
A Radical Reduction of UML’s Core Semantics*

Friedrich Steimann and Thomas Kühne

Institut für Technische Informatik
Rechnergestützte Wissensverarbeitung
Universität Hannover, Appelstraße 4

D-30167 Hannover
steimann@acm.org

Praktische Informatik
Technische Universität Darmstadt

Wilhelminenstraße 7
D-64283 Darmstadt

kuehne@pi.informatik.tu-darmstadt.de

Abstract. UML’s current core semantics suffers both from excessive com-
plexity and from being overly general. Resultant is a language definition that
is difficult to master and to repair. This is the more disturbing as the current
core and its extensions do very little to integrate statics and dynamics, even
though the inseparability of these is a property of software from which many of
the modelling difficulties arise. To better this unsatisfactory situation, we sug-
gest a simple modelling core with few concepts that are easy to understand, yet
cover most static and dynamic modelling aspects. We present our work, which
is founded in elementary set theory, in natural language making it equally ac-
cessible for both practitioners and formalists.

1 Introduction
Much has been written about the shortcomings in the current UML specification,
which almost paradoxically contrasts the standard’s considerable length. Without
adding to the ever expanding list of inaccuracies and inconsistencies, we maintain
here that many of the standard’s flaws are rooted in its foundation, particularly in its
core package and associated semantics. However, the same unwieldiness that left the
faults undiscovered by its designers makes it difficult to evolve the standard into
something sound. Therefore, we propose a radically revised language core that builds
on a small set of primitive modelling concepts, with new abstract syntax and formal
semantics. We demonstrate that this new core is to a large extent compatible with
UML’s current concrete syntax and pragmatics.

One of the key points of our contribution is that the language we propose is designed
right from the bottom up with a strong emphasis on integrating statics and dynamics,
so that the same small core can serve as the basis for both the static and the dynamic
views on a system. So far, a formulation of such an underlying model has been
hinted at only, leaving the various views offered by the language largely discon-
nected. We are well aware, though, that much remains to be done to cover the whole
of current UML syntax and semantics. Therefore, our core language can only be a
language core, to be extended wherever deemed necessary.

The remainder of this paper is organized as follows. We start by briefly reviewing
our choice of core modelling concepts and then define a minimal abstract syntax

* in: JM Jézéquel, H Hussmann, S Cook UML 2002: Proceedings of the 5th International Conference (Springer, 2002) 34–48.

which is based on a blend of order-sorted logic and set theory. The formal semantics
of this syntax is heritage from corresponding formal frameworks offered by the logic
programming community [1] and hence only touched on. Following, we show the
mapping of UML diagram types to this abstract syntax. A brief discussion concludes
our paper.

Before proceeding with the presentation of the basic concepts on which we build our
language definition, we would like to stress one subtlety that often leads to confu-
sion. Generally, we do not speak of a core model, but of a core (modelling) language,
since we do not intend to model UML (just like a UML user would model any other
subject domain). Rather, we rely on elementary set theory (our metalanguage) to
specify a language (our object language) the sentences of which are interpreted as
models of software systems. The semantics of standard UML diagrams is defined by
providing a set of mapping rules to our object language, which, being based on set
theory, has standard semantics. By not following the common metamodelling ap-
proach favoured by the OMG we do not only avoid circular definitions, but also the
unfortunate situation that every change of the UML concrete syntax entails rewriting
of the whole definition, because the metalanguage changes with it.

2 Core modelling concepts

2.1 Time

Conceptual modelling and its most prominent semantic foundation, formal logic,
have a long tradition in ignoring time: even though change and hence time are the
very nature of software systems, the ER(= basically predicate logic)-based strain of
modelling tends to neglect the ubiquitous duality of static and dynamic viewpoints.
For instance, multiplicities (or cardinalities) apply to the contemporaneous number
of links between objects (or entities) and hence place constraints on change rather
than static structure (see section on extensions below).

As a consequence we maintain that statics and dynamics are not as orthogonal as
many modelling language specifications (including UML) would like them to ap-
pear. We try to do away with this inadequacy by putting time at the core of our mod-
elling language. In particular, we regard time as an index to all modelling
expressions at the instance level, albeit mostly only indirectly, through state.

