
Role + Counter Role = Relationship + Collaboration
Towards a Harmonization of Concepts

Friedrich Steimann
Lehrgebiet Programmiersysteme

Fakultät für Mathematik und Informatik
Fernuniversität in Hagen

D-58084 Hagen
steimann@acm.org

Abstract
Common conceptions of the notions of role, relationship, and
collaboration in object-oriented programming and related disci-
plines are briefly recalled and related to each other, working
towards a view that allows it to fit them all together, eventually
setting the cornerstones for the definition of a truly useful and
widely accepted novel programming language construct.

1. Introduction
More than 30 years after its inception, the entity-relationship (ER)
diagram [9] is still a prevalent modelling notation. In fact, even
though object-oriented programming builds on the navigational
[2] rather than the relational data model [10], the most popular
object-oriented design notation, the UML class diagram, with its
associations very much resembles the ER diagram. However,
there is a conceptual gap between the associations of class dia-
grams (henceforth referred to as relationships for the sake of
uniformity) and the pointers of object-oriented programs imple-
menting them. So-called model-driven engineering, which needs
to close this gap, provides transformations mapping relationships
to stereotypical code fragments often taken from patterns [13],
implementing the semantics of the relationships. However, from a
programming language designer’s viewpoint, such code is a nui-
sance.

As has been suggested before, the dyad of entity and relation-
ship is naturally complemented by a third concept, that of a role
[16]. Not only in the realm of software, roles are considered
placeholders in relationships or collaborations [15] that specify
the required properties of role players, objects participating in a
relationship in that role. As such, they are abstract specifications
or types, abstract in the sense that unlike classes, they do not
specify concrete entities (and therefore cannot be instantiated). In
fact, different classes can provide players for the same role, pro-
vided that they all comply with the requirements of the role type.
This makes roles akin to interface types of JAVA-like languages
[17].

Like relationships, roles have found their way into object-
oriented programs mostly in the form of patterns. In fact, despite
the strong arguments for the role-as-interface view (which would
suggest that JAVA et al. already offer roles as a language con-
struct), the role object pattern [4] seems to be the most popular
implementation of roles in object-oriented languages today.

The following discourse suggests reconsidering common no-
tions of role, relationship, and collaboration so as to harmonize
their definitions in such a way that a single new programming
language construct can be devised that serves all three. I do not
attempt to present such a language construct here, but rather wish

to share my insights and believes about possible cornerstones of
its definition. For this reason (and also because of the spatial
restrictions imposed for this clearly unfinished work) I refrain
from showing syntax, let alone precise semantics, of my propos-
als. My contribution may therefore be seen as an addition to [12].

2. Roles
The concept of roles has been discussed broadly in the literature.
The properties regarded as characteristic for the role concept vary
from author to author, with some of them contradicting [16];
nevertheless, a few core properties seem to be largely unques-
tioned. This includes the property that a single object can play
several roles of different or the same kind both simultaneously
and sequentially, and that the same role can be played by different
objects of the same and different kinds. Raised to the type level,
this means that the relationship between role types and class types
(as sources of role players) is generally m:n.

2.1 Roles and behaviour

A role elicits the behaviour of an object in a given context. For
instance, the role of father specifies behaviour expected from a
man in the context of his fatherhood. On an abstract level, the
role-specific behaviour is specified independently from the (na-
ture of the) role player; in general, the class of the role player
should be substitutable by another without compromising the role
specification.

The view of roles as abstract behaviour specifications suggests
that roles can be implemented as JAVA style interfaces [17]. A
class implementing such an interface declares to conform to the
role specification the interface represents, i.e., that its instances
can play the role. A variable (or attribute in modelling terms)
declared with an interface as its type points to a role player in-
stance the precise class of which is unknown; this is no problem,
since the interface captures everything that is needed to be known
from the object in the context in which the variable is declared.
Note how this complies with the idea of variables implementing
relationships [13], with the special addition that the place of the
relationship represented by the variable is typed by a role rather
than an entity type.

