
Developing synchronous collaborative
applications with TeamComponents

Jörg Roth, Claus Unger
University of Hagen, Department for Computer Science, 58084 Hagen, Germany

Abstract. Synchronous groupware applications are playing a major role in, e.g.,
distance education, video conferencing, joint program development, co-operative
publishing, etc. There exists a variety of platforms which relieve the groupware
developer from struggling with standard problems like network details, synchro-
nisation algorithms, etc., and allow him or her to concentrate on application-
specific details. Although these platforms support simple applications, groupware
with a reasonable number of different kinds of artefacts (e.g. word processors with
embedded documents) is still difficult to realise. Component based approaches
simplify the development of such applications, but, although these approaches are
quite common in single user environments, they have not yet been widely
incorporated into groupware development platforms. In contrast to single-user
component approaches, additional problems have to be solved: collaborative com-
ponents have to communicate with other sites and multiple users, have to manage
shared data, have to react on group events and have to offer group awareness
services. The TeamComponents approach addresses these problems. It is based
upon our groupware platform DreamTeam and covers a wide range of collabor-
ative scenarios. A selection of sample applications with TeamComponents vali-
dates our design concept.
Keywords: Computer Science/CSCW, synchronous groupware, system design,
object-oriented modeling

1 Introduction

To develop synchronous groupware is a difficult and time-consuming task. In addition to
application-specific details, shared data have to be organised, communication between
different sites has to be managed and user interfaces have to be developed which can handle
events from multiple users.
To relive the application developer from re-designing standard modules, platforms are
widely available with building blocks for standard solutions. They provide a communica-
tion infrastructure and a runtime system. Using a platform, the application developer can
concentrate on application-specific details and can use collaborative services from a stan-
dard library.
With the help of platforms, a big class of applications like collaborative text editors or
sketching tools can efficiently be developed, as long as each application supports a single,
pre-defined kind of artefacts only, e.g. texts or images. To develop more complex applica-
tions which, e.g., support several different kinds of artefacts simultaneously, new concepts
are needed. A good example for such a situation is a collaborative text processing program,
which supports a variety of not necessarily pre-known types of artefacts, like embedded

diagrams freehand sketches, etc. Besides a text processor, the developer has to implement a
diagram editor and a sketch editor, etc. Although separate programs may be available for
these services, they cannot be used directly for embedded artefacts.
To address this problem, we realised a collaborative component concept TeamComponents
on top of our collaborative platform DreamTeam ([19], [20]). TeamComponents are soft-
ware components, each of them responsible for a special kind of artefact. TeamComponents
offer collaborative services themselves. They can be viewed as small collaborative applica-
tions, which can be embedded into the overall application. Like applications, Team-
Components can be developed with help of the powerful DreamTeam development envi-
ronment, i.e. the developer can use standard solutions from a class library.

2 Component concepts

2.1 The notion of component

Component-based approaches are currently in fashion. The notion of component or com-
ponent based software development covers a wide area of concepts for single-user environ-
ments as well as for multi-user environments. Often, the term component is used in relation
with graphical editors in which components can be configured and mounted to complete
applications without any explicit programming. Our definition follows a different concept:
• a component is an independent software module which meets a certain set of functional

requirements;
• each component supports its individual kind of artefacts;
• each components manages its own data and provides its own user interface;
• a component can either be used as a static part of an application or can dynamically be

used inside a compound document.

Part 4 of the above definition describes the two major usage scenarios for components: they
can either statically be integrated into the application at implementation time, or they can
dynamically be called from within an application at runtime. In the latter case, the applica-
tion, e.g. a sophisticated text processing program, handles the overall document structure,
whereas arbitrary embedded documents, e.g. diagrams, images, spreadsheets, etc., are
handled by separate components which are not necessarily known at implementation time
but are dynamically integrated at runtime.

Benefits using components
The component concept provides a number of benefits to the developer as well as to the
end-user of an application.
Benefits for developers:
• Once a component for a specific artefact has been developed, it can be re-used for other

applications.
• The interface between an application and its component is well defined and documented.
• An application and its components can be developed independently. A component has

not to know any details about its embedding application and vice versa; even the source
code has not to be known.

• Components and embedding applications can be tested independently.

Benefits for users:
If a developer uses the same component for similar purposes in different applications, a user
has not to switch between different user interfaces.

By just purchasing additional components, the user can easily extend the functionality of an
application: a text processing application which is not able to handle spreadsheets, can be
extended by adding a spreadsheet component without modifying the application itself.
Using embedded documents inside a compound document, a user can embed different arte-
facts and can conveniently call the corresponding editors from inside the compound docu-
ment without struggling with intermediate formats (e.g. EPS).