Actually, time indices comes in two guises: quantitatively, as absolute or relative
points on a linear time scale, and qualitatively, with sequence as the underlying time
model. The difference between these two is much bigger than it may seem: specifica-
tions of the latter form usually cover a whole lot of alternative evolutions simulta-
neously (a non-linear or branching time model), whereas specifications based on the
former are typically non-branching, showing only a single evolution (usually out of
many possible).

2.2 Intension and extension

Intension and extension are properties of concepts. In our setting, the intension of a
modelling concept may be equated with its definition or specification. Intensions are
usually only changed during the development process of a software system, not while

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

35

the software is executing. Hence, we regard intension as a static (i.e., atemporal)
concept. The reflective capabilities of some OOPLs make an exception to this com-
mon assumption, but are not considered here.

The extension of a modelling concept is the set of elements that fall under that con-
cept, i.e., that are adequately described by the concept’s intension. Unlike intensions,
extensions are inherently dynamic: elements come and leave extensions over time,
making them grow and shrink. The static extension of a concept, if at all a useful no-
tion, may be considered the temporal projection of (or union over all) its dynamic ex-
tensions.1 It must be understood, then, that certain constraints (e.g. cardinality)
expressed for the extension of a concept hold only for its dynamic extensions.

2.3 Types

Types are at the heart of modelling. Equipped with intensions and extensions, they
serve as specifiers for the properties of sets of objects that can be treated alike, and as
constraints expressing objects of which kinds may take which places.

In our core language we need two kinds of types: natural types, which we call
classes, and role types, which we call roles2. For readers unfamiliar with the role-as-
type concept, roles as used here may safely be equated with the interfaces of UML
and JAVA [6]. UML makes a further difference between object and primitive types
(misnamed data types); however, this distinction is of no concern in this discourse
and hence ignored.

There exists a rather crisp ontological distinction between classes and roles, based on
the dynamic extensions of types and associations. Briefly, a type is a class if for an
object to belong to that type no engagement in a relationship to other objects is nec-
essary, and changing this type (so-called object migration) means that the object
loses its identity. For instance, a person is a person qua being, not per relatedness to
any other object, and it cannot stop being a person without losing its identity. A role,
on the other hand, is only adopted in the context of an association, and taking on a
role or giving it up does not change the object’s identity. For instance, a father is
only a father if he has children, but becoming a father does not change the individu-
al’s identity. As an aside, note that unlike classes, roles have no instances of their
own; they must recruit them from natural types, i.e., classes.

The concept of roles in UML has been thoroughly revised in [4]; its equality to inter-
faces has been argued for elsewhere [6, 7]. Readers feeling uncomfortable with the
prominent role roles play in this treatise may continue by ignoring roles and the as-
sociated modelling issues, albeit only at the price of losing some of the coverage of
the more advanced UML semantics (interface specifiers, collaboration roles etc.).

2.4 Objects

The extensions of types are sets of objects. The sets are dynamic, reflecting the fact
that objects come into life (technically referred to as instance creation) and disappear
(referred to as destruction). Whereas for classes instance creation and destruction
1 We speak of the dynamic extensions of a concept in plural here since our underlying
view is that a concept has a (dynamic) extension at each point in time.
2 We have taken special care that there is no danger of confusing the type and the in-
stance level when speaking of roles.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

36

alone change the extensions, things are different for roles: the dynamic extension of
a role at time t is defined as the set of objects occurring — at the same time t — in
the dynamic extents of any associations, in the place of that role. Thus, the dynamic
extensions of roles depend on those of classes and those of associations.

As is commonly understood, in our approach too all objects have identity. Some ob-
jects have nothing but their identity, for instance numbers. Objects can be named; in
this case, the name serves for referencing the object and may be considered an alias
for the identity.

2.5 Type hierarchies and inheritance

Types are organized in hierarchies, one for each kind of type: a class hierarchy and a
role hierarchy. Both are subsumption hierarchies, i.e., each supertype subsumes its
subtypes. The connotation of type subsumption here is that the extensions of super-
types include the extensions of all their subtypes. Conversely, the intension of a sub-
type implies the intensions of all its supertypes, meaning that all properties specified
for a supertype also hold for its subtypes. Thus, type subsumption establishes type
compatibility; it may be considered equivalent to the generalization relationship of
UML and entails what is commonly called inheritance in OOPLs.

