

in: G Boella, J Odell, L van der Torre, H Verhagen Roles, an interdisciplinary perspective AAAI Fall Symposium (2005).

The Role Data Model Revisited

Friedrich Steimann

Fernuniversität in Hagen, Lehrgebiet Programmiersysteme
58084 Hagen, Germany

steimann@acm.org

Abstract
While Bachman’s role data model is often cited, it appears
that its contribution, the introduction of role types and their
placement at the interface of entity types and relationship
types, has always been underestimated. This is unfortunate
since it has led to countless reinventions of the wheel and
even regress. With this article, I hope to be able to shed
some light on the naturalness of Bachman’s role concept,
and to make clear why I think that it is valid even today.

Introduction
1973 Turing Award winner Charles William Bachman is
often credited as the first to have introduced the concept of
roles into data modelling.1 Bachman is a highly esteemed
practitioner and a renowned expert in databases: he was the
principal author of the first database management system,
the Integrated Data Store (IDS), and at the same time one
of the main contributors to the CODASYL standard for the
network data model. This data model, which allowed only
non-recursive, 1:n-relationships to be represented directly,
was strongly challenged by Codd’s relational data model,
which seemed more flexible since its relationships, which
are generated on the fly, are generally m:n and prescribe no
paths for navigation2.

Bachman invested considerable personal effort in mak-
ing the network data model fit for competition. One of his
improvements was the introduction of alternate owner and
multiple member records, which led him to the role data
model, a data model which Bachman liked to be under-
stood as a generalization of the network and the relational
data model (Bachmann and Daya 1977, p. 464). We all
know how the battle ended: relational data base manage-
ment systems have become industry standard, and another
data model of that time, the entity relationship model, has
persisted even into object-oriented modelling à la UML.

1 Falkenberg’s object-role model (Falkenberg 1976) was in fact
published earlier, but Bachman’s practical work on roles goes
back until at least 1973. Also, Falkenberg’s use of the term role,
although quite fundamental, was somewhat unorthodox: together
with the term object, it served as a primitive to define associations
as well as object and association types.
2 “The programmer as navigator” was the title of Bachman’s Tur-
ing award lecture (Bachman 1973); he is commonly credited as
having introduced the metaphor.

However, the current uprise of object-oriented databases
must give Bachman late satisfaction: in object-oriented
programming, relationships are either 1:1 or 1:n, and the
programmer is essentially a navigator. As a persistent ex-
tension of main memory, object-oriented database are also
navigational, and to an object-oriented programmer inter-
faces to relational databases (embedded SQL, JDBC and
the like) are just annoying anachronisms. The role concept,
on the other hand, is of continuous interest even to this
date, as best evidenced by this symposium.

With my modest contribution I try to reconstruct the de-
velopment of Bachman’s role data model and to view it
from several different perspectives. I try to show that
Bachman’s original role concept is still viable today; that
in fact it is perfectly natural, and extremely expressive at
that. This is not to mean that it does not leave room for im-
provements, but rather that it can be viewed as an excellent
starting point, one that deserves recognition in excess of
the usual “first mention” appreciation.

The remainder of this paper is organized as follows.
First I will briefly resume the network data model and try
to reconstruct how the role data model evolved out of it. A
short summary of its properties follows. Next I will show
that Bachman’s role concept is rather universal, and that it
has been used, in more or less identical form, in disciplines
much older than data modelling (or, should I rather say,
much older forms of data modelling). I will argue that this
universality, together with its minimality, deserves Bach-
man’s role concept the status of an ontological primitive.
Problems that remain can be fixed by strengthening the
part of the relationship in data modelling. I conclude my
contribution with refutations of two other popular defini-
tions of roles.

Evolution of the Role Data Model

Background: the Network Data Model
Deriving from the hierarchical data model, the network
data model allows only binary 1:n-relationships. Origi-
nally, these relationships had to be declared as relation-
ships between instances of two distinct types, the owner
type (the 1-end of the relationship) and the member type
(the n-end), where owner and member types were defined
as Pascal-like records. A relationship type – called set type
in the network data model – then declared the record types

of its owner and its members. A single record type instance
(called record occurrence, or record for short) could be
element (either owner or member) of several set type in-
stances (called set occurrences, or sets for short), but not of
the same set type. Hence, the network model could support
only 1:n-relationships directly – m:n-relationships, as well
as recursive relationships, had to be emulated. (Elmasri and
Navathe 1989)

Instances of a set type were commonly represented as
ring structures. Because the ring structure carried no in-
formation as to the status (either owner or member) of an
element of a ring, each record carried a type field stating its
record type (Elmasri and Navathe 1989, p. 290). This way
(and by knowing the set type), the status of a record in a set
could be reconstructed. Hence, the network data model was
strongly typed, while at the same time, each instance car-
ried (runtime) type information, a feature commonly found
with dynamically typed systems.