Components in synchronous, collaborative environments
To apply the single-user component concept to synchronous, collaborative applications a
variety of additional groupware-related problems has to be solved. In a collaborative envi-
ronment, a component is embedded into a system of communicating sites participating in a
joint session. This situation extends the set of requirements to be met by collaborative
components:
• Components at different sites must be able to communicate with each other.
• Components manage their own data. In case of collaborative components, a component's

data may be shared with other components and can be changed simultaneously. Thus,
data distribution and concurrency control mechanisms have to be integrated.

• Components have to react to group events in an appropriate way. When, e.g., a new-
comer joins a session, a component has to build the actual state with the help of already
existing components.

• Components have to give their users a group feeling. For this purposes, so-called
awareness widgets as described in [5] have to be integrated into a component.

2.2 Related work

Component concepts are often realised in single user environments in connection with com-
pound documents, e.g. in Microsoft's OLE [12]. Text processing software such as MS Word
can embed different kinds of components (called objects), without knowing details about
the corresponding programs. Arbitrary editors can be used for diagrams, pictures etc.;
painting and printing contents is done via well-documented calls. The ability to handle dif-
ferent kinds of sub-documents is one reason for the success of MS-Word. OpenDoc ([1],
[14]) follows the same paradigms and is defined by Apple Computer, IBM, WordPerfect,
Novell, SunSoft, XSoft and Taligent. In contrast to OLE, OpenDoc was designed for
multiple operating systems. Neither OLE nor OpenDoc offer collaborative services. It is not
possible to add multi-user services such as data replication, distributed mouse pointers etc.
without re-engineering the involved applications and extending the corresponding compo-
nent specifications. OLE and OpenDoc are primary designed for compound documents,
there is no support for static component integration.
Sun's JavaBeans concept [6] takes up the above ideas and offers an open and flexible
framework to develop components or to use third-party components in your own Java
applications. It is easy to follow a Bean's specification and to realise any kind of objects
with a Bean, including objects for compound documents, but also software components for
completely different purposes. Beans without a graphical user interface nor the ability to
handle artefacts can be defined. This flexibility with regard to the specification means a
problem when using Beans inside a collaborative environment. For all components, the run-
time system of a collaborative platform requires an appropriate set of standard services.
Further, a component should use the communication infrastructure of the collaborative
environment. Since the Beans concept does not define any rules how to handle collaborative
services, it is too 'weak' for our purposes.
With CORBA remote objects can be accessed like local objects. A developer can simply
use a service without the need of handling network access paths. Objects can be imple-

mented in various programming languages. They are linked to the runtime infrastructure via
a language independent interface description in IDL. CORBA is not tailored for col-
laborative applications development, it does not offer higher-level constructs for data
sharing, group communication, etc.
JViews [4] is a Java-based toolkit, built on top of the JavaBeans architecture. JView allows
to develop an application by only using components. So-called repository components and
view components are linked together. View components can be rendered graphically and
provide editing functionality. JView components cannot be developed isolated and depend
on other components. The JView approach assumes a fine granularity when splitting an
application into smaller parts.
Many higher-level platforms have been developed to support the implementation of col-
laborative synchronous applications. Sharekit [2] and Groupkit [16] offer no support for
component-based implementation. Habanero [13] is a Java toolkit for transforming applets
into collaborative applets (called Hablets). More complex collaborative applications such as
document editors are not supported.
TeamWave [17], is a groupware toolkit based on the room metaphor. The room metaphor
allows to combine asynchronous and synchronous work in areas of collaboration, called
rooms. A room can be viewed as a centrally stored compound document, to which all team
members have access. The room metaphor requires a well-known server on which the room
has to be stored. The usage of components is limited to rooms, i.e. applications themselves
have to be developed conventionally.
A more document oriented approach is offered by DOLPHIN [23]. DOLPHIN is a collabo-
rative hypermedia editor and is realised on the platform COAST [22]. A hypermedia docu-
ment in DOLPHIN contains nodes, links and multimedia data such as sketches, texts and
images. The approach focuses on gaining consistence in a collaborative hypermedia docu-
ment. There is only limited support for developing and integrating new components into
DOLPHIN.
Clock [3] allows component-oriented development and offers an MVC-style runtime archi-
tecture. A developer first divides the program with the help of a graphical editor into data
objects (model) views and controllers. Each method can then be programmed in a
functional language. The overall structure helps the runtime system to manage data distri-
bution. Communication between sites can only be done via data objects, thus the imple-
mentation of a view or controller component requires the knowledge of the corresponding
model. Since all shared models are located in a special public node of an application, com-
ponents and applications cannot be realised separately. Clock components cannot appear
inside a compound document.
CoCoDoc [7] uses the CORBA and OpenDoc infrastructure to offer component services to
groupware developers. Since both, CORBA and OpenDoc, have not been designed for
synchronous groupware, group oriented services are difficult to integrate.
The groupware project IRIS [9] follows a component based approach [8]; it focuses on
asynchronous work. It provides only limited support for synchronous collaboration, e.g. no
synchronous awareness widgets are offered, concurrency control is optimistic and needs
user interaction in case of conflicts. IRIS components can be viewed as applets rather than
components in our sense. IRIS components cannot be used inside compound documents.

