
An extensible classification model for
distribution architectures

of synchronous groupware

Jörg Roth, Claus Unger
University of Hagen, Department for Computer Science, 58084 Hagen, Germany

Abstract. In this paper we present a new classification model for distribution
architectures of synchronous groupware. Former models divide distribution archi-
tectures into centralized, replicated and hybrid ones. Such a classification is not
expressive enough to argue about pros and cons of a specific realisation, thus in the
past discussions about distribution architectures were very emotional. Discussions
about best architectures are going on. A model with stronger expressiveness
would help to clear up this discussion.
Our classification model distinguishes five basic architectures and several sub-
types. It allows discussing aspects of distribution architectures in detail. We used
this model to classify some groupware platforms. A list of criteria at the end of
this paper demonstrates the influence of specific architectures on groupware
usage.
Keywords: Computer Science/CSCW, synchronous groupware, theoretical study,
CSCW architectures, modelling

1 Introduction

Synchronous groupware brings together users which are geographically distributed and
connected via a network. There exist a variety of platforms, e.g. Groupkit [24], COAST
[29], Habanero [20], which relieve the groupware developer from struggling with standard
problems like network details, synchronization algorithms, etc., and allow him or her to
concentrate on application-specific details. A significant distinctive feature of groupware is
the distribution architecture, which defines, which parts of a groupware application run on a
central server, which parts run on decentral sites and how sites are logically linked which
each other. Choosing a specific distribution architecture has an important influence on how
groupware can be developed and used. The distribution architecture has affects on several
topics, to mention some: application's response time and fault tolerance can be improved
using decentralized architectures. In general, decentralised architectures scale much better
than centralized. On the other hand, some runtime services such as storing documents can
be developed much easier, if a distribution architecture with a central server is used.
Many designers of groupware focus on the distribution architecture when presenting their
platforms. Unfortunately the terms defining a specific distribution architecture are extremely
vague. The classical approach to describe distribution architectures (e.g. in [1], [4], [15],
[26]), distinguishes between two types:

• In central architectures, the groupware application runs on a central server. This archi-
tectures often are called single-site execution.

• In replicated architectures, the groupware application runs on each user's site (multi-site
execution).

These definitions are based on projects, in which original single-user applications are used
inside a collaborative environment. Since such applications have no additional code for
performing group-oriented services, they are called collaboration-transparent [16]. Such
applications cannot be divided into components, usually such single-user applications are
applications 'of-the-shelf' - no source code nor program documentation for modifications
are available. On one hand, well-known collaboration-transparent application with high
quality reduce learning efforts for end-users. On the other hand, the lack of collaboration
services can be viewed as a big disadvantage.
Applications specially designed for group environments (so-called collaboration aware
applications), offer more possibilities for distributing their components. Thus a set of new
distribution architectures were introduced:
• Hybrid or semi-replicated architectures divide applications into components which run

centralized as well as replicated.

Meanwhile several platforms exist which offer different distribution architectures. Unfor-
tunately, the above classification into three types allows no detailed argumentation about
advantages and disadvantages of specific architectures. Most of the newer platforms, which
support collaboration aware applications, have to be summarized under the architecture
hybrid, though there exist big differences between them.
The problem becomes even worse, when we take different services of groupware platform
into account. There are different stages of collaboration, which have to be supported by a
platform, e.g. preparing a session, joining a session, running the collaborative application,
storing persistent artefacts. Each stage may have its own distribution architecture, e.g. an
artefact can be stored centrally on a server, but the collaborative application runs replicated.
Assigning one single distribution architecture (e.g. hybrid) to a specific platform means
blurring the details.
The current discussion about distribution architectures is ongoing. Many new platforms
present new architectures. To discuss pros and cons of architectures in more detail, a new
classification model has to be introduced, which provides a richer expressiveness than the
centralized-replicated-hybrid classification. Before we present our own classification
model, we discuss some related models.