Instance type information was justified by the introduc-
tion of so-called alternate owner and multiple member (or
multimember) sets, sets that allowed members to be of dif-
ferent types (Bachman 1969). Multimember sets (and set
types) were necessary to represent relationships such as
Employment, where the member side could be occupied by
instances of record types such as Clerk, Technician, and
Manager. Likewise, the owner side could be occupied by
alternate types, for instance Person, Company, or Govern-
ment. Today, these types are immediately recognized as
specializations of the (more general) Employee and Em-
ployer types, resp., but the multimember and alternate
owner set concept was more flexible than generalization
(which inevitably comes with some notion of inheritance)
in that it allowed instances of otherwise completely unre-
lated record types to replace for each other in the same set.
And this is exactly where the dynamic type information
comes in: rather than treating all members as instances of
an abstract type Employee or Employer (as today’s object-
oriented systems would do), in order to be able to process
the member records of a set in a type-safe manner the
processor had to be able to query their type and branch ac-
cordingly. Bachman himself perceived this situation
(which he was largely responsible for) as a nuisance:

The situation dealt with the processing of IDS chains
(data structure sets) where there were two or more re-
cord types declared as members of the same set-type.
When processing the members, one at a time, in re-
sponse to FIND NEXT commands, it was necessary to
immediately branch in the program, which processed
the record retrieved, based upon record-name. This
branching frequently led to almost identical code
which varied only because the items were accessed in
each section by different record-name qualified items-
names (DATE OF PURCHASE_ORDER vs. DATE
OF SHOP_ORDER). This was always a nuisance be-
cause the program was bulkier and less readable than
seemingly necessary. (Bachman 1980, p. 10)

At the same time, the possibility of having different types
occupy one place of a relationship hampered formal com-
parison of the network data model with others, most
prominently the relational data model, which offered no
such possibility (Bachman and Daya 1977, Bachman
1980). This caused a dilemma, namely that something that
was needed to model reality more adequately did not map
to computing needs, neither theoretically nor practically.
An ideal setting for the invention of a new concept.

Bachman’s Eureka: Role Types
The first step to fix the problem was Bachman’s idea to
give the network data model

the capability to declare a record type as having zero,
one or more role-segment types. This facility permit-
ted a role oriented item or item group to be accessed
using role name qualification rather than record name
qualification. […] The motivation was to make it eas-
ier to program the navigation of alternate owner and
multiple member set types. Conventional program-
ming with record qualified item names requires con-
tinual inspection of the record occurrence retrieved to
determine its record type. This determination of re-
cord type was necessary in order to select the branch
in the program pertinent to the record retrieved.[3]
(Bachman and Daya 1977, p. 465)

Based on this technical consideration, which was imple-
mented as early as in 1973, Bachman defined a role as a

behavior pattern which may be assumed by entities of
different kinds. Furthermore, a particular entity may
concurrently play one or more roles. Hence, the exis-
tence of all the roles of interest for a given entity
characterize that entity. (Bachman and Daya 1997, p.
465)

The relationship between entity types and role (segment)
types was soon recognized as being m:n:

Some role types may characterize more than one en-
tity type. For example, the employer role type may be
associated with the entity types: person, corporation
and government-unit. In a counter example, the role
types: employee, customer, supplier, and stockholder
may characterize the entity type person. However, not
all of the entities of the entity type person will assume
a role for each of the role types stated above. The pur-
pose of the role model is to recognize and support
formally this phenomenon which, once identified, is
easy to recognize in the real world. (Bachman and
Daya 1977, p. 465)

This role concept was realized by so-called role-segments:

3 The alert object-oriented programmer will immediately recog-
nize the bad smell of the “replace conditional with polymor-
phism” refactoring (Fowler 1999).

