
INFORMATIK
BERICHTE

337 - 5/2007

Simplifying and Unifying Composition for
Industrial Component Models

Ursula Scheben

 Fakultät für Mathematik und Informatik
 Postfach 940
 D-58084 Hagen

Simplifying and Unifying Composition for
Industrial Component Models

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

Fakultät für Mathematik und Informatik der
FernUniversität in Hagen

vorgelegt von
Dipl.-Inform. Ursula Scheben

Hagen, Oktober 2006

Abstract

In a world of high productivity with a focus on maximizing profit, it becomes extremely
important to produce new, reliable software as quickly and cheaply as possible. Compo-
nent based software development (CBD) promised to reach this goal. By just composing
prefabricated, reusable, well-tested components to new applications, application devel-
opment should become much more productive and reliable. Application programmers
should be able to select from a set of suitable components potentially produced by dif-
ferent vendors.

Industry contributed to this goal by introducing several different component mod-
els as e.g. JavaBeans, Enterprise JavaBeans (EJBs), the Component Object Model (COM),
the Corba Component Model (CCM), and most recently .NET. Each component model
defines its own standard for component look up, instantiation, access to the functional-
ity of the component, communication, composition techniques available etc. Although
these component models already are a big step towards the goals of CBD, especially the
composition techniques supported are still too restricted, not simple enough, and vary
from component model to component model.

Thus, the main goal of this thesis is to establish a basis and to develop techniques
for simplifying and unifying the composition process for components belonging to in-
dustrial component models. We introduce a unifying component model comprising
the main features of current industrial component models. This model provides some
additional, useful features, as e.g. the support of bi-directional connections which can
be established by a certain composition mechanism. Components of this model can be
composed to yield components of a higher level of abstraction. These composite com-
ponents are described by a composition language which supports late binding mecha-
nisms through strict interface based programming. As components of industrial compo-
nent models can be integrated into our unifying model, all its features are also available
for existing industrial component models. Compositions can be checked for consis-
tency based on a type system we define for our component model. This type system
respects amongst others conditions for bi-directional connections and a certain kind of
alias control. Besides consistency checking, the type system is used to decide whether a
component can be replaced by another one without invalidating any existing composite
referring to the component to be replaced. To further simplify the composition process,
we focus on tool support for visual composition. Some useful features are introduced,
as e.g. the guided establishment of needed interconnections and the colored depiction
of constituents of a composite causing incorrect compositions.

i

ii

Acknowledgements

I started my work at this thesis during the EU project EASYCOMP. I thank Prof. Dr.
Poetzsch-Heffter for giving me the chance to participate in this project and for first dis-
cussions on the topic of simplifying the composition process.

Prof. Dr. Steimann supported me during the last two years in various ways. First of
all, he became my Ph.D. supervisor although I started my work with Prof. Dr. Poetzsch-
Heffter. Thanks a lot for doing so. In addition to all his duties he found time for in-
tensive discussions on componentware and for proof-reading my thesis. He gave me
valuable hints on how to improve it. Last but not least he relieved me from many tasks
concerning teachings.

I am also indebted to Prof. Dr. Knoop for becoming my second referee. Because of
his numerous tasks at the Vienna University of Technology and his research activities,
his time is rare. Nevertheless he spent his free time to proof-read the 300 pages of
my thesis and gave me valuable feedback. Furthermore he had always time for my
problems and to encourage me. Many thanks.

I thank Monika Lücke for her ongoing support during the last years and the pleasant
working atmosphere she disseminated. Thanks go to Ingolf Grebe for drawing several
of my figures.

I would like to thank Prof. Dr. Jörg Roth and Dr. Daniela Keller for their warm
response when I switched to the chair of programming systems and for reviewing my
thesis. Especially Dr. Daniela Keller encouraged me several times to finish my work at
this thesis. Although this year she got severe problems with her eyes, she carefully read
several iterations of my thesis. In addition she relieved me of supporting several of our
courses.

Special thanks go to my husband and my daughter for their ongoing understanding
and encouragement. In the last months, my time for them was really rare. They for-
went joint holiday and leisure. Without the support of my husband I would not have
succeeded in finishing this thesis.

iii

iv

Contents

1 Introduction 1
1.1 A Vision of a Builder Tool . 3
1.2 Contributions made by this Thesis . 6
1.3 Organisation of the Thesis . 9

2 Foundations 11
2.1 Terminology . 11
2.2 Component Models . 15

2.2.1 JavaBeans . 17
2.2.1.1 Component Model . 17
2.2.1.2 Composition Techniques and Consistency 22
2.2.1.3 Type System . 25
2.2.1.4 Type Metadata . 26
2.2.1.5 Compatibility / Substitutability 29

2.2.2 Component Object Model (COM) 30
2.2.2.1 Component Model . 30
2.2.2.2 Composition Techniques 37
2.2.2.3 Type System . 40
2.2.2.4 Type Metadata . 44
2.2.2.5 Consistency / Correctness of a Composition 48
2.2.2.6 Compatibility / Substitutability 48

2.2.3 .NET . 49
2.2.3.1 .NET Framework . 49
2.2.3.2 Composition Techniques 60
2.2.3.3 Type System . 64
2.2.3.4 Type Metadata . 65
2.2.3.5 Consistency / Correctness of a Composition 67
2.2.3.6 Compatibility / Substitutability 67

3 Improvements over Existing Approaches 68
3.1 Component Models . 68
3.2 Composition Techniques . 73

3.2.1 Industrial Component Models . 73

v

vi CONTENTS

3.2.2 Visual Assembly . 75
3.3 Type Systems for Components . 77

4 Our Approach 82
4.1 The Unifying Component Model (UCM) . 85

4.1.1 Basic Component Model . 85
4.1.1.1 General Basic Concepts . 85
4.1.1.2 Plug, A Higher Level Concept 99
4.1.1.3 Constraints on Connections 106
4.1.1.4 Summary of Concepts . 109

4.1.2 Component Interface Specifications 110
4.1.2.1 General Specifications . 110
4.1.2.2 Additional Specifications supporting Automatic Connec-

tions . 117
4.2 Composition . 118

4.2.1 Interconnections between Component Instances 119
4.2.1.1 Connections via services 119
4.2.1.2 Connections via plugs . 120

4.2.2 Hierarchical Composition . 120
4.2.3 More Details on Interconnections and Exports 126

4.2.3.1 Details on Interconnections 127
4.2.3.2 Details on Exports of Plugs 129

4.3 Used Type System for UCM-Components 132
4.3.1 Type Definitions . 132
4.3.2 Subtyping . 138

4.3.2.1 Subtyping of Services . 138
4.3.2.2 Subtyping of Plugs . 140
4.3.2.3 Subtyping of Component Interfaces 145

4.4 Correctness of a Composition . 151
4.4.1 Interconnections between Component Instances 152
4.4.2 Export of Services and Plugs . 157

4.5 Component Lookup . 162
4.6 Instantiation of Composite UCM-Components 163
4.7 Helper Components . 164
4.8 Compatibility / Substitutability . 166

4.8.1 Polymorphic Component Instances 166
4.8.2 Replacing Components because of Upgrades or Change of Vendors 175

4.9 Realisation of Composite UCM-Components 176
4.10 Integration of Industrial Component Models 182

4.10.1 JavaBeans . 184
4.10.1.1 Component Implementations and Component Interfaces

Specifications . 184

CONTENTS vii

4.10.1.2 Integration of existing Concepts and Support for Services
and Plugs . 187

4.10.2 Component Object Model (COM) 190
4.10.2.1 Component Implementations and Component Interface

Specifications . 190
4.10.2.2 Integration of existing Concepts and Support for Services

and Plugs . 199
4.10.3 .NET . 201

4.10.3.1 Component Implementations and Component Interfaces
Specifications . 201

4.10.3.2 Integration of existing Concepts and Support for Services
and Plugs . 207

4.10.4 Comparing Integration for the Various Component Models 211
4.11 Some Algorithms Supporting Visual Composition 213

4.11.1 Automatic Interconnections Using Plugs 213
4.11.1.1 Checking for Complementary Plugs 215
4.11.1.2 Service Mapping . 219

4.11.2 Composing Plugs when Creating Composite UCM-Components . 221

5 Evaluation 223
5.1 The BPCE as a “Proof of Concept” . 223
5.2 The CC-Builder . 229

6 Related Work 234
6.1 Component-Oriented Languages . 234

6.1.1 ArchJava . 235
6.1.2 ComponentJ . 237
6.1.3 Component Pascal . 240
6.1.4 Others . 244

6.2 Composition Languages . 245
6.2.1 Bean Markup Language . 246
6.2.2 Bean Plans . 247
6.2.3 Piccola . 249

6.3 Architecture Description Languages . 251
6.3.1 Darwin . 251
6.3.2 Acme . 253
6.3.3 Wright . 256

6.4 The Unified Modeling Language 2.0 . 259
6.4.1 Components . 259
6.4.2 Internal Structure of a Component 262
6.4.3 Comparison of the UML- and our UCM-Approach 267

viii CONTENTS

7 Summary and Perspectives 275
7.1 Summary . 275
7.2 Perspectives . 279
7.3 Conclusion . 281

A Summary of Used Graphical Elements 282
A.1 Graphical Elements . 282
A.2 Typical Diagrams . 285

Bibliography 287

Index 297

List of Figures

1.1 Hierarchically Composed Components . 5

2.1 Contents of a Java Archive . 18
2.2 Contents of the Manifest File contained in the Archive of Figure 2.1 19
2.3 Interface Negotiation by QueryInterface . 34
2.4 Interface Pointer . 35
2.5 Interface Pointer as a Pointer to a C++ Object 35
2.6 Connection between a Client and a Connectable Object 38
2.7 Aggregation in COM . 38
2.8 Collaboration between Outer and Inner Object in COM 39
2.9 Base Interfaces in the COM Registry . 42
2.10 Single-file and Multifile Assembly (Source: MSDN-Library) 53

3.1 Different Configurations of a Wordprocessor Application 72

4.1 Component Instances with their Clients and Implementing Objects 86
4.2 Customer Form to enter Customer Data . 87
4.3 Required Services with Connection Points 91
4.4 Packaging Machines . 100
4.5 Model View Controller . 102
4.6 Cooperating Objects in Compound Documents 105
4.7 Two other Views of the Customer Form . 106
4.8 Example for Required Different Service Providers 107
4.9 Component Instances with several Required Services of the same Type,

which have to be connected to a common Service Provider 109
4.10 Component Model . 109
4.11 Component Interface Specification . 111
4.12 Overlapping Plugs . 113
4.13 Connections via Plugs . 120
4.14 Example of a Composite UCM-Component 122
4.15 Implementation for Atomic UCM-Components 122
4.16 Implementation for Composite UCM-Components 123
4.17 Composite UCM-Component with its Component Interface 124

ix

x LIST OF FIGURES

4.18 Subtyping of Plugs (IConnectionPoint is shortened to ICP) 141
4.19 Invalidated Composite UCM-Component 146
4.20 Component Interface violating Subtyping Rules for Required Services . . 147
4.21 Subtyping of Constraints . 148
4.22 Component Interface violating Subtyping Rules for Constraints 148
4.23 Valid and invalid Constraints concerning Subtyping 149
4.24 Complementary Plugs . 156
4.25 Exports . 157
4.26 Exported Constraints . 161
4.27 Pool of Component Interfaces and Component Implementations 162
4.28 Nested Instances of Composite UCM-Components 163
4.29 Composite UCM-Component with integrated Delegator Component . . . 165
4.30 Composite UCM-Component with integrated Multiplexer Component . . 166
4.31 Strong Subtyping between CI and CI’ . 167
4.32 Weak Subtyping between CI and CI’ . 168
4.33 Component Info Object . 177
4.34 Instance of a Composite UCM-Component 179
4.35 Windows Registry for COM Interfaces . 192
4.36 Examples for (not) allowed Interconnections 214
4.37 Example for Plugs to be checked whether they are complementary 217

5.1 User Interface of the BPCE . 224
5.2 List of Matching Provided Services . 226
5.3 Enabling or Disabling additional Connection Support 229
5.4 Hierarchically Composed Components . 230
5.5 Selection of a Style . 232
5.6 Motif-Style . 233
5.7 Windows-Style . 233

6.1 Black- and White-Box Views of a Component (taken from [UML05] with
slight modifications) . 261

6.2 Another Representation of the Black- and White-Box View of a Compo-
nent (taken from [UML05] with slight modifications) 261

6.3 Wiring through Dependencies on a Structure Diagram (taken from [UML05])262
6.4 Data Logging Component . 262
6.5 Data Logging Component using Parts . 263
6.6 Detailed View of the Data Logging Component 264
6.7 Data Logging Component using Parts, Ports and Connectors 265
6.8 Internal Structure of a Component containing other Components as Parts

(taken from [UML05]) . 266
6.9 Composite UCM-Component CP DataLogging with its Component In-

terface CI DataLogging . 273

LIST OF FIGURES xi

6.10 CP DataLogging represented in UML Notation as a Composite Structure
Diagram . 274

A.1 Representation of a Component Interface 285
A.2 Representation of a Composite UCM-Component 286
A.3 Set of Component Instances . 286

List of Tables

3.1 Main Concepts of Industrial Component Models 71
3.2 Conditions on Sybtypes . 80

5.1 List of the Required Services of the Selected Source Component (left fig-
ure) Selection of a Service Provider, here Chapter (right figure) 225

6.1 BML-Operations . 246

xii

Chapter 1

Introduction

The idea to build new software applications using prefabricated components to increase
productivity can be traced back to the late 60ies [McI68]. In 1968, McIlroy presented his
vision of software components and a market for those components in his article “Mass-
Produced Software Components”. In his approach, software components were still at
the level of routines/procedures like sine functions or input/output conversions and
were intended to relief programmers from standard routine tasks. Such components
should be arranged in families, e.g. varying by their degree of precision, robustness or
by time and space performance. This very fine grained view of a component shifted
to more and more coarse grained components in the form of modules/libraries which
could already provide complex functionality or large sets of related functionality. This
functionality could be reused in a black box manner in various contexts. With the in-
vention of object oriented languages, modules disappeared more or less and classes
“became the better modules” [Szy98]. Indeed, classes became the major means to struc-
ture software and led to the “class as component view”. The mechanisms for data ab-
straction and information hiding provided by these languages were targeted to develop
independent, reusable units of code, but the opposite came true; a lot of large, mono-
lithic programs arose. It became evident that classes are too fine grained to be used as
independent, reusable components with a high level of complexity. Instead, a set of
cooperating classes is needed to provide a complex functionality. But good concepts
for building large units of code encompassing several classes were missing in object-
oriented languages.

At the same time, the key concept for reuse in object-oriented languages, inheritance,
led to several severe problems:

• When a developer wants to reuse a class by inheritance, he has to know the inter-
nals of this class to use it properly.

• If a base class is changed, this has an impact on all of its subclasses. Their behav-
ior may be changed in an unwanted manner leading to unexpected errors. This
problem is known as the fragile base class problem ([Szy98] pp. 102 and [MS97]).

1

2 CHAPTER 1. INTRODUCTION

These problems led to a new generation of software components which incorporated
the advantages of former generation components. They allow one to reuse components
as black boxes without needing knowledge of their internals, to structure software ac-
cording to functional aspects instead of focussing on data, and they avoid inheritance
in favor of composition techniques.

This new generation of components is represented by various industrial component
models each of them defining its own standard including a definition of what consti-
tutes a component, how components can be accessed by their clients, how components
can interact and how components can be composed. The most prominent are JavaBeans
[Bro97], Enterprise JavaBeans (EJB) [DP00, EJB03], the Component Object Model (COM)
and its immediate successors [EE98, COM95, DCO98, DCO96], the Corba Component
Model (CCM) [Sie00, COR02], and most recently .NET [Wes02, Löw05]. In contrast to
former components as e.g. modules, these component models allow components to be
instantiated. Thus, in a running application, several instances of the same component
may exist.

These industrial component models have already made a big step towards the main
goal of component based software development (CBD) [NT95, NL97, Szy98, Gri98, SC00a,
SPJF02]: to create new applications rapidly by just composing prefabricated, reusable,
well-tested components which can be selected from a large set of suitable components
potentially produced by different vendors. Although the composition techniques avail-
able by the industrial component models are already simpler than those of former gen-
erations, they do not yet reach the goal of CBD to simply stick components together.
They are still too complex or too restricted, error prone, and vary from component
model to component model. Some composition techniques still need the skills of ex-
perienced software developers.

Thus, one of the main goals of this thesis is to further simplify the key task, the com-
position process, and to guarantee correctness of a composition. Composition can be-
come much easier if tools support the composition process visually. The tools hide the
composition techniques provided by the component models that still need program-
ming experience from the user. Amongst others, tools can help us to select the right
components and to check new compositions for correctness. Thus, in the following
we present our vision of a useful builder tool which supports the whole composition
process. Before describing our tool we motivate why we want to support industrial
component models.

If components belonging to known component models can be composed with our
tool, the tool will be accepted much easier since many software developers already use
one of these models. In addition, we can profit from the advantages of these models.
There are already a lot of useful components available from different vendors which can
be reused by our tool and can further be composed within our tool. Thus, these existing
components need not be re-implemented or wrapped which would be an unacceptable
effort. In addition, using existing component models, we can build upon their existing
infrastructure which is rather complex and are not forced to develop such an infrastruc-
ture by ourselves. Thus, our second goal is to develop a unifying component model

1.1. A VISION OF A BUILDER TOOL 3

comprising the main features of current industrial component models which allows us
to integrate them easily.

1.1 A Vision of a Builder Tool

There already exist several tools which allow a programmer to select components from
a palette, place instances of them onto a composition window, configure them by ma-
nipulating their properties using property sheets, and more or less visually wire them
together to build a new application. Wiring in this context generally refers to event
based communication. Events occurring at one instance cause actions on another in-
stance. (For more details, see Section 3.2.2). Unfortunately, such tools assume the used
components to be completely self-contained in the sense that instances of them can be
created and accessed independently without any further action as e.g. a wiring prior to
use.

In contrast to these tools, we also want to support the composition of components
which are not fully self-contained, but depend on functionality provided by other com-
ponents to fulfil their task. Such dependencies are inherent to layered architectures
where one layer may only access its direct neighbors. Components residing in a higher
layer usually call functionality of components residing in the next lower level to fulfil
their task. We call such dependencies on a functionality provided by other components
mandatory required functionality since the component which needs access to the other
one can not work properly without the required component. An examples for such a
dependency is e.g. a bank application component which needs access to a database com-
ponent. Mandatory dependencies are not restricted to layered architectures. They may
also appear in other architectures. In a model view controller architecture for example,
the view-component must have access to the model-component to access the data it has
to show. A wordprocessor component needs access to an editor component to allow
users to enter their data etc.

A component can declare functionality to be provided to it by other components for
the following other reasons:

• The component is extensible in some sense. This means, the component is able to
include an extra functionality provided by some other component, but it does not
depend on it to be available. An example for such a component could e.g. be a
wordprocessor component without spellchecking functionality, but with a possi-
bility to incorporate another component providing the spellchecking functionality.

• The component is the source for a certain kind of notification specified in terms of
operations. These operations must be implemented by those components which
want to be notified. The source component notifies other components by calling
these methods.

4 CHAPTER 1. INTRODUCTION

As in the last two cases the component works properly even, if no component pro-
viding the declared functionality is connected to it, we call these dependencies on func-
tionality provided by other components optional required functionality.

Our tool should support a user of a component in detecting all of its dependencies
and allow him to resolve such dependencies by means of visual composition. Resolving
a dependency is done by giving the requiring component access to a component which
implements the required functionality. This process is referred to as connection. To en-
able our tool to detect component dependencies and to resolve them, the components
we can compose by our tool also have to declare explicitly the functionality they require
in addition to the functionality they provide.

As will be motivated in the remainder of this thesis, the provided as well as the
optional or mandatory required functionality of a component is expressed in terms of
named service interfaces, so-called services. The service interfaces declare this function-
ality in terms of operations and can be compared to Java interfaces. They only declare
the signature of the operations, they do not carry any implementation. These services
build the contract between the component and its environment on a syntactic level. As
the functionality of a component can be rather complex, its functionality can be divided
into a set of service interfaces. Our tool will refer to services by various features.

As will be shown in Section 4.1.1.2, there are a lot of situations, where groups of
services are useful which are semantically related and need a connection to one single
partner component. Often, such groups relate provided as well as required services
and model a bi-directional communication between two parties. A typical example are
callbacks in which a provided interface comes with a required one. Thus, it would be
useful to be able to define such groups as entities for interconnections, such that those
groups can be connected via one single operation from a user’s point of view. This
simplifies composition further. We introduce such groups of services in more detail in
Section 4.1.1.2 and refer to them as plugs.

Another step towards simplifying the development of new applications is the pos-
sibility to reduce complexity by being able to hierarchically compose components to
new components of a higher level of abstraction which can then be used to build the
application. Thus, in contrast to most other tools, our tool should be able to compose
components to new ones hierarchically as described below.

Hierarchical Composition: Our typical composition process to build new components
from existing ones looks as follows.

A programmer selects components from the list of available components and places
instances of them onto the composition window. Then he selects each of the compo-
nent instances C residing in the composition window which has at least one required
service. He selects one of the mandatory required services R of C by clicking on the
representation of the service, a little button labelled ’REQ’ on the right hand side of the
component. The service name appears as soon as the mouse is moved over the button.
Then he selects a fitting provided service of another component instance in the compo-

1.1. A VISION OF A BUILDER TOOL 5

Figure 1.1: Hierarchically Composed Components

sition window by clicking on its button representation labelled ’PROV’. The connection
is visualized by a line drawn between both services. The programmer continues this
process, until all mandatory requirements are resolved except for those which are to be
exposed by the new composite component just being built.

All optional required services the programmer wants to connect are connected using
the same process. The programmer can save the new composition as a new component.
He can select between the following two possibilities:

1. The tool creates a fitting component interface declaration for the new composite
component automatically by a predefined algorithm.