2 Related work

Patterson's taxonomy [21] was one of the first architectural models for synchronous group-
ware. The model assumes that the primary task of a groupware application is to maintain con-
sistency in shared states. Patterson divides groupware applications into four layers.

a) shared model

Display

View

Model

File

Display

View

Display

Model

File

Display

b) shared view

View View

Model

File

Display

View

Model

File

Display

View

c) hybrid

Figure 1: Variations of Patterson's taxonomy [21]

The display is directly linked to the user, the view contains the display's logical presenta-
tion, the model describes the internal, transient state and the file describes the persistent
state of the application. Patterson's taxonomy distinguishes four layers, even if in a concrete
implementation some layers are merged together or left out completely.
Patterson allows to specify, which of these components are located on a central server and
which run on the user's site. As a result of 'unzipping' Patterson's architecture from the
bottom, distribution architectures are implicitly defined. Figure 1a) shows an architecture
with a shared state, i.e. the model and file layer are hosted by a central server. Figure 1b)
shows an architecture without a central server. All layers run replicated without a need for a
central server; model and view are synchronised. Figure 1c) finally shows a hybrid archi-
tecture which needs a central server but allows synchronization between the view compo-
nents.
Patterson admits that continuous data streams (e.g. audio, video) can be modelled only
inadequately in his taxonomy.
Dewan's generic architecture [6] can be viewed as a generalization of Patterson's taxonomy.
Dewan's architecture has no fixed number of layers. As in Patterson's taxonomy, Dewan's
architecture allows 'unzipping' from the bottom. Dewan distinguishes replicated and shared
layers. Data flow is modelled by events, which can be transferred between layers in an hori-
zontal or vertical manner.

3 An alternative classification model

3.1 A model for describing distribution architecture

To describe distribution architectures, we could in principle use Patterson's taxonomy or
Dewan's generic architecture. The degree of 'unzipping' an architecture defines, which com-
ponent is placed on a central server or a decentral site. However, both models are not
expressive enough to describe different architectures in detail. In the following, we present
a model solely designed for describing distribution architectures. The model consists of two
parts: the application scheme and the distribution scheme. The application scheme defines
the components of groupware applications and the distribution scheme defines, how these
components can be distributed among sites.

Appl icat ion
Core

W i n d o w
Sys tem

Coord inat ion

Presentat ion

Funct ional
Core

Figure 2: The application scheme

Figure 2 shows the application scheme. A groupware application according to this model
consists of three components:
• The application core presents the application's function. It is divided into the compo-

nents functional core and presentation.
• The window system displays the application's windows and receives user events from

e.g. from keyboard and mouse.
• The coordination is responsible for running the application in a distributed environment.

Coordination tasks are, e.g., synchronisation of user input, concurrency control, floor
control, etc.

Links between components indicate data flow. In contrast to Patterson's taxonomy, there is
no file component. Persistence aspects, if any are subsumed under the functional core.
This application schema was influenced by the single user model Arch [32]. Arch compo-
nents correspond to components of the application scheme in the following ways:
• Arch's functional core and domain adapter correspond to the functional core,
• Arch's dialogue component and presentation component correspond to the presentation

component,
• Arch's interaction toolkit component corresponds to the window system.

There is no counterpart in Arch to our coordination component, since the Arch model was
designed for single-user applications only.
In the following, we use this model according to the following set of rules:
• Not all links between components need to exist.
• The coordination component is not always necessary. In such a case, coordination tasks

are performed by the application core component.
• The window system is left out, if it has no special meaning inside a distribution archi-

tecture. In these cases, users and presentation are linked together.
• Depending on the architecture, the internal components of application cores may be

hidden. If on the other hand internal components are displayed, the application core's
frame can be left out to clarify the diagram.

The components of an application scheme can be distributed according to a distribution
scheme. Figure 3 shows the basic distribution schemes:

a) cent ra l components b) direct
communica t ion

c) hybr id

d) asymmetr ica l e) mult ip le
servers

... ...

Figure 3: Basic distribution types

A rectangle presents one or more components described in the application schemes. Dotted
frames indicate different sites inside a network. In the following, sites which are assigned to
a user are called peers, other computers are called servers. Components hosted by peers are
called decentralized components, components hosted by servers are called centralized
components. Corresponding decentralized component are called replica.
The following basic distribution architectures exist in our model:
a) Architectures with centralized components: these architectures have at least one cen-

tralized component. Peers are not connected to each other.
b) Architectures with direct communication: these architectures have no central component

at all. All peers are connected to each other.
c) Hybrid architectures: these architectures have at least one central component and allow

direct communication between peers.
d) Asymmetrical structures: have no central component, but distribution of components

among peers is not symmetrical, i.e. at least one peer component has no replica.
e) Multiple servers: these architectures use more than one server, i.e. central components

are distributed to more than one site.

