to the definition of a role? Does this role come with 
specific behaviour, or is it just a label that could be applied to any 
object? We shed light on a few typical cases. 
Qualities   Many variables hold qualities of an object, for instance 
weight, height, or age. Conceptually, the values (in the 
given example all numbers) play the “roles” Weight, Height, 
and Age, respectively. However, these roles are special in that the 
relationships they are defined by confine the natural type of the 
role players: they must be numbers. It is therefore not useful to 
introduce interfaces for qualities. 
Aggregation   Aggregation is a relationship with standard roles 
Whole and Part. However, it depends on the specific case what 
the whole requires from the part (or vice versa), so that prede-
fined standard interfaces will be useless. If parts are private to and 
used only inside the whole, the definition of an individual part (or 
whole) interface makes sense only if it can be played by instances 
of different classes.5 
Delegation   The relationship between a delegator and its server is 
standard (with roles Delegator and Recipient), private (it 
is the secret of the delegator that is does not do the job itself), 
and, for most cases, does not require the introduction of special 
roles. For instance, when implementing a queue with the help of a 
vector, the relationship of Queue to Vector is the secret of 
Queue, the instance of class Vector held by an instance of 
class Queue is not meant to be replaced by the instance of an-
other class (unless of course the underlying design decision 
changes) and thus an extra interface type is usually not justified. 
Using library and API classes   Library and API classes are typi-
cally multi-purpose, and a client will likely use them in contexts 
needing only parts of the offered protocol. For instance, in a cer-
tain context a Vector could be used as a Queue. In this case, it 
would be nice to have Vector support an interface Queue. 
However, libraries are usually outside the scope of development, 
i.e., they cannot be changed. Combined subclassing and interface 
implementation may be a remedy in these cases: 

                                                                 
5 Quite notably, ontologists have excluded whole-part from the 

set of relationships used to differentiate role from natural types, 
because many natural types are inherently defined as aggregates 
and thus defined in the context of a relationship, namely whole-
part [3]. 



 16

class PolymorphicVector extends
java.util.Vector implements Queue {

static Queue newQueue() {
return new PoylmorphicVector();

}

push(QueueElement aQueueElement) {
add(aQueueElement);

}
…

}

4. A TECHNICAL FRAMEWORK 
SUPPORTING THE USE OF INTERFACES 
To promote the use of interfaces in JAVA, we suggest a set of 
refactorings and other utilities that should ease the introduction 
and maintenance of interfaces during coding, and a set of metrics 
to measure the actual utilization of interfaces. 

4.1 Refactorings and other Utilities 
Build interface from used protocol   New interfaces are often 
introduced on the fly, without prior knowledge of the set of fea-
tures they should come with. In these cases, it is practical to first 
complete coding the context in which the (variable typed with 
that) interface is used and then to create the interface from the 
protocol used in that context. If one of the classes to implement 
the new interface is known in advance (and is already defined), 
automatic code completion can be made available by temporarily 
taking this class as the variable’s type; it is later to be replaced by 
the interface extracted from the protocol used from that class. 
Extend interface with available feature   If a variable is declared 
with an interface missing a feature that its implementing classes 
possess, code completion should offer extended access to those 
features not included in the interface. Upon selection of one such 
feature, the interface definition should automatically be updated.  
Extend interface with new feature   If a feature not yet provided 
by its implementing classes is introduced to extend an interface, 
all these classes should be marked for completion. 
Minimize interface   Interfaces should be minimal, i.e., they 
should offer only the features actually needed in the contexts the 
interface is used. Because the same interface can be used in dif-
ferent contexts, it is not feasible to reduce the protocol of an inter-
face to adapt to local needs alone. However, it is feasible to re-
move all features of an interface that are not used in any context 
in which the interface occurs. 
Build interface hierarchy   Interfaces can be arranged in a hierar-
chy, but this hierarchy need not be obvious at all times. Auto-
matic analysis tools can be used to determine the overlaps of in-
terfaces supported by the same (set of) classes and suggest the 
introduction of organizing superinterfaces and subinterfaces. This 
will be rather rare, though, and should be done only if it increases 
conceptual clarity and/or readability of a program. 
Merge interfaces   For all interfaces supported by the same (set 
of) classes, the merging of interfaces with same set of features 
together with the necessary renaming could be offered. Also, it 
may be reasonable to eliminate superinterfaces that have only one 
child and replace them with the subinterface. However, mergers 

that are based on accidental congruence of protocols rather than 
conceptual relatedness should be avoided. 