2. The programmer selects each service he wants to be exposed explicitly and, if
necessary or desired, declares a name for the service in the context of the new
composite component. The tool then generates the corresponding service for the
composite component and visualizes the export by a line drawn from this service
to the service of the component instance exposing it.

6 CHAPTER 1. INTRODUCTION

The newly created component can further be composed to a higher level component.
Figure 1.1 shows an instance of a composite component named “P PanelWithContents”
which consists of three parts and which is itself used to build a higher level component
“CP FrameWithContents”.

Besides hierarchical composition, an ideal tool has to provide a set of other features
which are listed below.

Complete Tool Support: As our tool should support the whole composition process,
it should at least

• provide the user with a tool box of components he can choose from and a com-
position window where the user can place instances of selected components for
configuration,

• support the selection of components suitable to a requirement specified by the
user or a component already selected for composition,

• allow a user to connect component instances residing in the composition window
visually,

• support interconnections based on events components emit or consume, intercon-
nections based on services the components provide or require, as well as intercon-
nections based on plugs,

• support the creation of new components by means of hierarchical composition,

• support the creation of new applications,

• provide consistency checking for newly created components, and applications
thereby distinguishing the handling of optional and mandatory required services,

• support the deployment1 of newly created components,

• support the reconfiguration of existing compositions.

1.2 Contributions made by this Thesis

The main goal of this thesis is to establish a basis and to develop techniques for sim-
plifying and unifying the composition process especially for components belonging to
industrial component models. The thesis will focus on the following subgoals:

Goal 1: To treat different component models in a uniform way.

1Deployment is the process of installing a component. After deployment, the component can be used
for building new applications or composites.

1.2. CONTRIBUTIONS MADE BY THIS THESIS 7

Goal 2: To introduce mechanisms supporting especially bi-directional connections be-
tween component instances.

Goal 3: To develop techniques which allow the composition of components hierarchi-
cally thereby yielding new components of a higher level of abstraction.

Goal 4: To guarantee the correctness of a composition with respect to certain syntactical
aspects.

Goal 5: To support the life cycle of components especially by simplifying the substitu-
tion of components.

Goal 6: To support especially visual composition.

These goals are reached by the contributions listed below. One contribution can help us
to reach several goals. All goals contributed to are thus explicitly mentioned for each
element in the list.

Contribution 1 (Development of a uniform component model) The essential concepts
of existing industrial component models are subsumed in a uniform component
model (UCM) in which the existing ones can be integrated. The unification fo-
cuses on the existing concepts essential for the creation and access of component
instances as well as on their interconnections. This includes the concepts used to
look up components, to instantiate them, to access their interface, to interconnect
(wire) them etc. Thus, our focus is on the construction process and on accessing
services. (Concepts like persistence, transaction or security are not regarded as
they are not relevant for simplifying composition.) Besides unification, the de-
veloped component model offers several new concepts including e.g. plugs and
constraints on interconnections controlling aliasing. Plugs are entities grouping
semantically related services and especially simplifying bi-directional connections
between component instances. Existing component models can be enriched with
the new concepts in a simple manner.

Contribution 1 thus helps us to reach goals 1 and 2.

Contribution 2 (Development of a hierarchical composition technique) Several com-
ponent instances may be aggregated and wired together to build a new, higher
level component exporting dedicated service interfaces and plugs of its constitu-
ents. This technique can be used for the mentioned industrial component models
even if these component models are flat ones. We introduce a simple language
to describe our composite components. This language can be used by program-
mers to implement new composite components directly. It can also be used by
tools to generate a composition description automatically from a set of component
instances a user selected and wired together visually. In addition to other lan-
guages, our language supports interconnections and exports based on plugs and
the integration of different industrial component models. The language strictly

8 CHAPTER 1. INTRODUCTION

separates component interface descriptions and descriptions of composite compo-
nents. Component instances belonging to an instance of a composite component
are strictly typed by their component interfaces only. Components to be used for
instantiation need not be mentioned in the description of the composite compo-
nent. Because of this fact, it is possible to leave the choice of a suitable component
to be used for instantiation to the runtime system.

Contribution 2 helps us to reach goals 3 and 5.

Contribution 3 (Introduction of a type system for our uniform component model) A
type system is needed which allows one to decide

• when and how component instances can be interconnected,

• whether a composition is correct,

• when a component can be substituted/replaced by another one.

For this purpose, a type system for components including plugs and constraints
on interconnections is introduced. Besides the integration of plugs and special
constraints, the type system differs from existing approaches in the handling of
services a component needs from other components to fulfill its task. Our defini-
tion ensures that a component already referred to in composite components can be
substituted by a compatible one without affecting these composite components.

Contribution 3 helps us to reach goals 2 - 6.

Contribution 4 (Support for component substitution) The substitution of components
is simplified through late binding mechanisms and automatic compatibility checks
between two components. In this context, a component C1 is compatible to a com-
ponent C2, if C2 can be replaced by C1 without invalidating existing composite
components already referring to C2.

Contribution 4 helps us to reach goal 5.

Contribution 5 (Provision of special features supporting visual composition) The
composition process is simplified by features especially supporting visual compo-
sition. For example, constituents of a composite causing incorrect compositions
are highlighted by a red rectangle surrounding their representations in a composi-
tion window. Other examples are the automatic establishment of interconnections
between fitting plugs of two component instances and a guided establishment of
needed interconnections etc.

A graphical representation for components as black boxes with their services and
plugs as well as a graphical representation for compositions are introduced. These
representations can be used by tools to depict components, their interconnections
and composite components composed from other components.

Contribution 5 helps us to reach goal 6.

1.3. ORGANISATION OF THE THESIS 9

1.3 Organisation of the Thesis

Chapter 2 introduces the basic terminology used throughout this thesis and describes
existing industrial component models. The description focuses on features essential for
the creation and access of component instances as well as their interconnections. Dif-
ferent composition techniques provided by the industrial component models are dis-
cussed. Typing and subtyping aspects for components are presented which are needed
to decide whether components may be substituted by new versions or by other compo-
nents. Exact type and subtype definitions are rarely available for industrial component
models. In such cases we present our own definitions which is also one of the contribu-
tions of this thesis.

Chapter 3 describes the similarities as well as the differences between industrial
component models and identifies several of their shortcomings with respect to the com-
ponent model as such, their type system, and the composition techniques available. In
addition to the composition techniques provided by the component models themselves
we shortly discuss existing tools which support visual composition. For every field
discussed we finally present the improvements we want to achieve over the existing
approaches.

Chapter 4 provides our approach to achieve these improvements. Our unifying
component model is introduced that additionally supports bi-directional connections
between component instances and provides a simple way to compose component in-
stances hierarchically. The used composition process supports late binding of compo-
nent implementations to component interfaces. The interface of a component is pre-
cisely specified as well as its type. Subtype relations are defined between component
interfaces and the entities a component interface consists of. This allows one to check
compositions for correctness and to decide if a component can be substituted by an-
other component without affecting existing compositions. To demonstrate that our
component model enables the integration of industrial component models, integration
is described for selected industrial component models. Some algorithms are presented
which enable automatic interconnections between plugs and the composition of plugs
to greater ones. These algorithms are especially useful for visual composition and com-
plete the tool support already described in Section 1.1.

As a proof of concept, Chapter 5 presents two tools, the Bean Plug Composition Environ-
ment and the Composite Component-Builder. Our first tool allows one to compose Jav-
aBeans based on services especially supporting bi-directional connections. It demon-
strates how JavaBeans can be used as atomic components in our component model and
how the support for visual composition can look like. The second tool demonstrates
how composite components of an arbitrary level of complexity can be built hierarchi-
cally and their provided methods called without knowing their provided services and
service interface types in advance.

10 CHAPTER 1. INTRODUCTION

Chapter 6 relates our approach to other approaches in the area of component-based
development: component-oriented programming languages, composition languages,
architecture description languages and the UML2.0 approach concerning components.

The thesis concludes with a summary of the work at hand and outlines remaining
future work.

Chapter 2

Foundations

This chapter introduces the basic terminology used throughout this thesis. Furthermore
it describes the state of the art concerning industrial component models.

For the reasons mentioned in Section 1.1, we want to have a unifying component
model and visual composition especially for industrial component models. We there-
fore have to study existing industrial component models rather detailed to know what
can be unified and later on to verify that they can be represented by our new model. For
every component model the definition of components, their lookup, their instantiation,
the structure of a component interface in terms of its accessible entities, the access to
these entities etc. are described. Possible component type and subtype definitions are
considered even if exact type and subtype definitions do not exist in the literature. In
this case we present our own definitions. Subsequently the kind of meta data available
to describe and access a component are discussed. The main composition techniques are
introduced as well as consistency conditions for compositions. The description for each
component model ends with considerations concerning substitutability of components.

As our main focus is on providing basic techniques which allow one to unify and
simplify the composition process and to check compositions for correctness and not
primarily on certain visual support, visual composition is not considered in this section.
Instead visual composition is described in Section 3.2.2.

2.1 Terminology

In the literature dealing with component based development (CBD) [NT95, NL97, Szy98,
Gri98, SC00a, SPJF02], a lot of different definitions can be found concerning compo-
nents, compositions and other terms. Szypersky [Szy98] for example defines compo-
nents and composition as follows:

“A component is a unit of composition with contractually specified interfaces and
explicit context dependencies only.”

11

12 CHAPTER 2. FOUNDATIONS

“Composition: Assembly of parts (components) into a whole (a composite) without
modifying the parts.”

Nierstrasz and Dami [NT95] state:

“In short, we say that a component is a static abstraction with plugs. By static, we
mean that a software component is a long-lived entity that can be stored in a software
base, independently of the applications in which it has been used. By abstraction, we
mean that a component puts a more or less opaque boundary around the software
it encapsulates. With plugs means that there are well-defined ways to interact and
communicate with the component (parameters, ports, messages, etc.).... Software
composition, then, is the process of constructing applications by interconnecting
software components through their plugs. The nature of the plugs, the binding mech-
anisms and the compatibility rules for connecting components can vary quite a bit,
as we shall see, but the essential concepts of components, plugs, plug-compatibility
and composition remain the same.”

In the following we introduce our own definitions of relevant terms used throughout
this thesis.

Component: A component is some reusable piece of code implementing a certain func-
tionality. A component can only be used as a black box. Access to the functionality
of a component is only possible through a well-defined interface. Similar to a class, a
component can be instantiated. We do not claim that components have to be built using
classes. Their code may be based on procedural languages or on composition languages
as well.

Component Instance: A component instance is a runtime entity conforming to the code
of the component it is an instance of. In contrast to an instance of a class, a compo-
nent instance normally consists of a set of collaborating objects together providing the
functionality of the component. Some of these objects build the interface to the environ-
ment of the component and can therefore be accessed from the outside. Other objects
belonging to the component instance can only be used internally.

Component Interface: The component interface defines the contract between the com-
ponent and its environment. The functionality of the component can only be accessed
via its component interface. A component interface can consist of a set of properties
which can be changed from the outside, a set of operations which can be called from
the outside, a set of events the component can emit, etc. Additionally, the set of oper-
ations the component needs from its environment to fulfill its task also belongs to the
component interface.

2.1. TERMINOLOGY 13

Service Interface: The overall functionality of a component can be divided into a set of
smaller functional units which can be accessed individually. The operations implement-
ing such parts of the functionality of a component can be grouped by service interfaces.
Thus the interface of a component can contain several service interfaces together pro-
viding the overall functionality. Similarly, the functionality a component needs from its
environment to work properly can be divided into several service interfaces. A service
interface is often simply referred to as interface.

Enabling Required Service Interface: As described in Section 1.1 a component may
declare a service interface to be provided to it by other components to express that it is
able to notify other components of certain events by calling the operations of this inter-
face or that it is extensible by this interface. Extensibility means, that the component is
able to include the extra functionality specified by the declared service interface that has
to be provided to it by some other component. The component itself however does not
depend on this functionality to be available to it. Similar to [SM05] we sometimes refer
to these two kinds of service interfaces a component declares to be provided to it by
other components as enabling required service interfaces . This is due to the fact that in the
case of extensibility the clients of the component profit from the extensibility of the com-
ponent and in the case of notifications, the components implementing this functionality
profit from the implementation instead of the component declaring the functionality as
required one.

Component Model: A component model essentially consists of rules specifying what
kinds of components are supported, what constitutes a component, how the interface
of a component looks like, how components can be accessed, whether components can
be distributed, what composition techniques are primarily available, etc.

Connection / Wiring: Two component instances are connected, if they have a means to
communicate somehow. Two examples of possible connections are event-connections
and interface-connections. Two component instances are connected via a direct event-
connection, if one component instance (target) receives events emitted by the other com-
ponent instance (source). Indirect event connections use a mediator. The mediator re-
ceives the events instead of the target and in turn calls corresponding operations on the
target. Two component instances are connected via an interface-connection, if one of the
component instances has access to a service interface of the other component instance
that is, it can call the operations belonging to this service interface. In the context of this
thesis the term wired is used synonymously to connected.

Assembly: An assembly is a set of interconnected component instances1.

1In this thesis we focus on assemblies on instance level. The term assembly is sometimes also used on
code level as e.g. for Enterprise JavaBeans.

14 CHAPTER 2. FOUNDATIONS

Assembly Tool: An assembly tool is a tool to wire component instances visually.

Composite: A composite is a component instance, built from several other component
instances.

Composite component: A composite component is a component, which is built from
several other components.

Constituent: A component instance used to build a composite or a placeholder/vari-
able for a component instance used to build a composite component is called a con-
stituent of the composite / composite component.

Composition: The term Composition has two different meanings. First, composition
denotes the process of constructing applications, components or assemblies from al-
ready existing components. Second, a composition is the result of a composition process
that is, a composed application, a composite component or an assembly.

Composition Language: A composition language is a language which is targeted to de-
scribe a set of interconnected component instances by simple means. Such languages
generally have first-class syntax and semantics to support composition operations.

Assembly Time: The time, where component instances are assembled/composed to
build new applications, components or simply a web of interconnected component in-
stances, is called assembly time.

Configuration Time: Each component should be capable to run in a range of different
environments. Therefore, a component has to be adaptable to the needs of different
customers. The time, where customization takes place, is called configuration time. This
time is also sometimes referred to as design time. Often, configuration and assembly take
place at the same time.

Deployment: Deployment is the process of installing a component. After deployment,
the component can be used for building new applications or composite components.

Client: A client is a piece of software which calls operations provided by other pieces
of software. A component calling operations provided by other components is therefore
a client.

Server: A server is a piece of software which provides functionality to other pieces
of software. A component providing functionality to others is therefore regarded as a
server.

2.2. COMPONENT MODELS 15

Static Dependency: Static dependencies on other components are hard wired in the
code of a component and are assumed to be resolved at component instantiation time
without problems. That is, components referred to in the code of another component are
assumed to be deployed as needed so that instances of them can be created at runtime.
Static dependencies allow component instances to create other component instances
they need at runtime by themselves.

Dynamic Dependency: A component can specify that it depends on a (service) inter-
face to be provided by another component not specified further in the program code
of the requiring component. At component instantiation time, this reference is not yet
resolved. A third party has to create a suitable component instance and to bind a fit-
ting provided interface of this component instance to the open reference. This kind of
dependency on another component is not resolved until runtime/assembly time and
needs a third party to define this interconnection. This kind of dependency is called
dynamic dependency.

Implicit Interface of a Class: With an implicit interface of a class we mean all public
members declared by the class, as e.g. properties, emitted events and methods. These
declarations are made in the context of the class. Generally, there is no extra interface
declaring these members apart from the class declaration.

2.2 Component Models

Industry contributed to componentware by providing different component models from
different companies or groups like e.g. Sun’s JavaBeans [Bro97]and Enterprise JavaBeans
(EJB) [DP00, EJB03], Microsoft’s Component Object Model (COM) [EE98, COM95, DCO98,
DCO96], OMG’s Corba Component Model (CCM) [Sie00, COR02], Microsoft’s .NET
Framework [Wes02, Löw05] and WebServices [Wes02]. All these models can be used
in the context of existing OO-languages. Instead of describing all available models we
focus on JavaBeans, COM and .NET for the following reasons.

The JavaBeans component model is described, as it is a light-weight component
model especially suited for visual composition. Components of this model are used as
atomic components in our tools described in Chapter 5. Microsoft’s COM is described,
as it is one of the first, well-known component models independent from a particu-
lar programming language, allowing access to its services only through well-defined
interfaces and avoiding inheritance. Although .NET is a framework rather than a com-
ponent model, Microsoft is promoting .NET instead of COM. Therefore, and because
.NET is one of the most recent approaches, we also have a look at .NET and focus on
how components may be implemented using .NET.

16 CHAPTER 2. FOUNDATIONS

The description is divided into six parts:

1. The first part titled Component Model essentially deals with the definition of com-
ponents, their lookup, their instantiation, the structure of a component interface
in terms of its accessible entities, the access to these entities etc. The contents of
this part is structured in the same way for all component models described. These
topics are essential for deciding whether and how components of these models
may be integrated into our component model discussed in Section 4.

2. As components are for composition, composition techniques are of great impor-
tance. Thus, in part two, Composition Techniques, the composition techniques avail-
able are described. Composition is the process of constructing applications or
components from already existing components. In traditional OO-programming,
instances of components are created and accessed using special APIs or normal
OO-constructs. This includes the creation of new components from existing ones
where a part of the functionality of the used components is provided by the new
one (the composite) using delegation mechanisms. Delegation means that the com-
posite component re-implements operations already implemented by one of its
used components. For its own implementation, the composite uses the already
existing implementation by calling the corresponding operations on an instance
of the used component.

One of the main goals of CBD was to simplify the creation of new software by
using predefined components which had only to be stuck together. Therefore
we focus on mechanisms allowing to more or less simply stick (connect) compo-
nent instances together. This comprises composition techniques like event based
or interface based connections or aggregation, but no delegation. For the com-
ponent model under consideration the primary possibilities to connect/compose
two component instances and the possibilities available to define sets of intercon-
nected component instances are described. It will be discussed, how far these sets
can be used as new applications or components.

It will be seen that most of the current industrial component models only provide
a flat component model. That is, there are predefined means to connect two com-
ponent instances, e.g. by events or service interfaces, but it lacks a possibility to
define new components from existing ones by other techniques than using normal
programming languages.

3. The third part titled Type System gives type and subtype definitions for the in-
dustrial component model under consideration. If precise definitions can not be
found in the literature or definitions vary from author to author, we present our
own definitions which is also one of the contributions of this thesis.

4. The fourth part, Type Metadata, is essential for tools (e.g. Visual Basic or Bean-
Builder) which have to treat arbitrary unknown components. To handle arbitrary

2.2. COMPONENT MODELS 17

components, a tool must have a means to learn about e.g. the operations a com-
ponent supports, the events a component can emit or the operations a component
needs from other components to fulfill its task. Additionally, a tool must be able
to create component instances and to invoke their provided operations in a stan-
dardized way. For this purpose, a standardized kind of type meta information
must be available for each component as well as a standardized way to invoke
arbitrary operations which are both described for the component model under
consideration.

5. Before being able to connect two component instances, one has to decide, whether
these component instances really fit together. In this part, Consistency / Correctness
of a Composition, it will be discussed, whether and how this can be achieved for
the main composition techniques available for the component model under con-
sideration. That is, the conditions for valid interconnections concerning the main
composition techniques are discussed. Consistency checks only focus on intercon-
nections between component instances, not on clients getting access to an entity of
a component interface nor on whether all components needed for an application
or composite component are available for instantiation. It is simply assumed that
all components referred to by an application or composite component are avail-
able.

6. The last part titled Compatibility / Substitutability deals with the conditions which
ensure that compositions referring to a component C can be retained without
changes to their code if C is substituted by another component.

Parts two and five are combined where appropriate.

2.2.1 JavaBeans

2.2.1.1 Component Model

The JavaBeans component model was developed by Sun Microsystems in 1996.
JavaBeans were especially designed to provide a light-weight component model used
to implement small to medium sized controls. Instances of JavaBeans are intended to be
visually customized by a builder tool at assembly time (in the JavaBeans specification
referred to as design time) and to be wired together based on events. (For more details
on wiring based on events please refer to Section 2.2.1.2.) Customization is done by
setting publicly available properties as e.g. background color and fonts for visible com-
ponents or an initial URL for non visible components. Beans are especially suited as
GUI components but they may as well be used for data access etc. JavaBeans cannot be
distributed, i.e. instances of JavaBeans may only communicate within the same virtual
Java machine. They are platform independent because they consist of a set of Java class
files (and resources) and Java is platform independent.

18 CHAPTER 2. FOUNDATIONS

1. Component:

A JavaBean consists of a set of Java class files and a set of resources where needed.
Resources are e.g. icons or serialized data used to instantiate a bean with prede-
fined values. One of the Java classes constitutes the interface of the bean to its
environment and is used for instantiation. This class is often referred to as the
JavaBean itself, although the JavaBean comprises several other (helper) classes
(see Figure 2.1). In the following, we will refer to this class as the JavaBean-class.
JavaBeans are divided into visible and invisible beans. For visible JavaBeans, the
JavaBean-class has to extend java.awt.Component so that instances of such
beans can be added to visual containers.

An instance of a JavaBean is also often referred to as a bean. Therefore it depends
on the context whether the component is meant or an instance thereof.

2. Deployment unit holding a component:

The classes and resources a JavaBean consists of are typically packaged into a Java
Archive (JAR file), which is delivered as the deployment unit. Several beans may
be packed into the same JAR file. A manifest file is added to provide information
on the JavaBeans contained in the JAR file. The manifest file names the beans
contained in the JAR file by marking a listed class or ser-file name representing
a bean with Java-Bean:True as shown in Figure 2.2. (A ser-file represents a
serialized bean instance.)

Figures 2.1 and 2.2 show the contents of the JAR file and the contained manifest
file for the SorterBean shipped with Sun’s Bean Development Kit (BDK).