In the following, we present different variations of each basic architecture. The list of
architectures may not be complete. New platforms possibly introduce new distribution
architectures, thus the list of basic architectures and subtypes may have to be extended in
the future. To reference a certain distribution architecture, we introduce the following
abbreviations:
• An uppercase letter indicates the basic distribution types: C: central components, D:

direct communication, H: hybrid, A: asymmetrical, M : multiple servers. We will intro-
duce two more types, P and Q, later.

• A digit (1, 2 or 3) indicates a subtype.
• Lowercase letters indicate different variations of a subtype.

A specific distribution architecture could be referenced, e.g. by the abbreviation H2b. Same
subtype numbers across different basic type indicate resemblance. E.g. architectures C2, D2
and H2 have similar characteristics, although they were derived from different basic types.

3.2 Architectures with centralized components

Figure 4 shows architectures with centralized components. Dotted frames which combine
components from the same site are left out in the following.

a) C1: centra l ized appl icat ion
(col laborat ion t ransparent)

Appl icat ion
Core

W i n d o w
Sys tem

W i n d o w
Sys tem

c) C2: centra l ized state

Presentat ion Presentat ion

Funct ional
Core

d) C3: centra l ized coordinat ion

Appl icat ion
Core

Appl icat ion
Core

Coord inat ion

b) C1b: centra l ized appl icat ion
(col laborat ion aware)

Funct iona l Core

W i n d o w
Sys tem

W i n d o w
Sys tem

Präsenta-
t ion

Präsenta-
t ion

Figure 4: Architectures with central components

Centralized collaboration-transparent application (C1)
Figure 4a) shows an application, which runs on a central server. The output is distributed
via a window system such as X-Windows. X-Windows is an ideal window platform for
such purposes, because its protocol specification is public [28] and allows individual exten-
sions. X-Windows usually runs on Unix platforms and allows to separate an application
from the corresponding window output, e.g. one can start an application on a fast machine
with much memory and conveniently control the application on his or her desktop com-
puter.
A modification of the X-Windows protocol allows to distribute graphical output to more
than one computer and an application can be used inside a group of users. Any user input is
collected and passed on to the application. The distribution of window output on the one
hand, and the collection of user input on the other hand is done by a virtual window
manager, which runs on the server.
Via this architecture, any X-Windows program can be used inside a group environment
without modification. The disadvantage of this architecture is the lack of coordination
between users. It is possible to make conflicting input, e.g. two users drag the same scroll-

bar into different directions (so-called scroll wars). It is not possible for an application to
detect conflicting situations, nor react in an appropriate manner.
Groupware platforms based on this architecture are e.g. Shared-X [12] and XTV [2]. This
architecture is often considered as the epitome of the centralized architecture.

Collaboration-aware central application (C1b)
The architecture in figure 4b) attempts to offset the disadvantage of architecture C1 only to
support collaboration-transparent applications. The application still runs on a central server,
but separate presentation components generate individual output for each user. This archi-
tecture has, e.g., been realised in the Rendezvous system [14]. Separate presentation
components can be used in two ways: first, every user can choose his own view on the same
data; if, e.g., data present statistics, one user can choose a pie chart, another a bar chart to
display the same data. Secondly, additional output can be used to achieve group awareness.
Presentation components can communicate which each other and can generate overview
views, telepointers etc.
In contrast to C1, an application has to be developed explicitly for this architecture. Both
C1 and C1b are limited to operating systems which support window systems such as X-
Windows. Systems based on Windows or MacOS cannot simply be used as peer computers.
Another disadvantage is the amount of data, which has to be transferred between sites. To
present window contents on peer sites, a big amount of graphical information has to be
transferred (e.g. bitmap images), thus C1 as well as C1b can only be used inside a local area
network.

Centralized state (C2)
The architecture displayed in figure 4c) separates the functional core from the presentation.
Only the functional core is managed by a server. C2 architectures, in contrast to C1 and
C1b, can be implemented on operating platforms without special window systems.
Between server and peer, only state information has to be exchanged, any graphical output
is computed inside the presentation components. The amount of data transferred between
server and peers is much smaller than in C1 and C1b, thus this architecture can be used in
sub-optimal network environments.
Since the state is centralized and the presentation components are decentralized, this archi-
tecture is often called semi-replicated. A groupware platform based on this architecture is,
e.g., Clock ([19], [9]). As discussed in [11], one problem related to this architecture is the
time-critical path between server and sites. It is difficult for the server to make state infor-
mation available in real-time. Caches, attached to the presentation components, can help to
improve real-time characteristics. Administering decentralized data caches requires a
complex protocol which keeps track on consistency of cache contents.

