
in: 3rd Workshop on Software Model Engineering WiSME@UML (2004).

Are Models the DNA of Software Construction?
A Controversial Discussion

Friedrich Steimann
Universität Hannover

Institut für Informationsysteme
 Fachgebiet Wissenbasierte Systeme

Appelstraße 4, D-30167 Hannover

steimann@acm.org

Thomas Kühne
Technische Universität Darmstadt

FG Metamodeling
Hochschulstr. 10
64289 Darmstadt

kuehne@informatik.tu-darmstadt.de

INTRODUCTION
MDA is advocated as the next step in software construction.
It builds on the availability of a powerful modelling lan-
guage and model compilers that translate models into ex-
ecutable code. In the following Dr. Con—known as a harsh
critic of UML and as a sceptic of the feasibility of MDA—
and Dr. Pro—a believer in the MDA vision—are discussing
whether MDA is fundamentally flawed from the beginning
or represents the most promising new development para-
digm we work on today.

GRAPHICAL VS. TEXTUAL: WHEN DOES
THE CHOICE MATTER?
Dr. Con: MDA starts from a weak basis—graphical mod-
els—and aims at the highest possible goal: the delivery of
sound production level code. We know that in theory,
graphical and textual notations are equivalent (at least as
regards their expressive power), but in practice graphical
notations are usually far more cumbersome than textual
ones. Admittedly, they aid comprehension if kept simple,
but they quickly get convoluted when it comes down to the
core of real problems (not some very high abstraction
thereof). Why should something as weakly developed as a
graphical modelling language help solve a problem all
other approaches have failed to?

Dr. Pro: To do justice to this important legibility problem
one needs to distinguish structural from behavioural informa-
tion. Graphical models excel in conveying information of
the former kind, while admittedly have been known to be
challenged for the latter. I think we can agree on the fact
that a visual rendering of structural information enables
quicker reception of information compared to sequential
parsing of text where, e.g., one-to-many relationships, have
to be expressed and then re-recognized through repeatedly
referring to the same identifier (the “one” case). In this
sense, indeed “one picture says more than a 1000 words”.
With respect to behavioural information the situation is not
that clear cut, yet not a lost case for graphical approaches
either. While there is certainly no point in having an iconic
programming language mimicking all the traditional fea-

tures of today’s programming languages, surely there is
value in presenting and expressing behaviour in the form of
interaction diagrams (sequence and collaboration types)
and state diagrams. When it gets down to the nitty-gritty,
small grained behaviour, one may still use the more high-
level diagrams as navigation aids to get to textual behav-
iour description and/or refrain from descending to such
fine grained behaviour at all. In a source model we will
mainly just select predefined behaviour, but not spell it out.
Transformation engineers will still need to get their hands
dirty here and there, specifying which code needs to be
generated for given high-level model elements/annota-
tions. The modeller, however, may “stay graphical” at all
times.

Dr. Con: If graphical syntax were the better form of ex-
pressing programs, we would long be using it. Instead,
what we find is people using degenerate state machines
(degenerate to the extent that all transitions to one state are
labelled with the same event so that they are actually flow
charts without loops and subroutine calls), decorating states
with so-called actions that are more or less SMALLTALK
blocks in disguise. This is really one step back from struc-
tured programming.

Dr. Pro: It has not been that long ago when all we had to
support programming was ASCII editors. It is quite under-
standable that something like “graphical programming”
will take its time to receive optimal support and wide-
spread adoption. Many organizations all over the world are
already using “graphical programming”, i.e., various MDA
techniques, improving their productivity. The examples
you refer to are first steps towards the MDA vision, which
should be judged by its true potential, not its incarnations
during its infancy.

Dr. Con: But there is an intrinsic problem with graphical
approaches: Either the models are simple and readable but
then only capture functionality too trivial to be useful, or
they faithfully capture complex functionality but then are
next to illegible.

Dr. Pro: I already pointed out that—given powerful trans-
formations, which inject a lot of low-level behaviour code—

 2

an actual MDA modeller wishes, and is able, to stay at a
high level of abstraction. Such models are both legible and
rich in terms of specifying functionality. The functionality
might only be expressed as a choice from a fixed set of
available low-level behaviours, but nevertheless the infor-
mation is there. This shift—from “programming” to “con-
figuration”, i.e., from “hand-crafting a single piece of soft-
ware” to “selecting a fitting piece from an existing
choice”—is a persistent trend in the history of computer
science when it comes to increasing the productivity of
software creation.