Figure 2.1: Contents of a Java Archive

2.2. COMPONENT MODELS 19

Figure 2.2: Contents of the Manifest File contained in the Archive of Figure 2.1

3. Structure and specification of component interfaces:

The interface of a JavaBean component to its environment is structured into a set
of properties for customization purposes, a set of events which can be emitted or
consumed by the JavaBean and a set of methods which implement the behavior
of the bean. All properties, events and methods available for communication are
declared in the JavaBean-class and its superclasses.

Properties: For the purpose of encapsulation, the properties are not defined by
publicly available attributes, but by methods defining read- and/or write-access,
so-called setter-/ getter-methods. To be able for a tool to determine the properties
of a bean, these methods have to obey special naming and signature conventions:

public void set <PropertyName>(<PropertyType> value);
public <PopertyType> get<PropertyName> ();
public boolean is<PropertyName> ();

As an example, we show the signatures of the setter- and getter-methods of a prop-
erty with name background of type java.awt.Color and the getter-method of
a property with name visible of type boolean:

public void setBackground(java.awt.Color color);
public java.awt.Color getBackground ();
public boolean isVisible();

Events: JavaBeans can declare that their instances can be sources of specific types
of events or that they can listen to specific types of events.

A source propagates event notifications to registered listeners by calling corre-
sponding event notification methods on them (e.g. mouseClicked, mouseEntered).
Each distinct kind of event notification corresponds to a distinct method. All
methods belonging to a specific type of event are grouped by an EventListener
interface (e.g. MouseListener). All EventListener interfaces have to inherit from
java.util.EventListener . Potential listeners to a special type of event have
to implement the corresponding EventListener interface.

Generally, event notification methods conform to the following pattern:

public void <eventOccurrenceMethodeName>(<EventName>Event event);

20 CHAPTER 2. FOUNDATIONS

where <EventName>Event denotes the type of the event state object encapsulating
the state associated with the event notification (e.g. MouseEvent). This event state
object is the sole parameter and its type inherits from java.util.EventObject .
An example is public void mouseClicked(MouseEvent evt);

To know the listeners who want to be notified of the occurrence of a special type
of event, a source has to provide corresponding registration methods. (De)Regis-
tration methods have to conform to the following naming and signature patterns:

public void add<ListenerType> (<ListenerType> listener);
public void remove<ListenerType> (<ListenerType> listener);

where ListenerType is the name of the EventListener interface grouping the event
notification methods. As an example look at the registration methods for MouseLis-
teners:
public void addMouseListener(MouseListener l);
public void removeMouseListener(MouseListener l);

JavaBeans identify themselves as being sources of particular events by defining
the corresponding registration methods obeying the naming and signature pat-
terns from above. By implementing EventListener interfaces they identify them-
selves as being potential listeners to the corresponding types of events.

Therefore tools are able to identify possible event sources and the type of events
they support based on the (de)registration methods. Potential event listeners are
identified by the implemented listener interfaces.

The following example shows an EventListener interface with its event notifica-
tion methods, the type of the event state object used as a parameter for the event
notification methods, a class which is a source of the type of event defined by the
listener interface, and a class implementing the listener interface thereby becom-
ing a potential listener.

Example 2.2.1 (Event Sources, Listeners, and Event State Objects)

/***************** Type of the event state object *****************/
public class ControlEvent extends java.util.EventObject {

// ...
}

/******************** EventListener interface *********************/
interface SimpleControlListener extends java.util.EventListener {

void ControlFired (ControlEvent ce);
}

/************************ Source of Events *************************/
public class ControlContainer {

private Vector controlListeners;

2.2. COMPONENT MODELS 21

/* ------------ Registering ControlListeners --------- */
public synchronized void addSimpleControlListener (SimpleControlListener cl){

if (!controlListeners.contains(cl))controlListeners.addElement(cl);
}
/* ------------------ Firing of events ------------------ */
protected synchronized void fireControlFired(ControlEvent ce) {

for (int i = 0; i < controlListeners.size(); i++) {
((SimpleControlListener) controlListeners.elementAt(i)). ControlFired(ce);

}
}

}

/*********************** Potential listener ***********************/
public class SimpleController implements SimpleControlListener {

// ...
public void ControlFired (ControlEvent ce) { ... }

}

Publicly available methods: All other methods declared as public may have arbi-
trary signatures. They are used to invoke behavior implemented by the JavaBean.

To determine all properties, events, and publicly available methods of a bean, tools
also inspect the superclasses of the corresponding JavaBean-class. For this pur-
pose, tools can use a so-called introspector
(java.beans.Introspector.getBeanInfo(Class beanClass) ,
see Section 2.2.1.4, page 27). The introspector can only do its work, if the bean
conforms to the above mentioned naming and signature rules.

If a bean does not conform to these rules or if it wants to specify additional fea-
tures, like e.g. an icon representing it in a builder tool or a specialized property
editor to be used to change one of its properties, the bean has to provide a BeanInfo
class. The introspector can incorporate the information already provided by this
BeanInfo class. The BeanInfo class has to implement the interface java.beans.
BeanInfo . The BeanInfo class should be distinct from the JavaBean-class and its
name should be the name of the corresponding JavaBean-class followed by ’Bean
Info’, e.g. SorterBeanBeanInfo . For more information on BeanInfo classes see
Section 2.2.1.4 paragraph BeanInfo on page 27.

4. Component lookup, instantiation and access: The manifest file of a JAR file can be
searched for all occurrences of Java classes which are marked by Java-Bean:True .
These classes are the JavaBean-classes for the JavaBeans deployed by this JAR
file. Knowing the name of the JavaBean-class, an instance of the corresponding
JavaBean can be created by a call to
java.beans.Beans.instantiate(ClassLoader cl, String beanName) .

22 CHAPTER 2. FOUNDATIONS

As the actual parameter for beanName one has to use the fully qualified name of
the JavaBean-class as string. In Java, class loaders are used to load classes into mem-
ory. For more details on this subject, please refer e.g. to
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ClassLoader.html .

After the instantiation of a JavaBean, the client has access to an instance of the
JavaBean-class defining the interface of the bean. Therefore the client has access
to all properties of the bean instance by its setter-/getter-methods, to the listener
registration methods and all other publicly available methods.

The access to properties and event registration methods is especially used by tools
to configure/customize bean instances with property editors and to connect suit-
able event sources and listeners.

5. Entities of the component interface as parameter or return value of a method:

The only way to access the interface of a JavaBean is to get a reference to an in-
stance of the JavaBean-class. There are no smaller entities to be referenced. As
an instance of a JavaBean-class is nothing more than a pure Java object, references
to bean interfaces can be passed as parameters to methods implemented by other
beans.

2.2.1.2 Composition Techniques and Consistency

Composition by delegation and the creation and access of component instances by other
component instances or applications is possible for the JavaBeans component model as
for every other industrial component model. But the primary composition technique
available for JavaBeans is the wiring of bean instances based on events. A set of bean
instances is assembled to build an application or applet. The used bean instances inter-
act by sending and receiving events. The receiving bean instances react according to
the event notifications obtained. To enable this kind of interconnection/wiring, event
sources and event listeners are defined as already described in Section 2.2.1.1 item 3.
A bean instance interested in listening to a special type of event has to implement all
event notification methods corresponding to this type of event. Such an instance is then
registered at a ’suitable’ event source as a listener. If an event occurs, the event source
notifies all listeners registered for this type of event by calling the corresponding event
notification methods on them.

In this context ’suitable’ means that source and listener have to fit together as sum-
marized in the following consistency condition:

Condition 2.2.2 (Valid Event Connections) Let L be an event listener implementing an
EventListener interface EListener and let S be an event source which fires events defined by the
EventListener interface ESource. L can be registered at S, if ESource is equal to or a supertype
of EListener.

2.2. COMPONENT MODELS 23

To demonstrate this kind of wiring, example 2.2.1 is extended as shown below. In
this example two EventListener interfaces are declared, SimpleControlListener and
ControlListener where ControlListener is a subtype of SimpleControlListener .
Two event listener classes, SimpleController and Controller exist where every class
implements one of the EventListener interfaces. Instances of both classes can be reg-
istered at an instance of class ControlContainer which is a source for events defined
by SimpleControlListener . The instantiation of the event source and the two event
listeners as well as their wiring via events is shown in class Application .

Example 2.2.3 (Wiring of Beans based on Events)

/***************** Type of the event state object *****************/
public class ControlEvent extends java.util.EventObject {

// ...
}

/******************** EventListener interfaces ********************/
interface SimpleControlListener extends java.util.EventListener {

void ControlFired (ControlEvent ce);
// ...

}
interface ControlListener extends SimpleControlListener {

void ControlHelpRequested (ControlEvent ce);
void ControlHighlighted (ControlEvent ce);
// ...

}

/*********************** Potential listeners **********************/
public class SimpleController implements SimpleControlListener {

// ...

public void ControlFired (ControlEvent ce) { ... }
// ...

}
public class Controller implements ControlListener {

// ...

public void ControlFired (ControlEvent ce) { ... }
public void ControlHelpRequested (ControlEvent ce) { ... }
public void ControlHighlighted (ControlEvent ce) { ... }
// ...

}

/************************ Source of Events *************************/
public class ControlContainer {

// ...

/* -------------- (De)Registering SimpleControlListeners ----------- */
public synchronized void addSimpleControlListener

(SimpleControlListener cl) { ... }

24 CHAPTER 2. FOUNDATIONS

public synchronized void removeSimpleControlListener
(SimpleControlListener cl) { ... }

/* -------------------- Firing of events --------------------- */
protected synchronized void fireControlFired(ControlEvent ce) { ... }

// ...

}

/********************** Assembled application ***********************/
public class Application {

// ...

public static void main(String[] args) {
/* ------------------- Creating bean instances --------------- */
// Event listener 1
SimpleController simpleController = new SimpleController();
// Event listener 2
Controller controller = new Controller();
// Event source
ControlContainer controlContainer = new ControlContainer();

/* --------------- Connecting bean instances ----------------- */
controlContainer.addSimpleControlListener (simpleController);
controlContainer.addSimpleControlListener (controller);
// ...

}
}

In this example, the instantiation of JavaBeans was done by a call to Java’s new-
operator instead of calling
java.beans.Beans.instantiate(ClassLoader cl, String beanName) .
This is legal if the bean does not use serialized data for its initialization.

If two beans do not fit together, typically adaptor classes will be used. An adapter
class implements the listener interface needed by the event source (source), but not im-
plemented by the bean (listener) which should react to the event notifications. Instead
of listener, an instance of the adapter class (adapter) is registered as a listener to source.
If adapter is notified by source, adapter calls methods of listener according to the event
notifications received.

This pattern is often used when creating user interfaces. E.g. often a mouse click on a
button starts saving certain data. The bean implementing the data access will normally
be unaware of special events like mouse clicks or ActionEvents because it might be used
in many different environments where different events may trigger the method calls to
an instance of the bean.

The composition technique introduced for JavaBeans focuses on a web of loosely
coupled bean instances building a new application or applet.

2.2. COMPONENT MODELS 25

2.2.1.3 Type System

In the literature, one can not find a definition for the type of a JavaBean. What can be
found in [Jav97] is the following:

“In the first release of the JavaBeans architecture, each bean is a single Java object.
However, in future releases of JavaBeans we plan to add support for beans that are
implemented as a set of cooperating objects. One particular reason for supporting
beans as sets of cooperating objects is to allow a bean to use several different classes
as part of its implementation. Because the Java language only supports single im-
plementation inheritance, any given Java object can only extend a single Java class.
However, sometimes when constructing a bean it may be useful to be able to exploit
several existing classes.”

Based on this text and on the following discussion, we propose to define the type of a
JavaBean and subtyping between JavaBeans as done in type definition 2.2.4 and subtype
definition 2.2.5 below.

A JavaBean may be used in a hand-written application or within a builder tool (IDE).
In a hand-written application it is represented by its JavaBean-class and is used like a
normal Java class. Only instantiation for this class may differ which should be done by
a call to java.beans.instantiate (...) instead of only calling the new-operator.
Attributes and methods of the JavaBean-class are accessed in the same way as for any
other Java class.

When used in a builder tool, a BeanInfo object (see Section 2.2.1.4) is used to retrieve
information on the properties, events and exposed methods of a bean. This view on the
bean may differ from the class view, if the bean comes with its own BeanInfo class. A
BeanInfo class may e.g. restrict the properties or methods available to clients in a tool en-
vironment. BeanInfo objects are mainly provided to enable the handling of (unknown)
beans by an IDE and probably to restrict access to methods not needing expertise. The
information on properties is e.g. used to fill property sheets and the information on
events fired by a bean to generate code if two beans should be connected.

Although the BeanInfo view may differ from the JavaBean-class view, in any case the
JavaBean-class is used to instantiate a bean. The names of the attributes and methods
declared in this class are used in the client code, not the names provided by the Bean-
Info class, if they are different from the JavaBean-class. Clients can call public methods
which are declared by the JavaBean-class but are not exposed by the BeanInfo class etc.
Furthermore every public method inherited by the JavaBean-class may also be invoked
on a corresponding bean instance.

Although Sun does not explicitly provide a type definition for JavaBeans, we declare
the type of a JavaBean for the reasons discussed so far as follows:

Type Definition 2.2.4 (Type of a JavaBean) The type of a JavaBean is defined as the type of
its JavaBean-class.

26 CHAPTER 2. FOUNDATIONS

Although not explicitly stated in the literature, subtyping for JavaBeans can conse-
quently be defined as:

Subtype Definition 2.2.5 (Subtyping for JavaBeans) The type of a JavaBean with a Java
Bean-class D is a subtype of the type of a JavaBean with a JavaBean-class C, if D is a subtype of
C in Java.

2.2.1.4 Type Metadata

For the JavaBeans component model Java’s reflection service as well as the BeanInfo
interface are used to provide information about the properties, events and exposed
methods of a JavaBean. By reflection, the retrieved methods can even be invoked.

Reflection: Java’s reflection classes, available in the package java.lang.reflect ,
and the class java.lang.Class are able to retrieve type information from arbitrary
Java class-files. For every inspected class, information about its attributes, constructors
and methods is made available. For this purpose, java.lang.Class provides meth-
ods like getConstructors(), getFields(), getMethods(), ... which can
be invoked on every Class object. A Class object can be generated from a string con-
taining the name of the class including necessary package information (e.g. “java.lang.
Integer”) by a call to the method forName in class Class :
public static Class forName (String className) throws... .
Another way to generate a Class object is by calling the getClass() method (declared
in class Object) on an arbitrary object. This method returns the Class object corre-
sponding to the class the object was created from.

getMethods returns an array of Method objects each representing a public method
declared or inherited by the class represented by the Class object getMethods was in-
voked from. For every Method object the return type of the corresponding method can
be determined as well as the types of its parameters. For this purpose, class Method
provides the methods getReturnType and getParameterTypes with signatures
public Class getReturnType() and
public Class[] getParameterTypes() .
A Method object may also be used to execute the corresponding method. For this pur-
pose, the class Method provides a method invoke with signature
public Object invoke (Object obj, Object[] args) throws... .
The first parameter refers to the object the method is invoked from. The second pa-
rameter represents the arguments used for the method call. If the return type is void, a
nullpointer is returned.

Knowing the name of a class, it is possible to create an object thereof by first gen-
erating a Class object co using the method forName from above and then calling the
method newInstance() on co. public Object newInstance() throws... is

2.2. COMPONENT MODELS 27

declared in class Class and may only be used, if the class corresponding to co has a
nullary constructor2.

Using these techniques, a tool can handle arbitrary, unknown classes entirely in-
dependent of user interaction. It can create an object from a class only known by the
class name, it can retrieve information on the methods the object supports, it can invoke
methods from this object etc.

For more information on this subject please refer to Sun’s Java 2 documentation or
e.g. to [HC98a, Bro97, Jav97, Szy98].

BeanInfo: The BeanInfo interface (declared in package java.beans) is used to pro-
vide JavaBean specific information, as e.g. information about the properties a bean sup-
ports, the events it emits, all methods accessible by its clients, an icon to be used as
representation in a builder tool, potentially a custom editor to be used to configure the
bean, and the class used as the JavaBean-class.

For every property its name, its type and its accessor methods are stored in a Proper-
tyDescriptor . For emitted events, the most relevant information stored are the me-
thod objects for the methods to register and deregister listeners, the type a listener has to
conform to (listener interface), and the methods belonging to the listener interface. This
information is stored in an EventSetDescriptor . A MethodDescriptor is used
for every method implemented by the bean and accessible by its clients. This includes
the accessor methods for properties and the (de)registration methods for events. A
MethodDescriptor contains method specific information like the name of the method,
potentially the names of its parameters, and its corresponding Method object. This
Method object may be used to invoke the corresponding method (see paragraph Re-
flection on page 26).

The most relevant declarations concerning the BeanInfo information are:

package java.beans;
public interface BeanInfo {

...
PropertyDescriptor[] getPropertyDescriptors();
EventSetDescriptor[] getEventSetDescriptors();
MethodDescriptor[] getMethodDescriptors();
...

}

package java.beans;
import java.lang.reflect.*;
public class PropertyDescriptor extends FeatureDescriptor {

...
public Class getPropertyType() {...}

2A nullary constructor is a constructor without parameters.

28 CHAPTER 2. FOUNDATIONS

public Method getReadMethod() {...}
public Method getWriteMethod() {...}
public Class getPropertyEditorClass() {...}
...

}

package java.beans;
import java.lang.reflect.*;
public class EventSetDescriptor extends FeatureDescriptor {

...
public Method getAddListenerMethod() {...}
public Method getRemoveListenerMethod() {...}
public Class getListenerType() {...}
public Method[] getListenerMethods() {...}
public MethodDescriptor[] getListenerMethodDescriptors() {...}
...

}

package java.beans;
import java.lang.reflect.*;
public class MethodDescriptor extends FeatureDescriptor {

...
public Method getMethod() {...}
public ParameterDescriptor[] getParameterDescriptors() {...}
...

}

The process of filling in the needed BeanInfo information is as follows. Java’s re-
flection classes are used to determine all declared and inherited public methods of the
JavaBean-class. The retrieved set of publicly available methods is used to determine
properties and events the JavaBean supports. Properties and events are determined
based on the naming conventions for the methods used to read and write properties
and for the methods to (de)register event listeners (see Section 2.2.1.1, item 3). The class
java.beans.Introspector can be used to do this work (see Section 2.2.1.1 item
3). This class is also simply referred to as introspector. The getBeanInfo -method im-
plemented by this class generates a BeanInfo object which can be queried e.g. for the
properties, events and exposed methods of the corresponding bean.

A JavaBean may already provide BeanInfo information by itself by delivering a class,
the BeanInfo class, implementing the BeanInfo interface (see also Section 2.2.1.1, item
3). The introspector incorporates the information already provided by the BeanInfo
class. By reflection, it only fills in information not already available by this class (e.g. if
getPropertyDescriptors() returns null etc.) and does not modify or extend the non-null

2.2. COMPONENT MODELS 29

information retrieved by the BeanInfo class.
If the JavaBean itself does not come with a BeanInfo class, but one of its superclasses,

reflection is used to fill in the BeanInfo information for the JavaBean-class and all of its
superclasses up to the class providing explicit BeanInfo information. The explicit Bean-
Info information is added to the already obtained BeanInfo information and is regarded
as being definitive for the current class and its super classes. The introspector then
proceeds as described for a bean having its own BeanInfo.

Generally, a JavaBean only comes with its own BeanInfo class, if it does not conform
to the method naming conventions for properties and events or if it wants to specify
additional features like e.g. an icon representing it in a builder tool or a specialized
property editor to be used to change one of its properties. In addition a BeanInfo class
can also be used to restrict the exposed properties, events or methods to those declared
in the JavaBean-class only (that is, properties, events or methods of superclasses are not
regarded) or even to a subset thereof. For more details on this subject please refer to
[Bro97, Jav97, Szy98].

2.2.1.5 Compatibility / Substitutability

In this section we want to find out, whether a JavaBean can be substituted by a new ver-
sion of itself or by another JavaBean without affecting clients referring to this JavaBean.

A new version of a JavaBean can be used as long as the JavaBean-class still provides
all attributes and methods publicly available in former versions that is, the component
interface of the JavaBean can only be augmented. The new version may come with a
changed implementation of the JavaBean-class and other classes used by the JavaBean-
class. The new version can even ship completely new classes not contained in older
versions. The following condition summarizes, when a JavaBean can be substituted by
a new version or another JavaBean.

Condition 2.2.6 (Substitution of JavaBeans) Let the JavaBean JB with JavaBean-class
JBclass be referred to by a client. Let JBnew be another JavaBean with JavaBean-class JBclass

new

which is different from JBclass. Then JBnew can only be used instead of JB, if

• the type of JBnew is a subtype of the type of JB that is, JBclass
new is a subtype of JBclass

(see subtype definition 2.2.5),

• a client referring to JB does not use the name of JBclass directly for instantiation3.

Such a client can be an assembly tool or an IDE which, at start up, determines the
set of components available from configuration files, JAR-Archives etc. By means of
reflection the types of the components can be made available to a user of the tool who
can in turn use this information to correctly create and access a component instance.

3The client can e.g. read the name of JBclass from a file instead of using the name as a constant in its
program code.

30 CHAPTER 2. FOUNDATIONS

2.2.2 Component Object Model (COM)

2.2.2.1 Component Model

The Component Object Model was developed by Microsoft in the early nineties. It is a
binary model, independent of programming languages used to implement components
and independent of the platforms the components are running on as far as the plat-
forms provide the COM infrastructure (see [COM95, Szy98]) and the components are
compiled for these platforms. Windows is the typical platform for COM, but COM is
also available on e.g. Mac OS and some UNIX operating systems. We do not distinguish
between COM and DCOM, an extension to COM, that allows components to interact
even if they are running on different computers. The distribution is completely hid-
den from the developers and users of COM components by the DCOM infrastructure.
While COM already supports the communication between instances of COM compo-
nents running in different processes on the same machine, DCOM extends this feature
to allow communication across machine boundaries. For more details on this subject
please refer to [EE98, Szy98].

