EzUNIT: A Framework for Associating Failed Unit Tests
with Potential Programming Errors

Philipp Bouillon, Jens Krinke, Nils Meyer, Friedrich Steimann

Schwerpunkt Software Engineering
Fakultét fir Mathematik und Informatik
Fernuniversitét in Hagen
D-58084 Hagen
Philipp.Bouillon@gmail.com, krinke@acm.org, nils.meyer@jcoml.com, steimann@acm.org

Abstract. Unit testing is essential in the agile context. A unit test case written
long ago may uncover an error introduced only recently, at a time at which
awareness of the test and the requirement it expresses may have long vanished.
Popular unit testing frameworks such as JUNIT may then detect the error at little
more cost than the run of a static program checker (compiler). However, unlike
such checkers current unit testing frameworks can only detect the presence of
errors, they cannot locate them. With EzUNIT, we present an extension to the
JUNIT EcLIpsE plug-in that serves to narrow down error locations, and that
marks these locations in the source code in very much the same way syntactic
and typing errors are displayed. Because EZUNIT is itself designed as a frame-
work, it can be extended by algorithms further narrowing down error locations.

1 Introduction

All contemporary integrated development environments (IDES) mark syntax errors in
the source code, in close proximity of where they occur. In addition, static type-
checking lets the compiler find certain logical errors (sometimes called semantic er-
rors) and assign them to locations in the source in much the same way as syntax er-
rors. Today, remaining errors in a program are mostly found by code reviews and by
testing, in the context of XP and other agile approaches especially by pair program-
ming and by executing unit tests.

JUNIT is a popular unit testing framework. It is based on the automatic execution of
methods designated as test cases. A test case usually sets up a known object structure,
called test fixture, executes one or more methods to be tested on the fixture, and com-
pares the obtained result with the expected one (including the possible throwing of
exceptions). Because the expected result must be determined by some other way than
executing the method(s) under test (the test oracle), test cases are usually rather sim-
ple. However, there is no theoretic limitation on the complexity of test cases, other
than that they must run without user interaction and that the result must be repeatable.

JUNIT as currently designed reports errors in the form of failed tests. Contemporary
IDE integration of JUNIT lets the developer navigate from the test report to the failed
test case, that is, to the test method that discovered an unexpected result. However,

2 Philipp Bouillon, Jens Krinke, Nils Meyer, Friedrich Steimann

the test method only detects the presence of a programming error — it does not con-
tain it. The developer must infer the location of the error from the failed test case,
which is not necessarily trivial. But even if it is, navigating from the error report to
the source of the error currently requires a detour via the test case. Transferred to
syntax and type checking, this would correspond to navigating from an error report to
the error source via the syntax or typing rule violated, which would clearly be consid-
ered impractical.

Our ultimate goal is to lift unit testing to the level of syntactic and semantic check-
ing: a logical error detected by a unit test should be flagged in the source code as
close as possible to the location where it occurred. As a first step in this direction, we
present here for the first time an extension of the JUNIT integration in ECLIPSE, named
EzUNIT, that provides basic reporting and navigation facilities, and that accommo-
dates for algorithms and procedures serving to narrow an error location.

2 The Framework

In JUNIT 4, test cases are tagged with the @Test annotation. When adding a test case
through ECLIPSE’s New > JUnit Test Case... menu and selecting a method to be tested,
the test method is automatically annotated with a Javadoc tag saying that this method
is a test method for the method for which it was created. We raise this comment to the
level of an annotation, named @MUT (for method under test), and allow more than one
method under test to be listed. This accommodates for the fact that the tested method
may call other methods, which may also be tested by the test case, and that the ini-
tially called method may be known to be correct, while other methods it calls are not.
To help the programmer with generating the annotations, a static call graph analysis
of the test method is provided, listing all methods the test method potentially calls.
From this the developer can select the methods intended to be tested by this test case.
The generated list can be automatically filtered by an exclusion/inclusion of packages
expression (e.g., excluding all calls to the JUNIT framework).

The @MUT annotations are exploited in various ways. Firstly, they aid with the
navigation between test methods and methods under test: via a new context menu in
the Outline view of an editor, the developer can switch from a method under test to
the methods testing it and vice versa, without knowing or looking at the implementa-
tion of a method. Secondly, and more importantly, whenever a test case fails during a
test run, corresponding markers are set in the gutter of the editor, in the Package Ex-
plorer, and in the Problems view. Fig. 1 shows a test method (from the well-known
Money example distributed with JUNIT) with a corresponding @MUT annotation, and
the hints provided by a test run after an error has been seeded in the add () method
of Money.