Centralized coordination (C3)
In architecture presented in figure 4d), the functional core is installed at the peers, only a
coordination component runs on a central server. The coordination component's main task
is to ensure data consistency of the decentralised states. The Habanero platform [20], e.g.,
uses the central server to order all events from the peers, which possibly change data. Any
event, coming from a peer is first directed to the server which in turn distributes it back to
the peers. Since the server reads events one after the other, all peers receive events in the
same order. This simple mechanism ensures same states on all peer sites.
Unfortunately, an event needs a round-trip peer-server-peer before it can be computed. This
compensates the advantage of decentralised states, which originally should improve
response time.

3.3 Architectures with direct communication

Figure 5 shows architectures with direct communication links between peers.

a) D1: decentra l ized appl icat ion

Appl icat ion
Core

W i n d o w
Sys tem

W i n d o w
Sys tem

d) D3: decentra l ized coordinat ion

Coord inat ionCoord inat ion

Appl icat ion
Core

Presenat ionPresenat ion

Funct ional
Core

Funct ional
Core

b) D2: repl icated state

Appl icat ion
Core

Appl icat ion
Core

Coord inat ionCoord inat ion

Presentat ionPresentat ion

Funct ional
Core

Funct ional
Core

c) D2b: repl icated state wi th connected
presenta t ion components

Figure 5: Architectures with direct communication

Dezentralized application (D1)
The decentralized variation of C1 is D1. As in C1, single-user applications can be made
accessible for a group via a window system. D1 attempts to limit the amount of data trans-
ferred inside the network with decentralized operating applications. On one hand, an archi-
tecture with decentralized applications reduces the response time, because the interaction
between user and application does not use the network. On the other hand, it is difficult to
achieve data consistency. To coordinate access to different replica, decentralized coordina-
tion components are used, called conference agents [15].
Simple conference agents allow for one user at a time, to direct input to application. All
other users are locked out, i.e. their user input is ignored. With this mechanism, so-called
floor control is achieved [7]. Only the user, who holds the floor, is able to control the appli-
cation. When a user has finished, the floor is passed on to the next user.
Even in very simple scenarios, it is very difficult to keep the application's data consistent.
There is no way to explicitly access the functional core, thus access has to be done via the
application's dialogue interface. The application's internal structure is hidden. To have a
chance to keep data consistence, some assumptions are made in [15]: the application's
response time has to be nearly the same for all peers. Applications are not allowed to react
on the peer's internal states other than managed by the application. Access to local resources
such as files, local devices etc., is not allowed. These assumptions are difficult to hold in
reality.

In [1] Ahuja et al. compare the architectures D1 and C1 with the help of the Rapport
system. The authors conclude that it is nearly impossible, to solve the consistency problems
in architecture D1.
This architecture is often considered as the decentralized architecture.

Replicated state (D2)
The architecture shown in figure 5b) separates functional core and presentation. In contrast
to C2, the functional core is managed by the peers in a replicated manner. This improves the
response time, since local requests can be handled by the peer without network transactions.
Communication between sites generally is done by changing shared data.
To keep the shared data consistent, synchronisation and concurrency control mechanisms
have to be included. This architecture has been realised, e.g. in the platform Clock [19].
Clock's runtime system allows to switch between D2 and C2.

Replicated state with connected presentation components (D2b)
To solely communicate via the functional core can be viewed as disadvantage. In D2, e.g.,
to distribute co-ordinates of a telepointer among session partners, requires a shared variable
which holds the current pointer position. Every time, the telepointer is moved, this variable
has to be changed, which leads to a change of data in all functional cores on other peer sites.
Presentation components have to keep track of this variable and have to move the tele-
pointer every time the variable changes. The overhead for this mechanism is very high.
The same problem occurs, if continuous data streams such as audio or video have to be
handled. Continuous data streams can insufficiently be mapped to data changes. The real-
time character of these data leads to other communication mechanisms.
Architecture D2b addresses these problems. Instead of communicating via the functional
core, the presentation components are connected to each other. This connection can by
viewed as bypass for time-critical communication. This architecture has, e.g. been realised
in Groupkit [24] and DreamTeam [25].