1. Component:

In COM, a component is a piece of binary software exposing its services to its
clients by special interfaces. An interface groups a set of semantically related op-
erations. For every operation, only its signature is available, no implementation.
A COM interface may therefore be compared to a Java interface. COM compo-
nents adhere to special rules concerning versioning, naming and implementation
of their interfaces, access to their services, instantiation, lifetime management of
instances and so forth. The implementation of a COM component is referred to
as a COM class although no class constructs may be available in the programming
language used for implementation (see e.g. [EE98, COM95]). That is, a COM class
can be implemented by one or more classes in an OO-language or by some proce-
dural code etc. not referring to classes at all.

An instance of a COM class is referred to as a COM object. A COM object need not
be a pure object in the sense of an OO-language (see above), it may be realized by
several objects or by other data structures.

2. Deployment unit holding a component:

COM classes are embedded in so-called COM servers. Additionally, COM servers
contain class factories for each embedded COM class. A factory is used to create
COM objects of the associated COM class. There are three different kinds of COM
servers: in-process, local and remote. An in-process server runs in the same pro-
cess as the client. A local server runs in a process different from the client process,
but on the same machine. A remote server runs on a machine different from the
one the client is running on.

2.2. COMPONENT MODELS 31

On Windows, in-process servers are delivered as DLLs (dynamic link libraries)
whereas local and remote servers are delivered as EXE files. Thus, the deployment
unit holding a COM class, is a DLL or EXE file containing the COM server which
embeds the COM class. On other operating systems corresponding file types are
selected.

3. Structure and specification of component interfaces:

The component interface consists of a set of interfaces provided4 to clients and a
set of so-called outgoing interfaces the component expects to be implemented by
its clients. Clients implementing such an interface can register/subscribe at an
instance of the component for notification purposes. Outgoing interfaces can be
regarded as emitting special kinds of events/notifications which are identified by
the methods declared in the outgoing interface. Every subscriber will be notified
by calling its corresponding implementation. A COM object with outgoing inter-
faces is called a connectable object. Connectable objects are described in more detail
in Section 2.2.2.2. An outgoing interface can be compared to an enabling required
service interface as introduced in Section 2.1. Although not usual, outgoing inter-
faces can on the other hand be used by a server to ask its client for support. They
then act as a required service interface (see [COM95], pp. 51).

An interface is defined as a set of related operations. Each interface is identified by
a globally unique so-called interface identifier (IID). Interfaces are immutable that
is, if a new version of an interface is created by adding or removing operations or
changing semantics, this interface is regarded as being an entirely new interface.
A new unique identifier has to be assigned to it.

Every component has to implement a special interface called IUnknown. This in-
terface is the base interface of all other interfaces and can be used on COM objects
to query for references to the other interfaces of the COM object. IUnknown can
also be used to identify a COM object.

An interface can inherit from another interface, as e.g. from IUnknown. Only
single inheritance is allowed for interfaces.

The set of implemented and outgoing interfaces of a component are specified us-
ing a special interface definition language (IDL) independent of a special program-
ming language. As this IDL is Microsoft specific, it is also referred to as MIDL. For
each COM interface, the IDL-declaration comprises its IID as well as a char se-
quence like IUnknown . The char sequence represents the user readable name of
the interface for use in programming languages. Additionally, the IDL declara-
tion contains declarations for all methods belonging to the interface. From this
IDL definition IDL compilers generate (header) files for programming languages

4Such interfaces are in [COM95] denoted as implemented or supported interfaces from the point of view
of the component.

32 CHAPTER 2. FOUNDATIONS

enabling the use of the interface by applications. In addition, IDL compilers create
proxy and stub objects for remote procedure calls.

Now we show the declaration of a COM class named Adder and its interfaces
IUnknown, ISum and IMessage in IDL, where ISum and IMessage are de-
clared in C++ and alternatively in Java5. The example is built from several code
pieces shown in [EE98].

Example 2.2.7 (Declarations in IDL)

/************************* Java *************************/
interface ISum extends com.ms.com.IUnknown {

int Sum(int x, int y);
}
interface IMessage extends com.ms.com.IUnknown {

void GotMessage(int Message);
}

/************************* C++ *************************/
class ISum : public IUnknown {

public:
virtual HRESULT __stdcall Sum(int x, int y, int* retval)=0;

}
class IMessage : public IUnknown {

public:
virtual HRESULT __stdcall GotMessage(int Message)=0;

}

/************************* IDL *************************/
[

object,
uuid(00000000-0000-0000-C000-000000000046),
pointer_default(unique)

]
interface IUnknown
{

HRESULT QueryInterface([in] REFIID iid, [out, iid_is(iid)] void** ppv);
ULONG AddRef(void);
ULONG Release(void);

}

[
object,
uuid(10000001-0000-0000-0000-000000000001),

]
interface ISum : IUnknown
{

HRESULT Sum([in] int x, [in] int y, [out, retval] int* retval);
}

5Unfortunately, Java is no longer supported by Microsoft.

2.2. COMPONENT MODELS 33

[
object,
uuid(10000005-0000-0000-0000-000000000001),

]
interface IMessage : IUnknown
{

HRESULT GotMessage([in] int Message);
}

[
uuid(10000002-0000-0000-0000-000000000001),
helpstring("Adder Class")

]
coclass Adder
{

interface ISum;
[source] interface IMessage;

}

The complete set of interfaces corresponding to a COM component that is, the
component interface itself, is specified by the IDL- coclass declaration. In the ex-
ample above the coclass -declaration for Adder specifies the component inter-
face of the COM component Adder . Adder has one implemented interface ISum
and one outgoing interface IMessage . Outgoing interfaces are marked in IDL by
[source] .

Files containing IDL declarations are normally identified by the file extension
’.idl’.

4. Component lookup, instantiation and access:

Similar to interfaces, COM classes are also identified by globally unique identi-
fiers. These identifiers are called class identifiers or short CLSIDs. These class
identifiers are to be used, if a client wants to create an instance of a COM class.
Such an instance can be created by a call to CoCreateInstance, a procedure of the
COM library linked to the client code. The CLSID of the COM class to be in-
stantiated is passed to CoCreateInstance as an actual parameter. The client also
specifies the interface it first wants to have access to after the creation of the COM
object. The client therefore also passes the corresponding IID as an actual param-
eter to CoCreateInstance. If the instantiation is successful and the COM object
implements the requested interface, CoCreateInstance returns a pointer to this in-
terface.

Having a pointer to this initial interface, the client can get access to the other inter-
faces by calling QueryInterface. QueryInterface belongs to the interface IUnknown.

34 CHAPTER 2. FOUNDATIONS

As IUnknown is the base interface of all interfaces, every interface has to imple-
ment the corresponding operations, especially QueryInterface.

QueryInterface takes an IID as input and checks whether the COM object imple-
ments this interface. On success, it returns a pointer to an object implementing the
requested interface, otherwise a null pointer is returned.

ObjectClient

A

B

Pointer to A
obtained on

object creation

Pointer to B
obtained from

A´s
QueryInterface

Pointer to C
not available
from A or B´s

QueryInterface

null

Figure 2.3: Interface Negotiation by QueryInterface

Figure 2.3 is taken from the COM specification. The lollipops sticking out of the
border of the COM object denote the implemented interfaces. A and B denote the
names of the interfaces.

More precisely, the COM specification says:

“When a client has access to an object, it has nothing more than a pointer
through which it can access the functions in the interface, called simply an
interface pointer. The pointer is opaque, meaning that it hides all aspects of
internal implementation. You cannot see any details about the object such as its
state information, as opposed to C++ object pointers through which a client may
directly access the objects data. In COM, the client can only call functions of
the interface to which it has a pointer. But instead of being a restriction, this is
what allows COM to provide the efficient binary standard that enables location
transparency.”

Actually, the client gets a pointer to a pointer to an array of pointers to the func-
tions in the interface. Figure 2.4 also taken from the COM specification depicts this
situation.

2.2. COMPONENT MODELS 35

 Function 1(...)
 {
 ...
 }

Interface Pointer

Pointer Pointer to Function1

Pointer to Function2

Pointer to Function3

 Function 2(...)
 {
 ...
 }

 Function 3(...)
 {
 ...
 }

...

Interface Function Table

Figure 2.4: Interface Pointer

If interfaces are implemented by C++ classes, the pointer to an interface is a pointer
to a C++ object. The layout of C++ objects in memory is depicted in Figure 2.5.

Object Implementation
of Interface Functions

Interface Pointer lpVtbl

Object
State
Data

Pointer to Function1

Pointer to Function2

Pointer to Function3

Interface Function Table

Figure 2.5: Interface Pointer as a Pointer to a C++ Object

The first entry is a pointer to the “virtual function table”, also called “vtable”. The
vtable contains an entry for every virtual function (that is a function which can
be overridden) of the C++ class and points to the code of the function actually
to be called for the corresponding C++ object. (For more details on this subject
please refer to [Str00].) As interfaces are declared as pure abstract classes declaring
only virtual functions, the vtable contains pointers to all interface functions. This
structure perfectly fits to the structure enforced for COM interfaces. The data of
the C++ object may only be accessed from inside the COM object, not from its
clients. A reference to the C++ object is implicitly passed as the first parameter to
all of its functions (this). Therefore, the functions know the actual object data they
have to use.

36 CHAPTER 2. FOUNDATIONS

The same behavior is expected for other languages used to implement COM in-
terfaces. The interface pointer is passed as this parameter to every function of the
interface thereby identifying the actual “object” the function is executed on.

As a COM object may exist of many different objects, it is difficult to identify a
COM object in its entirety. As every COM object has to provide the IUnknown
interface, this interface is used to resolve this problem. Whenever a client queries
a COM object for a reference to IUnknown, it has to return the same interface
pointer. This fact can therefore be used to identify a COM object.

5. Entities of the component interface as parameter or return value of a method:

In COM, the accessible entities of the component interface of a component instance
are its implemented interfaces. References to these interfaces may be passed as pa-
rameters to methods implemented by other COM objects, independent of whether
the COM objects are distributed or not. The method Advise which has to be im-
plemented for each outgoing interface to register interested ’listeners’ can be used
as an example. This method needs a reference to the IUnknown interface of the
listener to be registered (pUnkSink).

[
object,
uuid ...

]
interface ... {

HRESULT Advise([in] IUnknown* pUnkSink, [out] DWORD* pdwCookie);
...

}

Methods may also return pointers to interfaces. There are two ways to specify the
type of the interface a pointer should be obtained for. Both possibilities are shown
in the following example derived from examples made in [EE98].

...
HRESULT GetInterfacePointer3([out] IMyCustomInterface** ppvObject);

...
HRESULT GetInterfacePointer4([in] REFIID riid,

[out, iid_is(riid)] void** ppvObject);

The last example is the most flexible one, as it may be used for any interface. The
interface requested is identified by its IID (riid, first parameter). The IDL notation
iid is(riid) says that the pointer to be returned has to point to the interface
identified by riid.

2.2. COMPONENT MODELS 37

2.2.2.2 Composition Techniques

In addition to composition by delegation or composition by only creating and accessing
component instances, COM (like JavaBeans) has a mechanism to notify other COM ob-
jects of the occurrence of events. Additionally COM provides a mechanism to hierarchi-
cally compose components by aggregation. Both composition techniques are described
in the following paragraphs.

Event notification using outgoing interfaces:
Event notification in COM is done using outgoing interfaces. This mechanism is fre-
quently used between ActiveX controls6 and their containers. As already mentioned in
Section 2.2.2.1, a COM-object having outgoing interfaces is called a connectable object.

A connectable object may be a source of different types of events. Each type of sup-
ported event is specified by one outgoing interface identified by its IID. For each out-
going interface the connectable object has to provide a corresponding connection point
object which is able to register interested listeners. Interested listeners have to provide
a sink object which implements the outgoing interface. A reference to the IUnknown
interface of the sink is passed as a parameter to the registration method provided by
the connection point object. The connection point object then asks the sink object for a
reference to its implementation of the outgoing interface by a call to the sink’s QueryIn-
terface method. The connection point object stores this reference for subsequent calls of
the event notification methods.

(De)Registering is done by the standard methods Advise and Unadvise of the inter-
face IConnectionPoint which has to be implemented by every connection point object.

Each connectable object has to implement the interface IConnectionPointContainer ,
so that an interested listener is able to obtain a reference to a connection point object.
This interface provides a method FindConnectionPoint which takes the IID of an out-
going interface as an input and returns a reference to a corresponding connection point
object.

The following figure represents the necessary steps to establish a connection between
a client which is interested in notifications of type IMessage and a connectable object that
declares IMessage as an outgoing interface. ’Establishing a connection’ means register-
ing a sink object of the client as a listener to IMessage -notifications at the connectable
object. The implementation fragment of IConnectionPoint::Advise shown in the gray
box at the bottom of the figure belongs to the Connection Point Object for IMessage .
A dashed arrow denotes, that the variable at the beginning of the arrow points to the
interfaces at the arrowhead. A dotted arrow denotes a method call.

6ActiveX controls are COM components especially designed for being downloaded via internet. They
substitute the formerly used, heavy weight OLE controls which had to implement a large set of manda-
tory interfaces. For more details please refer to [Szy98].

38 CHAPTER 2. FOUNDATIONS

Client

IConnectionPoint

Sink

Connectable Object

Connection
Point Object
for IMessage

IConnection
PointContainer

IUnknown

IUnknown

IMessage

IUnknown* pUnknown; ...
CoCreateInstance(…, &pUnknown);
pUnknown->QueryInterface (
 IID_IConnectionPointContainer, &pCPC);
pCPC->FindConnectionPoint (
 IID_IMessage, &pCP);
pCP->Advise(pSinkUnknown, …);

HRESULT IConnectionPoint::Advise(IUnknown* pUnknown, …)
{
 ...
 pUnknown->QueryInterface(IID_IMessage, &pMessage);
 ...
}

Figure 2.6: Connection between a Client and a Connectable Object

Aggregation:
Aggregation provides a means to compose COM-objects hierarchically.

Aggregation means, that a COM-object uses internal COM objects to implement a
part of its functionality by directly exposing their interfaces to the environment. This
behavior is shown in Figure 2.7 taken from the COM specification.

 Outer Object

IUnknown knows
A, B, and C

Inner Object:
Contained inside

Outer Object

IUnknown
controls Inner
Object lifetime

Inner Object
delegates IUnknown
calls to Outer Object

Inner Object’s
C exposed directly
from Outer Object

External
Interfaces

A

B

C

Figure 2.7: Aggregation in COM

The clients of the aggregating “outer” COM-object Outer do not know about the
internal aggregation. They may query a reference to an interface of the aggregated

2.2. COMPONENT MODELS 39

COM-object by a call to the IUnknown interface of Outer as if these interfaces were
directly implemented by Outer.

The inner object can only be aggregated, if it collaborates. It has to delegate all
IUnknown calls on its interfaces to the IUnknown interface of the outer object. If the
outer object is queried for an interface implemented by the inner object, it delegates this
query to the inner object. To avoid recursive calls, the inner object has to implement two
versions of IUnknown: a delegating and a non-delegating one. The outer object must
call QueryInterface on the non-delegating version of the inner’s IUnknown interface.

Outer

Inner

IUnknown

HRESULT CInner::QueryInterface(REFIID riid, void** ppv)
{
 return m_pUnkOuter->QueryInterface(riid, ppv);
}

IOuter : IUnknown

IUnknown

m_pUnkInner

HRESULT COuter::QueryInterface(REFIID riid, void** ppv)
{
 if (riid == IID_IUnknown)
 …
 else if (riid == IID_IOuter)
 …
 else if (riid == IID_IInner)
 return m_pUnkInner->QueryInterface(riid, ppv);
 else ….
}

IUnknown_NoAggregation

m_pUnkOuter
IInner : IUnknown

Figure 2.8: Collaboration between Outer and Inner Object in COM

In Figure 2.8 the non-delegating version of the inner’s IUnknown interface is called
IUnknown NoAggregation . It returns references to all interfaces implemented by the inner
object and returns an error, if it is queried for an interface that is not implemented. The
non-delegating version of the IUnknown interface is also used for instances that are
not created as a part of an outer object. The substring “pUnk” in the names of the

40 CHAPTER 2. FOUNDATIONS

member variables indicates that the variables contain a pointer (p) to an IUnknown
(Unk) interface.

The inner object gets a reference to the IUnknown interface of the outer object at
instantiation time to enable the delegation of IUnknown calls to the outer object’s IUn-
known interface. The inner object stores this reference internally (see mpUnkOuter in
Figure 2.8) for subsequent calls to this interface. The inner object knows whether it
will be aggregated or instantiated as a stand-alone object by the value of the IUnknown
interface pointer of the outer object. If this value is not NULL, it is created as an aggre-
gated object and has to return a reference to its non-delegating version of the IUnknown
interface (IUnknown NoAggregation) at instantiation time.

If it is created as a stand-alone object, it returns a reference to its delegating version
(IUnknown). But instead of delegating to an outer object, it delegates to its own non-
delegating version by setting the reference to the IUnknown interface of the outer object
(mpUnkOuter) to its own non-delegating version of IUnknown.

On the other hand, the outer object has to obtain a reference to the non-delegating
IUnknown interface of the inner object. This happens, when the outer object creates
the inner object by a call to CoCreateInstance thereby querying for the IUnknown in-
terface of the inner object. On success, CoCreateInstance returns a reference to the
non-delegating interface of the inner object. The outer object stores this reference inter-
nally (see mpUnkInner in Figure 2.8) for subsequent calls to the IUnknown interface of
the inner object. The aggregation is successfully established.

As it can be inferred from the description above, aggregation is done on the level of
component instances.

One of the drawbacks of COM aggregation is that components must be aware whe-
ther they should be used in aggregates in the future. Components supporting aggrega-
tion have to prepare themselves by providing two versions of the IUnknown interface
as described above and by checking at instantiation time whether they are created as a
stand alone object or in the context of an aggregate. Components missing these features
can never be aggregated by other components.

2.2.2.3 Type System

In this section we discuss, how types for COM interfaces and COM classes can be de-
fined.

Interface Types: As already mentioned in Section 2.2.2.1 item 3 on page 31, COM in-
terfaces are uniquely identified by their IIDs. In addition, they have a user readable
name like IUnknown for use in programming languages.

As different vendors who do not know each other can introduce arbitrary COM
interfaces, it can accidentally happen that two different interfaces are named equally in
their IDL files. Their IIDs however are guaranteed to be different from each other. The
COM specification [COM95] states:

2.2. COMPONENT MODELS 41

“By contrast, COM uses globally unique identifiers (GUIDs)—128-bit integers that
are virtually guaranteed to be unique in the world across space and time—to identify
every interface and every object class and type. These globally unique identifiers are
the same as UUIDs (Universally Unique IDs) as defined by DCE. Human-readable
names are assigned only for convenience and are locally scoped. This helps insure
that COM components do not accidentally connect to an object or via an interface
or method, even in networks with millions of objects.”

Thus, we define the type of a COM interface as follows:

Type Definition 2.2.8 (Types for COM Interfaces) The type of a COM interface is defined
by its globally unique interface identifier (IID).

COM interfaces can be derived from other COM interfaces like e.g. IUnknown by
single interface inheritance. In the following example the IDL notation for interface
inheritance is used: the derived interfaces are denoted on the left hand side of the colon,
the direct base interfaces on the right hand side. The first three interfaces are used for
objects to be stored persistently. IPersistStream -objects can be saved to a simple
stream, IPersistFile -objects to files on disks and IPersistStorage -objects are
capable to be used for structured storage7.
IPersistStream : IPersist
IPersistFile : IPersist
IPersistStorage : IPersist
IOleItemContainer : IOleContainer
For more details on these interfaces please refer to the MSDN-library.

Subtype relations between COM interfaces can be defined using an IDL-file. For an
example please refer to Section 2.2.2.1 item 3. Type libraries (Section 2.2.2.4) can also be
used to state such dependencies. Often those type libraries are generated from IDL-files.

As shown in Figure 2.9, a base interface is registered in the windows registry using
the subkey BaseInterface for the IIDs of the interfaces directly derived from it:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Interface\{IID_IMoniker}
\BaseInterface={IID_IPersistStream}

We thus define subtyping between COM interfaces as follows:

Subtype Definition 2.2.9 (Subtypes for COM Interfaces) A COM interface with identi-
fier IID1 is a subtype of a COM interface with identifier IID2 (denoted by IID1 � IID2), if
IID2 can be found in the hierarchy of direct base interfaces for IID1.

7See MSDN-library: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/stg/stg/
structured storage start page.asp; 29th of April 2006.

42 CHAPTER 2. FOUNDATIONS

Figure 2.9: Base Interfaces in the COM Registry

Types for COM Classes: In the COM specification [COM95] the following footnote
can be found contributing to what a type of a COM component could be:

“Although “class” and “type” can often be used interchangeably, in COM a type is
the total signature of an object, which is the union of the interfaces that the object
supports. “Class” is a particular implementation of a type, and can include certain
unique implementation-specific attributes such as product name, icon, etc. ...”

The COM specification [COM95] does not explicitly introduce a subtype definition
for COM classes. Instead, Section 1.4.3.1 of the COM specification describes how com-
ponents may be evolved over time without forcing clients to change their code. COM
classes can implement any number of new interfaces or new versions of existing inter-
faces as long as all formerly existing interfaces are retained. New versions of existing
interfaces are treated as completely new interfaces.

Consistent with the COM specification Szyperski [Szy98] states:

“The type of a COM object is the set of interface identifiers of the interfaces it sup-
ports. A subtype is a superset of interfaces.”

Following this approach, we define types and subtypes for COM classes as follows:

Type Definition 2.2.10 (Type of a COM Class based on implemented Interfaces) The type of
a COM class is the set of interface identifiers of the interfaces it supports.