Within a data description, constructed according to the
role model, the concept of a record description has
been augmented by the concept of a role-segment de-
scription such that a record occurrence is a vehicle for
one or more role-segment occurrences, each of a dif-
ferent role-segment type. Each record description con-
sists of a record type name and a list of role-segment
description references. A role-segment description
may be referenced on one or more such lists. (Bach-
man and Daya 1977, p. 466)

Sets (i.e., relationships) were defined on role types, not re-
cord types. Essentially, this eliminated the need for alter-
nate owner/multiple member types:

As in the network model, set relationships may be es-
tablished with-owner and member declarations. How-
ever, the alternate owner and multiple member record
declarations will disappear. When viewing the alter-
nate owner declarations or multiple member declara-
tions used with the network model, it appears that
each has always represented one of two identifiable
roles. The first role was played by the owners. The
second role was played by the members. Therefore,
the role model is defined with the constraint that […]
only one role-segment description may be declared as
the owner of a set description and only one role-
segment description may be declared as the member
of a set description. (Bachman and Daya 1977, p. 466)

The following UML class diagram may serve as a meta-
model of the role data model:

While originally an entity could still have attributes
(“items” in network database jargon) on its own, later all
attributes where ascribed to roles (not shown in the meta-
model). This meant that the person properties of an entity
of type Person had to be represented by a Person role, a
so-called identity role which Bachman admits to be “dif-
ficult to distinguish from the entity-type with which they
are associated” (Bachman 1980, p. 4).4

As an additional constraint, the role data model required
that owner and member roles be different (a condition that
would be self-evident had role be interpreted as a distin-
guishing name for a place of a relationship, as in the rela-
tional and the entity relationship model).

4 This seems to be a technicality which is not generally useful for
modelling (since it somewhat lifts the clear distinction between
role and entity types). However, it makes the network data model
a special case of the role data model. See below for a more criti-
cal treatise.

Properties of the Role Data Model
Based on Bachman’s definition of the role data model, the
following list of properties can be derived.
1. Distinction of Existence and Appearance. Bachman

separated between the existence of an entity and its ap-
pearance in a relationship. In his own words:

The Role Data Model […] divided the object con-
cept into two parts, a static part called an “entity”
and a dynamic part called a “role”. An entity estab-
lished existence, while a role established behavior[5]
for that entity. (Bachman 1989, p. 30)

An entity may now be accessed from several points
of view, i.e., an entity with an ‘employer’ role is
accessible independent of what else (person, corpo-
ration, etc.) it might be. (Bachman 1980, p. 9)

2. Relationships Are Defined on Role, not Entity Types.
This has already been note above and is perhaps the
most radical change Bachman suggested. Its conse-
quences are far reaching, and it can lead to an inflation
of roles (cf. last paragraph of “What Bachman did not
tell us about roles” below).

3. Role Types Are Unions of Entity Types. Although not
explicitly stated, the fact that different entity types could
be collectively addressed using the same role type lets
role types appear as unions (supertypes) of entity types.
This is in sharp contrast to many views of roles held in
the literature and – partly – also contrary to intuition,
since roles appear to be subtypes of the role playing
types. For instance, the Employer concept seems to be a
specialization of the Person concept, since it adds prop-
erties to persons (resulting in a growing intension) and
not all persons are employers (effecting to a shrinking
extension). However, persons are not the only possible
employers: companies and governments are other, and
since these are non-overlapping (in the sense that their
extensions are disjoint), Employer cannot be a common
subtype of all three, because this would imply that its ex-
tension would always be empty. Also, although at a cer-
tain point of time only some persons may be employers,
in principle all persons can be employer at some stage in
their lifetimes, or all persons are not equal. It turns out
that viewing roles as subtypes is based on a fallacy,
namely on confusing the dynamic extensions of types
with their static ones. See also Property 6.

Note that later data models, as for instance Elmsari et
al.’s entity category relationship model, also allowed un-
ions of types in the places of relationship declarations,

5 Bachman seems to have adopted the term “behavior” from the
above definition of roles as “behavior patterns”, which was influ-
enced by the use of the term in the theatrical context. I doubt that
he meant behaviour in today’s (object-oriented) strict sense,
namely procedures or methods attached to objects (or their types).
And yet, the different state associated with Bachman’s roles (as
captured by the items of the different role-segments) eventually
leads to different behaviour of entities.

Set TypeRole Type Entity Type * 1..* 1 owner *
1 member *

but these were not called (and presumably also not con-
sidered to be) role types (Elmasri and Navathe 1989, p.
421).

4. Supportive of Strong Type Checking. This is best ex-
plained by Bachman himself:

The role model with its single owner role-segment
type and single member role-segment type per set
type makes the application of “type controlled”
pointers a practical reality for set manipulation
commands. Type controlled pointers are pointers
which point only to objects of a specified type. This
condition can be satisfied if the pointer type speci-
fication is role specific, because the first member
and any next member of a set type are always the
same role-segment type. Thus for languages which
use type controlled pointers as an integrity feature,
the role model offers a straightforward solution.
The network model cannot because of the declara-
tions of many record types as alternate owners or
multiple members of a set type. (Bachman and
Daya 1977, p. 468)

5. Role-Based Polymorphism. Defining roles as unions of
types (Property 3) has an important corollary: by refer-
ring to role rather than entity types, objects of different
entity types can be treated equally, i.e., as if they were of
the same type. In programming terms, this means that a
variable of a single type can provide access to the fea-
tures of different entity types, without type casts or ex-
plicit branching. This property is widely known in pro-
gramming as inclusion polymorphism.