The class and the role hierarchy are connected through a special relationship extend-
ing the type compatibility, by specifying the objects of which classes can appear
where which roles are specified. For a quick understanding, this relationship can be
equated with the realizes dependency of UML and the implements keyword of the
JAVA programming language, specifying the instances of which classes can be as-
signed to variables of which interface type. The full semantics of this relationship,
especially with regard to intensions and extensions, is a little more complicated and
detailed in [3, 5].

2.6 Attributes

Each class comes with a set of attributes. Each attribute is modelled as an unary
function from the extension of the class to some value domain, namely the extension
of another class. Again, we refrain from making a distinction between object and
primitive types. Many-valued attributes (i.e., attributes that can have several values
at the same time) are modelled as attributes with sets3 as the elements of their value
type, corresponding to the container types of OOP.

There is a certain degree of freedom as to whether or not a relationship between two
objects should be modelled as an attribute or as a structural association (see below).
Although there are some theoretical hints on how to decide this question, the issue is
of no importance for the further discourse and can safely be ignored.4 We stress here,
though, that our focus is on the conceptual side of modelling, not on implementa-
tional issues.

3 Mathematically, tuples, sequences and bags (multisets) can all be modelled as sets.
4 Just a quick ontological hint: attributes usually model qualities of an object, not
relationships; hence classes are preferred over roles as value types.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

37

2.7 Associations

Objects can engage in relationships with certain other objects. This property is speci-
fied on the type level, by declaring the involved types as arguments to associations.
The declaration is part of the association’s intension. Other properties usually com-
plement the declaration, but are not considered here.

Associations are generally interpreted as relations in the mathematical sense, i.e., as
subsets of the Cartesian products of the extensions of the involved types. The dynam-
ic extensions of an association are tuples called links (Section 2.8 below). Note that
this definition leaves it open how associations are to be used, i.e., whether they de-
fine structure or collaboration (see [7] for a deeper discussion). Because this is an
important distinction, we subdivide associations into structural and procedural as-
sociations below.

It is useful to require that associations are defined on roles only. It has been shown in
[4] that this elegantly covers many of the lesser used model elements of UML’s static
structure and collaboration diagrams without posing unnecessary restrictions on cur-
rent UML pragmatics. However, to maintain the independent readability of this pa-
per we continue without insisting on this separation.

Structural associations. Structural associations model the knowledge an object may
have of its environment. In particular, they represent the possible relationships be-
tween objects that exist independently of the execution of some procedure.

Procedural associations. A procedural association declares the types of the parame-
ters contributing to a procedure, i.e., to a piece of functionality required for the soft-
ware system to achieve its purpose. The places of a procedural association are

one (the first) for the object responsible for executing the procedure (the re-
ceiver),
one for each other parameter of the procedure, and
optionally one (by convention the last) for the return value or result of the
procedure.

Note that in OOP the understanding is that messages are sent to a receiver. In our
modelling language, the coupling of a procedural association with its receiver type is
rather loose (in fact, it is not tighter than that of a structural association with any of
its types).5 The underlying design decision for the last point is not to introduce return
actions as in standard UML, but to view functions (methods that return values) as
special relations in the mathematical sense.

Aggregation. The concept of aggregation has been the subject of much debate in
both the philosophical and conceptual modelling communities. We argue here that
because we have no useful standard semantics for the concept of aggregation that
should be captured in the core language, there is no good in introducing it; hence we
leave it. A possible realization of aggregation at the modelling level is shown in Fig-
ure 2.

5 This has some theoretical impact on the resolution of dynamic binding (method dis-
patching), which is not treated here. See [1] for a formal treatise.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

38

2.8 Links

Links are the elements of the dynamic extensions of associations. They are basically
tuples of objects, complemented by the name of the association to whose extension
they belong. As with associations, we distinguish between structural links and proce-
dural links.

Structural links. Structural links model the relationships between objects that ex-
press the knowledge an object has of others, often independent of any particular
functional requirement. In particular, structural associations exist before and after
the execution of a procedure, but they are often the result of some procedure.

Procedural links. Procedural links express relationships existing solely for the pur-
pose of realizing some functionality or, more technically, for executing some proce-
dure. Procedural links are transient by nature; their creation corresponds to the event
of a method call (with objects as actual parameters) and their destruction to the end
of execution of the called method. A procedural link may survive the procedure by
being transformed into a structural link (see Figure 3 for an example).