Dr. Con: What if your desired choice is not among the
choices offered? Then you are stuck.

Dr. Pro: The modeller will be stuck, i.e., not be able to con-
tinue on his own. Still, after the transformation engineer has
provided any missing choice, the modeller may continue. It
follows that MDA implies new development roles and
opens up the way for new development paradigms.

Dr. Con: So it all comes down to a very high level language
that—no matter whether graphical or textual—can auto-
matically be transformed to some lower-level, platform-
specific specification?

Dr. Pro: That’s right. The usual emphasis on graphical mod-
els is not core to the approach. Essential is the idea to use
high-level descriptions which are solution independent, or
in MDA speak “platform independent”. Ideally, the high-
level descriptions should resemble analysis models rather
than more solution oriented design models.

SOUNDS FAMILIAR: WHY SHOULD IT
WORK THIS TIME AROUND?
Dr. Con: MDA is not the first go at making software con-
struction more productive; code generation tools and forth
generation languages (4GLs) for instance have been around
for quite some time. But practice has shown that code gen-
eration works poorly. If it worked well, we would make the
source of the code generator a new programming language
and turn the generator into a native compiler. But it isn’t
like that. We need to make changes to the generated code,
partly because it is just one bit off what we needed (and
what we need precisely just cannot be generated), partly
because there is code that is for good reasons not generated
(an algorithm for instance), simply because the target lan-
guage is much better suited to express it than the source
formalism of the generator. No one would accept a pro-
gramming language that, in order to produce useful pro-
grams, would require hand coding in assembler as an addi-
tional exercise.

Dr. Pro: There are applications of code generation which
tremendously increase the productivity of the people em-
ploying it. It is just a matter of time before this kind of de-
velopment will be more or less commonplace. Point taken,
we still have to learn a number of lessons until we know
how to use the generation paradigm optimally. That is why

some of the issues you address are relevant, yet they are not
insurmountable. In the future we’ll learn to make use of,
e.g., parameterization, to tweak our transformations so that
they have exactly the desired effect and do not just ap-
proximate it. We will also learn how to best balance the
distribution of behaviour in terms of expressing it in the
model and/or shifting it to the transformations. For one
thing, we won’t generate algorithms from scratch. We will
either just select existing ones, or compose new ones from
building blocks that are known to work to together. For
instance, many sorting algorithms can be expressed by a
very general approach which is just parameterized with
two reduction strategies. “Tournament Sort” for instance
was found by a certain combination of reduction strategies1.
With respect to your last sentiment, I fully agree. This is not
an argument against MDA, though, since the modeller will
never have to get in touch with “assembler”. It is the trans-
formation engineer who might.

Dr. Con: History has shown that the kind of 4GL you seem
to aspire for didn’t work too well. In my view, we had the
perfect 4GL (it was called SMALLTALK), but as everyone
knows we are all doing JAVA now and find ourselves writ-
ing most stereotypical source code most of our time. Try to
find a modelling language that is both more expressive and
more productive than SMALLTALK, then we can start talking.

Dr. Pro: The strength of SMALLTALK was the “as small a
language as possible” and “as rich a library as needed” ap-
proach. Relying basically just on assignment and message-
send as two primitives, everything else was deferred to the
SMALLTALK library. This way one could extend the language
in almost arbitrary ways. This is what MDA is about as
well. You may extend your modelling language—and thus
your expressiveness—in arbitrary ways, if you have a
mechanism of defining what the new concepts mean. In
SMALLTALK you define a method to elaborate what, e.g.,
“while” means. In MDA you define a new transformation
(or add an aspect to an existing one), defining what the new
concept means. To use your words, we have already
“started talking”! By the way, what better indication for the
viability of MDA could there be than the fact that using
JAVA we, “write most stereotypical source code most of our
time”?!

COMPILING MODELS VS. COMPILING
PROGRAMS: WHAT DIFFERENCE DOES IT
MAKE?
Dr. Con: Are you not mixing up two different kinds of
transformation? One kind of transformation goes from plat-
form-independent to platform-specific. The other kind of
transformation goes from high-level to low-level descrip-
tion. The former adds no real information, whereas the lat-

1 A. Kershenbaum, D. Musser, A. Stepanov, Higher Order

Imperative Programming, Rensselaer Polytechnic Institute
Computer Science Department, 1988.

