
* in: M Marchesi, G Succi (eds) XP 2003 — Proceedings of the 4th International Conference (Springer 2003) 414–417.

Filleting XP for Educational Purposes*

Friedrich Steimann1, Jens Gößner2, Thomas Mück2

1Universität Hannover, Institut für Informationssysteme, Appelstraße 4, D-30167 Hannover
steimann@acm.org

 2Universität Hannover, Learning Lab Lower Saxony, Expo Plaza 1, D-30539 Hannover
{goessner, mueck}@learninglab.de

Abstract. Rather than teaching XP as a software development method, we have
found that some of XP’s core practices are actually viable learning scenarios.
By combining these practices into a set of regulations, we have organized a
well-received 200 h software practical regularly conducted during the 4th se-
mester of an applied informatics curriculum.

1 Introduction

While learning how to program can be fun, teaching how to program is notoriously
difficult. This is particularly so because programming is best learnt by doing, not by
listening (or watching), thereby reducing the role of the docent to the one who assigns
the right exercises (with the tutorial assistance being provided by others). Learning by
doing, however, is not learning on one’s own: it requires rapid feedback and gentle
guidance.

Whereas the syntax of a programming language can always be internalized through
trial and error (with the immediate feedback being given by the syntax editor or com-
piler), checking the semantic correctness of a program requires a much deeper under-
standing. This deeper understanding will usually be that of a peer; however, if the
peer has sufficiently clear expectations of how the solution should perform, these
expectations can also be cast into a test suite, making their accessibility independent
of that of the peer.

Learning in small groups can be highly effective. Students can learn from each
other by positive and negative example, they can join efforts to attack difficult prob-
lems, and they can learn by teaching what they have not fully understood for them-
selves. In addition, students are likely to have more time, to be more patient, and to
have a better understanding of each other’s problems than their teachers. All this
makes programming in pairs seem a favourable setting for learning how to program.

It appears that test driven software development and pair programming can actu-
ally help with learning how to program. Because they are key practices of XP, what
was more obvious than testing other XP practices for their pedagogical usefulness? In
the following, we take a first look at the suitability of XP practices for teaching, and
discuss some problems together with how they can be solved. A systematic investiga-
tion of the general aptness for XP in education however is yet to be undertaken.

2 Friedrich Steimann, Jens Gößner, Thomas Mück

2 A practical scenario for learning how to write software

In order to teach programming at a university in an industry-like setting, we make our
students form small “companies” (teams of six) and have each company develop a
150 person day software project. Progress and equal distribution of work are con-
trolled by dividing the project into blocks and each block into a number of individual
tasks assigned to the individual team members. At the end of each block, the solutions
to the individual tasks must be integrated and turned in as one functioning program.
Teams have to meet once a week for two hours, to assign tasks and perform walk-
throughs (code reviews). Because programming abilities vary widely, we encourage
participants to code in pairs (solving the double number of tasks per pair).

Pair programming fosters collaboration and mutual assistance. Successful col-
laboration depends on many factors, personal sympathy (or antipathy) being one of
them. While students find it natural to collaborate with their mates, most feel uncom-
fortable with co-operating with strangers, most likely because they fear exposure of
their deficits. In practice, however, good (i.e., productive) collaboration even with
colleagues one dislikes is indispensable. Therefore, one of the key abilities to be
learnt by a programmer is a social one: being able to co-operate. We teach this ability
by requiring the pairs of a company to rotate after each block.

User stories present adequately sized tasks. In order to be able to guide students
and track their progress, tasks should be cut down into chunks of small, manageable
size with clearly defined outcome. On the other hand, individual tasks must be big
enough so that some progress can be experienced. As it turned out, we had designed
our tasks so that it took each pair an average of 25 h (or approximately three working
days) per task. Thus it appears that a typical user story has about the right size for a
single task. From hindsight, it would have been a good idea to present tasks as user
stories, giving them a more realistic flavour. Hints on the solution of each task could
then be offered as separate help (displayed from within a specially adapted develop-
ment environment; see below).

Test first enables a constructivist approach. XP promotes the test-first approach
as one of its core practices, requiring that tests are implemented before production
code is entered. Having the tests in advance allows one to experiment with possible
solutions, find out how they failed, and try alternatives. If students are freed from
writing the tests themselves, the so-modified test-first approach presents a construc-
tivist learning environment, the obvious downside being that the tests must be written
by someone else, namely the instructors. While following this approach students do
not learn how to write tests, they learn to appreciate the existence of tests. A setting
for learning how to write tests is presented in the next section.