Viewing roles as interfaces and thus supertypes of classes al-
lows it that objects of different classes (unrelated by inheritance)
can play the same role. For instance, both class Person and class
Computer can (deliver instances that) play the role of Teacher if
they both implement the corresponding interface. This allows the
computer to fulfil his teaching obligations in quite different ways
than a person would do, which seems to model reality adequately.
On the other hand, there may be congruence in the behaviour of

computers and persons as teachers, so that it would be nice were
one allowed to specify some behaviour, even if only skeletal, as
part of the role, with concrete role players filling in the missing
(and player-specific) parts. This could be achieved, for example,
by allowing template methods in the role specifications, which
would then have to be represented by abstract classes.

2.2 Roles and state

The role-as-interface view is often challenged by the observation
that roles appear to have role-specific state. And indeed, it seems
reasonable that a person in the Employee role has some role-
specific data such as (office) telephone number and salary. Even if
this state were made part of the role-as-type definition (replacing
interfaces by abstract classes as role representations), this would
not allow a single person to have several office phone numbers
and salaries at the same time (namely one per employment). This
is a problem since as noted above, being able to play the same role
multiply at the same time is a defining characteristic of the role
concept (cf. above). The role object pattern solves this problem.

2.3 The role object pattern

The role object pattern [4] represents the roles an object plays by
adjunct instances, the role objects. Each role object is an instance
of a certain class, its role type. The role type specifies role-
specific state and behaviour; by instantiating the same role type
several times and adjoining the instances to the same role player
object, the problem of multiple phone numbers and salaries is
solved. At the same time, the role class can implement role spe-
cific behaviour independently from the role player class, and
forward player-specific requests to the player (cf. the mentioning
of the template method above).

Despite its popularity, the role object pattern has some prob-
lems. First, it is implemented as pattern, i.e., it requires stereotypi-
cal code (such as that for adding and removing roles to and from a
role player) programmers would like to avoid. Second, a role
player and its roles are different objects with different identities,
leading to the problem of object schizophrenia (a conceptual
entity with split identities). Last but not least, the role object
pattern itself comes with at least two roles, the RolePlayer role and
the Role role, which cannot be implemented using the role object
pattern, leaving a yawning gap in the semantics of the concept.

2.4 Role and counter role

Intuitively, a role is meaningless without one (or more) counter
roles, the one(s) with which its player interacts and for which the
associated behaviour is required. Role and counter role(s) together
form an interaction pattern — sometimes called collaboration [15]
—, with parts of the behaviour being specific to the interaction,
and parts being contributed by the role players.

The notion of counter role implies that role players occur in
pairs (or, more generally, tuples). As will be shown next, pairs
(tuples) of roles form a relationship, which can also be associated
with state and behaviour. This doubling offers an opportunity for
replacing the role object pattern with a native programming lan-
guage construct that does not suffer its problems.

3. Relationships
The concept of relationship is closely related to the mathematical
notion of relation.1 Like a relation, a relationship has an arity n

1 Codd defines relationships as the domain-unordered counterparts of
(mathematical) relations [10].

and as many different places, each associated with a type that
constrains the set of elements allowed to take each place. In
mathematics, one distinguishes between the relation signature (or
declaration) giving its name and the types of its places, and its
extension, a set of tuples formed of members of the types; in data
modelling, one distinguishes between a relationship type (some-
times also referred to as its intension) and relationship instances
(the whole set of which is referred to as the relationship’s exten-
sion). In physical systems, the (dynamic) extension of a relation-
ship breathes, i.e., it grows and shrinks as tuples are added and
deleted [18]. Both relationships and (mathematical) relations can
be restricted by constraints; for relationships, so-called cardinal-
ities (or multiplicities in UML jargon) are in frequent use, for
relations, properties such as symmetry or transitivity are common.

3.1 Relationships and roles

Ever since Codd’s definition of the relational data model [10],
places of relationships have been associated with role names to
distinguish places (columns) of the same type. Variations of this
data model allowed union types (disjunctions of two or more
types) to fill the places of relationships, so that a single place
could be occupied by objects of various types (a necessity that
was already recognized by the network data model [1]). However,
these type unions remained ad hoc — in particular, no new type
was defined and given the name of the role, as suggested by the
role-as-interface interpretation discussed above (where an inter-
face is interpreted as the union type of its implementing classes).
Roles as types were first suggested by Bachman in his role data
model [3, 19], which was intended to supersede the network
model2.