As an aside, note that roles add another form of poly-
morphism, namely a literal one: since objects can play
different roles, each one possibly requiring different
properties, a single object can appear in different forms
(one per role), the object hence being polymorphic in the
literal sense (it takes on different forms). By contrast,
with inclusion polymorphism the term refers to different
objects having same form so that they can be assigned to
the same variable. The objects are thus not polymorphic
– it is their properties (mostly functions) that are.

6. Role Playing is Dynamic. Although the role playing ca-
pability of an entity type has to be declared statically,
entities can adopt and drop roles dynamically:

If the entity represented by the record occurrence
does not play all the roles declared for it, then the
role-segments occurrences representing the missing
roles would be present but would not be defined.
The presence of a defined role-segment denotes the
existence of the role for the entity. (Bachman and
Daya 1977, p. 466)

Note that this duality, static role declaration and dy-
namic role adoption, leads to the somewhat paradoxical
situation mentioned above: statically, all instances of all
entity types declaring a role belong to the extension of
that role, so that the role appears to be a supertype of the
entity types. Dynamically, however, only some of all the

entities of the role-playing entity types existing at a cer-
tain point in time belong to the extension of the role
type. The resolution of this seeming paradox has to do
with the fact that role types, their extensions in particu-
lar, cannot be defined independently of the relationship
types whose places they are associated with. Attempts to
provide relationship-dependent definitions of role types
can be found in (Steimann 2000, 2002).

To summarize, a role in Bachman’s role data model is a
type that represents a partial view on entities as they par-
ticipate in a relationship. All relationships are defined on
role types, not entity types. An entity picks up a role by be-
coming member of a relationship, and drops it by leaving
the relationship. Entities of different types can play the
same role and the same entity can play roles of different
types. From the viewpoint of a relationship, all entities in
one place have the same role type and can therefore be
treated alike, regardless of their possibly differing entity
types.

Universality of the Role Data Model
Etymologically, the English word “role” derives from
Latin “rotula” (“small wheel”), which is at the same time
the root of English “roll” (both translating to the same Ger-
man noun “Rolle”). The metaphorical use of “role” comes
from theatre, where it denoted a roll of papyrus on which
the text for an actor was written. The term was then gener-
alized to the part of the play itself, as which it denoted a
protocol or behaviour specification (including speech) an
individual actor had to obey. In classical plays, a role was
never bound to a particular person – in fact, it did not even
require a fitting gender (in antiquity even female roles had
to be played by male, since actresses were not allowed).

Occurrence in Sociology
The theatrical use and meaning of the word “role” was

soon transferred to the general interaction of humans in
everyday life, and – after its inception – quickly became
occupied by sociology, the “science of society”.6 The fol-
lowing definition is taken from the Encyclopaedia Britan-
nica:

role, in sociology, the behaviour expected of an indi-
vidual who occupies a given social position or status.
A role is a comprehensive pattern of behaviour that is
socially recognized, providing a means of identifying
and placing an individual in a society. It also serves as
a strategy for coping with recurrent situations and
dealing with the roles of others (e.g., parent-child
roles). The term, borrowed from theatrical usage, em-
phasizes the distinction between the actor and the part.
A role remains relatively stable even though different

6 The first encyclopaedia I picked up said that “role” was one of
sociology’s two most important concepts. Unfortunately, at that
time I still believed in the capabilities of my memory so I did not
write down what the other was, nor did I note the encyclopaedia!

people occupy the position: any individual assigned
the role of physician, like any actor in the role of
Hamlet, is expected to behave in a particular way. An
individual may have a unique style, but this is exhib-
ited within the boundaries of the expected behaviour.
[...]

Role expectations include both actions and qualities: a
teacher may be expected not only to deliver lectures,
assign homework, and prepare examinations but also
to be dedicated, concerned, honest, and responsible.
Individuals usually occupy several positions, which
may or may not be compatible with one another: one
person may be husband, father, artist, and patient,
with each role entailing certain obligations, duties,
privileges, and rights vis-à-vis other persons.