Decentralized coordination (D3)
This architecture corresponds to architecture C3. The replicated coordination component
avoids performance bottlenecks caused by a central server. On the other hand, the coordi-
nation mechanisms are more complex as in a centralized architecture. This architecture is,
e.g., suitable for realising floor control mechanisms.

3.4 Hybrid architectures

Hybrid architectures have a central component and at the same time direct communication
between peers. There exists a variety of hybrid architectures, from which two variations are
presented in the following.

Centralized state (H2)
Figure 6a) shows a hybrid architecture with has a central state and allows direct communi-
cation between presentation components. This architecture has been implemented in the
Suite platform [4]. H2 is a mixture of C2 and D2b and combines a simple centralized data
management with directly connected presentation components.
Another platform based on this architecture is the Notification Server [22]. The Notification
Server manages shared data and informs the presentation components about relevant data
changes, which in turn update its display (e.g. a window frame).

a) H2: centra l ized state

Presentat ionPresentat ion

b) H3: centra l ized coordinat ion

Funct ional
Core

Appl icat ion
Core

Appl icat ion
Core

Coord inat ion

Figure 6: Hybrid architectures

Centralized coordination (H3)
Another hybrid architecture is shown in figure 6b). This architecture combines C3 and D3.
In contrast to C3 and D3, the architecture H3 allows a direct coupling between applications.
This enables the use of continuous data streams as mentioned above.

3.5 Other architectures

In the following, some more architectures with special characteristics are described.

b) A2: asymmert r ica l s tate

Presentat ionPresentat ion

Funct ional
Core

c) A3: asymmetr ica l coord inat ion

Appl icat ion
Core

Appl icat ion
Core

Coord inat ion

a) A1: asymmetr ica l appl icat ion

W i n d o w
Sys tem

W i n d o w
Sys tem

Coord inat ionCoord inat ion

Appl icat ion
Core

Figure 7: Asymmetrical architectures

Asymmetrical architectures (A)
Until now, all peers maintained the same sets of components, only servers might be
different from peers. In some cases, it is not necessary, to put centralized components on a
dedicated server. Some tasks can be done by a single peer. This leads to asymmetrical
architectures as shown in figure 7.
In these architectures, there exists a single peer which holds some more components than
the other peers. This peer has to be known by other peers. The peer with special tasks can
be selected from the set of peers automatically at runtime.
Architecture A1 is used e.g. inside the Netmeeting environment [18]. An application runs
on one peer. Besides the local user, other users can join in and control the application. The
coordination component allows only one user to control the application. Since Netmeeting
is based on MS-Windows, it is not possible to use the X-Windows protocol for distributing
the application windows. Instead, windows are copied pixel by pixel to other sites.

Other tasks which can be performed by a single peer may manage the functional core (A2)
or coordinate the applications (A3). For some tasks related to session management (e.g.
joining or leaving a session), it is useful to have one peer for storing special information to
coordinate session states. Inside the DOLPHIN platform [27], one peer is responsible for
writing the document state to file. The DreamTeam platform [25] uses one peer site for
session control.

Pairs (P and Q)
For some scenarios, it can be useful to limit the number of peers to two. In general, pair
architectures can be subsumed under D or A type architectures. We use the letter P to indi-
cate the pair architecture of a corresponding D type and Q for A architectures respectively.
E.g. the architecture P1 corresponds to D1 where Q1 corresponds to A1. We do not classify
pair architectures based on C.
If there are only two peers communicating with each other, the amount of communication
links is dramatically reduced. For scenarios with n peers, n n⋅ −() /1 2 connections have to
be managed (each peer has to be connected to each other). This results in heavy network
load, if the network has no built-in multicast support such as Multicast IP [5]. The case n=2
results in the most simple distribution architecture. Remote maintenance and teleservice
software often uses this architecture. One peer can be controlled by another peer, e.g. for
administration purposes. With this kind of software, the actual application runs asymmetri-
cally on one peer, thus remote control software has architecture Q1.
Some groupware applications allow to switch from an architecture (e.g. type C) to this
architecture, if n=2. The video conference software CUSeeMe [31] normally uses a central
server (called reflector), to receive and distribute video information. For sessions with only
two members, CUSeeMe allows to switch to a pair architecture without any reflector (i.e. to
architecture P2b).