3.2 Relationships and state

In the ER data model [9], relationships do not only link entities,
they may have state (attributes) of their own. For instance, an
Employment relationship may come with attributes for an (office)
telephone number and a salary. And indeed, it seems that concep-
tually, both attributes are attributes of the relationship, namely
Employment, rather than the employee; after all, they could
equally well be ascribed to the employer, who pays the salary and
owns the phone.

So rather than associating state with one or the other role
player, it can be captured as part of the relationship. With the
availability of correspondingly conceived relationship types, role
types can become stateless, so that the protocol specifications
(interfaces) suggested in Section 2.1 suffice.

3.3 Relationships and behaviour

Pure data modelling is usually not concerned with behaviour;
neither entity types nor relationships types are therefore associated
with such. The behaviour of databases is usually restricted to the
growing and shrinking of extensions; it is specified using a data
manipulation language (DML) which operates over the data struc-
tures, but does not associate behaviour with the entities contained
therein.

While object-oriented programming enhanced the notion of
entity type by adding behavioural specifications (termed methods)
to form classes, for some unapparent reason it did not attempt the
same for relationship types; rather, it has abandoned them alto-
gether. With one notable exception.

2 and which was devised in parallel to the ER data model (personal com-
munication with Charles Bachman)

3.4 Transient relationships: procedures

An often overlooked materialization of relationships in programs
are procedures: a procedure head with n parameters specifies an n-
ary relationship whose places are constrained by the procedure’s
parameter types. The name of the procedure is the name of the
relationship. In [18], these incarnations of relationships are termed
procedural, as opposed to the structural relationships known from
data modelling.

The greatest limitation of the view of procedures as relation-
ships is that their instances are necessarily transient. More con-
cretely, relationship instances are created as activation records on
the call stack and therefore exist only as long as the corresponding
procedure is executed. A corollary to this fact is that these rela-
tionships cannot be queried programmatically (unless the program
has reflective access to the call stack). Instead, the (temporary)
relationship between the actual parameter objects is exploited by
the procedure body, which associates behaviour with the relation-
ship specified in the procedure head, behaviour which is auto-
matically executed whenever a relationship instance is created
(the procedure is called). Therefore, relationships not only already
exist in object-oriented programming languages, they also have
what relationships from data models are missing: associated be-
haviour.

The interpretation of procedures as relationships is perhaps
more obvious in logical programming languages such as PROLOG,
in which a predicate can be interpreted as a relationship (in the
database sense) and as a procedure (in the procedural program-
ming sense). Predicates with ground terms as arguments (i.e., not
containing variables) are considered facts and represent persistent
relationships instances; those with non-ground terms (containing
variables) represent transient relationship instances which are
computed during the solution of a goal (by assigning the variables
values temporarily). Transient relationship instances can be turned
into persistent ones using PROLOG’s metaprogramming facilities;
thus, in PROLOG relationships represent data and specify behav-
iour. This seems like a desirable property for relationships em-
bedded in an object-oriented programming language.

4. Harmonization of concepts
It seems that the terms relationship, role, and collaboration are
well-established in the thinking of software engineers, yet their
exact definitions and the preferences of one over the other vary
from individual to individual. However, given a few fundamental
(and presumably also widely accepted) assumptions, namely that
• a role can specify role-specific state and behaviour,
• a relationship can specify state (the relationship types of the

ER data model) and behaviour (procedures) associated with
the relationship,

• roles come in pairs (or, more generally, tuples) of counter
roles,

• each place of a relationship is associated with one role, and
that

• collaborations specify interactions among roles,
I suggest to harmonize the definitions of role, relationship, and
collaboration so that
a) a relationship type specifies the role types whose implement-

ing classes contribute to it,
b) the relationship captures the states associated with the contrib-

uting roles,

c) each role specifies the abstract behaviour required from its
role players independently of any counter roles, and that

d) collaborations associated with a relationship capture that part
of the behaviour that deals with the interactions among role
players in the context of the relationship, but not their individ-
ual contributions to this interaction.

A relationship with collaborations is thus defined by
1. an set of role types specifying the abstract behaviour required

from the role players, but not their role-specific state,
2. a set of attributes specifying the state associated with the rela-

tionship or any of its roles, and
3. a set of behavioural specifications (called collaborations) that

have access to the relationship state and whose implementa-
tions can resort to the behaviour associated with the relation-
ship’s roles.