There are several interesting things to note about this defi-
nition. First, the relationship of roles and role players is
generally m:n, i.e., the same person can play different so-
cial roles, and the same social role can be played by differ-
ent persons. Second, a social role is defined in terms of its
interaction with others, and is – to some extent – independ-
ent of the kind and properties of its role players. Although
not explicitly stated, it should be clear that institutions and
even computers can play certain social roles. In fact (and
third), it seems that the relationship between a role and a
role player is rather simple: from a static (i.e., atemporal)
viewpoint, an entity must possess the capability (qualifica-
tion) required by a role in order to be considered a (poten-
tial) role player, and from a dynamic viewpoint, at any
point in time an entity either plays or does not play a spe-
cific role.7

It appears that the concept of a social role has great simi-
larity with Bachman’s role concept. Therefore, mapping of
roles identified in a social domain to role types of the role
data model should come without “impedance mismatch”,
i.e., it should neither require nor introduce additional arte-
facts. This means that Bachman’s role concept is not just a
handy construction making the lives of coders and database
administrators easier, but that in fact it is a natural exten-
sion of the conceptual repertoire needed to model (social)
reality more adequately.

Occurrence in Linguistics
The concepts of data modelling always reflect some basic
ontology, a list of concepts that can be used to make a pic-
ture of the domain being modelled (the “reality”). Tradi-
tionally, these concepts include objects (or entities), attrib-
utes describing them, relationships linking them, and types
thereof. These concepts seem to constitute a canonical set –
after all, no less than predicate calculus, one of the best un-
derstood languages known to date, builds on them. How-
ever, predicate logic has no notion of roles.8

7 The quality of performance may vary.
8 This ignores the meaning of roles as a named place of a rela-
tionship (Steimann 2000), which can of course be added to predi-
cate logic as a form of syntactic sugar.

Predicate logic was devised as a formal variant of natu-
ral language, one that reduced language to its elementary
constructs. However, that predicate logic is devoid of a role
concept does not mean that it has no place in language. In
fact, logic and its modern incarnation, AI, have a long tra-
dition of ignoring time – it should therefore come as no
surprise that a concept as dynamic as that of a role has
been left aside. Linguists on the other had have not had
such problems.

In his quest for a universal language, the English mer-
chant Lodwick wrote a book describing his “Common
Writing”, “whereby two, although not understanding one
the others Language, yet by the helpe thereof, may com-
municate their minds one to another”. On pages 7–8 of this
tiny book (of only 30 pages) he wrote:

Next the verbes, follow in order the nounes substan-
tives, of which there are two sorts.

Appellative.
proper.

Appellative I thus distinguish. To be a name by which
a thing is named and distinguished, but not continu-
ally, only for the present, in relation to some action
done or suffered, as for instance, Speech being of a
murther committed; he that committed the same, will,
from the act, be called a murtherer, and the party on
whom the act is committed, the murthered, these
names thus given in reference to the action done, con-
tinues no longer with the party, then thought is had of
the action done, but on the contrary the specificall
proper name, remaineth continually with the denomi-
nated, as the specificall name of man, beast, so also
the individuall denomination of any particular man, as
Peter, Thomas, andc.

A proper name is that, by which any thing is con-
stantly denominated, specifically, as Man, dog, horse.
(Lodwick 1647)

The first thing to note about Lodwick’s remarkable work is
that he placed the verbs (expressing predicates or relation-
ships of a sentence) before the nouns, which is very much
in line with modern theory of language (so called depend-
ency or valency theory, according to which the objects of a
sentence are governed by its predicates). The recent focus
on collaboration in object-oriented software modelling also
seems to acknowledge this order.

The second thing to note is his distinction of two differ-
ent kinds of “Appellatives”: nouns like “murtherer” and
“murthered” are temporary names of individuals, names
that are defined in the context of and by a predicate or rela-
tionship, in this case the “murther committed”; whereas
“specificall proper names” like “man” or “beast” present
classifications that are independent of any situation, state,
or relationship and, thus, timeless. It is not difficult to see
how the first category – specified by a relationship and

serving as a temporary classification – corresponds to role
types, while the latter corresponds to entity types.9

Lodwick’s notion of a role was later rediscovered many
times, for instance by the linguists Bühler and Fillmore
(Steimann 2002). Fillmore’s semantic cases Agent, Patient
etc. are also called thematic (or semantic) roles; the recent
tendency to move the grammar into the dictionary (Puste-
jovsky 1995), where each word can specify for itself which
others it may be combined with, builds on much finer
grained roles as selectional restrictions.

Independence of Social Domains
The prototypical roles recurred to in most literature are all
roles of the same entity type, namely Person. From this
monotonicity of examples the question arises whether roles
and role playing are concepts whose applicability is re-
stricted to social domains, or whether they can be used in
other domains as well, including those where no persons
are present.