Multiple servers (M)
All architectures above have, if any, only one server. In many cases it is useful to have a set
of servers, each of it hosting a component (e.g. the functional core). Figure 8 shows an
example.

M2: hierarchical ly d istr ibuted state

Presentat ionPresentat ion

Funct ional
Core

Presentat ionPresentat ion

Funct ional
Core

Funct ional
Core

... ...

Figure 8: Hierarchical structure

This architecture distributes the functional core to a number of servers, which are hierarchi-
cally connected. This can be done for performance purposes; users, e.g., which are closely
connected (e.g. inside a LAN) can by grouped together, and different groups are only
loosely connected. In this scenario, hierarchical structures have their advantages. A group of

users can access their server very fast inside a LAN, a top-level server connects the different
LANs. Algorithms to maintain consistency are very complex since state information is
spread among two layers of servers.
Variations with multiple servers can be found in real-time channels. In [17] multiple servers
are used to efficiently distribute audio and video data. In [3] the CCU algorithm is
presented, which achieves data consistency with the help of multiple servers. Besides the
hierarchical structure, other structures with multiple servers may be conceived. Serves can
be linked together as a ring, or be fully connected.

4 Discussion

4.1 Overview

Table 1 outlines all distribution architectures presented in this paper.

Our classification model is flexible enough to express new distribution architectures which
may be introduced in the future. As described above, our model consists of the application
scheme and the distribution scheme, which both can be extended. Inside the application
scheme, new components can be identified or existing components can be divided into
smaller components. The distribution scheme can be extended in three ways:
• add a new basic distribution architecture (i.e. use new uppercase letter),
• add a new subtype inside a basic architecture (i.e. use new digit),
• add a variation to an existing architecture (i.e. use new lowercase letter).

This model can be used to classify a huge set of conceivable distribution architectures. In
the end, this classification model is only a means to express and discuss effects of a specific
distribution architecture. In the following chapter, we give an overview of aspects related to
distribution architectures.

Table 1: Distribution architectures overview

Type collaboration examples
C1: centralized application transparent Shared-X, XTV
C1b: centralized application aware Rendezvous
C2: centralized state aware Clock
C3: centralized coordination aware Habanero
D1: decentralized application transparent Rapport
D2: replicated state aware Clock
D2b: connected presentation aware Groupkit, DreamTeam
D3: decentralized coordination aware
H2: centralized state aware Suite, Notification Server
H3: centralized coordination aware
A1: asymm. application transparent Netmeeting
A2: asymm. state aware DOLPHIN
A3: asymm. coordination aware DreamTeam
Q1: asymm. application transparent Remote control software
P2b: connected presentation aware CUSeeMe
M2: hierarchically distr. state aware CCU

4.2 Effects of distribution architectures on groupware usage and development

The discussion about the best distribution architecture for synchronous groupware has a
long tradition. Without completeness, this topic was discussed in [1], [4], [8], [10], [11],
[13], [15], [22], [23] and [30]. Often distribution architectures are discussed more fiercely
and in more detail than architectural styles of groupware applications themselves, such as
MVC, ALV or PAC*. Sometimes, distribution architecture have made the crucial point of a
groupware platform.
Most distribution architectures have advantages as well as disadvantages. In our opinion,
there is no best architecture, it's rather a question of how a specific groupware is to be used.
In the following, we give a list of criteria to assess a specific architecture.

Technical criteria
Network related criteria have great influence on the several real-time aspects of a group-
ware environment. In scenarios with world-wide operating peers or slow network links (e.g.
modems), D architectures are more suitable than C or H architectures. If, on the other hand,
all sites are placed inside a LAN, network delays can be neglected; thus C architectures
have advantages, because they lead to much simpler algorithms. Sometimes, a specific net-
work infrastructure requires a distribution architecture. If, e.g., multicast services are based
on native multicast, an architecture with direct connected sites has to be used.
Another important criterion is the hardware and operation system platform of peer sites. If,
e.g., not all sites are able to run the desired application locally, the architectures C1 or A1
have to be used. If on the other hand standard window toolkits such as X-Windows are not
available at peer sites, C1, D1 or A1 cannot be used.