Surely, in the given example associating the failed testSimpleadd () with
add () in Money is not a big deal, but then spotting the error in add () without
knowledge of the test method isn’t either, so that the developer saves one step in pin-
ning down and navigating to the error. In more complex cases, especially where there
is more than one method to which blame could be assigned, checking all methods that
may have contributed to the failure requires more intimate knowledge of the test case.
With EzUNIT, the essence of this knowledge, namely which methods are being tested

EzUNIT: A Framework for Associating Failed Unit Tests with Potential Programming Er-
rors 3

@org.projectory.EzUnit_MUT (W

methods = {''Money.add(QMoney;)"}

gTest EIIa,% ezl Init

public void testSimpleAdd() { - 28 (efault package)
Money expected = new Money(26, "CHF"); A Money.Ja\ra.
Money result = F12CHF.add(FL14CHF): 1) MoneyTest java
assertTrue(expected.equals(result)); . IRE Systern Library [jre]

o B MUT
’ L nit4

public Money add(Money m) {
return new Money(smount () + m.smounti() + 1, currency()):

}

["'_ Problems &3 Ja\radc:c|DecIaration

O erraors, 0 warnings, 1 info

Description = Resource
2 % Infos (1item)
I TesttestSimpleadd in class MoneyTest failed. Maney. java

Fig. 1. An emuT annotated test case and the markers it creates if the method under test is faulty.

by the test case, is contained in the Problems view and the various error adornments.
By going through these methods one by one, the developer can look for a potential
error, fix it, and rerun the test cases until the problem disappears. During this process,
the developer can always consult the test case to get additional hints, simply by using
the quick navigation facilities offered by the EzZUNIT framework.

The basic functionality offered by EZUNIT is rather simple, one may even say sim-
plistic. However, because EzZUNIT is designed as a framework, this basic functionality
can be extended by adding methods capable of narrowing the possible source of the
error, thereby providing assistance to the developer that is as yet unavailable. We are
currently exploring various such extensions. The framework is downloadable as an
Ecuipse bundle from the EzUNIT update site found at http://www.fernuni-
hagen.de/ps/prjs/EzUnit/update.

3 Discussion and Related Work

Our approach is simple. Its appeal comes from the fact that we can exploit the special
character of unit tests, namely that they are 100% repeatable (in that every run creates
exactly the same object structure and calls exactly the same methods on it): several
approaches to error locating practically intractable for the general case (such as pro-
gram slicing [1, 2]) can therefore likely be used in our setting, simply because there is
no dependency on input or other uncontrollable variation. With the provision of our
framework, we hope to attract other researchers to contribute their ideas.

4 Philipp Bouillon, Jens Krinke, Nils Meyer, Friedrich Steimann

Our approach is somewhat related to David Saff’s work on continuous testing [1,
4]. Continuous testing pursues the idea that test execution, like compilation, can be
performed incrementally and in the background. Whenever a developer changes
something and triggers a (successful) compilation, all tests whose outcome is possibly
affected by that change are automatically rerun. Thus, like our own work Saff’s raises
unit testing to the level of syntactic and semantic (type) checking, yet it does so in an
orthogonal dimension: continuous testing is about when tests are executed, our work
is about how the results are interpreted and presented. It should be interesting to see
whether and how the two approaches can be combined into one, particularly since the
mutual dependency of testing and program units under test is common to both of
them.

4 Conclusion

While unit testing automates the detection of errors, their localization is currently still

an intellectual act. By providing a simple framework that

o allows the developer to select — based on the result of a static call graph analysis
— which methods are being tested by each test case, that

o enables rapid switching between test methods and methods under test, and that

e marks failed tests as adornments in the editor and other representations of the
source code,

we have laid the technical groundwork for a symptom-to-diagnosis mapping for pro-

gramming errors. Extensions helping to narrow down error locations are easily con-

ceived and added. In fact, we believe that the best results can be expected from apply-

ing several algorithms in parallel, and from combining the evidence collected from

each. We have provided the framework for this.

References

1. H Agrawal, JR Horgan “Dynamic program slicing” Proceedings of the ACM SIGPLAN '90
Conference on Programming Language Design and Implementation (1990) 246-256.

2. B Korel, J Laski “Dynamic program slicing” Information Processing Letters 29:3 (1998)
155-163.

3. D Saff, MD Ernst “Reducing wasted development time via continuous testing” in: ISSRE
2003, 14™ International Symposium on Software Reliability Engineering (2003) 281-292.

4. D Saff, MD Ernst “An experimental evaluation of continuous testing during development”
in: ISSTA 2004, International Symposium on Software Testing and Analysis (2004) 76-85.