The answer is simple: it can. For instance, a piece of pa-
per can serve as input (playing the role Source) or output
(with role Sink); Source can also be played by Keyboard,
and Sink by Screen (but not vice versa). Although these ex-
amples are less intuitive, it should be clear that the role
concept is legitimate wherever relationship is: the only
point is that sometimes it may be perceived unneeded, or
redundant.10 However, this should not detract from the fact
that all objects play roles whenever they participate in rela-
tionships – only sometimes, these roles may remain im-
plicit.

The Role Concept as an Ontological Primitive
That analogous role concepts are present in domains as dif-
ferent as sociology and linguistics makes roles a hot candi-
date for becoming accepted as an ontological primitive. If
object, class, and relationship are, why should not role be?

Among others, Nicola Guarino and co-workers have in-
vested considerable effort in cleaning up with the chaos left
by ontological adaptations of ad hoc role definitions. They
base their definitions on fundamental ontological proper-
ties such as foundedness and (lack of) semantic rigidity,
which can be used to differentiate role types from other
kinds of types (Guarino et al. 1994). As it turns out, Bach-
man’s role concept is founded, since roles are defined in
the context of relationships, and not semantically rigid,

9 Note that modern English grammar distinguishes only between
common and proper nouns, the former denoting objects anony-
mously (“man”, “murderer”), the latter naming concrete individu-
als (“Peter”, “Jack the Ripper”). Common nouns correspond to
types, proper nouns to objects. However, no distinction between
role types and entity types is made. It seems that this conceptual
poverty has been adopted by data modelling, which also distin-
guishes between types and individuals (instances), but not be-
tween different kinds of types.
10 This redundancy is best evidenced by the difficulty to find a
good role name, one that is different from the entity type whose
instances play the role.

since entities can assume and drop roles without losing
identity. As an aside, note that the same holds for the social
and the linguistic role concept.

Important with all ontological definitions of roles is that
they accept roles as being primitive, i.e., as belonging to
the fundamental repertoire of a language suitable to de-
scribe the world. Although a reduction of this repertoire
seems always possible, with it one loses semantic richness
and thus naturalness of expression. To quote Bachman
once more:

The basic claim of the role model is that it more
closely represents the real world than the network
model or any other well known model. This better
representation is made possible by the richness of the
model. It exceeds these data models in its descriptive
power. It is a model where the person describing the
data can say more about the data and thus provides a
better understanding of that data to the database man-
agement system. Thus a given amount of data may
hold more information. (Bachman and Daya 1977, p.
469)

Summary
To conclude this brief (and admittedly also rather super-

ficial) investigation of universality, there seems to be a re-
curring pattern of definition of the role concept, one that is
based on protocol specification in the context of relation-
ships. A role, it seems, is a classification of an object en-
gaged in a certain place of a relationship that lasts only as
long as the object takes that place. In order to be able to fill
that place, the object must be able to obey to the protocol
(behaviour specification) associated with the role. Strik-
ingly, this common understanding of roles is very much in
line with Bachman’s role type definition.

What Bachman Did Not Tell Us about Roles
Despite the convincing elegance of Bachman’s role con-
cept, there is one thing he did not think – or at least speak –
of: that the same entity can play the same role more than
once at the same time. For instance, a person can simulta-
neously hold several employments, with the same or with
different employees. Each employment then comes with its
own state, for instance an office telephone number, work-
ing times, and a salary. In fact, this observation is one of
the strongest arguments in favour of the role-as-adjunct-
instance representation (Steimann 2000), and its opponents
(including myself) tend to ignore this. However, this is just
unrealistic. But how can the situation be remedied?

In the entity relationship model (and also to some degree
in the relational data model) the relationship has the poten-
tial to bear additional information: it may have attributes
further describing it. For instance, the Employment rela-
tionship could be attributed with telephoneNumber, work-
ingTimes, and salary. This would allow different employ-
ments of a single person (in multiple employee roles) to
come with different employment-related attributes. All that

is needed is some “relationship awareness” of the person,
i.e., knowledge of the fact in which relationships it partici-
pates (which is granted in the network model anyway).