Organizational criteria
It is always difficult to introduce groupware to a team which has already formed its
organizational structure, thus additional demands by the groupware should be avoided. E.g.
C or H architectures require a central server, which has to be installed and administered.
Some small departments or companies have no administrator, thus central servers would
cause organizational problems. In addition, central servers are a cost factor. Normally
servers are expensive because they have to be fail proof and perform a high throughput.
From the view point of costs, D and A architectures are more suitable.
Additional costs can arise from the network infrastructure. If, e.g., sites are connected to the
Internet via a service provider, one could be charged according to the amount of network
packages sent or received. Architectures based on a windows system (such as C1, C1b, D1
or A1) transfer a huge amount of data between sites, thus would cause high communication
costs.

Criteria related to groupware development
The easiest way to integrate an application into a group scenario is to use applications of-
the-shelf and avoid expensive developments. For collaboration-aware applications, some
specific development cannot be avoided. With the help of groupware platforms, the
development cycle can be shortened. In addition, the choice for a specific distribution
architecture can affect development costs. Architectures with centralized states such as C1b,
C2 and H2 allow to handle data management much easier than architectures with replicated
states (e.g. D2). Having data stored on a central server allows to keep track on all data
manipulation, thus debugging becomes easy. A log can store all state changes for a certain
time (e.g. some days), and thus makes it possible to analyse consistency problems. From the
view of consistency, distribution architectures with central components lead to easier algo-
rithms than architectures with direct communication.

This list of criteria shows that a choice for a distribution architecture is strongly influenced
by the scenario to be realised. A certain architecture may be a suitable for one scenario, but
may have many disadvantages in another scenario.

5 Conclusion

In this paper we presented a new approach to classify distribution architecture for synchro-
nous groupware. In contrast to former classification models, this model allows to argue about
pros and cons of a certain architecture in detail.
The model consists of two schemes: an application scheme splits up groupware applications
into components and a distribution scheme distributes these components among sites. If in the
future, new distribution schemes will be introduced, both schemes can be extended.
Many distribution architectures for synchronous groupware have been introduced, all having
great influence to corresponding groupware systems. To gain acceptance by end-users, we
have to take into account their specific usage scenarios. A choice of criteria presented in this
paper shows, how the model can help to reason about distribution architectures. Most archi-
tectures have advantages as well as disadvantages. To choose the right architecture, the
specific development and usage scenario has to be taken into account.

References

[1] Ahuja S. R.; Ensor J. R.; Lucco S. E., A comparison of application sharing mechanisms in real-time
desktop conferencing systems, in Proceedings of the Conference on Office Information Systems, ACM
COIS '90, Boston, MA, USA, Apr. 25-27, 1990, 238-248

[2] Abdel-Wahab H. M.; M. Feit, XTV: A Framework for Sharing X Window Clients in Remote
Synchronous Collaboration, in Proceedings IEEE Conference on Communications Software:
Communications Software: Communications for Distributed Applications & Systems, Chapel Hill, NC,
1991, 159-167

[3] Cormack G. V., A Calculus for Concurrent Update, Department of Computer Science, University of
Waterloo, Waterloo, Canada, 1995, ftp://cs-archive.uwaterloo.ca/cs-archive/CS-95-06

[4] Dewan P.; Choudhary R., A High-Level and Flexible Framework for Implementing Multiuser Interfaces,
ACM Transactions on Information Systems, Vol. 10, No. 4, Oct. 1992, 345-380

[5] Deering S., RFC 1112: Host Extensions for IP Multicasting, Request For Comments, Aug. 1989

[6] Dewan P., Multiuser architectures, in Proceedings of IFIP WG2.7 Working Conference on Engineering
for Human-Computer Communication, Aug. 1996, 247-270

[7] Dommel H. P.; Garcia-Luna-Aceves J. J., Floor control for multimedia conferencing and collaboration,
Multimedia Systems, Vol. 5, 1997, 23-38

[8] Greenberg S.; Hayne S.; Rada R. (eds), Groupware for Real-Time Drawing, McGraw-Hill, 1995

[9] Graham N., The Clock Language: Preliminary Reference Manual, York University, Canada, 1996

[10] Greenberg S.; Roseman M., Groupware Toolkits for Synchronous Work, Department of Computer
Science, University of Calgary, Canada, Nov. 1996