This definition of relationships caters for two use cases:
1. Structural relationships: This covers persistent relationship

instances that, like objects, exist from instantiation to disposal
(by a delete operator or by un-assignment and subsequent gar-
bage collection). It is a question of language design whether
such relationship instances have identity and can be assigned
to variables, or are simply elements of a (program-accessible)
relationship extension in which each tuple is uniquely identi-
fied by the combination of its role-playing objects.3 In either
case, relationship extension manipulation occurs through lan-
guage constructs analogous to those of a standard DML, which
includes operations for adding, deleting, and updating tuples.4
Also, relationship extensions can be queried for selecting tu-
ples that satisfy certain conditions; collaborations will always
be executed on the result sets of such queries (possibly single-
tons), using the role players and relationship state contained in
each tuple as implicit parameters to the collaboration.

2. Procedural relationships: This allows ad hoc collaborations,
i.e., collaborations of objects without creating a corresponding
persistent relationship instance. As suggested in Section 3.4,
when a method is called relationship instances are created on
the fly; for this, however, the elements of the relationship in-
stance (tuple) must be supplied with the invocation (as the ac-
tual parameters of the collaboration; note that these are the
same parameters that are implicit for structural, or persistent,
relationship instances).

Note that in either case, collaborations are called on a relationship
type; in particular, their invocations are not dynamically dis-
patched on relationship instances (as long as no relationship sub-
typing is defined, such a dispatch does not make sense). This
offers an interesting opportunity: the dispatch of collaborations on
its participants’ role types. Since all participants are treated sym-
metrically, this would amount to a multi-dispatch; however, such
a dispatch requires role subtypes and covariant redefinition of
relations, which are not considered here (but see [8, 18, 20] for
brief discussions of the possibilities). It is interesting to note that
this kind of multi-dispatch does not break the encapsulation of the
parameter (i.e., role-playing) objects as long as access of the

3 The latter would avoid dangling pointer problems that occur once rela-
tionship instances are explicitly deleted (cf. the discussion in [8]).
4 Note that it is another language design decision whether updates are
restricted to attributes or whether role players can be exchanged (where
the former means that role-players are considered the primary keys of the
relational calculus; cf. the discussion in [7]).

collaboration implementation to role-specific (now: relationship-
specific) state suffices.

Another note is that I left out the description of a DML inten-
tionally; the possibilities are well-explored in the literature. It
should be kept in mind, though, that providing highly usable
queries, or iterators, is a key to the expressiveness of a language
(one of the lessons taught by the success of SMALLTALK).

5. Discussion and related work
When introducing relationships as a first class programming
construct to object-oriented programming languages, one is im-
mediately confronted with the question, in which respect should
this introduction be different from, or go beyond, the added ex-
pressiveness offered by embedded SQL or the integration of any
other standard relational calculus? A corollary to this question is
whether re-implementing a relational calculus in an object-orien-
ted programming language adds some value beyond the syntacti-
cal integration of two formalisms. My feeling is that an “orthogo-
nal” addition misses the chance of rethinking the object and the
relational paradigm, and that a well-devised extension can indeed
be something rather different than the plain sum of existing stan-
dards.

OBJECTTEAMS/JAVA [11] extends JAVA with an implementa-
tion of the role object pattern using aspect technology. It employs
a type-level relationship playedBy which relates role to class
types. So-called teams represent contexts, or relationships, which
are defined as an interaction of roles and in which the participat-
ing objects are always represented by corresponding role in-
stances. In JAVA terms, teams are special kinds of classes that
define their participating roles as inner classes. Together with
POWERJAVA [5] OBJECTTEAMS/JAVA is perhaps the most advanced
implementation of relationships in object-oriented programming
to date.

In their JAVA-based calculus RELJ, Bierman and Wren define
(binary) relationships as class-like types with fields and methods
as members [8]. Each relationship type specifies two classes as its
participants (the types of the relationship’s places), and optionally
one relationship type as its supertype. Relationships can be instan-
tiated; like with classes, the instances are represented by pointers
that can be stored in variables. This is at conflict with explicit
relationship instance deletion, a problem that the authors have
postponed until more experience has been gathered. From their
description, it is unclear how relationship methods are handled, in
particular whether and how the role players can be accessed from
the body of a method defined in a relationship type.