One might be tempted to ask whether these attributes are
specific to the relationship or to the role. If the latter is the
preferred answer, it could be argued that the role-specific
attributes should be detached from the relationship and as-
cribed to separate role instances distinct from both the re-
lationship and the entities that fill its places. Theses in-
stances would then act as bridges between the relationship
and its related entities. If one feels that these role instances
are closer to the entities than to the relationship, one ends
up with modelling roles as adjunct instances, by way of the
role object pattern (see below). However, as far as I can
see there is no practical need to do this, nor do good theo-
retical arguments exist.11

Another problem one might regard as not being ade-
quately addressed by the role data model is that not all rela-
tionships define natural role types; that instead one may
wish to be able to define a relationship between entity
types directly (so-called internals such as whole-part or
quality are such relationships; see Masolo et al. 2004).
However, this problem is avoided in the role data model by
the introduction of identity roles, roles (like Person) that
collect the properties of the entity type stripped of all its
roles (cf. Footnote 4). In fact, Bachman made clear that

for many entity-types only one role-type, the identity
role, is evident or generally of interest. In these cases,
the Network data model, which does not discriminate
between entity-types and role-types, is as useful as the
Role data model. (Bachman 1980, p. 4)

Alternative Role Data Models
There are plenty of alternative definitions of roles and role
modelling described in the literature. Some of these have
been analyzed and discussed to some detail in (Steimann
2000, 2002). Here, I will only briefly address two particu-
lar alternatives, because they seem to be so popular.

11 As an aside (and partly contradicting myself), it is interesting to
note that allowing more than one role segment of the same type
for the same entity record would have lifted the 1:n-relationship
restriction of the role data model, allowing general m:n (including
recursive) relationships. This is so because it would have intro-
duced a (strongly typed) m:1-relationship between roles and enti-
ties, which combines with the 1:n-relationships induced by a set
type declaration to a m:n-relationship. In fact, given the possibil-
ity of m:1-relationships between roles and entities the sets could
even be reduced to pairs, since any entity can now appear (in dif-
ferent role instances of the same type) in as many sets of the same
type as needed, both as an owner and as a member. Although to-
day practically irrelevant (since no one would seriously attempt to
rewrite a network database management system), it proves the
conceptual power of the role concept.

The Role Object Pattern
The role object pattern (Bäumer et al. 1997) and its likes
emulate the role concept through the primitives of object-
oriented programming, namely objects and relationships
(in object-oriented programming called links) between
them. Such an approach has many degrees of freedom, re-
flected in the many, slightly varying different implementa-
tions found in the literature, all of which represent roles as
adjunct instances (Steimann 2000). These approaches are
known to cause a problem called object schizophrenia, but
this can be considered a technicality that can be fixed by
taking adequate measures in language design (for instance,
by having two concepts of identity). Another problem is
much more worrying.

The role object pattern and its siblings neglect the fact
that the relationships involved in emulating the role con-
cept themselves come with roles (e.g., the Subject role and
the Role role), and that this recursion is devoid of a mean-
ingful beginning. To understand the problem, it is instruc-
tive to try and model the roles involved in the definition of
the role object pattern using the role object pattern. The
roles of the role data model on the other hand, as for in-
stance the Owner and the Member role of a relationship
(set), are defined without problems using the role data
model as modelling language (cf. Steimann 2002, Fig.
4.15, for the case of UML).

Therefore, although I have great sympathy for the role
object pattern for practical reasons (because it can be fine-
tuned to meet whosever intended semantics), I must reject
it for conceptual reasons, because it lacks the primitivity I
would expect from such a fundamental concept. In a way,
emulating roles with objects and links is much like repre-
senting both entities and relationships with tuples – the se-
mantics of the construct, whether some expression denotes
a role or something else, must be attached externally.

Roles as Aspects
More recently, the role concept has been rediscovered in
the context of what has become known under the term as-
pect-oriented programming (AOP). A role, so the sugges-
tion, is like an aspect in that it describes one particular
facet of an object. However, roles and aspects differ in
quite fundamental ways.

In brief, a role is a named type specifying a cohesive set
of properties whose specification is determined by the col-
laboration with other roles and whose implementation by
different classes is typically different (polymorphic). An
aspect on the other hand is neither a type, nor is it mean-
ingful only in the context of another aspect, nor does is in-
troduce different implementations for different objects (it
does in fact introduce same implementations, which is its
very purpose). Although conceptually a role of an object
can be viewed as an aspect of it, this aspect is typically not
one in the aspect-oriented sense. A more detailed treatise
can be found in (Steimann 2005).

Conclusion
I am not sure why Bachman picked the term role for his
new concept, but it seems like an obvious choice: like the
terms object, class, and relationship, role is so fundamental
a notion that it is hard to avoid it when describing the
world.12 So rather than wondering why Bachman chose the
term role (and not view, aspect, or whichever others have),
we should wonder why the concept had not been intro-
duced to and used in modelling before. Be it as it may,
there roles were, with a clear definition and ready for use.
That analogous definitions had long been in use in other
disciplines only goes to show that it was wisely chosen.