2.9 States

The state of an object-oriented software system (the system state) is the set of its con-
temporaneously existing objects together with their attribute value assignments
(where some objects are the attribute values of others) and the links (both structural
and procedural) between them. Due to practical limitations states will usually only be
partially specified, i.e., each given state represents only a small excerpt of some total
system state.

Even though it is understood that a state is a snapshot, single, isolated states are usu-
ally not linked to absolute times since it is the very nature of a software system that
its state at any one time depends on past states and events that have occurred since
then. Instead, states occur in the definition of state transitions and state/event se-
quences (see below).

The state of an object is the set of its attribute value assignments and the links it
shares with other objects. It comprises the knowledge an object has of itself and of its
environment.

2.10 Events

An event corresponds to the creation or destruction of one or more procedural links.
Since procedural links contribute to state, any event partially specifies its own suc-
cessor state. This makes sense because the information conveyed in a procedural
link, namely the objects passed as parameters, should at least be temporarily known
to the object responsible for the execution of the procedure.

In the absence of classes as first class objects instance creation (i.e., a change to the
extension of a class) cannot be triggered by an event as defined above, but must be an
event in its own right. However, unlike the creation of a procedural link, the creation
of a structural link is not an event; rather, it is a reaction to an event reflected in a
change of the dynamic extension of a structural association.

Events can be timed, meaning that an absolute time or a time relative to the occur-
rence of another event can be associated with it.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

39

2.11 State transitions

A state transition is a mapping from a state and an event to a successor state. In the
context of software modelling, two forms of state transitions are of interest: sets of
partial specifications of the transition function of a finite state machine in the form
“if in state s1 and event e occurs, change to state s2”, and the listing of state/event-
sequences of the form <s1 e1 s2 e2 ... sn>. A (complete) transition function specifies a
set of possible sequences of events and thus a formal (regular) language; state/event-
sequences specify one concrete sequence of events and resultant state changes.
Whereas in the former case no absolute time tags can be attached to events or states,
such may be useful in the latter case, for instance for specifying a real-time scenario.

Just as a state can be associated with both the whole system and each object, so can
state transitions: a state transition defined for an object starts from a state of that ob-
ject and arrives at a state including the new state of that object, plus possibly the
changed states of other objects involved and procedural links newly created. State
transitions of this kind are usually associated with the object’s type.

3 Core language
With modelling concepts defined as above at hand, we are now equipped to define
our core object-oriented modelling language. We do this by first defining the abstract
syntax, i.e., by specifying how a model is textually expressed in our language. In
Section 4 we show how standard UML diagrams are mapped to this abstract syntax.
It must be understood, though, that our core language was not designed to cover ev-
erything offered by the UML standard; however, it is only a core that can easily be
extended to cover more meaning.

3.1 Abstract syntax

Expressed in our abstract syntax, a UML model consists of
a finite set C of class symbols;
a finite set R of role symbols;
a transitive, reflexive and antisymmetric overloaded relation ≤ defined on
C×C, R×R, and C×R, expressing the combined type hierarchy of classes and
roles;
for each C∈ C a set of attribute declarations of the form a: C → D where a is
the name of the attribute and D∈ C the value type;
a finite set S of structural association declarations of the form s: R1 ... Rn

where s is the name of the structural association and R1, ..., Rn∈ R are the
types of the association’s places;
a finite set P of procedural association declarations of the form p: R1 ... Rn

where p is the name of the procedural association and R1, ..., Rn∈ R are the
types of the association’s places;
a finite set ΣΣ of states with each state σ∈ΣΣ comprised of

a (possibly empty) set OC of object symbols for each C∈ C (the dynamic
extension of C in state σ);

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

40

an optional attribute value assignment of the form a(o) = u for each object
o∈ OC and attribute declaration a: E → F with C ≤ E and u∈ OD for some
D ≤ F (inheritance and type or assignment compatibility!);
a (possibly empty) finite set Ls of links of the form s(o1, ..., on) for each
structural association declaration s: R1 ... Rn∈ S, where , ...,o1 ∈ OC1

 and C1 ≤ R1 , ..., Cn ≤ Rn (the dynamic extension of s in state σ);on ∈ OCn

a (possibly empty) finite set Lp of links of the form p(o1, ..., on) for each
procedural association declaration p: R1 ... Rn∈ P, where , ...,o1 ∈ OC1

 and C1 ≤ R1 , ..., Cn ≤ Rn (the dynamic extension of p in state σ);on ∈ OCn

and
a finite set of exemplary state transitions of the form δ(σ1, l) = σ2 with σ1, σ2

∈ΣΣ and l∈ Lp for some p∈ P.