2.2. COMPONENT MODELS 43

Subtype Definition 2.2.11 (Subtyping for COM Classes based on implemented Interfaces)
Let D be a COM class with type TD and C a COM class with type TC . TD is a subtype of TC , if
TD ⊇ TC .

Szyperski’s type and subtype definitions perfectly fit for applications which are able
to handle different kinds of COM components belonging to a common category.

A category in COM specifies a fixed set of interface identifiers. Categories are iden-
tified by CATIDs and are immutable like interfaces once introduced. Categories exist
e.g. for Controls, Automation Objects, Document Objects, Printable Objects etc. Cate-
gories were introduced to simplify the decision whether an existing COM component
implements a certain set of interfaces. If a COM component belongs to a certain cat-
egory, this fact will be documented by an entry in the windows registry. Thus appli-
cations which can only handle COM objects implementing a certain set of interfaces
identified by a category can look at the windows registry to decide, whether a COM ob-
ject satisfies these requirements or not. The applications need no longer ask each COM
object for every needed interface whether it implements this interface or not by calling
QueryInterface.

Additionally, if an application identifies the components it can handle by a category,
the category serves as a kind of supertype. All components being a subtype of this
supertype (that is all components implementing at least the interfaces defined by the
category) can be handled by the application. One component can belong to several
categories.

Although Szyperski’s type and subtype definitions conform to the evolution require-
ments for COM components, they do not consider outgoing interfaces. So we choose
another definition for typing and subtyping with respect to COM components:

Type Definition 2.2.12 (Type of a COM Class) The type TC of a COM class C is defined
by the set IC

provided of interface identifiers of the interfaces it implements and the set IC
outgoing of

interface identifiers of its outgoing interfaces: TC = (IC
provided, IC

outgoing).

Although outgoing interfaces are not implemented by the COM component itself,
but are required to be implemented by its clients, the clients normally profit from an
outgoing interface: the registered clients are notified when events, defined by the meth-
ods of the outgoing interface, occur. Thus, outgoing interfaces present in a supertype
must also be available in a subtype. Otherwise a client, waiting for event notifications
will not be notified any longer and thus its requirements will not be met.

On the other hand, outgoing interfaces may be used by a server to ask its client for
support. Thus, outgoing interfaces can act as mandatory required service interfaces,
too. Although this kind of application of outgoing interfaces is rarely used, we have to
incorporate this kind of application in our subtype definition. Therefore, we must not
generally allow a subtype to declare additional outgoing interfaces because they may
express further requirements. Thus, our subtype definition assumes equality for the sets
of outgoing interfaces.

44 CHAPTER 2. FOUNDATIONS

Subtype Definition 2.2.13 (Subtyping for COM Classes) Let C and D be two COM classes
with their types TC and TD. TD is a subtype of TC , if

• ID
provided ⊇ IC

provided and

• ID
outgoing = IC

outgoing.

2.2.2.4 Type Metadata

COM components use type libraries to provide type information at runtime. For COM
components, type libraries describe COM classes, COM interfaces and their dependen-
cies. Type libraries can also be used to describe arbitrary dynamic link libraries (DLL),
not dealing with COM components at all. For those DLLs, more general information
is provided, as e.g. information about the interface of the DLL (called module) to its
clients in terms of variables and functions. In our description, we will focus on infor-
mation about COM classes and COM interfaces only. For more details please refer to
[EE98] or to Microsoft’s MSDN library.

Type Libraries and Interface ITypeLib: Every type library is identified by a so-called
LIBID. If a COM class is described by a type library, this LIBID is stored in the regis-
tration database under the TypeLib-subkey of the CLSID key entry for the COM class.
Based on this entry, the type library corresponding to a COM class can be determined.

Every entry in the type library provides the type information for one entity like
e.g. a COM class, a COM interface etc. This kind of type description is referred to as
typeinfo. The contents of the type library can be accessed by the ITypeLib interface.
This interface provides methods to get access to the type information of an entry, to
retrieve documentation information on the library itself and so forth. Its most relevant
methods are the following:

UINT GetTypeInfoCount();

HRESULT GetTypeInfo(
unsigned int index,
ITypeInfo FAR* FAR* ppTInfo

);

HRESULT GetTypeInfoOfGuid(
REFGUID guid,
ITypeInfo FAR* FAR* ppTinfo

);

HRESULT GetTypeInfoType(
unsigned int index,
TYPEKIND FAR* pTKind

);

2.2. COMPONENT MODELS 45

GetTypeInfoCount returns the number of type descriptions stored in the type li-
brary. GetTypeInfo retrieves the type description stored at index index in the type
library. GetTypeInfoOfGuid retrieves the type description for an entity identified by
its globally unique identifier guid . This method may be used to retrieve information on
a COM class by its CLSID or on a COM interface by its IID. GetTypeInfoType returns
the type of a type description. Valid types are e.g. TKIND COCLASSfor a COM class
and TKIND INTERFACEfor a COM interface.

Type Information for COM Classes and COM Interfaces provided by ITypeInfo: By
the methods GetTypeInfo and GetTypeInfoOfGuid of the ITypeLib interface de-
scribed in the previous section, one can retrieve a type description stored in the type
library. Actually, one retrieves a pointer to a pointer to an interface of type ITypeInfo .
This interface provides a lot of methods to access the corresponding type description.
The most important are listed below. They are grouped into three sets of methods: one
set only applicable to COM classes, another set only applicable to COM interfaces and
a third set of methods applicable to both, COM classes and COM interfaces.

/********* COM classes only *********/

HRESULT CreateInstance(
IUnknown FAR* pUnkOuter,
REFIID riid,
VOID FAR* FAR* ppvObj

);

/********* COM interfaces only *********/

HRESULT GetImplTypeFlags(
unsigned int index,
int* pImplTypeFlags

);

HRESULT GetFuncDesc(
unsigned int index,
FUNCDESC FAR* FAR* ppFuncDesc

);

HRESULT GetIDsOfNames(
OLECHAR FAR* FAR* rgszNames,
unsigned int cNames,
MEMBERID FAR* pMemId

);

46 CHAPTER 2. FOUNDATIONS

HRESULT Invoke(
VOID FAR* pvInstance,
MEMBERID memid,
unsigned short wFlags,
DISPPARAMS FAR* pDispParams,
VARIANT FAR* pVarResult,
EXCEPINFO FAR* pExcepInfo,
unsigned int FAR* puArgErr

);

/********* COM classes and interfaces *********/

HRESULT GetTypeAttr(
TYPEATTR FAR* FAR* ppTypeAttr

);

HRESULT GetRefTypeOfImplType(
unsigned int index,
HREFTYPE FAR* pRefType

);

HRESULT GetRefTypeInfo(
HREFTYPE hRefType,
ITypeInfo FAR* FAR* ppTInfo

);

Type Descriptions for COM Classes: The type description for a COM class con-
tains information on the interfaces implemented by the COM class as well as on its
outgoing interfaces. The type attributes retrieved by a call to GetTypeAttr specify
e.g. the CLSID the description corresponds to and the number of implemented inter-
faces. The class ID can be accessed by (*ppTypeAttr)->guid and the number of inter-
faces by (*ppTypeAttr)->cImplTypes, where ppTypeAttr is a pointer to a pointer to a
TYPEATTR-structure (see above) containing the COM class information. Readers not
familiar with the declaration and use of pointers in the programming language C should
refer to e.g. [Str00] for further information.

Type descriptions corresponding to the interfaces of the COM class can be retrieved
by subsequent calls to GetRefTypeOfImplType and GetRefTypeInfo where the
actual value for the parameter index is in 0 ≤ index < (*ppTypeAttr)->cImplTypes.
GetRefTypeOfImplType first returns a handle to the requested type information.
This handle is passed to GetRefTypeInfo to retrieve the actual type description.

Having a pointer to the ITypeInfo interface for the description of a COM class
CreateInstance (see above) can be called on this pointer to create an instance of this

2.2. COMPONENT MODELS 47

COM class. CreateInstance takes the IID of an interface as input (riid) and returns
a pointer to a pointer to this interface in ppvObj on success. pUnkOuter must not be
NULL, if the instance to be created is aggregated by another COM object (see Section
2.2.2.2, pp. 38).

Thus, instances of COM classes totally unknown to a tool can be created using this
type information. In addition, information on the interfaces declared by the COM class
can be retrieved, especially their IID’s. These in turn can be used to query for pointers
to those interfaces. Type libraries provide similar features as Java’s or .NET’s reflection
services.

Type Descriptions for COM Interfaces: The type description for a COM interface
provides information on its base interfaces and especially information on the methods
declared by this interface. The type attributes for an interface retrieved by a call to
GetTypeAttr specify e.g. the IID the description corresponds to ((*ppTypeAttr)->guid),
the number of methods declared in the interface ((*ppTypeAttr)->cFuncs), and the num-
ber of interfaces inherited from ((*ppTypeAttr)->cImplTypes).

Whether an interface is an implemented or outgoing interface can be determined
by a call to GetImplTypeFlags . A return value containing the flag IMPLTYPEFLAG
FSOURCEdenotes an outgoing interface.

Type descriptions for the base interfaces of the current interface may be retrieved by
calls to GetRefTypeOfImplType and GetRefTypeInfo .

For every method declared in the interface a special FUNCDESC-description can be
obtained by a call to GetFuncDesc . This description contains information about the
number and types of parameters of the method. It also provides a member ID by which
the method is identified. This member ID has to be used when a method is executed by
a call to Invoke . If one knows the name of a method, this member ID can also be re-
trieved by a call to GetIDsOfNames . Having the member ID of a method and a pointer
to an object implementing the interface the method is a member of, one can execute this
method by a call to Invoke . The arguments needed for the call have to be passed to
Invoke using the parameter pDispParams , which internally refers to an array. Every
entry in this array specifies one argument. Every argument is of type VARIANT essen-
tially being a union of a restricted set of types like primitive data types, pointers to
primitive data types, special arrays, and IUnknown etc. Each type representable by the
VARIANT data type is identified by a constant declared in a special enumeration like
e.g. VT BOOL, VT DATE, VT INT, VT UNKNOWN, VTBSTR (the latter representing
Unicode strings) etc.

Summary: If a COM class comes with a type library, it is possible for tools to handle
this COM class even if the tools get to know about this class only at runtime. Based
on the type information in the type library, a tool is able to create an instance of this
class, to retrieve a pointer to every of its implemented interfaces, and to invoke methods
declared by these interfaces.

48 CHAPTER 2. FOUNDATIONS

2.2.2.5 Consistency / Correctness of a Composition

As described in Section 2.2.2.2, the primary composition techniques available for COM
are event notifications using outgoing interfaces and COM aggregation. In the following
we mention conditions which have to hold for two instances of COM components to be
connected via the given composition techniques.

Condition 2.2.14 (Valid Event Connections using Outgoing Interfaces) Let CO be a con-
nectable object with an outgoing interface identified by IID Event. Then only sink objects im-
plementing IID Event can be registered as listeners at this outgoing interface of CO.

Using COM aggregation, a COM-object can use other COM objects to implement a
part of its functionality by directly exposing their interfaces to the environment. The
aggregated COM objects have to conform to special rules not explicitly summarized in
the literature as we do below.

Condition 2.2.15 (Valid Part for Aggregation) Let C be a COM class implementing the set
of interfaces with interface identifiers {IID1, ..., IIDn}. Let IB = {IIDi1 , ..., IIDim} ⊆ {IID1,
..., IIDn} (ij ∈ {1, ..., n} for 1 ≤ j ≤ m) be the subset of interface identifiers C expects to be
implemented by another COM class applied by C using aggregation. Then a COM class B can
be used for aggregation by C, if B conforms to the following rules:

1. B implements the interfaces belonging to IB.

2. B supports aggregation. That is,

• B implements a delegating and non-delegating version of IUnknown.

• B delegates all IUnknown calls on its interfaces to the IUnknown interface of C with
one exception: calls on the non-delegating IUnknown interface of B are not delegated
to C (see Figure 2.8).

• B returns a reference to its non-delegating version of IUnknown on instantiation, if
B is instantiated as a part of an aggregate.

2.2.2.6 Compatibility / Substitutability

At first we consider new versions of a COM class. The COM specification postulates
that new versions of a COM class may only add additional interfaces. Interfaces from
former versions have to be retained. As a new version retains all former interfaces, it
can be used instead of the old version without effecting old clients as far as these clients
don’t expect outgoing interfaces from the COM class.

If an old version declares outgoing interfaces and a client uses some of these inter-
faces to be notified of special events, a new version also has to declare the same set of
outgoing interfaces as the old version. Otherwise the client could not successfully reg-
ister for event notifications provided by an outgoing interface of the old version which

2.2. COMPONENT MODELS 49

is discarded in the new version. That is, the new version has to be a subtype of the old
one with respect to subtype definition 2.2.13.

Now we consider the case, when a COM class can be substituted by another COM
class. This situation may arise, if one wants to replace used components by components
from other vendors. Every COM class to be used instead of another one has to be a
subtype of the COM class to be substituted as is the case for new versions of a COM
class. Additionally, the new class can only be used, if clients don’t refer to the class ID
for instantiation or if the new class emulates the old one. If one COM class with class ID
clsidOld is emulated by another one with class ID clsidNew, the server for clsidNew is
used to create an instance instead of the server for clsidOld. Emulation can be achieved

1. by a call to CoTreatAsClass , a procedure of the COM library, which takes as input
the class ID to be simulated (clsidOld) and the simulating class ID (clsidNew)
or

2. under windows, by directly adding a TreatAs key with value clsidNew to the
CLSID entry for clsidOld in the registration data base.

The corresponding entry in the registration data base, which is also created by CoTreat

AsClass , looks as follows:
%HKEY_CLASSES_ROOT\CLSID\{clsidOld}\TreatAs={clsidNew}

The following condition summarizes, when a COM class can be substituted by a
new version or another COM class.

Condition 2.2.16 (Substitution of COM classes) Let the COM class C with class ID clsidC

be referred to by a client. Let Cnew be another COM class with class ID clsidC
new . Then Cnew

can only be used instead of C, if

• Cnew is a subtype of C as defined in subtype definition 2.2.13,

• one of the following conditions holds:

– clsidC = clsidC
new,

– a client referring to C does not use clsidC directly for instantiation in its code,
– Cnew is an emulation for C. (In this case, clsidC can be directly used for instantia-

tion.)

2.2.3 .NET

2.2.3.1 .NET Framework

Microsoft’s .NET was introduced in summer 2000. In contrast to its predecessor COM
which exactly defines a component model and provides an infrastructure supporting
the instantiation of COM components, their communication etc., .NET is a framework
rather than a component model. Nevertheless .NET provides a lot of features support-
ing component based development:

50 CHAPTER 2. FOUNDATIONS

• The handling of types at runtime which are unknown to the client at develop-
ment time: .NET enables unknown types to be handled by using type metadata and
reflection.

• Platform independence: Platform independence is supported by using an inter-
mediate language (IL) the source code is compiled to and a common language runtime
(CLR) abstracting from particular operating systems. The CLR takes on differ-
ent tasks, as e.g. compilation from IL code to machine code, memory manage-
ment, thread management, access to the underlying operating system or loading
of classes.

• Language independence: Language independence is realized by compiling source
code written in arbitrary .NET languages to the same IL code. The IL uses a com-
mon type system (CTS) all .NET languages have to adhere to.

• Support for versioning, packaging and deployment: Assemblies are the units for
versioning, packaging and deployment. Assemblies essentially contain IL code,
resources and type metadata. Assemblies are described in more detail in item 2 on
page 53.

• Separation of interface and implementation: Using components, it is essential
to be able to separate the interface of a component from its implementation. This
requirement is addressed by introducing .NET interfaces. .NET interfaces corre-
spond to Java interfaces. In contrast to Java, .NET enables advanced handling
of interfaces. Java only provides implicit interface implementation. That is, a public
method mof a class Cimplementing an interface I which has the same signature as
a method in I is assumed to be its implementation. In addition to implicit interface
implementation, .NET provides explicit interface implementation. When implement-
ing a method explicitly, its name has to be qualified with the name of the interface
declaring it. Instead of writing void m() {... } in the body of Cone would use
void I.m() {... }. Using explicit interface implementation for an interface I
in a class C, clients can only invoke methods declared in I on variables explicitly
typed by I as shown in the following code snippet:
I obj; obj = new C(); obj.m();
These variables (here obj) cannot be typed by C as would be the case when im-
plicit interface implementation is used.

• Support for component metadata: Various kinds of component metadata can
be provided by attributes. Attributes are special classes derived from System.
Attribute . Attributes can be used in a declarative way to enrich objects like
classes or class members with additional functionality without the need to imple-
ment this functionality by the object itself. The additional information provided
by the attributes is added to the metadata of the objects they decorate. These ad-
ditional metadata can be accessed by .NET or tools using reflection. Reading the

2.2. COMPONENT MODELS 51

metadata of an object, .NET or a tool can determine its attributes and then perform
the corresponding extra functionality. .NET distinguishes standard attributes pro-
vided by the framework and custom attributes which can be defined by developers.

An often used standard attribute at class level is e.g. the Serializable -attribute.
This attribute enables the instances of a class to be serialized to a data stream
without implementing this extra functionality:

[Serializable]
public class A {

// ...
}

Attributes can even be used at the level of assemblies. Typical examples are at-
tributes specifying the version number of the assembly, the company developing
it or copyright aspects:

using System.Reflection;
using System.Runtime.CompilerServices;

[assembly: AssemblyVersion("1.3.2.2")]
[assembly: AssemblyCompany("Company XYZ")]
[assembly: AssemblyCopyright("Copyright Company XYZ 2006")]
...

Although providing all these features, .NET itself does not give a clear definition
of what a component is. Therefore different authors use different definitions even in
the context of the Microsoft Developer Network Library (MSDN-Library). Juval Löwy
summarizes this problem in [Löw05] as follows:

“The term component is probably one of the most overloaded and therefore most
confusing terms in modern software engineering, and the .NET documentation has
its fair share of inconsistency in its handling of this concept. The confusion arises
in deciding where to draw the line between a class that implements some logic, the
physical entity that contains it (typically a dynamic link library, or DLL) and the as-
sociated logic used to deploy and use it, including type information, security policy,
and versioning information (called an assembly in .NET). In this book, a component
is a .NET class.”

Other definitions of a component given in the MSDN-Library are:

• “... In other words, a component is a compiled set of classes that support the
services provided by the component. The classes expose their services through
the properties, methods, and events that comprise the component’s interface.

52 CHAPTER 2. FOUNDATIONS

Simple .NET object-oriented programming involves not much more than cre-
ating a class, adding the properties, methods, and events required by the class,
and including the class in different applications. A .NET component, however,
is a pre-compiled class module with a .DLL (dynamically-linked library) exten-
sion.”

(See [Gro02].)

• “In the .NET Framework a component is a class which implements the interface
System.ComponentModel.IComponent or which directly or indirectly inherits
from a class implementing this interface.8 ”

(See [MSD].)

A similar definition can be found in the MSDN-library describing interface
System.ComponentModel.IComponent :

“To be a component, a class must implement the IComponent interface and
provide a basic constructor that requires no parameters or a single parameter of
type IContainer.”

In the context of this thesis, we shall refer to the last definition for the following
reasons:

• We want to describe already existing component concepts and implementations
in .NET. Microsoft uses this approach to deal with components which can be
customized by a tool and which can be grouped by containers. Microsoft pro-
vides a lot of support for such components by classes implemented in the name-
space System.ComponentModel . In addition to the interface IComponent , this
namespace contains a lot of classes that are used to implement the run-time and
design-time behavior of ’components’ and controls. This namespace includes the
core ’component’ classes, base classes and interfaces for implementing attributes,
type converters, binding to data sources, and licensing components9.

• A predefined mechanism exists to determine a component namely by checking a
class to be of type IComponent .

• There exists a predefined way to instantiate a component namely by calling the
new-operator.

There is no doubt that one can realize a lot of different component concepts using
the features of .NET, but the definition of such components, their identification, instan-
tiation, and access to their services are not predefined by .NET.

In the following we answer the questions concerning components, component inter-
faces, instantiation etc. for .NET as we have already done for JavaBeans and COM.

8The original text is written in German.
9Most of this text comes from the MSDN-library.

2.2. COMPONENT MODELS 53

1. Component:

A component is a class which either implements the interface
System.ComponentModel.IComponent or which directly or indirectly inher-
its from a class implementing this interface.

.NET provides two base implementations for IComponent :
System.ComponentModel.Component and
System.ComponentModel.MarshalByValueComponent . The first class is used for
remotable components which can be shared between applications. Calling ap-
plications can ’directly’ access such component instances by corresponding prox-
ies. The second class can be used for “remotable components that are marshaled by
value”10. That is, instances of such components are passed as serialized copies to
the calling applications.

2. Deployment unit holding a component:

Components are packaged into assemblies. Assemblies are the units for versioning,
packaging and deployment. Assemblies essentially contain IL code, resources and
type metadata. Assemblies are logical units consisting of one or more physical
files. Each assembly contains a manifest holding assembly metadata.

Figure 2.10: Single-file and Multifile Assembly (Source: MSDN-Library)

The manifest contains the following information:

• the assembly text name as a user friendly text string,

• the version number of the assembly,

• the public encryption key of the publisher, if the publisher generated a unique
digital signature for the assembly; in this case the assembly is said to have a
strong name (see e.g. [Löw05]),

• information on the culture or language the assembly supports,

10See MSDN-Library.

54 CHAPTER 2. FOUNDATIONS

• a list of all files belonging to the assembly,

• type reference information for exported types that is, information mapping a
type reference to the file containing its declaration and implementation,

• a list of other assemblies that are statically referenced by the assembly.

Although multifile assemblies are possible, typically single-file assemblies are used.

3. Structure and specification of component interfaces:

As components are special classes, their interface consists of the implicit interface
of the class that is, its public properties, emitted events and methods. There is no
extra place like an IDL-file in COM or CCM where the interface of a component is
specified.