[11] Graham N.; Urnes T.; Nejabi R., Efficient Distributed Implementation of Semi-Replicated Synchronous
Groupware, Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST'96). ACM Press, Seattle, USA, Nov. 1996, 1-10

[12] Gust P., Shared-X: X in a distributed group work environment, Second annual X technical conference,
MIT, Cambridge, MA, 1988

[13] Gutekunst T., Shared Window Systems, in Zitterbart M. (ed): Kommunikation in verteilten Systemen,
GI/ITG Fachtagung Braunschweig, 19.-21. Feb. 1997, Springer, 436-450

[14] Hill R. D.; Brinck T.; Patterson J. F.; Rohall S. L.; Wilner W. T., Rendezvous Language,
Communications of the ACM, Vol. 36, No. 1, Jan. 1993, 62-67

[15] Lauwers J. C.; Joseph T. A.; Lantz K. A.; Romanow A. L., Replicated architectures for shared windows
systems: a critique, in Proceedings of the Conference on Office Information Systems, ACM COIS '90,
Boston, MA, USA, Apr. 25-27, 1990, 249-260

[16] Lauwers J. C.; Lantz K. A., Collaboration awareness in support of collaboration transparency:
requirements for the next generation of shared window systems, CHI '90 Conference on Human factors
in computing systems, special issue of the SIGCHI Bulletin, 1990, 303-311

[17] Lin J. C.; Paul S., RMTP: A Reliable Multicast Transport Protocol, in Proceedings of IEEE INFOCOM
96, Mar. 1996, 1414-1424

[18] Microsoft Cooperation, Netmeeting Resource Kit 2.1a, http://www.microsoft.com/netmeeting/reskit/

[19] Morton C. A., Tool Support for Component-Based Programming, Master's Thesis, York University,
Ontario, Canada, 1994

[20] NCSA, NCSA Habanero Homepage,
http://www.ncsa.uiuc.edu/SDG/Software/Habanero/HabaneroHome.html

[21] Patterson J. F., A Taxonomy of Architectures for Synchronous Groupware Applications, in Proceedings
of the CSCW'94 Workshop on Software Architetures for Cooperative Systems, Chapel Hill, North
Carolina, 1994

[22] Patterson J. F.; Day M.; Kucan J., Notification Servers for Synchronous Groupware, in Proceedings of
the ACM Conference on Computer Supported Cooperative Work, ACM Press, Nov. 1996, 122-129

[23] Phillips W. G., Architectures for Synchronous Groupware, Technical Report 1999-425, Department for
Computing and Information Science, Queen's University, Kingston, Ontario, Canada, Mai 1999

[24] Roseman M.; Greenberg S., Building Real-Time Groupware with GroupKit, A Groupware Toolkit,
ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, Mar. 1996, 66-106

[25] Roth, J.; Unger, C., DreamTeam - A Platform for Synchronous Collaborative Applications, in Th.
Herrmann, K. Just-Hahn (eds): Groupware und organisatorische Innovation (D-CSCW'98), B. G.
Teubner Stuttgart, Leipzig, 1998, 153-165

[26] Schooler E. M., Conferencing and collaborative computing, Multimedia Systems, Vol. 4, 1996, 210-225

[27] Streitz N. A.; Geißler J.; Haake J. M.; Hol J., DOLPHIN: Integrated Meeting Support across
LiveBoards, Local and Remote Desktop Environments, in Proceedings of the ACM '94 Conference on
Computer Supported Cooperative Work (CSCW '94), Chapel Hill, North Carolina, Okt. 22-26, 1994,
345-358

[28] Scheifler R. W.; Gettys J.; Newman R., X Window system - C library and protocol reference, Digital
Press, 1988

[29] Schuckmann C.; Kirchner L.; Schümmer J.; Haake J. M., Designing Object-Oriented Synchronous
Groupware With COAST, Proceedings of the ACM Conference on Computer Supported Cooperative
Work, ACM Press, Nov. 1996, 30-38

[30] Urnes T.; Nejabi R., Tools for Implementing Groupware: Survey and Evaluation, Technical Report No.
CS-94-03, York University, Ontario, Canada, 1994

[31] White Pine Software, Welcome to CU-SeeMe World, http://www.cuseeme.com

[32] The UIMS Tool Developers Workshop, A metamodel for runtime architecture of an interactive system,
SIGCHI Bulletin 24(1), 1992, 32-37