A few comments are in place:
One might maintain that roles (i.e. interfaces) should appear only at the target
ends of unidirectional associations, presumably because interfaces cannot
have attributes in JAVA. We do not support this viewpoint.
As indicated above, the alternative form of declarations s: T1 ... Tn and
p: T1 ... Tn with T1 , ..., Tn∈ C∪ R is also possible, but less expressive; see [4].
The state transitions of the given form cover the specification of both state
machines and a non-branching sequences of state/event pairs.
Quite obviously, much of the complexity of modelling lies in the specification
of states and state transitions, and thus in the dynamic (i.e., time-indexed)
parts of a model. All attempts to increase the expressiveness at the
(atemporal) type level must appear misled investments by comparison.

The above definition of a core abstract syntax uses natural language and the formal
notation of set theory and order-sorted predicate logic [1, 3]; it could also be depicted
graphically, for instance in UML, given that a UML diagram can be drawn that has
the same meaning as the above prose. Because UML is intended for software model-
ling and not for defining a language, we have no interest in doing so and since leave
it as an academic exercise.

3.2 Semantics and the family of language issue

Since our core modelling language builds on the mathematical primitives set, func-
tion, and relation, the definition of its semantics in set theory is straightforward. A
short definition for a similar language based on order sorted predicate logic has been
given in [3]; lengthier treatments can be found in [1].

It must be noted, though, that certain issues such as overloading and binding (which
links are instances of which associations) are not unambiguously defined with the
language syntax and must be explicitly stated in its semantics. By offering alternative
interpretations the same syntax can serve a whole family of modelling languages.
Because of its commitment to types, however, it is illusory to pretend that our lan-
guage could be equally useful for fundamentally different approaches such as
prototype-based modelling.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

41

3.3 Shortcomings

The presented language core strictly distinguishes between types and objects. In par-
ticular, whereas objects can have attribute values (“slots”) and can be involved in
links, classes cannot. This inhibits, among other things, “static” declarations and in-
stance creation through sending a class a message. Two solutions are possible: either
we introduce a special type Type whose instances act as proxies for the ordinary
types, or we introduce a metatype level to our object language and let the non-
metatypes be instances of metatypes. The former resembles the type system of JAVA,
even though without further measures it can do little more than instance creation6.
The latter results in a type model similar to that of SMALLTALK; in particular, if all
modelling constructs applying to types also apply to metatypes, types may change dy-
namically, yielding a fully reflective language. Be it as it may, the shortcoming is not
as dramatic as it my appear for many programmers, since static features rarely play a
role in OOM.

Another shortcoming of our language is that it makes no provisions for capturing
technical modelling information such as from which diagram a certain model ele-
ment originates. This is particularly a problem since our aim is to integrate the in-
formation of all diagrams into a single representation, so that some information is
necessarily lost. However, separate storage of such information is not a problem tech-
nically, so that we leave this subtlety aside.

3.4 Core extension

Since our core language is founded on set theory, possible extensions that are
theoretically sound and practically useful abound in the literature. It must be under-
stood, though, that most extensions will not lead to the addition of modelling con-
cepts to our language core, but to some standardized formulation of constraints to be
placed on models. For instance, cardinality constraints associated with an association
translate to expressions requiring that only a certain number of links exist contempo-
raneously with the same object involved. It appears that the Object Constraint Lan-
guage (OCL) [2] would lend itself to expressing such constraints; its relationship to
our core modelling language, however, must be the subject of another paper.

4 Mapping of UML diagram types
Now we come to the final hurdle of our venture: how do UML’s different diagram
types map to the suggested core modelling language? After all, our main intent is to
keep UML as a notation intact but redefine what the modelling information ex-
pressed by the various diagram types is. This not only gives each diagram type a well
defined meaning, but also tightly integrates the diagram types with each other,
namely as different views to a common model. Let us see how this works, one by
one.