The relationship aspects of Pearce and Noble use the intertype
declarations of ASPECTJ to inject the bookkeeping necessary for
maintaining relationships between objects [13]. The relationships
themselves are coded as aspects that can carry relationship-
specific behaviour. Class definitions may remain ignorant of the
relationships for which they supply the participants, which is
considered an increase in the separation of concerns. This increase
is however immediately lost once one object needs access to
another to which it is linked only via a relationship.

Balzer et al. present a formal model for relationships as first-
class programming constructs that can interpose role-specific
fields (and methods?) into classes [7]. These interpositions resem-
ble the introductions (inter-type declarations) of ASPECTJ (which
have been used in the relationship aspects described previously,
albeit for a different purpose) in that the introduced fields are
instantiated once per role player object, not once per role (partici-
pation in the relationship). If the latter is required, the attribute
can be defined as a member of the relationship (although this case
is not considered).

Like the present work, Baldoni et al. have combined the con-
cepts of roles and relationships in object-oriented programming
[6]. However, they have done this by extending the relationship-
as-attribute pattern [13] with the role concept of POWERJAVA. The
present work rather combines the relationship object pattern with
roles, mostly by replacing the participating classes with role types.

6. Conclusion
Although faintly present in the form of methods, most contempo-
rary object-oriented programming languages come without ex-
plicit language support for relationships, collaborations, or roles.
Patterns of implementing these concepts therefore prosper. How-
ever, frequent resorting to patterns is usually indicative of a cer-
tain language construct missing. Relationships are a hot candidate.

References
[1] CW Bachman “Data structure diagrams” SIGMIS Database 1:2

(1969) 4–10.
[2] CW Bachman “The programmer as navigator” Commun. ACM 16:11

(1973) 653–658.
[3] CW Bachman, M Daya “The role concept in data models” in: Proc.

of VLDB (1977) 464–476.
[4] D Bäumer, D Riehle, W Siberski, M Wulf “The role object pattern”

in: Proc. of PLoP (1997).
[5] M Baldoni, G Boella, LWN van der Torre “powerJava: ontologically

founded roles in object oriented programming languages” in: Proc.
of SAC (2006) 1414–1418.

[6] M Baldoni, G Boella, L van der Torre “Relationships Meet Their
Roles in Object Oriented Programming” in FSEN (2007) 440–448.

[7] S Balzer, TR Gross, P Eugster “A relational model of object collabo-
rations and its use in reasoning about relationships” in: Proc. of
ECOOP (2007) 323–346.

[8] GM Bierman, A Wren “First-class relationships in an object-oriented
language” in: Proc. of ECOOP (2005) 262–286.

[9] PP Chen “The entity-relationship model — toward a unified view of
data” ACM Trans. Database Syst. 1:1 (1976) 9–36.

[10] EF Codd “A relational model of data for large shared data banks”
Commun. ACM 13:6 (1970) 377–387.

[11] S Herrmann “A precise model for contextual roles: The program-
ming language ObjectTeams/Java” Applied Ontology 2:2 (2007)
181–207.

[12] S Nelson, DJ Pearce, J Noble “First-class relationships in object
oriented programs” in: The Popularity Cycle of Graphical Tools,
UML, and Libraries of Associations Workshop @ OOPSLA (2007).

[13] J Noble “Basic relationship patterns” in: Proc. of EuroPLOP (Addi-
son-Wesley 1995).

[14] DJ Pearce, J Noble “Relationship aspects” in: Proc. of AOSD (2006)
75–86.

[15] T Reenskaug Working With Object: The OOram Software Engineer-
ing Method (Prentice Hall 1995).

[16] F Steimann “On the representation of roles in object-oriented and
conceptual modelling” Data Knowl. Eng. 35:1 (2000) 83–106.

[17] F Steimann “Role = Interface: a merger of concepts” Journal of
Object-Oriented Programming 14:4 (2001) 23–32.

[18] F Steimann, T Kühne “A radical reduction of UML’s core seman-
tics” in: Proc. of UML (2002) 34–48.

[19] F Steimann “The role data model revisited” Applied Ontology 2:2
(2007) 89–103.

[20] F Steimann, T Kühne “Piecewise modelling with state subtypes” in:
Proc. of MoDELS (2007) 181–195.