Properties: Properties in .NET encapsulate a part of the state of a class. They
can be used like public fields in expressions, although their access is encapsu-
lated by getter- and setter-methods. The following C# code example from the
MSDN-Library demonstrates declaration and use of properties in .NET. The class
Employee has a public field numberOfEmployees and two properties Nameand
Counter that can be used like public fields.

using System;
public class Employee {

public static int numberOfEmployees;
private static int counter;
private string name;

// A read-write instance property:
public string Name {

get {
return name;

}
set {

name = value;
}

}

// A read-only static property:
public static int Counter {

get {
return counter;

}
}

2.2. COMPONENT MODELS 55

// Constructor:
public Employee() {

// Calculate the employee’s number:
counter = ++counter + numberOfEmployees;

}
}

public class MainClass {
public static void Main() {

Employee.numberOfEmployees = 100;
Employee e1 = new Employee();
e1.Name = "Claude Vige";
Console.WriteLine("Employee number: {0}", Employee.Counter);
Console.WriteLine("Employee name: {0}", e1.Name);

}
}

Events: Classes can declare that their instances can be sources of a specific type of
event. Instances of other classes able to consume such type of event can register to
the event source for being notified, if this type of event occurs. The event mech-
anism provided by .Net is based on so-called delegates. A delegate type can be
compared to a method type. A delegate type declaration defines a method proto-
type by its signature. The signature is independent of the name of the method and
the names of its formal parameters. Only the return type as well as the number
and types of its parameters are relevant. The name of the method occurring in the
delegate type declaration denotes the delegate type which can be used for variable
declarations. Such variables are able to hold one or more references to methods
matching11 the declared signature and are often referred to as delegates. Assign-
ments to such variables in C# are done by the ’+=’- operator and are often referred
to as subscribing/registering to the delegate. Calling the delegate results in call-
ing all the registered methods. The following code snippet taken from [Wes02]
demonstrates type and variable declaration as well as subscribing to a variable.

// Delegate type declaration
delegate void OnClickHandler(object eventSource);

// Variable declaration
OnClickHandler clickEvent;

// Declaration and implementation of matching methods
void button1_OnClick(object eventSource) {...}
void textbox1_OnClick(object eventSource) {...}

11Matching means that the methods referred to have the same return type as well as the same number
and types of parameters.

56 CHAPTER 2. FOUNDATIONS

// Subscribing to the ’clickEvent’-variable
clickEvent += new OnClickHandler(button1_OnClick); 12

clickEvent += new OnClickHandler(textbox1_OnClick);

// Invoking the delegate results in invoking

// ’button1_OnClick’ and ’textbox1_OnClick’ with the

// same actual parameter.

clickEvent(this);

Although events can be already handled by pure delegates, .NET introduces the
keyword event to declare delegate variables to be events. This additional key-
word ensures that only the publisher class13 can fire the event which is done by
invoking the delegate. Otherwise, as delegates must be declared as public mem-
bers for the (de)registration purposes described above, anyone could access the
event-delegate and fire the event even if no event really takes place.

The following C# code example from the MSDN-Library demonstrates declaration
and use of events in .NET. Only the code is shown dealing with the declaration of
the delegate type, the declaration of the actual event, the subscription to the event,
the raising/firing of the event and the declaration of data passed by the event. For
the complete example please refer to the MSDN-Library.

namespace EventSample
{

using System;
using System.ComponentModel;

// Class that contains the data for the alarm event.
// Derives from System.EventArgs.
public class AlarmEventArgs : EventArgs {

// ...
}

// Delegate type declaration.
//
public delegate void AlarmEventHandler(object sender,

AlarmEventArgs e);

// Event source (publisher)
// The Alarm class that raises the alarm event.
//
public class AlarmClock {

private bool snoozePressed = false;
private int nrings = 0;

12Subscribing can be simplified using C# 2.0 to clickEvent += this.button1 OnClick;
13The publisher class is the class declaring and firing the event.

2.2. COMPONENT MODELS 57

// ...

// The event member that is of type AlarmEventHandler.
//
public event AlarmEventHandler Alarm;

// The protected OnAlarm method raises the event by
// invoking the delegate. The sender is always this,
// the current instance of the class.
//
protected virtual void OnAlarm(AlarmEventArgs e) {

if (Alarm != null) {

// Invokes the delegate.
Alarm(this, e);

}
}

// Actually raising the event
public void Start() {

// ...
AlarmEventArgs e = new AlarmEventArgs(snoozePressed, nrings);
OnAlarm(e);
// ...

}
}

// Event receiver (subcriber)
// The WakeMeUp class that has a method AlarmRang that handles the
// alarm event.
//
public class WakeMeUp {

public void AlarmRang(object sender, AlarmEventArgs e) {
// ...

}
}

// The driver class that hooks up the event handling method of
// WakeMeUp to the alarm event of an Alarm object using a delegate.
// In a forms-based application, the driver class is the form.
//
public class AlarmDriver {

public static void Main (string[] args) {
// Instantiates the event receiver.

58 CHAPTER 2. FOUNDATIONS

WakeMeUp w= new WakeMeUp();

// Instantiates the event source.
AlarmClock clock = new AlarmClock();

// Wires the AlarmRang method to the Alarm event.
clock.Alarm += new AlarmEventHandler(w.AlarmRang);

clock.Start();
}

}
}

4. Component lookup, instantiation and access:

For a component which is statically referred to in an application, only its fully
qualified class name has to be known. A reference to the assembly containing it is
automatically created by the compiler.

If the name of the component class14 is not known at development time that is, its
name is only provided at runtime e.g. by reading it from a file, one additionally
has to know the assembly containing the definition and implementation of the
class to be able to load the assembly dynamically. An assembly is identified by
its assembly text name, its version number, its culture and the public key of the
publisher if the assembly has a strong name. This information is also referred to
as the fully qualified name of an assembly.

Instances of component classes statically referred to in an application can be sim-
ply created by using the new-operator as shown below.

// Declaration of the component class
class MyComponentClass : System.ComponentModel.IComponent {

// ...
}

// Creating an instance of MyComponentClass
MyComponentClass inst = new MyComponentClass();

For component classes not known at development time, the assembly containing
them has to be loaded first by calling the static method
public static Assembly Load(string assemblyString);

of System.Reflection.Assembly and passing as its parameter the fully qualified
name of the assembly as string. Afterwards an instance of the component class can

14The term component class is sometimes used instead of component to stress the fact that the component
consists of only one class and that a component instance is just an object.

2.2. COMPONENT MODELS 59

be created calling the method
public object CreateInstance(string typeName);

of System.Reflection.Assembly passing as its parameter the fully qualified name
of the component class as string.

An example is shown below.

using System;
using System.Reflection;

class MyClass {
public static void Main()
{

Assembly assembly;

// Loading an assembly with an assembly text name of ’MyAssembly’,
// a version number of 1.0.1538.0, an arbitrary culture and a
// public key token of b77a5c561934e089c.
assembly = Assembly.Load(

"MyAssembly, Version=1.0.1538.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089c"
);

// ...

// Creating an instance of class
// ’MyAssemblyNamespace.MyComponentClass’
object obj = assembly.CreateInstance(

"MyAssemblyNamespace.MyComponentClass");
}

}

Another possibility to load a type dynamically and to create an instance thereof is
described in Section 2.2.3.4 on page 65.

After instantiation of a component class, the client has access to the implicit inter-
face of the component class. Therefore it has access to all public properties, events
and all publicly available methods.

5. Entities of the component interface as parameter or return value of a method:

As components are nothing more than special classes, their interface consists of
the implicit interface of the class. This interface is not broken up into smaller
entities, thus no smaller entities are to be referenced. Consequently, a reference
to an instance of a component class being a pure object only, represents the only
possible reference to the component interface. This reference can be passed as a
parameter to methods implemented by other component classes.

60 CHAPTER 2. FOUNDATIONS

2.2.3.2 Composition Techniques

Composition techniques available for .NET components in our sense are the wiring of
component instances by events and the grouping of component instances into contain-
ers. Although adding components to containers is more a structuring feature than a
composition technique that wires component instances together, it will be described
here. This is due to the fact that the MSDN-Library stresses the ability of instances of
classes of type IComponent to be potentially grouped by containers as an important
feature.

Event notification:
The wiring of instances of .NET components by events means that component instances
being capable of consuming a special type of event emitted by another component in-
stance (the event source) subscribe to the event source for this special type of event.
Then the event consumers are notified each time, the event source fires the type of event,
the consumers subscribed to.

As already described in Section 2.2.3.1 item 3, in .NET event firing, event consuming,
and event subscription are based on delegates. To summarize: Event types are defined
as delegate types and represent method prototypes. A class is a source of a special
type of event, e.g. typeEv, if it declares a (delegate) variable of type typeEv using the
keyword event . A class is a consumer of the event type typeEv, if it implements a
method matching the method prototype defined by typeEv. Instances of the consumer
class can subscribe to an instance of the event source by some kind of assignment which
passes a reference to the matching method to the variable representing the event. For
an example please refer to Section 2.2.3.1 item 3 on page 54.

In contrast to the JavaBeans component model which supports registering to a set of
events grouped by an interface, .NET supports registering to single events only.

Grouping component instances into containers:
Component instances that is, instances of classes implementing the System.Component

Model.IComponent interface, can be added to an instance of a container. A container
in .NET is a class implementing the interface System.ComponentModel.IContainer .
To simplify the description, instances of containers are also referred to as containers.
Containers provide the methods Add and Remove to add component instances to a con-
tainer or to remove component instances from a container. New component instances
are added to the end of the container’s internal list of contained component instances.
Clients can query a container for a list of all contained component instances. Contain-
ment in this context refers to logical containment.

When an instance of a component is added to a container, the container can create
a so-called site object and pass it to the component instance which stores it in its Site

property. A site object is an object of type System.ComponentModel.ISite and allows
the container to maintain container-specific information per component as e.g. a compo-
nent name. The site object holds a reference to the container as well as to the component
instance and can thus be used by both to communicate with each other.

2.2. COMPONENT MODELS 61

If a container additionally implements System.ComponentModel.IComponent , it
can act as both, a container and a component and can thus itself be added to a container.
This allows one to group instances of components hierarchically. Adding a component
instance to a container being itself a component instance can be regarded as some kind
of wiring between component instances. Nevertheless a container does not comprise
the functionality of its contained component instances.

The following example is taken from the MSDN-Library. It describes a library where
books can be added to and removed from. The example demonstrates the interplay
of components (books), containers(library) and sites(container specific information per
component, the ISBN name).

using System;
using System.ComponentModel;
using System.Collections;

// Implement the ISite interface.
// The ISBNSite class represents the ISBN name of the book component
class ISBNSite : ISite {

private IComponent m_curComponent;
private IContainer m_curContainer;
private bool m_bDesignMode;
private string m_ISBNCmpName;

public ISBNSite(IContainer actvCntr, IComponent prntCmpnt) {
m_curComponent = prntCmpnt;
m_curContainer = actvCntr;
m_bDesignMode = false;
m_ISBNCmpName = null;

}

//Support the ISite interface.
public virtual IComponent Component {

get { return m_curComponent; }
}

public virtual IContainer Container {
get { return m_curContainer; }

}

public virtual bool DesignMode {
get { return m_bDesignMode; }

}

public virtual string Name {
get { return m_ISBNCmpName; }
set { m_ISBNCmpName = value; }

}

// Support the IServiceProvider interface.

62 CHAPTER 2. FOUNDATIONS

public virtual object GetService(Type serviceType) {
//This example does not use any service object.
return null;

}
}

// The BookComponent class represents the book component of the
// library container. This class implements the IComponent interface.
class BookComponent : IComponent {

public event EventHandler Disposed;
private ISite m_curISBNSite;
private string m_bookTitle;
private string m_bookAuthor;

public BookComponent(string Title, string Author) {
m_curISBNSite = null;
Disposed = null;
m_bookTitle = Title;
m_bookAuthor = Author;

}

public string Title {
get { return m_bookTitle; }

}

public string Author {
get { return m_bookAuthor; }

}

public virtual void Dispose() {
//There is nothing to clean.
if(Disposed != null) Disposed(this, EventArgs.Empty);

}

public virtual ISite Site {
get { return m_curISBNSite; }
set { m_curISBNSite = value; }

}

public override bool Equals(object cmp) {
BookComponent cmpObj = (BookComponent)cmp;
if(this.Title.Equals(cmpObj.Title) &&

this.Author.Equals(cmpObj.Author))
return true;

return false;
}

public override int GetHashCode() {
return base.GetHashCode();

}
}

2.2. COMPONENT MODELS 63

// Implement the LibraryContainer using the IContainer interface.
class LibraryContainer : IContainer {

private ArrayList m_bookList;

public LibraryContainer() {
m_bookList = new ArrayList();

}

public virtual void Add(IComponent book) {
//The book will be added without creation of the ISite object.
m_bookList.Add(book);

}

public virtual void Add(IComponent book, string ISNDNNum) {
for(int i =0; i < m_bookList.Count; ++i) {

IComponent curObj = (IComponent)m_bookList[i];
if(curObj.Site != null) {

if(curObj.Site.Name.Equals(ISNDNNum))
throw new SystemException(

"The ISBN number already exists in the container");
}

}
ISBNSite data = new ISBNSite(this, book);
data.Name = ISNDNNum;
book.Site = data;
m_bookList.Add(book);

}

public virtual void Remove(IComponent book) {
for(int i =0; i < m_bookList.Count; ++i) {

if(book.Equals(m_bookList[i])) {
m_bookList.RemoveAt(i);
break;

}
}

}

public ComponentCollection Components {
get {

IComponent[] datalist = new BookComponent[m_bookList.Count];
m_bookList.CopyTo(datalist);
return new ComponentCollection(datalist);

}
}

public virtual void Dispose() {
for(int i =0; i < m_bookList.Count; ++i) {

IComponent curObj = (IComponent)m_bookList[i];
curObj.Dispose();

}

64 CHAPTER 2. FOUNDATIONS

m_bookList.Clear();
}

static void Main(string[] args) {
LibraryContainer cntrExmpl = new LibraryContainer();
try {

BookComponent book1 = new BookComponent("Wizard’s First Rule",
"Terry Gooodkind");

cntrExmpl.Add(book1, "0812548051");
BookComponent book2 = new BookComponent("Stone of Tears",

"Terry Gooodkind");
cntrExmpl.Add(book2, "0812548094");
BookComponent book3 = new BookComponent("Blood of the Fold",

"Terry Gooodkind");
cntrExmpl.Add(book3, "0812551478");
BookComponent book4 = new BookComponent("The Soul of the Fire",

"Terry Gooodkind");
// This will generate exception because the ISBN already
// exists in the container.
cntrExmpl.Add(book4, "0812551478");

}
catch(SystemException e) {

Console.WriteLine("Error description: " + e.Message);
}
ComponentCollection datalist =cntrExmpl.Components;
IEnumerator denum = datalist.GetEnumerator();
while(denum.MoveNext()) {

BookComponent cmp = (BookComponent)denum.Current;
Console.WriteLine("Book Title: " + cmp.Title);
Console.WriteLine("Book Author: " + cmp.Author);
Console.WriteLine("Book ISBN: " + cmp.Site.Name);

}
}

}

2.2.3.3 Type System

Due to our definition, a .NET component is nothing more than a special class, the type
of a .NET component can be defined as follows.

Type Definition 2.2.17 (Type of a .NET Component) The type of a .NET component is iden-
tical to the type of the class representing it.

As a consequence, subtyping for .NET components is defined as:

Subtype Definition 2.2.18 (Subtyping for .NET Components) A .NET component repre-
sented by a class D is a subtype of a .NET component represented by a class C, if D is a subtype
of C in .NET.

2.2. COMPONENT MODELS 65

2.2.3.4 Type Metadata

Similar to Java, .NET supports reflection services. Using reflection, it is possible to ac-
cess assembly and type metadata by program code. Reflection is available at the level
of assemblies, classes/types and class members. At assembly level, the assembly at-
tributes can be determined as well as the types contained in the assembly. At class level,
one can obtain e.g. information about the implemented methods or attributes decorat-
ing the class. For a method, its signature can be obtained (class member level) and so
forth.

Thus, reflection can be used to retrieve information about the fields, properties,
events and methods of a .NET class and to invoke its methods.

Reflection .NET’s reflection classes, available in the namespace System.Reflection ,
and class System.Type are able to retrieve type information from arbitrary .NET types.
For every inspected class, information is made available about its fields, constructors,
methods etc. For this purpose System.Type provides methods like GetConstructors,

GetFields, GetMethods, GetProperties, GetEvents... which may be invoked
on every Type object.

A Type object can be generated from a string containing the name of the class (e.g.
“System.Object”) by invoking the method
public static Type GetType (string typeName);

declared in class System.Type . typeName 15 can be a simple type name, a type name that
includes a namespace, or a complex name that includes an assembly name specification.
If typeName includes only the name of the type, this method searches in the assembly of
the calling object, then in the mscorlib.dll assembly. If typeName is fully qualified with
the partial or complete assembly name16, this method searches in the specified assembly.

Another way to generate a Type object is by calling the method
public Type GetType(); (declared in class System.Object)
on an arbitrary object. This method returns the Type object corresponding to the class
the object was created from.

public MethodInfo[] GetMethods(); returns an array of MethodInfo objects each
representing a public method declared or inherited by the class represented by the
Type object GetMethods was invoked from. The class MethodInfo is contained in the
System.Reflection namespace. For every MethodInfo object the attributes, name and
return type of the corresponding method can be determined as well as the types of
its parameters. For this purpose, class System.Reflection.MethodInfo provides the
properties Attributes, Name, ReturnType and a method
public abstract ParameterInfo[] GetParameters();

returning an array of ParameterInfo objects each representing one parameter. A Param-
eterInfo object provides e.g. the name and type of the parameter as well as its attributes.

15The following description concerning ’typeName’ comes from the MSDN-Library.
16The term ’complete assembly name’ is used synonymously to ’fully qualified assembly name’.

66 CHAPTER 2. FOUNDATIONS

Another way to obtain a MethodInfo object is by invoking the method
public MethodInfo GetMethod(string name, Type[] types);

on the Type object under consideration. This method can be called, if the method name
and the types of its parameters are known.

A MethodInfo object may also be used to execute the corresponding method. For
this purpose the class MethodInfo provides a method Invoke with signature
public object Invoke(object obj, object[] parameters);

The first parameter refers to the object the method is invoked from. The second param-
eter represents the arguments used for the method call.

Knowing the name of a class, it is possible to create an object thereof by first generat-
ing a Type object typeObj using the method GetType of class Type from above and then
calling System.Activator.CreateInstance(typeObj); . CreateInstance has the fol-
lowing signature : public static object CreateInstance(Type type); and be-
longs to the class Activator in the namespace System .

Using these techniques, a tool is able to handle arbitrary, unknown classes entirely
independently of user interaction. It may create an object from a class only known by
the class name, it may retrieve information on the methods the object supports, it may
invoke methods from this object etc.

The following example demonstrates the dynamic loading of a type, the creation of
an instance of this type, the retrieval of a MethodInfo object for a method exposed by
the type and its invocation.

using System;

class MyClass
{

public static void Main(string[] arg)
{

try
{

// Get the type of a specified class.
Type tso = Type.GetType("System.Object");

// Get a MethodInfo object for the method ’GetType’
// of class ’System.Object’
System.Reflection.MethodInfo mi = tso.GetMethod ("GetType");

// Create an instance of class ’System.Object’
object obj = System.Activator.CreateInstance(tso);

// Invoke ’GetType’ on ’obj’
object retval = mi.Invoke(obj, null);

}
catch(TypeLoadException e)

2.2. COMPONENT MODELS 67

{
Console.WriteLine(e.Message);

}
catch(Exception e)
{

Console.WriteLine(e.Message);
}

}
}

2.2.3.5 Consistency / Correctness of a Composition

As described in Section 2.2.3.2, the primary composition techniques available for .NET
components are the wiring of component instances based on events and the grouping
of component instances by containers.

Condition 2.2.19 (Valid Event Connections) An event consumer and an event source can
be connected via an event of type EvtType, if the event source declares an event variable of type
EvtType and the event consumer implements a method that matches the method prototype defined
by EvtType.

Condition 2.2.20 (Valid Container - Component Connections) Every instance of type
System.ComponentModel.IComponent can be added to an arbitrary container of type
System.ComponentModel.IContainer .

2.2.3.6 Compatibility / Substitutability

A new version of a .NET component can be used as long as the component class still
provides all properties, events and methods publicly available in former versions that
is, the component interface of the component can only be augmented.

Condition 2.2.21 (Substitution of .NET components) Let the component class NC be re-
ferred to by a client. Let NCnew be another .NET component. Then NCnew can only be used
instead of NC, if

• NCnew is a subtype of NC in .NET,

• a client referring to the component class NC does not use the class’s name directly for
instantiation e.g. by using the name as a constant in its program code. Instead, the client
can e.g. read the name from a file.

Chapter 3

Improvements over Existing
Approaches

This chapter describes the similarities as well as the differences between the industrial
component models described in Section 2.2 and identifies several of their shortcomings
with respect to the component model as such (Section 3.1), their type system (Section
3.3) and the composition techniques available (Section 3.2). In addition to the compo-
sition techniques provided by the component models themselves, we shortly discuss
existing tooling with respect to visual composition. For every field discussed we finally
present the improvements we want to achieve over the existing approaches.

3.1 Component Models

In this section we summarize the main concepts of the existing industrial component
models and discuss some of their shortcomings. Our unifying component model has to
support these main concepts. To complete our discussion on existing component mod-
els, we include the Corba Component Model (CCM) and Enterprise JavaBeans (EJB).
Finally we describe additional concepts we want to support and motivate them by an
example.