4.1 Use case diagram

A use case maps to a procedural association declaration between an actor and a sys-
tem. The actor maps to a role symbol, and the system to a class symbol (Figure 1).

6 because all instances of Type must share the same properties

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

42

Since associations should end at roles, an implicit interface between the association
end and the system class may be assumed, declaring the view of the use case on the
system by hiding other properties of the system irrelevant to this use case. An alter-
native mapping is to view the actor as an interface to the system and the use case as
an unary procedural association declared on that interface (= role; see Figure 1).
Such a mapping is adequate if the actor is not itself involved in the use case.

Note that uses case, actor and system are all at a very high level of abstraction (and
possibly refined as aggregates of procedural associations, roles and classes). The pro-
cedural associations of a use case diagram could be instantiated to procedural links
with concrete objects at their places, but the use of doing so is rather limited.

System

doIt

Actor

classes
 System

roles
 Actor
 SystemRole

type hierarchy
 System ≤ SystemRole

procedural associations
 doIt: SystemRole Actor

classes
 System

roles
 Actor

type hierarchy
 System ≤ Actor

procedural associations
 doIt: Actor

Figure 1: A use case and two alternative mappings to our abstract syntax. doIt becomes a
procedural association, Actor a role and System a class. SystemRole is introduced implicitly.

4.2 Class diagram

The class diagram depicts primarily types and the structural associations between
them. Not incidentally, it is also called static structure diagram. However, method
(or operation in UML jargon) declarations and thus elements pertaining to behaviour
are also shown in a class diagram.

The name of a class maps to a class symbol and that of an interface to a role symbol.
Class stereotypes (other than interface and role, which should be mapped to role
symbols) are not considered here7. Attributes map to attribute declarations from the
holding class to the attribute value type. The method declarations of a class are trans-
lated to the declarations of procedural associations of which the first parameter is the
defining class (Figure 2).8

Associations map to structural association declarations (Figure 2). Whether or not an
association is an aggregation has no formal implications and is thus ignored here, as
are multiplicities (cardinality constraints). UML’s restriction disallowing bi-

7 although they could be addressed by the aforementioned metatype level
8 Since procedural associations should be defined on roles, not classes, they should
really be associated with an interface, namely the interface across which the method is called.
However, as we said earlier, in order not to complicate matters, we do not insist on this dis-
tinction here.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

43

directional associations between roles (or interfaces) is lifted, basically because to us
it seems to lack a plausible justification. If association ends carry rolenames, they are
interpreted as implicit introductions of role types, implemented by the classes placed
at the association ends.9

A generalization arrow between two classes or two interfaces, or an implements ar-
row between a class and an interface is mapped to a pair of the ≤-relation specifying
the type hierarchy. If instances and links are shown in a static structure diagram (a
mixed class and object diagram), they correspond to object symbols and structural
links, respectively. Other static structure diagram elements are not treated here; they
may necessitate extensions to the core language.

«interface»
Whole

«interface»
Whole

getName()
nextPart()

getName()
nextPart()

«interface»
Part

«interface»
Part

getName()getName()

aggregation

DirectoryDirectory FileFile

name:Stringname:String

type hierarchy
 File ≤ Part
 Directory ≤ Whole
 Directory ≤ File

attributes
 name: File → String

structural associations
 aggregation: Whole Part

procedural associations
 getName: Whole String
 getName: Part String
 nextPart: Whole Part

Figure 2: A class diagram and its mapping to declarations in our abstract syntax.
The diagram models an aggregation pattern (with roles Whole and Part) and a file system
structure as a possible application of it.

4.3 Collaboration diagram

The collaboration diagram marries two different aspects of an interaction: the types
of the collaborators together with their associations (or links, depending on whether
the diagram is on the specification or instance level), and the message flow indicat-
ing the interaction between objects.

The former aspect explicates the links necessary for the communication between ob-
jects and could also be shown in an object or class diagram (with one exception listed
below), while the latter aspect is also shown in the sequence diagram (see Section
4.4).

The mapping of collaboration diagrams to the abstract syntax is straightforward. For
the instance level, objects in roles map to objects (possibly anonymous, acting as
placeholders and corresponding to variables with the roles as their types), links map
to structural links and messages to procedural links (with the receiver as the first ar-

9 For a more thorough treatment of association ends, roles and association generaliza-
tion, the reader is referred to [4, 5].