 3

ter has to invent something (make informed guesses) and
thus is a truly creative process. In fact, I would conjecture
that PIM to PSM transformation is very much like applying
a native compiler to source code or, in other words, that the
PIM could run on a virtual machine and the PSM is its
equivalent platform-specific executable.

Dr. Pro: Superficially the two kinds of transformations ap-
pear to be different, however, from a MDA perspective they
can be unified. First, when a compiler translates source code
to byte or machine code, there are choices to be made (i.e.,
information to add) as well. Yet these choices, e.g., how to
realize a procedure call are so clear cut that the compiler
can make them for you without your advice. If the transla-
tion starts from something more complex than today’s
source code, there are more options and choices to make,
e.g., in which particular way you would prefer a “Diction-
ary” data structure to be realized. Once a choice is made
though, there is no “creativity” involved. Thus, the two
kinds of transformation are really not that different: the
code templates and translation rules embodied in a com-
piler basically capture how to transform a high-level de-
scription into something executable given some supporting
hardware. In comparison, starting from a problem based
description (PIM) and gradually moving towards a more
solution oriented one (PSM) represents the same process. I
say “gradually” since from the original PIM to the final
PSM it will usually take multiple transformation steps were
two subsequent models in the transformation chain assume
the roles of PIM and PSM respectively, so „platform de-
pendence“ really is a relative property rather than an abso-
lute one. A platform is essentially a “realization infrastruc-
ture” (just like hardware), hence the further you approach a
certain realization support, the more solution oriented and
low-level you get. In both cases, a) you increase the specific-
ity of platform dependence and b) you add more low-level
detail.

Dr. Con: But how does a model compiler know how to real-
ize a “Dictionary” data structure? I may express a choice,
but what is the magic that implements my choice? Using
programming languages I have to spell out how a specific
Dictionary works. Why can I skip that step with models?

Dr. Pro: Transformations have to add something that is
directed by the models, but not contained in them. Adding
this information is what you referred to as a “creative proc-
ess”, but really it’s the transformation engineer who needs
to be creative once, and then the modeller may just indicate
which solution choice is appropriate. In other words, “engi-
neer the transformation once, apply it everywhere”.

FROM ABSTRACT TO CONCRETE: HOW TO
CLOSE THE SEMANTIC GAP?
Dr. Con: How much redundancy is in a program? Given
that the most trivial bug can alter program behaviour to an
extent that makes it useless, I would assume not very much.
Now given that almost nothing of a production level pro-
gram can be omitted or changed without violating the

specification, the same information content must be cap-
tured by the model. This would imply that either

1) the modelling language is exceedingly more expres-
sive than any programming language known today,
or that

2) models are (nearly) as complicated as the programs
they produce, or that

3) only few programs can be generated from models.

Assuming that the first is not the case and that the second is
not what we want, we must conclude the third. In other
words: if a model is significantly simpler than the program
it produces, and if redundancy in a program is low, then I
would assume that there are far fewer meaningful models
than meaningful programs, meaning that there are many
useful programs that cannot be generated. After all, pro-
gramming is a complex matter not because our linguistic
means are inappropriate, but because our problems are ex-
tremely complex. So how can we expect to be able to take
the complexity out without losing precision?

Dr. Pro: You are right in observing that there is no noise in
programs. We cannot simply remove or alter pieces of pro-
grams and still expect them to work. However, there is re-
dundancy in that many high level concepts (say n-ary asso-
ciations) are repeatedly realized using lower level features
(say references) in the same way. Instead of manually creat-
ing those repeated patterns of code, we should just specify
that we want that particular pattern applied to a number of
occasions. In that sense, a modelling language drawing
from many such predefined realization patterns, which are
enacted by transformations, is indeed “exceedingly more
expressive than any programming language known today”.
That is why your second implication does not hold in the
case of MDA. Granted, during its infancy MDA will have to
live with your third implication that “only few programs
can be generated from models”. But even initially “few”
will equal “very many” and gradually one will learn what
the boiler-plate code of the currently too complex applica-
tions is and will then be able to capture it through standard
transformations guided by model annotations. Let me give
you an example: when hand-coding machine code you may
use various different ways doing subroutine calls (with
various protocols for using the registers, stack, etc.). You
may think that calling a subroutine is a challenging task
that needs to be creatively resolved on a case by case basis.
Soon, however, you will learn that you can reduce all your
variety to perhaps two basic cases (e.g., synchronous and
asynchronous) and then it is enough to signify which case
you need and generate all the low-level actions required in
each case.