JavaBeans and .NET: JavaBeans as well as .NET components mainly suffer from the
problem that they can only declare what they provide to their clients. As they are as-
sumed to be completely self-contained, they do not specify any requirements. Thus,
they can not be used in contexts, where requirements are inevitable, as e.g. in layered
architectures on a higher level. In addition, the methods they provide, that is, their con-
tract to their clients, are not declared by a separate interface specification apart from the
component class. Thus no other class than the component-class can be used for imple-
mentation. In addition, from a client’s point of view, a JavaBean or .NET component
only provides one single interface comprising all its functionality. There is no means
to subdivide its functionality into smaller accessible pieces. Although the JavaBeans

68

3.1. COMPONENT MODELS 69

or .NET classes can implement several different interfaces, the component model has
no means to express this fact e.g. by defining the implemented interfaces as different
provided service interfaces. JavaBeans provide introspection and reflection services by
BeanInfo-objects and Java reflection. .NET components provide reflection services us-
ing .NET reflection.

COM: In contrast to these two models, COM supports pure interface based access to
its functionality. These interfaces are declared apart from the implementation and define
the contract to its clients. COM components can provide several different interfaces to
their clients which can be accessed independently. In addition to interfaces the COM
component implements, it can declare outgoing interfaces, which generally are used to
notify registered clients which have to implement this interface. Outgoing interfaces are
mainly used for notification purposes, but they can also be used by a server to obtain
support from its client. Although these two applications of outgoing interfaces are fairly
distinct, there is no means to distinguish them and therefore no possibility e.g. for a tool
to determine, if a required connection is not established. At runtime, outgoing interfaces
in COM can refuse connections, if a maximum number on connections is reached, but
it is not possible to determine in advance whether an outgoing interface restricts the
number of sinks which can be registered simultaneously.

The interfaces implemented as well as the outgoing interfaces of a COM component
can be declared explicitly in IDL and/or in type libraries separate from its implemen-
tation. Therefore in principle different implementations of a component interface could
coexist. Nevertheless, COM allows only one implementation to be used at a time. It
maps every class ID to a single implementation.

For COM components introspection and reflection are supported by type libraries.

CCM: Similar to COM, CCM components allow access to their functionality through
different provided interfaces, called facets. In addition, CCM allows one to declare the
dependency of one component on other components in terms of required interfaces,
so-called receptacles. CCM distinguishes between simplex and multiplex receptacles.
Whereas simplex receptacles allow only a single connection to be established at a time,
multiplex receptacles allow an arbitrary number of connections. Nevertheless, there is
no possibility to declare an explicit limit on the number of connections. It is also not
possible to distinguish optional from mandatory receptacles.

CCM supports connections between receptacles and fitting facets of two component
instances. Connections are established on component instance level. A connection is
established by registering a fitting facet of one component instances at a receptacle of
another component instance. Registering is done by calling a special connect-method on
the component instance declaring the receptacle. This connect-method accepts a facet
with a fitting interface type. This mechanism is similar to the registering of an event
listener at an event source in the JavaBeans component model. After the connection is
established, the requirement expressed by the declaration of the receptacle is satisfied.

70 CHAPTER 3. IMPROVEMENTS OVER EXISTING APPROACHES

Similar to COM, the interface of a component can be declared apart from its imple-
mentation in OMG IDL, an OMG1 specific interface definition language. The compo-
nent interface specification comprises the declaration of its sets of facets and receptacles.

Reflection services are supported through interface repositories.

EJB: An EJB is a server side component which exposes its business functionality
through a well defined interface, the so-called component interface, to its clients. Besides
the component interface, a bean also has to implement a so-called home interface which
primarily allows one to create bean instances of the desired type. These two interfaces
build the contract between a client and a bean and separate the component interface
from its implementation(see [EJB03]).

The component interface declaring the bean’s business methods is not declared in
a separate IDL-File. Instead, it is declared as a Java interface, but its name is explicitly
mentioned in the deployment descriptor.

A deployment descriptor is a special XML-file containing information about a single
EJB or a set of EJBs to be deployed. For every EJB the deployment descriptor contains
amongst others a name under which the bean’s home interface is registered in its envi-
ronment, the types of the bean’s home and component interfaces2, the name of the bean
class used as implementation etc.

An EJB can declare that it statically depends on another EJB. The used component
has to be instantiated and accessed in the program code of the using component. Com-
ponents refer to the used components by a logical name in their program code similar
to the use of a CLSID in COM. The implementation to be used for a component re-
ferred to by a logical name is determined by entries in the deployment descriptor or by
the deployer himself. The static dependencies between EJBs are also described in the
deployment descriptor using the tags <ejb-ref> and <ejb-link>. This kind of depen-
dency is a static dependency as introduced in Section 2.1 and does not support dynamic
bindings between different component instances as is e.g. supported by CCM.

For introspection, the method getEJBMetaData() implemented by the home ob-
ject returns relevant information concerning the home and component interface of an
EJB. Java reflection can be used for dynamic method invocation on EJBs [DP00].

Summary: The following table summarizes the main concepts and lists for every in-
dustrial component model described so far which of the listed concepts are already
fully or partly supported and which not. A concept fully supported is denoted by ’+’, a
concept not supported by ’–’, and concepts partially supported by ’(+)’.

1The Object Management Group is a computer industry consortium founded in 1989 which developed
already diverse industry standards, as e.g. CORBA, the Common Object Request Broker Architecture.

2The former EJB specification version 1.1 refers to the component interface as the bean’s remote inter-
face.

3.1. COMPONENT MODELS 71

Concept JavaBeans COM .NET CCM EJB
Communication through well-defined ser-
vice interfaces which are declared apart
from the implementation – + – + +

Explicit declaration of the service interfaces
which are provided – + – + +

Explicit declaration of the service interfaces
which are required – (+) – + (+)

Declaration of dynamic dependencies

– + – + –

Declaration of the complete component in-
terface as an entity in its own right, made
apart from the component implementation – + – + +

Declaration of a limit on the number of con-
nections – – – (+) –

Connections based on service interfaces

– + – + –

Reflection services

+ + + + +

Table 3.1: Main Concepts of Industrial Component Models

As these industrial component models are to be integrated into a common model,
at least the listed main concepts have to be supported by our common model as well
as the existing connection mechanisms to resolve dynamic dependencies. Although
JavaBeans and .NET components do not support service interfaces, they can easily be
extended to do so.

In addition to unification, our approach should avoid the shortcomings described
for the various models and support some additional useful concepts. In Section 1.1 we
motivated already why it is useful to support further concepts like plugs, especially as
a means to model bi-directional connections, and to distinguish between optional and
mandatory required service interfaces. To further motivate these additional concepts
not supported by the existing models as well as the communication through service
interfaces only, we present an example from [SPH03] we will often refer to in the re-
mainder of this thesis.

72 CHAPTER 3. IMPROVEMENTS OVER EXISTING APPROACHES

Example 3.1.1 (Wordprocessor [SPH03]) A company develops a wordprocessor application
which is very flexible, as it is composed of several components: a wordprocessor kernel, an editor,
a data manager and a spell checker.

Wordprocessor Wordprocessor

Data Manager
DB

Editor
Spell Checker

English
Data Manager

Filesystem
Editor

Spell Checker
French

Data Manager
DB

Editor
Spell Checker

English
Data Manager

Filesystem
Editor

Spell Checker
Italian

Wordprocessor
kernel

Wordprocessor
kernel

Wordprocessor
kernel

Wordprocessor
kernel

Wordprocessor Wordprocessor

Figure 3.1: Different Configurations of a Wordprocessor Application

The wordprocessor kernel implements the overall functionality. Therefore it needs the services
of the other components. Whereas the wordprocessor kernel is used in every possible configura-
tion of a wordprocessor application, the editor, data manager and spell checker components can
be exchanged by others which are more suited to the needs of a special customer. One customer
for example wants to store his data into a database, another wants to use the existing filesystem.
There might be customers from different countries who order different spell checkers for example
in French or English. Other customers want to integrate several spell checkers, as their own
customers are spread over different countries and they want to ensure that the documents/letters
sent to them are free of errors. There might also be customers ordering a minimal version of
the wordprocessor without any spell check functionality. Figure 3.1 shows some possible con-
figurations of the wordprocessor application. In this figure an arrow from a component C to
a component D denotes that C requires services from D. (For a distinction between solid and
dashed arrows see below.)

To ensure this flexibility, the wordprocessor kernel must declare which interfaces it requires
from the editor, data manager and spell checker components. Then these components may be

3.2. COMPOSITION TECHNIQUES 73

substituted by others later on, if the new components provide at least the interfaces required
by the wordprocessor kernel. On the other hand, the data manager, editor and spell checker
components must declare which interfaces they provide so that the entity connecting an instance
of the wordprocessor kernel and an instance of a needed component is able to decide, whether these
two component instances fit together. In this context “connecting” an instance of a component
C (Cinst) to an instance of a component D (Dinst) means that Cinst gets a means to access the
needed interfaces of Dinst.

Some interfaces allow multiple connections as the interface to the spell checking component
for example. This means, the wordprocessor kernel can get access to the interfaces of more than
one spell checker (see configuration 3 in Figure 3.1). There are connections, which are manda-
tory (denoted by solid arrows) and others which are optional (denoted by dashed arrows). To
provide its minimal functionality, an instance of the wordprocessor kernel needs a connection to
an instance of a data manager and to an instance of an editor. Without these connections, an
instance of the wordprocessor kernel is not able to provide its services. So these connections are
mandatory. On the other hand, the connection to an instance of a spell checker is optional. An
instance of the wordprocessor kernel can be used without any spell checking functionality.

If a spell checker is used, there exists a close interconnection between the instances of the spell
checker and the editor. Both component instances need services of one another. The spell checker
instance must get access to the current page and the editor instance must get the misspelled
words from the checker instance. This bi-directional connection must be established correctly.

3.2 Composition Techniques

In this section we summarize the existing composition techniques described in Section
2.2 and their shortcomings. In addition to the composition techniques available for the
industrial component models we discuss visual assembly using builder tools, as simpli-
fying composition by visual support through tools was one of the goals of this thesis.
Other related areas as composition languages, component-oriented programming lan-
guages and architecture description languages are discussed in Section 6.

3.2.1 Industrial Component Models

As can be inferred from the composition techniques discussed for the different com-
ponent models in Section 2.2, most of the current industrial component models only
provide a flat component model. That is, there are predefined means to connect two
component instances e.g. by events or services, but there is no possibility to define new
components from existing ones by techniques other than using normal programming
languages. Often even interconnections based on interfaces are not supported as is es-
sential for many compositions like the one described in example 3.1.1. All industrial

74 CHAPTER 3. IMPROVEMENTS OVER EXISTING APPROACHES

component models lack the possibility to establish bi-directional connections by a suit-
able concept. With respect to the different component models we can state the follow-
ing:

The JavaBeans component model e.g. only provides a predefined means to connect
two component instances using event connections. Besides using program code the
model does not provide any other means to describe a set of interconnected component
instances making up an application or a new JavaBean. The same holds for our .NET
components.

CCM [COR02] already provides a means to describe a set of interconnected com-
ponent instances and their mapping to hosts and processes by a so-called assembly
descriptor. Nevertheless, this kind of description does not support the building of new
components with a dedicated interface. Interface based connections are supported by
wiring receptacles of one component instance to fitting facets of other component in-
stances.

For EJBs [EJB03] it is possible to define a set of cooperating EJBs. This is done in a
special section of the deployment descriptor. It can be defined which implementations
to use for EJBs referred to by other EJBs of the set. As in the case of CCM this is no means
to define new components with a dedicated interface. The used components already
have to be instantiated and accessed in the program code of the using components. The
only advantage using this approach is the possibility of a late binding. Components
refer to the used components only by a logical name in their program code similar to
the use of a CLSID in COM. The implementation to be used for a component referred
to by a logical name is determined by entries in the deployment descriptor or by the
deployer himself.

In contrast to the above mentioned flat industrial component models, COM offers
a means to hierarchically compose components by aggregation yielding new compo-
nents (see page 38). Unfortunately, there are several drawbacks in this approach: One
is that components must be aware whether they should be used in aggregates in the
future. If components want to be able to be aggregated, they have to provide special
additional features such as two versions of the IUnknown interface: a delegating and a
non-delegating one. Additionally, they have to be aware whether they are instantiated
as a stand-alone or an aggregated instance. Components missing these features can not
be aggregated later on. Another drawback is that the means for hierarchical composi-
tion provided by COM are only targeted to programmers. They have to use existing
programming languages to compose components, which do not support component
composition concepts in a first class manner. Connections based on interfaces can be
established using outgoing interfaces.

We want to improve the composition techniques available by supporting connec-
tions via service interfaces and plugs and by a suitable means to compose components
hierarchically by simple techniques. One should be able to apply these composition
techniques also to components of the industrial component models.

3.2. COMPOSITION TECHNIQUES 75

3.2.2 Visual Assembly

Several commercial IDEs like Borland’s JBuilder and Delphi, IBM’s Visual Age, Mi-
cosoft’s Visual Basic, Visual C++ and Visual Studio 2005 already support some kind of
visual assembly especially in the context of GUI elements. From the visual represen-
tation of the assembly, the tool generates program code which can be adapted by the
developer. Thus, this approach needs still skilled developers. It is too complicated es-
pecially for less experienced users as assemblers. They still have to write at least glue
code to connect component instances. On the other hand, only special kinds of inter-
connections are supported by such tools, e.g. event connections.

Besides commercial IDEs some test environments exist as e.g. Sun’s BeanBox or Bean
Builder [Bea]. Those tools mainly serve to test components and to demonstrate the
assembly mechanisms supported by the underlying component model as well as the
adapter mechanisms supported. The components can be tested for their event behavior
and for a proper behavior when using property sheets. An assembly can be stored to
disk and reloaded. BeanBox and Bean Builder both only support event connections as
does the Component Work Bench [Obe01, OG02], CWB for short. The CWB is a proto-
type of an assembly tool which allows instances of components belonging to different
component models to be assembled in the same scenario. A scenario is a loose assembly
of component instances interconnected by events. No application can be built from a
scenario nor new components built. As CWB, BeanBox and Bean Builder do not support
the creation of new components from the assembled ones.

All the tools mentioned so far do not support advanced features like visual connec-
tions based on interfaces or the detection of components relying on other components
including the case that two components rely on one another (bi-directional connection).
If the assembler does not know about these dependencies and needed components are
not installed or instances are not connected properly, a runtime error will occur later
on or the application will not behave as intended. Therefore, assembly tools must be
able to check a configuration for consistency and to simplify for example bi-directional
connections.

If visual assembly is only based on event connections, used components are assumed
to be completely independent of one another. Some of them are able to emit events,
others are able to react on such an event or otherwise glue code / adapters may be
generated reacting on the emitted event and in turn calling a desired method of a target.
This approach is especially suited for GUI components. But there are many scenarios
where components rely on other components and event connections are not appropriate
as in example 3.1.1 on page 72.

WREN [LR01] is a prototype of an assembly tool which assembles components based
on JavaBeans. But in addition to JavaBeans as introduced by Sun, these beans have pro-
vided and required service interfaces called ports. WREN addresses some requirements
on tools which are especially targeted to assembly tools. WREN provides a type and an
instance view for components, it allows one to search component pools for a set of com-
ponents which fit to a user query and to detect components in an assembly with open

76 CHAPTER 3. IMPROVEMENTS OVER EXISTING APPROACHES

requirements. Connections in WREN are based on interfaces. Interface connections
are declared on type level, not on instance level. New compositions yield applications.
Unfortunately, new components can not be built from assembled ones.

Although WREN already addresses requirements, the other tools do not address,
there are still a lot of requirements on an assembly tool not tackled. Lüer and van
der Hoek [LvdH02] summarize requirements on the composition process and give an
overview of some further tools. For them an ideal composition process ends up in a
composed application and is divided into different phases as searching for components
matching a given requirement, selecting components from the set of components found,
adapting components, composing them, checking a composition for consistency, and
executing a composed application either in the context of the composition environment
or as stand-alone application. Current tools only partly support this process.

In the following we summarize our main requirements from Section 1.1 on the sup-
port an assembly tool should provide to its users. Except adaptation, all phases of the
composition process as described in [LvdH02] are tackled. In addition, we demand that
our tool also supports the building of new components by means of composition, the
deployment of newly created components and support for reconfiguration of existing
compositions. We support connections based on events, service interfaces and plugs.

It follows the summary on the support our tool should provide to its users. The tool
should at least

• provide the user with a tool box of components he can choose from and a com-
position window where the user can place instances of selected components for
configuration,

• support the selection of components suitable to a requirement specified by the
user or a component already selected for composition,

• allow a user to connect component instances residing in the composition window
visually,

• support interconnections based on events components emit or consume, intercon-
nections based on services the components provide or require, as well as intercon-
nections based on plugs,

• support the creation of new components by means of hierarchical composition,

• support the creation of new applications,

• provide consistency checking for newly created components, and applications
thereby distinguishing the handling of optional and mandatory required services,

• support the deployment of newly created components,

• support the reconfiguration of existing compositions.

3.3. TYPE SYSTEMS FOR COMPONENTS 77

3.3 Type Systems for Components

In the following we discuss the available type and subtype definitions for the indus-
trial component models described in Section 2.2 and summarize the diverse conditions
one or more component models impose on subtypes. We also shortly discuss the Corba
Component Model and Enterprise JavaBeans. The type and subtype definitions avail-
able will be checked for their suitability with respect to consistency checks and sub-
stitutability of components. We shortly discuss the conditions our subtype definition
should satisfy.

JavaBeans: For type and subtype definitions for JavaBeans we refer to our definitions
on page 26. Thus the type of a JavaBean is equal to the type of the corresponding
JavaBean-class. This class defines the events emitted by its registration methods as well
as the types of listeners which may register for notifications. This information is used
by compilers and assembly tools for connections based on events.

JavaBeans having a JavaBean-class D extending another JavaBean-class C are sub-
types of the JavaBean with JavaBean-class C. Although classes are not the same as
interfaces in our sense because classes additionally carry implementation and probably
public fields, we focus on the implicit interface of the class as if it were an explicitly,
separately defined interface. Then a subtype provides at least the same interface to its
clients as its supertype. That is, all properties, events and methods available in the su-
pertype are also available in the subtype, especially the methods to register interested
listeners. Thus, event connections which can be established on an instance of a super-
type can also be established on an instance of a subtype.

Nevertheless, as already stated in Section 2.2.1.5 a JavaBean being a subtype can only
be used instead of the original JavaBean in contexts, where the name of the JavaBean-
class is not directly used in the program code/assembly code for instantiation. Thus,
this kind of substitutability is not independent of the program/configuration in which
the JavaBean occurs.

As JavaBeans do not have a means to express dependencies between components in
terms of interfaces, their type and subtype definitions can not consider required service
interfaces and bi-directional connections based on interfaces.

COM: Generally, known type and subtype definitions for COM components only re-
fer to their implemented interfaces not to their outgoing interfaces (see type definition
2.2.10 and subtype definition 2.2.11 on page 42). In this case, not knowing what types of
outgoing interfaces exist, it can not be checked, whether a sink object can be registered
at an outgoing interface for notification purposes. To be able to do this check, our type
and subtype definitions 2.2.13 including outgoing interfaces must be used.

The generally known subtype definition for COM components only assures that a
subtype provides at least all service interfaces to its clients its supertype provides. Al-
though this definition ensures that, if the supertype implemented IConnectionPoint

78 CHAPTER 3. IMPROVEMENTS OVER EXISTING APPROACHES

Container , the subtype also implements this interface, it does not ensure that the sub-
type has at least the same set of outgoing interfaces as its supertype. This leads to prob-
lems if clients expect the outgoing interfaces of the supertype to be available, as they
want to be notified via these outgoing interfaces (see Section 2.2.2.3). When such client
code should not become invalid, subtype definition 2.2.13 has to hold. But even this
definition can bear problems in the case of outgoing interfaces. If an outgoing interface
internally restricts the number of connections to it by an upper limit, a subtype could re-
duce this upper limit and thus not all connections which could be formerly established
can be established when using a subtype instead of the supertype.

Subtyping for service interfaces is not supported. A service interface implemented
or declared as an outgoing one by both, sub- and supertype components, has exactly
to provide the same set of operations. This set is defined by the IID identifying the
interface.

As for JavaBeans, all type and subtype definitions do not consider bi-directional
connections.

.NET: As a .NET component, as considered in this thesis, is nothing more than a spe-
cial class, its type is the type defined by the corresponding .NET class and subtyping
is reduced to subclassing (see type and subtype definitions 2.2.17). Thus the discussion
for .NET components is the same as for JavaBeans.

CCM: In OMG IDL, an interface definition language used for Corba objects and com-
ponents, component types can be defined [COR02]. A component type includes amongst
others the set of facets (provided services) as well as the set of receptacles (required ser-
vices) declared for this component. Thus, knowing the interfaces typing the facets and
receptacles, they can be compared to decide whether a facet of one component instance
can be connected to a certain receptacle of another component instance.

In OMG IDL it is even possible to specify that a component B inherits from a compo-
nent A. From this definition it can be inferred that B has at least all facets and receptacles
of exactly the same types as A. Thus all former clients of A can refer to B instead. The
facets they expect are available and declared connections can still be established. Thus
former configurations can be retained. The only limitations concern the types for inter-
faces belonging to both, sub- and supertype components. They have exactly to be the
same. This holds for facets as well as for receptacles. Multiplex receptacles allowing
multiple connections retain this ability when inherited. That is, if a receptacle of a su-
pertype is a multiplex receptacle, the corresponding receptacle of the subtype has also
to be a multiplex receptacle.

One severe problem with the kind of subtyping for CCM components is that sub-
types may define additional receptacles. Thus a component of a subtype can require
more interfaces than the supertype. These additional requirements can probably not be
satisfied by the environment of the component.

3.3. TYPE SYSTEMS FOR COMPONENTS 79

As in the case of the other component models, the type and subtype definitions do
not consider bi-directional connections.