3 The DreamTeam environment

DreamTeam is a platform for synchronous collaboration; it offers a variety of services for
application developers as well as end-users. The DreamTeam environment allows the
developer to develop co-operative applications like single user applications, without

struggling with network details, synchronisation algorithms, etc. DreamTeam has been
realised in Java [25] without the need for any native code, i.e. it can be run on many plat-
forms. It contains of a development environment, a runtime environment and a simulation
environment. The development environment [18] mainly consists of a huge Java class
library which contains groupware specific problem solutions as building blocks. The run-
time environment provides an infrastructure with special groupware facilities. A front-end
on top of the runtime environment allows end-users to control and configure the system.
Finally, collaborative applications can be tested in the simulation environment, which
allows to simulate network characteristics on a single computer.
DreamTeam is based upon a completely decentralised architecture, thus there is no central
server for storing session states. Though the decentralised architecture leads to more
complex algorithms, it avoids performance bottlenecks and ensures higher reliability.
Lauwers and Lantz distinguish two kinds of groupware applications [10]: collaboration-
transparent applications are single-user applications made available in a collaborative envi-
ronment. In contrast, collaboration-aware applications include additional code to support
the group, e.g. they offer special awareness widgets and overview windows. We strongly
believe that only collaboration-aware groupware applications will really gain acceptance by
end-users. DreamTeam supports collaboration-aware applications. Unfortunately,
developing such applications is very expensive. In addition to group-specific services, the
actual application function has to be developed. If, e.g., we want to develop a collaborative
text processing software, besides the group services such as telepointers and overview
windows, the actual text editing function has to be developed as well, although programs
such as MS-Words are already available which provide this function. Applications off-the-
shelves offer neither source code nor documentation for modifications, and thus cannot be
used as basis for groupware applications.
Having to develop both, group specific services as well as the program functionality, means
a double burden. In the following, we present a concept, which counteracts this disadvan-
tage and helps to develop collaboration-aware groupware applications more efficiently.

4 TeamComponents

4.1 The concept

A component-based approach can decrease the efforts for developing new applications
drastically. We designed the component concept TeamComponents which both support
dynamic usage (inside compound documents) as well as static component usage. Figure 1
shows the internal structure of a TeamComponent.

Interface

Funct ional Body

R e s o u r c e
R e s o u r c e

R e s o u r c e

inter-s i te communcat ion

intra-s i te communcat ion

Figure 1: Internal structure of a TeamComponent

A standard component interface, not to be confused with a component's individual user
interface, is defined within the component framework and ensures a component's proper

integration into its embedding application. Messages from or to a component can only be
routed through its interface. A component's functionality is defined in the functional body.
A component may be divided into resources, which themselves can be composed of other
resources.
The TeamComponent architecture allows two kinds of communication between collabora-
tive components:
• intra-site communication allows a resource to communication with its application via its

interface.
• inter-site communication allows a resource to communicate with its peer resources at

other sites.

Figure 2 shows, how TeamComponents are embedded into DreamTeam's communication
infrastructure.

Data
Object

F r a m e

Mouse
Canvas

Da ta
Object

T e a m
C o m p

F r a m e

Mouse
Canvas

Da ta
Object

T e a m
C o m p

F r a m e
Da ta

Object

T e a m
C o m p

F r a m e

Mouse
Canvas

Da ta
Object

T e a m
C o m p

F r a m e

S i te A Si te B

Data
Object

F r a m e

Mouse
Canvas

App l ica t ion 2App l ica t ion 1 App l ica t ion 1 App l ica t ion 2

in te r - s i t e communca t i on

in t r a - s i t e communca t i on

Figure 2: Communication infrastructure

According to a session's goal, a session may use one or more applications, which
synchronously run at every participating site. E.g. for a brainstorming session, a brain-
storming tool, a drawing tool and a Web browser may be helpful.
Like components, applications can be divided into resources. Resources are either related to
the user interface such as frames or are data objects. In our example, the left application is
divided into one data object and two user interface objects: Frame and MouseCanvas (see
below). The forth resource is a TeamComponent. TeamComponents are special resources,
which themselves can be composed of other resources. In contrast to resources, in the
current version TeamComponents cannot be composed of other TeamComponents.
Application resources communicate in the same way as resources inside a component. They
can communicate with their embedding runtime system via their (intra-site) application
interface or can communicate with their peers at other sites. Both kinds of communication
are realised by events or call-backs. Inside a site, standard call mechanisms are used,
between sites event distribution is handled by a message-based communication system. The
developer has no direct access to the underlying message system, i.e. the corresponding
calls are available as local procedure calls, which automatically initiate communication.
The runtime system ensures that at all sites identical resource structures are being used.
Resource of one application must not directly communication with resources of other appli-
cation at the same site, nor can resources of different components communicate directly.