Dr. Con: I don’t think you got my point. For any given
number of function points, there are far more different pro-
grams than there are different models. Given that the trans-
formation of a model to a program leaves the number of
function points unaltered, mapping is either ambiguous, or
not onto. This turning of knobs you mention (the choice or
parameterization of transformations) should either not alter

 4

the functionality, or should be part of the specification (and
hence also be found in the model).

Dr. Pro: The very fact that the mapping from a model to a
program is ambiguous gives the model its value! It can ex-
press the same number of function points without getting
bogged down in realization choices. Spelling out all the
realization choices a) makes it difficult to see the functional-
ity for all the realization of it and b) can be platform de-
pendent and hence subject to change. The actual realization
choices—removing the ambiguity—are partly expressed
within the model, using a so called “marking model”, and
are partly expressed outside the model as “turning of
knobs” choices regarding the transformation. You may re-
gard the latter as “compiler options”. Today’s compilers
also allow some choice of translation strategy, e.g., optimize
for code length or execution speed. Model compiler will
feature a lot more of these “knobs” since much more solu-
tion specific choices need to be made. In summary, you may
create all your different programs from a combination of one
model and various transformation choices.

A TRANSFORMATION-BASED APPROACH:
DOES IT REALLY MAKE SENSE?
Dr. Con: So what you propose is really an MDK (Model
Development Kit) analogous to the JDK or .NET, and a
“glue” language that allows the model engineer to put it all
together. Do you have any other examples than 1:n-
relationships where this could work? I could imagine inte-
grating collection-valued fields into any programming lan-
guage!

Dr. Pro: If you want to call it “MDK” that’s fine with me as
long as you don’t confuse the approach with a simple “li-
brary usage” paradigm. MDA is not about including pre-
fabricated parts, it is about applying boiler-plate realization
strategies automatically. Sure you may add “collection-
valued fields” to your favourite programming language,
but where do you stop adding features? MDA is about us-
ing a core language whose expressiveness can be extended,
e.g., by using annotations (marks) and associated realiza-
tion strategies. This way you are neither stuck with some
level of language expressiveness nor do you end up with a
never ending featurism for a given language. By the way,
examples over and above 1:n-relationships are numerous. A
few typical exemplars are events, which need to be realized
with messages, distribution, often calling for hand written
transaction schemes, and persistence, also typically requir-
ing the mechanical addition of regular code fragments to
domain classes.

Dr. Con: It seems you are advocating an extensible library
of modelling constructs (various kinds of classifiers, asso-
ciations, calls, state transitions, etc.) each coming with a set
of transformations the modeller can pick from. The trans-
formations are all functionally equivalent, but differ in a)
the target platform and b) non-functional properties such as
efficiency etc. Whenever I (as the modeller) miss a) a model-
ling construct or b) a transformation rule, I turn to a trans-

formation engineer to have it manufactured for me. Of
course, all elements of the library are designed to go to-
gether well, i.e., they can be combined freely.

Dr. Pro: You’ve got it!

Dr. Con: Is UML such a library? And if so, what are the
modelling language primitives, the analogues of SMALL-
TALK’s assignment and message passing? Although we fin-
ished the “graphical vs. textual” debate earlier on, it strikes
me that especially assignment, cannot be efficiently ex-
pressed graphically. You will agree that “new“ and “delete”
constraints on links are really cumbersome. How can that
lack be made up for?

Dr. Pro: The UML certainly can be used for MDA purposes,
which is not to say that it is already optimally equipped for
this purpose. With respect to your second question, let us
not repeat the discussion we had earlier on concerning the
granularity of behaviour you want to express with your
models. Again, even if the models were just structuring and
complementing plain old programming code, MDA would
be a huge step forward. To which extent behaviour is also
expressed by models, e.g., with interaction diagrams, state
charts, etc. and with which level of granularity is a discus-
sion which is interesting but whose outcome certainly does
not endanger the viability of the overall approach.