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

44

gument). The sequence specified is a linear one and mapped to a state/event se-
quence, even though not all state changes (only object and procedural link creation
and destruction and no structural changes) are actually specified. Figure 3 gives an
example of this.

For collaboration diagrams at the specification level, classifier roles map to role sym-
bols, classes, if specified, to class symbols (if both are provided for a single classifier,
it is understood that the class is subsumed by the role), associations to structural as-
sociation declarations, and sent messages to procedural association declarations. The
message sequence specified maps to a set of state transitions partially specifying a fi-
nite state machine. This finite state machine is the rough equivalent of the regular
expression specified by the sequence of control structures (i.e., conditionals, repeats,
and calls) expressed in the collaboration diagram10.

o1:Co1:C

a = o3a = o3

o2:Co2:C1: setA(o3)

b

o3:Co3:C

b 2: linkWith(o2)

(a)

o1:Co1:C

a = o3a = o3

o2:Co2:C

a = o3a = o3b

o3:Co3:C

b

(c)

(b)

σ1 =

a(o1) = o3

b(o1, o2)
b(o1, o3)

; l1 = [setA(o2, o3)]

σ2 =

a(o1) = o3

b(o1, o2)
b(o1, o3)

a(o2) = o3

; l2 = [linkWith(o3, o2)]

σ2 =

a(o1) = o3

b(o1, o2)
b(o2, o3)

a(o2) = o3

Figure 3: Collaboration diagram and its mapping.
(a) shows a collaboration diagram at the instance level. Objects, attribute values and links
show the initial state. (b) shows the same expressed in the abstract syntax, with subsequent
states as would be expected (but not shown by the diagram). (c) shows the final state as an
object diagram.

Now where does the structural aspect of a collaboration diagram go beyond that of a
static structure diagram? With the procedural link the receiving object gains tempo-
rary knowledge of the objects involved in the link11. This knowledge can be used in
several ways:

10 and which corresponds to the static program text (algorithm) of the procedure
11 including itself of which, of course, it already has knowledge

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

45

temporarily to construct a new procedural link involving one or more of the
received objects and send it to another object known by (or linked to) the re-
ceiver;
temporarily as a structural link for sending one of the received objects a new
procedural link; and
permanently as a new (or as a replacement for an existing) structural link to a
received object.

Thus, the existence of a structural association between two types is not a necessary
prerequisite for the exchange of a procedural link (a method call) between two ob-
jects of these types; instead, a procedural association suffices. Thus, the structural as-
pects of a collaboration diagram go beyond what is shown in a static structure
diagram — which can also include roles — in that it shows the temporary links re-
sulting from passed parameters.12 It does not, however, show the actual creation of
these links as state changes.

4.4 Sequence diagram

A sequence diagram shows objects exchanging messages to achieve a certain pur-
pose. Its primary use is the specification of the sequence of these messages, plus
which objects receive them. Because the sequencing is not dependent on a linear
numbering of the calls, sequence diagrams are particularly well-suited to express
branching by providing state transitions with identical starting states. As with the
collaboration diagram, the only state changes that are shown correspond to the cre-
ation and destruction of objects, and those of procedural links.

The mapping of a sequence diagram is analogous to that of a collaboration diagram.
The actor maps to a role symbol, all objects map to object symbols with their proper-
ties specified by the corresponding types. A method call corresponds to the creation
of a procedural link and thus to the occurrence of an event. Synchronicity of the call
places conditions on the state transitions associated with the caller, namely whether
or not it waits for the receiver to have completed the state transitions triggered by the
call. Timing constraints expressed with the call sequence are either mapped to timed
state/event-sequences (linear time model) or to transition times associated with the
state transitions.

4.5 Statechart diagram

Statecharts are extensions of finite state machines and thus, basically, a more expres-
sive means of specifying state transition functions. The mapping of a statechart to a
finite state machine must reverse the extension, which is not an easy undertaking.