Because all implementation details of a component are hidden, a resource of component X
must not directly communicate with any resource of component Y, even if both components
are running within the same application.

4.2 Managing shared states

Because of to the fully replicated architecture of DreamTeam all components states have to
be replicated as well. A component is responsible for its own data, data distribution and
data replication. For this purpose, a component developer can use data object resources and
high-level platform services for concurrency control and data distribution.
The basic means to achieve data replication is a form of multicast method invocation. A
special method, called distribute , allows to invoke a method on all replica of the calling
resource. If, e.g., a resource calls
 distribute(TO_ALL,"anyMethod",anyParam1,anyParam2);
the method
 anyMethod(anyParam1,anyParam2);
is invoked on the corresponding resources on all sites. The first parameter is called modifier
and allows to configure a multicast call. It is possible to configure
• the group of recipients (only one, all in a session, all but the caller),
• whether the call is transmitted via a reliable connection or via a fast but unreliable

connection (e.g. via multicast-IP),
• whether the call is protected by a lock.

The last point allows to implicitly use concurrency control mechanisms during a call. A call
can be protected by a lock, i.e. as long as the specific method code is processed (on all
sites), other calls are blocked. Three kinds of locks can be used:
• A transaction lock exists once per application. If one owns this lock, all other callers

requesting the transaction lock are blocked, even when running on other sites. The
transaction lock is the most restrictive lock.

• A monitor lock exists once per resource, thus parallel method invocations are possible on
different resources. Only calls applied to one resource are blocked.

• Explicit locks can be allocated by the developer for any variable and any method call.

These kinds of locks supports different levels of concurrency control. The transaction lock
is the most secure kind of locks, but prohibits possible parallel processing. The explicit lock
on the other hand can be applied in a very fine-grained way, but needs careful planning by
the application developer. The choice for a lock depends on the specific resource
implementation. In our opinion, there is no generic way to decide, which lock has to be
used for a certain problem.
The runtime system automatically handles latecomers: from the site of a participating user,
an existing resource structure and the contents of all shared data objects are transferred to
the latecomer's site. Since component and application states highly depend on the actual
implementation, there is no generic way for the runtime system to build a replicated state
automatically. Instead, the application developer has to implement two methods for each
application and component; one to store a state to a data stream and one to build a new state
from a stream. Calling these methods and creating the communication stream is done
automatically by the runtime system. In most cases, streaming internal states can efficiently
be developed by using Java's Object Serialization concept [24].
Direct inter-site communication between resources allows to develop a component in a
more module-based manner: the developer of a TeamComponent has not to rely on data
objects inside the application, but can locate component-related data objects inside the

component. The data objects themselves can be developed without knowing details of other
parts of the component. This concept increases a component's efficiency. To provide, e.g.,
distributed mouse pointers, a mouse canvas is responsible for multicasting mouse positions
to other sites. A canvas object can perform this task by directly communicating with remote
canvases without using any data object. Our approach of direct communication is much
more efficient than an update via a data object.

4.3 Using components

Components can be used in different ways, described by two properties isolation and
integration. Isolation describes the level of collaboration, while integration describes the
way how a component has been integrated into an application.

Isolation
There exist two isolation levels, private and public, where public is divided into shared and
exclusive. Private components can reside in collaborative applications but their data are not
shared with other applications. With private components, a user can, e.g., prepare his own
graphics before publishing it to other users. Any TeamComponent can run in private mode,
the runtime system blocks it from any inter-site communication, the component runs as if
the session has only one member, the actual participant. Although this is a generic way to
put a collaborative component into a private mode, often a component wants to react on its
current mode and enable or disable some services itself: distributed mouse pointers are not
helpful in private mode and may confuse the user, thus a component may wish to hide the
corresponding menu entry. For this purpose, components can ask for their current isolation
level.
Public exclusive components have shared data but at a certain point of time only one user
may manipulate these data. In such a mode, floor control mechanisms can easily be realised.
The runtime system controls the usage of an exclusive component. If a component edits its
contents, other components are automatically prevented from editing.
Finally, public shared components control data which can be manipulated simultaneously.
Public shared components offer the highest level of collaboration and thus are much more
complex to realise than exclusive components.

Integration
The integration property defines how of a component is integrated into its embedding appli-
cation. We distinguish between seamless and anchored integration. Figure 3 illustrates the
different integration modes.