Dr. Con: I would assume that domain-level entities (classes
such as Account, Document, or PatientRecord) are not part of
the library?

Dr. Pro: Why not? If they are of general use across applica-
tions, surely it makes sense to support various realization
choices through predefined transformations.

Dr. Con: Ok, what you say sounds nice but I still don’t buy
it. You are basically implying that programming is just
about selecting a number of prefabricated behaviours and
then combining them. This is not the case, though. Just re-
cently I came across a very simple problem. From a docu-
ment comprised of a list of paragraphs, all paragraphs start-
ing with a given word had to be printed in their order of
appearance. For two selected paragraphs that were non-
consecutive in the original document, the first sentence of
the first intermittent paragraph and the last sentence of the
last intermittent paragraph also had to be printed to mark
the omission. While the actual problem was in fact a little
trickier than that, the chances that the solution even of its
simplified version would be readily available in any library
are very low, as are the chances that this kind of iterator is
ever needed again (which is why it isn’t in the library in the
first place). My own work experience tells me that every
non-foobar application comes with countless idiosyncratic
problems of this kind, and I would suspect that all attempts
to parameterize model elements or transformations so that
they can cover every conceivable peculiarity to otherwise
stereotypical patterns is doomed to failure.

Dr. Pro: Let me pick up your usage of the word “pattern”
and rephrase your statement to “The idea of design patterns

 5

is silly. Every application is different and the reduction of a
programmer’s work to a standard set of design patterns is
doomed to failure”. Of course, the success of design pat-
terns tells us that even though all applications are different
and in fact often require very specific algorithms, there is
still a large amount of regularity to be exploited (and, in
fact, should be enforced as it is often better to use a well-
proven design pattern solution than some custom ad-hoc
realization strategy). Specific algorithms, such as the one
you describe, need not necessarily go into a transformation
library. They may also be expressed in the source model
using the available ways of describing behaviour. This im-
plies neither that there is no regularity in applications to
exploit at all, nor that the algorithm should not be realized
by a transformation even if it does not appear to be of gen-
eral utility.

Dr. Con: I would conjecture that with a language like
SMALLTALK an optimum has been reached in the trade-off
between expressiveness and flexibility. As it turns out, only
few of the languages ranked above level 20 in Capers Jones’
famous language productivity list2 could be considered
general purpose. For instance, trying to formulate the above
selection procedure as an SQL statement would certainly
make me wish I had started the project in assembler.

Dr. Pro: I do agree that SQL would be a bad choice but then
SQL is not UML and is not supported by predefined and
extendable model transformations either.

FINAL SPEECHES: WHAT IS THE VERDICT?
Dr. Con: Graphical and other high-level languages are only
good for people who cannot program. This is not because
they are more expressive (in the sense that they are capable

2 http://www.theadvisors.com/langcomparison.htm

of expressing complex things in a simple manner), but be-
cause they oversimplify. In order to be able to make a use-
ful program (one that meets its users’ expectations) from a
model, the model must be so complicated that

a) people who cannot program cannot understand it
and

b) people who can program would rather write a pro-
gram than draw the corresponding model, in part
because fundamental notions such as assignment
may only be poorly supported graphically.

Even though (over)simplification can be useful at times, it is
certainly not a sufficient basis for creating a satisfactory end
product.

Dr. Pro: Let’s rephrase your first sentence to “graphical and
other high-level languages are ideal for people who cannot
program”. And this is fantastic, since we do not want peo-
ple to program anymore. We need to stop them wasting
time and money by reproducing boiler-plate code and regu-
lar realization patterns, time and again; all this in an error-
prone fashion, often resulting in suboptimal solutions. Peo-
ple who cannot program will still be able to understand a
model specifying their desired solution, since it will be built
on and rely on a multitude of known realization strategies. I
do not need to know how to best implement a particular n-
ary association. All I need is to know that I want it. People
who can implement such and more complicated realizations
will not be modelling but rather develop new transforma-
tions. While it is true that it is still on open issue how to
optimally specify behaviour at the lowest level of granular-
ity with graphical models, this certainly does not represent
a stumbling block for the MDA vision as such. Abstrac-
tion—as opposed to (over)simplification—well used, is
definitely useful and in fact, our only known basis to master
the ever-growing demands on constructing complex soft-
ware in more reliable and productive ways.