Unfortunately, Bachman’s role data model was refused
the widespread recognition it would have deserved, so that
its impact remained little. This was mostly accounted for
by two other emerging data models: the relational data
model, and the entity relationship model. It seems ironical
that both of these come with their own notions of roles, but
that these are much poorer in meaning than Bachman’s: the
relational data model defines roles as names used to distin-
guish places of a relation (or columns of a table) that hap-
pen to have the same type (and thus could not be distin-
guished by their type names); the entity relationship model
similarly uses roles to distinguish the different lines con-
necting relationship types with entity types, facilitating
readability where necessary and – again – differentiating
repeated occurrences of the same entity type in the same
relationship type. Although choosing the term role for la-
bels of the places of relationships is not unintuitive, it ef-
fects to a castration of Bachman’s role concept.

That a role concept amounting to the name of a place in
a relationship was not sufficient is impressively evidenced
by the huge number of alternative definitions of the role
concept having been published to this date. Most of this
work cites Bachman’s assiduously, but only few authors
seem to have grasped the fundamentality, naturalness, and
simplicity of his initial role definition.

In retrospect, Bachman himself describes the role data
model as an episode, lasting no longer than from 1977 to
1980 (Bachman 1989). After then, it seems that he had
given it up in favour of what he called the partnership data
model (Bachman 1986, 1989), an attempt to rewrite the
network and role data models into something that still more
closely represents the real world. However, this data model
appears to come without an explicit role concept.13

To me, it remains unclear whether Bachman dismissed
the role data model because he had lost the faith in the ex-
pressiveness of its major contribution, the role concept, or
because he realized that its association with the network
data model – confined to 1:n-relationships as it was –
would never allow him to regain the ground lost to the rela-

12 The disapproving reader may try to explain what a role is with-
out recurring to it.
13 Unfortunately, the partnership data model is not very well pub-
lished – the only primary source that I found is a copy of a US
patent (Bachman 1986).

tional community14. As you might suspect, I presume the
latter was the case.

References
Bachman, C. W. 1969. Data structure diagrams. SIGMIS Data-
base 1(2):4–10.
Bachman, C. W. 1973. The programmer as navigator. Commun.
ACM 16(11):653–658.
Bachman, C. W., and Daya, M. 1977. The Role Concept in Data
Models. In Proceedings of the Third International Conference on
Very Large Data Bases, October 6-8, 1977, Tokyo, Japan. IEEE
Computer Society 1977 VLDB 1977: 464–476.
Bachman, C. W. 1980. The role data model approach to data
structures. In: Deen, S.M., and Hammersley P. Eds. Proceedings
of the International Conference on DataBases, 1–18. University
of Aberdeen: Heyden & Son..
Bachman, C. W. 1986. Partnership data base management system
and method. US Patent No. 4631664
(http://www.freepatentsonline.com/us4631664.html)
Bachman, C. W. 1989. A Personal Chronicle: Creating Better In-
formation Systems, with Some Guiding Principles. IEEE Trans-
actions on Knowledge and Data Engineering 1(1):17–32.
Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. 1997. Role
Object Pattern. In Proceedings of PLoP '97. Technical Report
WUCS-97-34. Washington University, Dept. of Computer Sci-
ence.
Elmasri, R., and Navathe, S. B. 1989. Fundamentals of Database
Systems. Benjamin/Cummings.
Falkenberg, E. 1976. Concepts for modelling information. In GM
Nijssen ed. Proceedings of the IFIP Conference on Modelling in
Data Base Management Systems, 95–109. Amsterdam:North-
Holland.
Fowler, M. 1999. Refactorings: Improving the Design of Existing
Code. Addison-Wesley.
Guarino, N., Carrara, M., and Giaretta, P. 1994. An ontology of
meta-level categories. In Doyle, J., Sandewall, E., and Torasso, P.
Eds. Proceedings of the 4th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR'94), 270–
280. Morgan Kaufmann.
Lodwick, F. 1647. A Common Writing. Reprinted in Salmon, V.
1972. The Works of Francis Lodwick. London: Longman.
Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R.,
Gangemi, A., and Guarino, N.: Social Roles and their Descrip-
tions. In KR 2004, 267–277.
Pustejovsky, J. 1995. The Generative Lexicon. Cambridge: MIT-
Press.
Steimann, F. 2000. On the representation of roles in object-
oriented and conceptual modelling. Data and Knowledge Engi-
neering 35(1): 83–106.
Steimann, F. 2002. Ein natürlicher Rollenbegriff für die Soft-
waremodellierung. Aachen: Shaker-Verlag.
Steimann, F. 2005. Domain models are aspect free. In Proc. of
MoDELS/UML 2005, 171–185. Springer LNCS 3713.

14 and pride would not permit him to transfer his role concept to
the relational world