Component

Application
File Edit Help

Edit

Application
File Edit Help

seamless anchored

Figure 3: Integration modes

In seamless mode (often called in-place editing), a component's user interface becomes part
of an existing window. When this kind of integration is difficult to realise, anchored inte-
gration can be used instead. The window, which displays the graphics, contains an anchor
normally displays the artefact e.g. the graphics. For editing the artefact, the user has to
activate (click) the anchor and thus open a separate editing window. This approach allows
the runtime system to detect the editing and, e.g. in case of mutual exclusion, activate the
corresponding access control. To detect such an interaction in a seamless component is
much more difficult.
We finally divide anchored components into dynamic and static ones. Dynamic components
can be instantiated during runtime on user’s demand. Dynamic components usually reside
inside compound documents, they are not available during compile-time, thus the
corresponding binary code has to be loaded during runtime. In addition, compound docu-
ments have to provide special document services like layout and printing functions.
In contrast, static components are statically integrated into their the corresponding applica-
tion and thus are known at compile-time. During a save dialogue, e.g., users can collabora-
tively define a comment which can be displayed later in an overview window. The com-
ment component is a static part of the save dialogue, whose behaviour cannot be changed at
runtime.
Figure 4 shows the different types of components and their characteristics.

referrable at compi le- t ime
only one can edi t
separate ed i t w indow

referrable at compi le- t ime
col laborat ive edi t ing
separate ed i t w indow

referrable at compi le- t ime
private edi t ing only
separate ed i t w indow

instant ia ted on demand
only one can edi t
separate ed i t w indow

instant ia ted on demand
col laborat ive edi t ing
separate ed i t w indow

instant ia ted on demand
private edi t ing only
separate ed i t w indow

no separate ed i t w indow
private edi t ing only

no separate ed i t w indow
col laborat ive edi t ing

not a l lowed

seamless
ancho red

stat ic dynamic

pr ivate

pub l ic

shared

exc lus ive

In tegrat ion

Is
ol

at
io

n

Figure 4: TeamComponent categories

A TeamComponent can be realised in such a way that it can be used in different integration
or isolation modes, i.e. normally a component covers several fields of the eight potential
fields in table 1. An application can "ask" a component in which mode it can run and then
use it in the appropriate way.

4.4 Group awareness

A groupware user interface has to handle two contradictory tasks: on one hand it has to give
the user the impression of working in a group (group awareness), on the other hand the
interface has to limit the noise of group events. Sasse et al. call the latter effect interference
[21]. In extreme situations, users can be overwhelmed by system messages or notifications
and prevented from continuing their work in an orderly way. This problem becomes even
worse, if components are involved: since components are small applications inside an
application, the amount of interference increases if no noise reduction mechanism is
integrated.

To address this problem, we distinguish two levels of information, a system gives to its
users. First level information is given automatically, it is not very detailed, provides the user
with a rough event classification and is displayed in the form of unobtrusive state icons.
Figure 5 shows all possible state icons.

someone is res iz ing

someone is v iewing

someone is ed i t ing

Joergdist r ibuted
mouse po in ter

someone is ed i t ing
exclus ive ly

Figure 5: Group awareness widgets

The small icons on the lower right corner of the left component indicate that:
• someone is currently resizing the component;
• someone else has opened the component and views its contents;
• someone else is currently editing the component's contents.

The icon in the right window indicates, that another user is currently editing a component in
exclusive isolation mode. For components, which can be opened collaboratively, an editing
or viewing icon occurs, when at least one other user is currently editing or viewing the com-
ponent.
Second level information has to be requested explicitly by the user. For every first level
state information the user can ask for the exact list of users who are involved. The user, e.g.,
can ask for the exact list of users who are currently editing a component. For this purpose, a
menu item "Who is editing this component?" is added to an application window.
This two level information system helps users to keep track about their work without
getting overloaded by group events. Distributing state information and displaying the
corresponding icons is done automatically by the runtime system. The application or com-
ponent developer has not to implement this service in the application or component code.

4.5 The TeamComponent class hierarchy

An object oriented library supports the use of TeamComponents. Figure 6 shows the UML
class diagram [15] of the TeamComponent library package.

Dynamic
Anchor

BCS
Anchor

BC
Anchor

TeamComponent
Anchor

TeamComponent
Event

TeamComponent
Frame

TeamComponent
Canvas

Anchor
Canvas

Static
Anchor

TeamComponentMouse
Canvas

TeamComponent
Panel

TeamComponent
Listener

<<Interface>>

TeamComponent
Resource

<<Interface>>
Team
Component

TeamComponent
DataObject

Aggregation
Dependency
Generalization
Realize

Figure 6: UML diagram of the TeamComponent package

A developer has to perform the following steps:
• Build a subclass of the library class TeamComponent, which defines a component's stan-

dard behaviour. In this subclass, only non-standard functions have to be coded.
• Write individual classes where necessary. For some Java classes, counterparts exist

which define a standard group behaviour inside a component. The classes Team-
ComponentFrame and TeamComponentCanvas, e.g., are component variants of the Java
classes Frame and Canvas; the class TeamComponentMouseCanvas provides distributed
mouse pointers; the class TeamComponentDataObject supports replicated data objects.