4.2 Interface-Related Program Metrics 
4.2.1 Class Metrics 
Polymorphic grade   We define the polymorphic grade of a class 
as the number of interfaces implemented by the class, independ-
ent of how much these interfaces overlap. This is to acknowledge 
that overlapping or even identical interfaces can nevertheless 
serve different purposes. 
Versatility   Versatility measures the disjointness of the interfaces 
implemented by a class as 

∑∑
=

−

= ∪
∩

−
n

i

i

j ji

ji

II
II

n
n

2

1

1 ||
||2

 

where Ii stands for the set of features of the ith interface of a class. 
Versatility values range from 0 (no interface implemented) to the 
polymorphic grade of the class (all interfaces pairwise disjoint). A 
versatility value of 1 means that all interfaces are identical. 
Higher values are indicative of the diversity of the class utiliza-
tion — hence the name. 
Polymorphic use   The polymorphic use of a class relates the 
number of variables in a program typed with an interface imple-
mented by the class to the total number of variable declarations 
assignment compatible with the class. A polymorphic use of 1 
indicates that all instances of the class are accessed through inter-
faces, whereas one of 0 indicates that none are. 

4.2.2 Interface Metrics 
Generality   Generality of an interface measures its dissemination 
defined as the number of classes implementing it. The more 
classes implementing an interface, the more general this interface 
may be assumed to be. If there is only one class implementing the 
interface, this indicates that it is rather special. 
Popularity   Popularity of an interface counts the number of vari-
ables declared with that interface as their type. The higher the 
popularity, the more use is made of the interface; the greater is 
the number of contexts in which it appears. 

4.2.3 System Metrics 
System metrics should comprise those found in Table 1, average 
values of the class and interface metrics defined above, as well as 
histograms for distributions. The metrics from Table 1 are named 
and defined as follows:6 
Interface to class ratio   the total number of interfaces in a piece 
of code divided by the total number of classes; and 
Interface typed to class typed variables ratio   the total number of 
variables (instance variables, formal parameters, and temporaries) 
declared with an interface divided by the total number declared 
with a class. 

                                                                 
6 For better readability, the reciprocals have been used in the ta-

ble. In the future, we hope to see higher utilization of interfaces, 
so that the ratios can be reversed. 



 17

5. RELATED WORK 
The concept of role in conceptual and object-oriented modelling 
has been covered exhaustively in [4]; the technical correspon-
dence of roles and interfaces is made plausible in [5]. Both works 
come with a comprehensive literature review to which the inter-
ested reader is referred. The ontological foundations of the role 
(and hence also the interface) concept are covered in [3]. The 
benefits of using interfaces are elaborated in countless papers; 
that they should be used to type variables is particularly put for-
ward in [1, 2]. 

6. CONCLUSION 
Although it is generally considered good practice to declare vari-
ables with interfaces, not classes, evidence we have collected 
suggests that this advice is not thoroughly followed by develop-
ers, not even for large and broadly (re)used code bases. We 
speculate that this disinclination is due to two major reasons:  
1. the lack of a useful conceptualization of interfaces so that they 

are readily identified in the problem domain (and hence, like 
classes, have their natural places in a program design); and 

2. the added effort entailed by the massive introduction of inter-
faces and their subsequent maintenance which, in today’s cod-
ing environments, is still burdened on the programmer. 

To better the situation, we have proposed a conceptual framework 
supporting the introduction of interfaces — thought of as roles — 
to JAVA programs, and supplemented it with possible tool support 
and a set of software metrics measuring the extent to which inter-
faces are actually used. 

7. REFERENCES 
[1] D’Souza, D.F., Wills, A. C. Objects, Components and 

Frameworks with UML (1998), Addison-Wesley, Reading, 
MA. 

[2] Gamma, E. Helm, R. Johnson, R. Vlissides, J. Design Pat-
terns: Elements of Reusable Object-Oriented Software 
(1995), Addison-Wesley, New York. 

[3] Guarino, N. “Concepts, attributes and arbitrary relations” 
Data & Knowledge Engineering 8 (1992), 249–261.  

[4] Steimann, F. On the representation of roles in object-
oriented and conceptual modelling, Data & Knowledge En-
gineering 35:1 (2000), 83–106. 

[5] Steimann, F. Role = Interface: a merger of concepts, Journal 
of Object-Oriented Programming 14:4 (2001), 23–32. 