Even though the specification of a statechart has the directest mapping to the state
transitions of our core language in principle, the states of a statechart are usually ab-
stractions of states as expressed in our abstract syntax, which are basically character-
ized by attribute values and links of objects. Thus, the mapping of the states of a
statechart to the core is not at all clear. A possible workaround would be to implicitly
specify state attributes with one value for each possible state of an object; this, how-
ever, undermines our goal to have all diagram types mapped to a single core model,
12 In a method implementation these would be the actual parameters plus temporary
(i.e. method local) variables.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

46

since it leaves the state transitions specified by interaction diagrams and those speci-
fied by statecharts largely uncorrelated.

Generally, finite state machines tend to become very complex even for fairly moder-
ate modelling problems, which is the reason why statecharts have been introduced in
the first place. Although expressive enough in principle, it may be worth considering
to replace the definition of events, states and state transitions in our core language by
(a subset of) the definition of statecharts. This, however, cannot be dealt with here.

4.6 Activity diagram

Activity diagrams are said to be based on state charts, a statement which should fa-
cilitate mapping. However, both authors have surrendered to the unwieldiness of the
activity diagram specification and abandoned all attempts to provide an even near
plausible mapping.

4.7 Component and deployment diagram

Component and deployment diagrams show aspects important for the technical de-
sign of a software product. Since their relation to (conceptual) modelling is rather
weak, they are not treated here. It is a common observation, however, that structur-
ing mechanisms are often orthogonal to the (elements) of the language they struc-
ture; i.e., it is very likely that none of the modelling concepts presented in section 2
will be suitable to serve for any of the purposes pursued by the component and the
deployment diagram.

5 Discussion
The UML standard’s current (version 1.4) chapter 2 comes with a wealth of addi-
tional modelling concepts (even in the core package) which we have not addressed
here. However, it is our conviction that the primary goals of a core modelling lan-
guage should be conciseness (ideally: minimality of concepts) and the ability to serve
as a uniform basis for all modelling aspects. Hence, the extension of the core lan-
guage to cover more meaning must be possible, but is not of paramount importance
here.

Understanding a collection of UML diagrams as views onto a common underlying
model enables us to unambiguously define the meaning of each diagram type in
terms of the underlying core modelling language and thus automatically creates
strong consistency constraints between the different diagram types. UML’s current
efforts to define consistency constraints using natural language and OCL must ap-
pear as sporadic ad-hoc attempts when compared to the possibilities opened up by
the above described approach.

It is illusory to pretend that our core language could be equally useful for typeless
languages such as SELF; too much of its expressiveness builds on the declaration of
types and the associations between them. Also, its use for languages without type
checking (such as SMALLTALK) will make it appear somewhat overequipped, since
much of the information introduced by its models (mostly type information) will not
be translated into a program. And yet, it is not a language specifically tailored for
statically typed languages such as JAVA and C++; it is defined solely on formal

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

47

grounds and makes no commitments to language specific features (even though we
made it one of our design goals that the relationship to the pragmatics of program-
ming is as straightforward as possible).

6 Conclusion
We have presented a replacement for UML’s current core semantics that integrates
static and dynamic modelling aspects into a core modelling language, built on a
minimal set of concepts. We have specified the abstract syntax of the new core using
a semiformal language based on set theory, and provided a set of mapping rules from
UML’s current concrete syntax to the abstract. We fully realize that our work can
only be a first round towards a new, simplified and consistent language definition,
but are optimistic that our approach will prove sustainable.

References
[1] KH Bläsius, U Hedtstück, CR Rollinger (eds) Sorts and Types in Artificial

Intelligence Lecture Notes in Artificial Intelligence 418 (Springer 1989).
[2] OMG Unified Modeling Language Specification Version 1.1 (www.omg.org,

September 2001).
[3] F Steimann “On the representation of roles in object-oriented and conceptual

modelling” Data & Knowledge Engineering 35:1 (2000) 83–106.
[4] F Steimann “A radical revision of UML’s role concept” in: UML 2000

Proceedings of the 3rd International Conference (Springer 2000) 194–209.
[5] F Steimann Formale Modellierung mit Rollen Habilitationsschrift (Universität

Hannover, 2000).
[6] F Steimann “Role = Interface: a merger of concepts” Journal of

Object-Oriented Programming 14:4 (2001) 23–32.
[7] P Stevens “On Associations in the Unified Modelling Language” in: UML

2001 Proceedings of the 4th International Conference (Springer LNCS 2185,
2001) 361–375.

F Steimann, T Kühne: A Radical Reduction of UML’s Core Semantics

48