The classes TeamComponentListener and TeamComponentEvent allow to register for com-
ponent events. In case of an event, a registered object is called via a predefined method
which allows to react to the event. Component events are opening or viewing a component
via its anchor, closing a component, etc.
Anchors are represented by the class TeamComponentAnchor. Anchors of dynamic or static
components are instances of class DynamicAnchor or StaticAnchor. Static anchors are
available with different shapes: the BCSAnchor, e.g., consists of a button, a canvas and two
scrollbars, whereas the BCAnchor consists of a button and a canvas only.

4.6 The interface

The class TeamComponent provides the main interface between application and component
(see Figure 1). The interface offers method calls for a big variety of scenarios; most of them
are predefined, some have to be individually coded by the component developer:
Component profiles: these calls return a component's profile data and help the runtime
system to organise a specific component: to produce a list of all available Team-
Components, a component has to return its name and its icon; each component has to
specify in which integration mode it can be used (anchored, seamless or both) and which
isolation level it supports (shared, exclusive or both). To use the same component with
different realisation levels in the same session, version numbers can be assigned to compo-
nents. Version conflicts can then easily be detected by the runtime system, inconsistent data
states are avoided.
Usage modes: the application can determine, in which mode an actual component has to
run. Such a mode has to be chosen from the component's available modes, e.g. if a compo-
nent can either be used shared or exclusively, the application can enforce an exclusive
usage. Illegal settings will be rejected.
Anchored components: if a component offers anchored usage, it has to implement
methods for attaching an anchor object, for opening (for editing or viewing) and for closing
the component.
Seamless components: if a component can be used seamlessly, it must be able to embed
itself into an existing window. For example. when a dialogue window with menu bar,
buttons etc. is existing already, a seamless component has to embed itself without affecting
existing dialogue elements. For such a purpose, a component can realise its own dialogue
elements in a reserved, rectangular area of an overall dialogue frame.
Printing and painting: text processing applications usually allow to display and print a
document. If a component is part of a document, the application cannot know, how the
component has structured its data, nor how its contents can be presented. Thus displaying
and printing has to be done be the component itself. Hereto, the application asks the com-
ponent to display (or print) its contents in a predefined rectangle on the screen or the printer
page. Since in Java printing and displaying is performed by the same mechanism, the com-
ponent developer has only to code a single function to realise both services.

Events: in order to receive component events, an arbitrary object can be registered by the
runtime system. Our event concept follows Java’s awt event concept.
States: a component maintains its own data. To store and retrieve a component's state,
getState and setState methods have to be provided. Since a state is a serializable object, it
can easily stored to disk or transferred between sites using Java's Object Serialization
mechanism [24] Beside for persistence purposes, the state methods are needed for
managing newcomers: when a newcomer enters a running session, all required components
are instantiated by the platform and the actual state is set automatically from existing com-
ponent states.

5 Samples

5.1 Sample components

To test and validate our component design concept, we developed five sample components.
To detect potential weak points in our specification, these components cover a wide range
of artefacts:
Simple drawing component: with this component, simple freehand sketches can be
created using a mouse or a sketch pad. If the component is used inside a collaborative
session, all session members can collaboratively edit the sketch. Individual mouse pointers
can be distributed among session sites.
Diagram component: this component supports diagrams such as UML, flow charts, entity
relationship diagrams. Like the simple draw component, this component can be used in
public and shared mode. Distributed mouse pointers are provided.
Text input component: this component supports simple text processing. It can only be
used exclusively in public mode. Plain text can be entered and formatted with different font
styles.
WWW component: this component allows to browse Web pages collaboratively, i.e. it can
be used as a small Web browser. It stores the current page in its data structure in order to
present it, even after the Web connection has been released. Distributed mouse pointers use
semantic mapping, i.e. when someone points to a specific word or graphics, the correspond-
ing pointers on other sites point to the same item, regardless of different line breaks.
Audio component: the audio component allows to store and reproduce sound, e.g. spoken
text. Since Java does not allow to access audio hardware directly, we had to use native C
code inside the component's package. This component is very useful for 'voice annotations'
to documents.
We used these components for a set of sample collaborative applications, which will be
sketched in the following chapter.

5.2 Applications using TeamComponents

Editing compound documents
The first example shows a collaborative document editor for compound multimedia docu-
ments. A canvas allows to place and edit components co-operatively. Figure 7 shows a
sample document using different TeamComponents as part of the document contents: a
diagram component and a sketch component.

Joerg Dirk S tephan

Figure 7: A document containing TeamComponents

Inside the application, only the mounting area has to be coded. Any kind of Team-
Component which supports the anchored, dynamic integration can be used inside a com-
pound document. In this example, three members of a group are editing a document
collaboratively. Joerg and Dirk edit the diagram; Stephan edits the freehand sketch. As
Joerg and Dirk edit the same artefact simultaneously, they can see each other's mouse
pointer. In this scenario, the users have the following possibilities to continue their work:
• Stephan can close the sketch component and can join editing the diagram.
• Joerg or Dirk can join editing the sketch.
• Each user can close the component and can edit the overall document structure, e.g.

change the text or add new artefacts.