Continuous integration facilitates frequent submission of solutions. One problem
with long-term exercises is that students tend to get lost. If the deadline is far ahead,
there is only little pressure to proceed with one’s work. Heterogeneous groups em-

Filleting XP for Educational Purposes 3

bracing members with different work attitudes are likely to fall apart: if some mem-
bers are more determined than others, they will rather take over the work of their
colleagues than wait while the deadline slowly approaches. We counteract this cause
of disintegration by introducing blocks, entailing short delivery cycles.

At the end of each block, students have to turn in their solutions as a whole, i.e.,
they must submit the current state of the project as developed by their group by up-
loading their project files to the server on which they must compile and pass all tests.
Although a daily build is not mandatory, the continuous integration promoted by XP
is likely to prove a practice helping to meet delivery deadlines without worry.

3 Practical problems and their solutions

Problems with pairing. We found that although students were enthusiastic about it
initially, actual pair programming times were much shorter than anticipated: only one
third of all tasks were actually solved in pairs. Even though students appear to be
open to pair programming, its actual acceptance is disappointingly low; as one student
put it, “pair programming only makes sense […] with better opportunities to meet and
work together at the face“. It seems that meeting is a severe obstacle to (co-located)
pair programming.

To facilitate pair programming a number of students (not all, since we conduct a
controlled experiment [5]) will be equipped with notebook computers with Internet
access enabled via WLAN (802.11b), Ethernet cable and modem. MS NetMeeting is
used as the basis for application sharing and voice communication. WLAN access
points are distributed over parts of the campus and computer science buildings. Co-
operation in peer-to-peer mode is also possible and the connection of choice if par-
ticipants reside in close proximity, even side-by-side. It remains to be seen, however,
if the ubiquitous possibility for pair programming will actually improve the accep-
tance of this mode of teamwork.

How to test the tests. Naturally, with the tests being provided students learn to ap-
preciate the existence of tests, but they do not learn how to write them. Therefore, our
curriculum of exercises must contain tasks dedicated to the writing of tests.

Following the test-driven approach to practicing software development, the tests
(as a product) must be tested. Naturally, tests are tested by the application they test: if
the application contains errors, the tests must find them, and if the application is error
free, the tests must approve this fact. Thus, the first and most obvious approach to
testing the tests is to also write the application they are testing, to introduce errors
(intentionally or accidentally), and to correct both tests and application until they
conform to the specification.

If writing the test is the task, however, then testing it afterwards (even if by writing
the application) suffers from the same (psychological) problems as known from con-
ventional testing: the tester is blind towards his/her own errors. Therefore, we provide
with each test-writing task a set of solutions, one with no defects, the others with
errors injected. A test suite is considered correct only if it finds all errors and lets the
correct solution pass.

4 Friedrich Steimann, Jens Gößner, Thomas Mück

4 Discussion

Distributed pair programming. Distributed or dispersed XP (DXP) is a relatively
new facet of computer-supported collaborative work (CSCW) that is increasingly
being used across XP-style software developing companies. In DXP, programmers
collaborate using voice communication and application sharing software, typically
MS NetMeeting. First experiences with this setting in an educational context have
been reported in [1]; our own trials are promising enough to let distributed pair pro-
gramming appear a viable alternative to co-location.

Automatic verification of exercises. The idea of automatic verification of pro-
gramming exercises has previously been put forward by Praktomat [3] and WebAs-
sign [4], two publicly available frameworks for the conduction and evaluation of
exercises. However, these systems are not integrated in a practical of our size.

5 Conclusion

Perhaps, with most of the alleged advantages of XP yet unproven, it is still too early
to teach XP as a state-of-the-art programming method [2]. But if didactically valuable
learning scenarios happen to coincide (or at least blend smoothly) with XP practices,
then this should be sufficient justification to practise these practices in teaching. As
with XP as a whole, their proliferation will depend of the personal experiences the
students make, and on how successful they are.

Acknowledgements

This work has been supported in part by the BMBF Förderprogramm Neue Medien in
der Bildung, Ausschreibung “Notebook-University”, Förderkennzeichen 08NM222A,
and by the e-Learning Academic Network Niedersachsen (ELAN).

References

1. P Baheti, L Williams, E Gehringer, D Stotts, J McC. Smith Distributed Pair Programming:
Empirical Studies and Supporting Environments Technical Report TR02-010, Department
of Computer Science, University of North Carolina at Chapel Hill (USA 2002).

2. P Becker-Pechau, H Breitling, M Lippert, A Schmolitzky “An Extreme Week for First-Year
Programmers” in: XP 2003—Proc. of the 4th International Conference (Springer 2003).

3. www.infosun.fmi.uni-passau.de/st/praktomat/
4. http://niobe.fernuni-hagen.de/WebAssign/
5. F Steimann, J Gößner, U Thaden “Proposing Mobile Pair Programming” OOPSLA 2002

Workshop on Pair Programming Explored / Distributed Extreme Programming (Seattle,
USA 2002).