When a user opens a component which has already been opened by other users, his or her
distributed mouse pointer is automatically displayed on other sites.

DreamView - a collaborative Web browser
DreamView is a collaborative Web browser developed in the DreamTeam environment.
Beside providing a useful tool for e.g. distance education [11], DreamView was developed
for testing and validating the DreamTeam as well as the TeamComponent design concept.
DreamView allows a group of users to co-operatively browse the World-Wide Web. The
reasons for implementing a co-operative Web browser are manifold. In addition to
browsing remote documents, Web browsers can be used to browse local HTML documents,
e.g. manuals and learning materials that have been published as HTML pages and
distributed on CD-ROMs.
Beyond common browser functions, DreamView allows to annotate items in Web pages.
Annotations can be viewed and discussed by all session members simultaneously. Annota-
tions can be chosen from a variety of artefacts like texts, freehand sketches, voice, etc.
Figure 8 shows a DreamView window. The right part of the windows is used for annota-
tions, which can be linked to the page contents on the left side.

Figure 8: The DreamView browser

To attach an annotation to a Web page, one has to proceed as follows:
• Select the "Add annotation" menu from the Web browser. The system presents all

available dynamic components in a select box. This list is computed on demand, e.g. it is
not hard-coded in the browser's code.

• Choose the page item to which the annotation has to be attached. The browser adds an
empty component of the appropriate type. Draw a line from the annotation to the page
item and move and resize the component anchor.

• With the "Edit annotation" function, the user can open the corresponding component and
edit the annotation (Figure 8).

A user can attach as many annotation as desired and delete unused annotations. Public
annotations are automatically distributed among the session. To increase the space for the
page, the annotations' area can be hidden.

A brainstorming tool
DreamTeam's brainstorming application is an example for the use of static components. It
allows a group to collect and evaluate ideas. Ideas are represented as small texts (usually
not more than 100 words) and are collected in a list box. To each idea textual comments can
be attached and are displayed in a separate box. In many cases, graphical explanations are
more expressive than texts, thus we integrated a sketch component. Once a user has
selected an idea, he can open the drawing area via a button, i.e. the integration mode is
anchored. Solely the drawing component is provided, the user has no choice to use another
component for graphical annotation, i.e. the kind of component is specified at compile time
(static integration). If two users select the same idea, they can draw collaboratively, thus the
integration mode is public and shared.

These three examples demonstrate the benefits of TeamComponents concept for developing
collaborative applications.

6 Conclusion and future work

The TeamComponent concept allows to efficiently develop synchronous groupware appli-
cations with the help of software components. Each component is responsible for a specific
artefact, offers its own user interface and has to manage its internal data. Using components
helps to divide a software project into well defined parts. Well documented interfaces help
to reduce integration efforts and improve software quality. TeamComponents can be

developed separately from an application, thus the component developer and the application
developer can be different people. A set of classes and interfaces guarantees the proper in-
tegration of components into an application, even if the corresponding component source
codes are not available.
Compared to other approaches, the TeamComponent approach covers a wide range of col-
laborative scenarios. TeamComponents can either be used in compound documents or as a
static parts of a collaborative application. TeamComponents can be tailored via the criteria
of integration and isolation. Especially the dynamic anchored usage of components is a
powerful tool for implementing complex applications. The strength is demonstrated by the
annotation feature of our Web browser DreamView. Mixing Web page contents with arbi-
trary, embedded annotations linked to arbitrary page items would be very difficult to realise
with other component concepts.
TeamComponents have built-in collaboration services, including communication infra-
structure, floor control support, concurrency control and latecomer services. Group aware-
ness widgets such as distributed mouse pointers can easily be used inside components.
Additional group awareness functions are automatically offered by the runtime system.
Currently it is not possible to build a TeamComponent with the help of other Team-
Components. We think about lifting this restriction which would allow to create
hierarchical components. Such an extension would have two major advantages: first, even
very complex components could be developed efficiently, and secondly, the process for
developing applications and components could be unified. Applications could be developed
by developing a component and applying a generic wrapper.
Managing shared states in data objects can be done with the help of transaction, monitor
and explicit locks. To develop shared data object much easier, our research group is cur-
rently working on a shared data layer. Self-replicating objects with adjustable concurrency
control policies would dramatically decrease the development efforts for new collaborative
components and applications.
The approach has been verified with the help of sample components and applications. Our
next step will be to evaluate the concept with a group of students: as part of a software
project course, two teams of students have to develop a collaborative presentation tool with
the help of the DreamTeam and TeamComponent environment.

References

[1] Dykstra-Erikson E.; Curbov D., The role of user studies in the design of OpenDoc, in Proceedings of the
conference on Designing interactive systems: processes, practices, methods, and techniques, (DIS '97),
1997, 111-120

[2] Edlich, S., Software Cooperation with the Share-Kit: Influences of Semantic Levels on the Working
Efficiency, Vienna Conference on Human Computer Interaction VCHCI '93, Vienna, Austria, Sept. 20-
22, 1993, 225-234

[3] Graham N.; Morton C. A.; Urnes T., ClockWorks: Visual Programming of Component-Based Software
Architectures, Journal of Visual Languages and Computing, Academic Press, July 1996, 175-196

[4] Grundy J., Engineering component-based, user-configurable collaborative editing systems, in
Proceedings of the 7th Conference on Engineering for Human-Computer Interaction, Crete, Kluwer
Academic Publisher, 1998

[5] Gutwin C.; Roseman M.; Greenberg S., A Usability Study of Awareness Widgets in a Shared Workspace
Groupware System, in Proceedings of the ACM’96 Conference on Computer Supported Co-operative
Work (CSCW ‘96), ACM Press, Nov. 1996, 258-267

[6] Hamilton G, Java Beans, Sun Microsystems, 1997

[7] ter Hofte G. H.; van der Lugt H. J., CoCoDoc: a framework for collaborative compound document
editing based on OpenDoc and CORBA, in J. Rolia, J. Slonim and J. Botsford (eds): Proceedings of the
IFIP/IEEE international conference on open distributed processing and distributed platforms, Toronto,
Canada, Chapman & Hall, London, May 26-30, 1997

[8] Koch J. H., Entwurf und Implementierung einer Komponentenarchitektur für den Mehrbenutzereditor
IRIS, Master's Thesis, University of Munich, Germany, 1997

[9] Koch M., The collaborative multi-user editor project IRIS, Technical Report TUM-I9524, University of
Munich, Aug. 1995

[10] Lauwers J. C.; Lantz K. A., Collaboration awareness in support of collaboration transparency:
requirements for the next generation of shared window systems, CHI '90 Conference on Human factors
in computing systems, special issue of the SIGCHI Bulletin, 1990, 303-311

[11] Lukosch S.; Roth J.; Unger C., Marrying on-campus teaching to distance teaching, in Proceedings of the
19th world conference on open learning and distance education, Vienna, June 20-24,1999

[12] Microsoft Corperation, OLE2 Programmer’s Reference, Vols 1 and 2, Microsoft Press, Redmond, Wash.
1994

[13] NCSA, NCSA Habanero Homepage,
http://www.ncsa.uiuc.edu/SDG/Software/Habanero/HabaneroHome. html, 1999

[14] Piersol K., A close-up of OpenDoc, Byte, Mar. 1994, 183-188

[15] Rational Software, UML Notation Guide, http://www.rational.com/uml/html/notation/ Version 1.1, Sept.
1997

[16] Roseman M.; Greenberg S., Building Real-Time Groupware with GroupKit, A Groupware Toolkit,
ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, Mar. 1996, 66-106

[17] Roseman M.; Greenberg S., Symplifying Component Development in an Integrated Groupware
Environment, in Proceedings of the ACM Symposium on User Interface Software and Technology,
Banff, Alberta, Canada, Oct. 1997, 65 -72,

[18] Roth J., How to write shared applications with DreamTeam, Technical Reference, Fernuniversität
Hagen, Germany, Jul. 1999

[19] Roth J.; Unger C., DreamTeam - a Synchronous CSCW Environment for Distance Education, in
Proceedings of the ED-MEDIA/ED-TELECOM’98, Freiburg, Germany, Jun. 98, 1185-1190

[20] Roth J.; Unger C., DreamTeam - a platform for synchronous collaborative applications, in Th.
Herrmann, K. Just-Hahn (eds): Groupware und organisatorische Innovation (D-CSCW'98), B. G.
Teubner Stuttgart, 1998, 153-165

[21] Sasse M. A.; Handley M. J.; Ismail N. M., Coping with Complexity and Interference: Design Issues in
Multimedia Conferencing Systems, Design Issues in CSCW, Springer, 1994, 179-195

[22] Schuckmann C.; Kirchner L.; Schümmer J.; Haake J.M., Designing Object-Oriented Synchronous
Groupware With COAST, in Proceedings of the ACM Conference on Computer Supported Cooperative
Work (CSCW ‘96), ACM Press, Nov. 1996, 30-38

[23] Streitz N.A.; Geißler J.; Haake J.M.; Hol J. (1994), DOLPHIN: Integrated Meeting Support across
LiveBoards, Local and Remote Desktop Environments, in Proceedings of the ACM Conference on
Computer Supported Co-operative Work (CSCW '94), Chapel Hill, North Carolina, Oct. 22-26, 1994,
345-358

[24] Sun Microsystems, Java Object Serialization Specification, 1997

[25] Sun Microsystems, JavaSoft Home Page, http://java.sun.com, 1999