EJBs: The EJB component model provides a separation between the client view of a
bean (as presented by its home and component interfaces) and the enterprise bean class
(which provides the implementation of the client view). Nevertheless, the EJB specifica-
tion [EJB03] does not give an explicit definition for the type of an EJB nor for subtyping
between EJBs. An implicit definition can be found in the following text referring to
future releases:

“The current EJB specification does not specify the concept of component inheri-
tance. There are complex issues that would have to be addressed in order to define
component inheritance (for example, the issue of how the primary key of the derived
class relates to the primary key of the parent class, and how component inheritance
affects the parent components persistence).

However, the Bean Provider can take advantage of the Java language support for
inheritance as follows:

• Interface inheritance. It is possible to use the Java language interface inher-
itance mechanism for inheritance of the home and component interfaces. A
component may derive its home and component interfaces from some ”parent”
home and component interfaces; the component then can be used anywhere
where a component with the parent interfaces is expected. This is a Java lan-
guage feature, and its use is transparent to the EJB Container.

• Implementation class inheritance. It is possible to take advantage of the Java
class implementation inheritance mechanism for the enterprise bean class. For
example, the class CheckingAccountBean class can extend the AccountBean
class to inherit the implementation of the business methods.”

Therefore we define the type of an EJB as the set of its home and component interface
and define an EJB B to be a subtype of an EJB A, if the home and component interfaces
of B are equal to or subtypes of the corresponding interfaces of A. This ensures that all
former clients of A can refer to B instead.

Note that this type and subtype definitions do not consider the static dependencies
on other enterprise beans (called EJB references) which is the harder part in subtype
definitions.

Concerning EJB references the EJB specification only tells when an EJB can be used
as a target bean for an EJB reference:

“...the home and component interfaces of the target enterprise bean must be Java
type-compatible with the interfaces declared in the EJB reference.”

80 CHAPTER 3. IMPROVEMENTS OVER EXISTING APPROACHES

Summary: The following table summarizes the conditions one or more component
models impose on subtypes. For COM we refer to the generally excepted type and
subtype definitions 2.2.10 given on page 42. A condition being met is denoted by ’+’, a
condition not met by ’–’. Conditions partially met are denoted by ’(+)’. E.g. condition 2
is only partially met if corresponding service interface types are restricted to be equal.
If conditions are not met because the corresponding concepts as e.g. required service
interfaces do not even belong to the component type, this is denoted by ’–’.

Condition JavaBeans COM .NET CCM EJB
A subtype provides at least all service inter-
faces its supertype provides. (+) + (+) + +
For every service interface already provided
by the supertype the type of this interface is
equal to or a subtype of the type of the for-
mer interface.

(+) (+) (+) (+) +

A subtype declares all service interfaces as
required ones that its supertype declared to
be required ones.

– – – + –

For every required service interface already
declared by the supertype, the type of this
interface has to be equal to or a supertype of
the type of the former interface.

– – – (+) –

If a required service interface R of the super-
type allows more than one connection, the
subtype allows at least the same number of
connections.

– – – + –

Table 3.2: Conditions on Sybtypes

Only CCM explicitly supports the concept of a component type and subtyping be-
tween components. For the other component models, type and subtype definitions
could only be inferred from implicit statements of their specifications or discussions
in the literature.

Similar to CCM we will define precisely what a component type is and which sub-
typing rules hold. Our type and subtype definitions must include provided and re-
quired services as well as our additional concept, plugs. Mandatory and optional re-
quired services have to be distinguished, due to their distinct nature. Our type system
should be more flexible in that it also should allow sub- or supertypes for service in-
terfaces and that component subtyping is based on structural equivalence instead of an
explicit definition as in CCM. In contrast to CCM, a subtype must not have more re-
quired services than its supertype due to the problems already described in the context
of CCM.

3.3. TYPE SYSTEMS FOR COMPONENTS 81

Our subtype definition should ensure that a component A of type TA can be replaced
by a component B of type TB without effecting any existing configuration formerly
referring to A, if TB is a subtype of TA.

In this context, a configuration may describe an assembly, a new component or an
application which is built from interconnected component instances. Such a configura-
tion can e.g. consist of program code or some kind of assembly description or it can be
an assembly package for CCM components [COR02] etc.

If an existing configuration must not be changed, no additional interconnections
can be declared, no additional component instances added, no component instances
removed nor existing connections removed. That is, the new component must have the
same behavior as the old one with respect to all former existing provided functionality
as well as all former existing connections.

Chapter 4

Our Approach

This chapter presents the main contributions of this thesis already listed in
Chapter 1:

• Contribution 1: Unifying component model with plugs (Section 4.1)

• Contribution 2: Hierarchical composition (Section 4.2)

• Contribution 3: Type system for our components (Section 4.3)

• Contribution 4: Support for component substitution (Section 4.8)

• Contribution 5: Features supporting visual composition (Section 4.11)

This chapter mainly describes the contributions we make to achieve the desired
improvements discussed in Chapter 3. In the following, every contribution is briefly
sketched. A detailed presentation is given in the corresponding sections of this chapter.
Furthermore, in Section 4.10 we will show how industrial components can be integrated
into our component model, one of the main goals of this thesis.

Component model: We introduce a hierarchical component model with the following
characteristics:

• Component instances communicate to the outer world only through their com-
ponent interfaces. The component interface determines the functionality of the
component which can be accessed by other components. The overall functionality
is divided into a set of smaller functional units which can be accessed individually.
Every functional unit is represented by a service interface grouping the operations
implementing this functionality. The overall functionality provided by the compo-
nent is therefore determined by the union of all of its provided service interfaces.

82

83

A component can call operations belonging to service interfaces of other compo-
nents which is referred to as service communication. This kind of communication is
unidirectional.

• A component may need functionality from other components to work properly.
If the component can not resolve this dependency by itself as it does not know in
advance the components which will be used to provide the needed functionality,
the dependency is explicitly stated in the component interface in terms of required
service interfaces. If a component declaring service interfaces as required ones is
used as part of an application, these open references have to be resolved in the con-
text of the application. That is, the application must contain another component
providing the needed functionality and this component must be made known to
the component requiring this functionality. This process is referred to as connec-
tion.

• If two components need mutual access to some of their provided functional units,
a bi-directional communication is needed. Especially for this purpose a new con-
cept called plug is introduced which allows a programmer to express such mutual
dependencies in the component interface. A plug allows a programmer to group
the service interfaces of both components involved in the bi-directional commu-
nication. Plugs are units of interconnection and as such they simplify the estab-
lishment of bi-directional connections. Other mechanisms used for bi-directional
communication as callbacks or asynchronous communication via special proto-
cols do not have a programming language counterpart enclosing both directions
of communication and acting as a unit of interconnection between two parties.

Hierarchical composition: The component model comes with a simple, high level lan-
guage to specify component interfaces and component implementations. Each com-
ponent implementation explicitly specifies, which component interface it implements.
Component implementations describe atomic components as well as hierarchically com-
posed components. Using this language, several component instances can be aggre-
gated and wired together to build a new, higher level component exporting dedicated
service interfaces and plugs of its constituents. A component refers to one of its con-
stituents only by a name and the component interface type of the constituent. The lan-
guage thus adheres to the principle of interface based programming [SM05, Pat00] in
the context of components. For situations in which it is necessary to determine a certain
implementation to be used for an individual constituent of a composite component or
for all constituents typed by the same component interface, the language gives a con-
venient support. It allows a programmer to bind a special component implementation
to a component interface type or to an individual constituent. If such a binding is re-
stricted to an individual constituent, the specified component is used to instantiate the
corresponding constituent only. If the specified component implementation C is bound
to a certain component interface CI , C is used to instantiate all constituents of the com-
posite component which are typed CI . To the best of our knowledge, this feature does

84 CHAPTER 4. OUR APPROACH

not exist in other composition languages or component oriented languages. In addition
to other languages, our language also supports interconnections and exports based on
plugs.

Integration of industrial components: Industrial components can be integrated into
our component model as atomic components. The integration is achieved by provid-
ing a component interface specification and a component implementation for atomic
components written in our language. Such an atomic component implementation es-
sentially consists of a reference to the component of the industrial component model.
Higher level composite components can be built from atomic components and other
composite components using our language.

Type system: A type system for components including plugs and constraints on in-
terconnections is introduced. Such a type system is needed for various reasons. First
of all, component implementations for composite components use field declarations for
their constituents. A constituent must be typed somehow to know the service inter-
faces which can be exported and to know which connections to required service inter-
faces have to be established for the constituent. Secondly, types are needed to decide,
whether two component instances can be connected to each other via an interface or
plug. Thirdly, types and subtype relations are needed to decide, whether one com-
ponent can be substituted by another one without breaking the contract for existing
composite components internally referring to the component to be substituted.

Besides the integration of plugs and special constraints, the type system differs from
existing approaches in the handling of services a component needs from other compo-
nents to fulfill its task. Our definition ensures that a component already referred to in
composites can be substituted by a compatible one without affecting these composites.

Support for component substitution: Composed components can use strict interface
based programming when declaring their constituents. That is, a composed compo-
nent is not forced to specify a component implementation for its constituents. Thus, an
explicit binding may be omitted. In this case, the choice of a suitable component im-
plementation is left to the runtime system. Such an implementation can be substituted
by another one, if the new implementation has the same component interface. A new
component is even allowed to implement a subtype of this component interface type
as will be shown in Section 4.8. This late binding supports the exchange of component
implementations throughout the life cycle of a component.

Support for visual composition: In addition to the features already discussed in Sec-
tion 1.1 and the features presented when describing our prototypes of assembly tools
(Section 5), visual composition is supported by some algorithms which determine fit-
ting plugs and mappings between two plugs. These algorithms help us to establish plug
connections without any user interaction.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 85

4.1 The Unifying Component Model (UCM)

In this section we describe our Unifying Component Model, UCM for short. We fo-
cus on the elements of the component interface used for inter component communica-
tion and on the built-in mechanisms to establish interconnections between component
instances. Such built-in mechanisms are needed, if component instances shall be con-
nected by a third party without changing the code of the components involved. Thus,
these mechanisms ensure that components can be composed/connected as black boxes
by a third party.

4.1.1 Basic Component Model

4.1.1.1 General Basic Concepts

In this section we describe the main ideas of UCM. We introduce the fundamental no-
tation of a service and a plug, the basis for all interconnections between component in-
stances. Furthermore, we describe the process of connecting one component instance to
another one.

We start with the description of a component instance.
A component instance consists of a set of cooperating objects implementing the func-

tionality provided by the component instance. A component instance offers its ser-
vices through service objects. Clients can only communicate with a component instance
through these service objects. A component instance can provide more than one ser-
vice. Every provided service has a name and a type. The name has to be used by clients
to get access to the corresponding service object. The type declares the set of operations
a client can invoke on the service object. The type only declares method signatures. It
does not carry any implementation. To stress this fact and the fact that the type consti-
tutes an interface between a client and the component instance, the type of a service is
referred to as service interface type. A service object is not forced to implement only one
service interface type. Instead, it can implement several service interface types. One ser-
vice object can even be the sole object making up a component instance. On the other
hand, a component instance can support several services of the same type which refer
to different service objects implementing the same service interface type.

One service object can be referenced by several clients.
A component instance need not be fully self-contained that is, to fulfil its task, it

needs to call operations on service objects of other component instances. On the other
hand, component instances can call operations of other component instances (registered
listeners) to notify them of the occurrence of events they are interested in. Therefore
component instances may themselves be clients of other component instances. The ser-
vices a component instance accesses from other component instances are its required
services. These are divided into mandatory and optional required services. Whereas a
component instance can not live without having access to a service object implementing
the operations of a mandatory required service, it need not have a reference to a service

86 CHAPTER 4. OUR APPROACH

object implementing the operations of an optional required service which is often used
for notification purposes (see above).

Example 4.1.1 (Collection of Customer Data) In Figure 4.1 component instances and ob-
jects are denoted by rectangles with rounded edges. A provided service is denoted by a lollipop
(o-), a service object as an object with lollipops sticking out of its border. A lollipop is adorned
with the name of the provided service. The corresponding service object contains its name fol-
lowed by a colon followed by the service interface type(s) of the service(s) implemented by the
service object. The dotted rectangles with rounded edges denote proxies for services needed from
other component instances (required services). These proxies hold references to service objects
on which the needed operations may be called. A proxy holding a reference to a service object
is denoted by an outgoing line ending in a semicircle, which touches the lollipop of the service
object referenced (-(O-).

Component Instance 1 Component Instance 2

Client
ConfigTextfields

Init

DataSet
Functions

ChangeNotification

dataSets :
I_CustomDataSet

Access

panelTextfields :
I_Configuration

changeListeners :
I_ChangeNotification[]

DataSet
Access

DataSource
Functions

panelButtons :
I_Configuration

ConfigButtons

ChangeNotification
form : I_Init, I_ChangeNotification

dataSource : I_DataSource,
 I_CustomDataSetAccess

PS

obj : I_S1, I_S2, ...

Provided Service
with name ‚PS’

RS

Object with name ‚obj’ and implemented
service interface types ‚I_S1, I_S2, ...

Required Service
with name ‚RS’

proxy : I_S
Proxy with name ‚proxy’ holding a
reference to a service object of type ‚I_S'

Legend:

C

C

C

Figure 4.1: Component Instances with their Clients and Implementing Objects

Figure 4.1 shows two interconnected component instances working together to collect cus-
tomer data. Component instance 1 represents the form used for data input as shown in Fig-
ure 4.2. Component instance 2 represents the data source. Component instance 1 stores data
inserted into its edit fields to a data source by calling the operations belonging to the service
DataSetFunctions of component instance 2. Component instance 2 notifies component in-
stance 1 about changes made to the data source by other users so that component instance 1 can
update its edit fields accordingly.

Component instance 1 has four provided services ConfigTextfield and Config
Buttons of type I Configuration, Init of type I Init and ChangeNotification
of type I Change Notification as well as one mandatory required service DataSet
Access of type I CustomDataSetAccess .

4.1. THE UNIFYING COMPONENT MODEL (UCM) 87

Figure 4.2: Customer Form to enter Customer Data

The provided services ConfigTextfields and ConfigButtons enable some kind of
configuration of the customer form by clients. These services allow one e.g. to change the text
color for all headings of the edit fields or all button labels simultaneously. The provided service
Init has to be used, if a new data source is selected for storing and retrieving customer data
sets. It provides an initialization operation which loads the first data set, initializes the edit fields
accordingly and initializes the activation state of the buttons. ChangeNotification accepts
messages concerning changes made to the data source. Data changes cause the contents of the
form’s edit fields to be updated.

The service objects belonging to the provided services of component instance 1 are the ob-
jects named panelTextfields , panelButtons and form . form implements two services
simultaneously: Init and ChangeNotification .

The proxy for the required service DataSetAccess of component instance 1 is named
dataSets . It holds a reference to the service object for the provided service DataSetFunctions

of component instance 2 that is, DataSetAccess is connected to DataSetFunctions . This
reference allows component instance 1 to store the customer data inserted in the form-window
by calls to the methods belonging to DataSetFunctions .

Component instance 2 is a suitable service provider with respect to the required ser-
vice DataSetAccess of component instance 1, as it provides the service DataSetFunctions

of type I CustomDataSetAccess which is equal to the service interface type of DataSet

Access .
Component instance 2 has two provided services DataSourceFunctions of type I Data

Source and DataSetFunctions of type I CustomDataSetAccess as well as one optional
required service ChangeNotification of type I ChangeNotification .

The service DataSourceFunctions provides operations to change from one data source to
another. The service DataSetFunctions provides operations to load and store customer data
sets from and to a data source. All provided services of component instance 2 are implemented
by the service object dataSource .

Component instance 2 notifies component instance 1 of changes made to the data source
by using its proxy changeListeners . This proxy stores a reference to the service object for
ChangeNotification of component instance 1 which accepts messages concerning changes
made to the data source. Change notification is e.g. useful, if the data source is accessed by
different users simultaneously.

88 CHAPTER 4. OUR APPROACH

Part of the program code belonging to this description can be found in example 4.1.14
on page 93.

Now the concepts of the component model are described more precisely.

Term 4.1.2 (Service) A service is an access point through which a part of the component’s
functionality can be accessed by clients or through which the component accesses another com-
ponent’s functionality. The access is restricted to a set of operations defined by the service
interface type. The service interface type only declares method signatures. It does not carry
any implementation. A service also has a name which distinguishes it from other services which
may have the same service interface type.

The services of a component are divided into a set of provided services and a set of
required services.

Term 4.1.3 (Provided Service) A provided service is a service the component implements and
provides to its clients.

Term 4.1.4 (Required Service) A required service is a service the component does not imple-
ment itself but expects to be provided to it by other components.

A required service may be declared for several reasons already discussed in Section
1.1. One reason is that the declaring component really needs the service to be provided
to it by other components to fulfill its task. On the other hand, a required service may
be used to notify other components by calls to their provided methods or to declare that
the functionality of the component can be extended by the functionality declared by the
required service.

The name spaces for provided and required services are separated. Therefore, one
component may have a provided and a required service with the same name. This is
especially reasonable, if a component only hands over a service of another component.
That is, a component A provides a service S to its clients which is not implemented by
the component itself, but is instead provided by another component connected to A via
a required service. This required service would usually also be named S. Such “hand
over” behavior is often needed in layered architectures where one layer may only access
its direct neighbors.

The required services of a component express its explicit dynamic dependency on
other components (see Section 2.1). To resolve these dependencies, a third party (e.g. an
assembly tool) is needed which binds the requirements to suitable offerings of other
components. Such bindings are done on component instance level and are in the fol-
lowing referred to as connections. Later on we shall explain in more detail, what it
means for a component instance to be connected to another one. A component may
also have hard wired dependencies on the provided services of other components in its
code as far as no other party is needed to create an instance of the needed component
and to pass it to the requiring component (see static dependencies in Section 2.1). This is

4.1. THE UNIFYING COMPONENT MODEL (UCM) 89

usually the case, if a component consists of several subcomponents. When the compos-
ite component is instantiated, instances of the subcomponents are also created which
are owned by the composite.

To simplify the way of speaking, we additionally introduce the term of a (suitable)
service provider.

Term 4.1.5 (Suitable Service Provider) A component which provides services to its clients
is called service provider. A service provider is called suitable with respect to a specified
required service R of another component, if it provides at least one service which implements all
operations needed by R1.

Term 4.1.6 (Mandatory/Optional Required Service) A required service R of a component
C is called mandatory, if R must be connected to an instance of a suitable service provider for
every instance of C. Otherwise R is called optional.

E.g., the wordprocessor kernel in Section 3.1 has two mandatory required services:
one to a data manager and one to an editor. A connection to a spell checker is optional.

To express that a required service R is optional or mandatory, we introduce a lower
limit on the number of possible connections, in the following referred to as min R. If
min R = 0, then a connection of this required service to some provided service is op-
tional, otherwise mandatory. Furthermore, min R > 0 allows us to express that a com-
ponent needs at least min R service providers to be connected to its required service R
to work properly. We also introduce an upper limit on the number of connections. For a
required service R which allows an unbounded number of service providers to be con-
nected to it, the upper limit max R can be set to ’*’. If lower and upper limit both equal
1, then exactly one connection is allowed and this connection has to be established.

Example 4.1.7 (Wordprocessor Connections) An instance of the wordprocessor kernel (see
example 3.1.1 on page 72) needs a connection to an instance of a data manager as well as to
an editor component, but connections to several instances of a data manager or editor are not
allowed. That is, the connections to data manager and editor are both limited by min R = 1
and max R = 1. On the other hand, a connection to an instance of the spell checker is optional,
but it is possible to connect an arbitrary number of spell checkers to the wordprocessor kernel.
Therefore, for this connection min R = 0 and max R = ∗.

Term 4.1.8 (Service Object) A service object is an object which belongs to a provided service
and which implements the operations declared by the service interface type. For every provided
service of a component, a service object is created and bound to the name of the provided service
on component instantiation time.

1In subsequent chapters service provider is also used as a synonym for an instance of a service provider.
The synonym is used in situations where it is clear that we talk about instances instead of components.

90 CHAPTER 4. OUR APPROACH

A service object may correspond to several provided services. That is, the names of
these provided services are all bound to the same service object. In this case, the service
object has to implement all the interface types of the services, it represents.

The possibility to declare different provided services of the same service interface
type has several advantages:

• By using different services of the same service interface type it is possible to pro-
vide different implementations of the same set of operations. In Figure 4.1 on page
86 ConfigTextfields and ConfigButtons are examples for different services
having the same service interface type. Internally, they refer to different service
objects (panelTextfields and panelButtons) on which the operations are
invoked.

• A component can provide different versions of an implementation for the same
service interface type. This enables a component to provide an old and a new
version of an implementation simultaneously. So clients relying on an old version
can use the component as well as clients accessing the new version.

• It might be needed to provide separate access to different instances of the same
class contained in an enclosing component instance. If a visual component like a
frame contains e.g. two buttons which should be configurable separately from the
outside, the visual component has to provide separate configuration services for
each button.

Required services are represented by proxies instead of service objects.

Term 4.1.9 (Proxy) A proxy is an entity which belongs to a required service of a component
and which is capable to hold at least one reference to a service object implementing the requested
service interface type. Operations belonging to a required service are called on its proxy. These
calls result in calls to the operations of the service object(s) the proxy references.

If a component is instantiated that declares a service as required from another com-
ponent, it is not yet capable to call operations belonging to this required service since
the corresponding proxy does not yet hold a valid reference to a suitable service object.
Such a reference must be passed to the proxy prior to a call 2.

Therefore, every component instance A with a required service R has a predefined
means to pass a reference to a service object of another component instance B (the ser-
vice provider) on the proxy corresponding to R. The process of storing this reference
is called establishing a connection and is performed by a so-called connection point object
provided by A. If a connection is established, that is, if the proxy holds a reference to

2A proxy can be compared to a private attribute/field of a class to which, at instantiation time, no
object reference is assigned. An object reference has to be assigned explicitly by calling a corresponding
setter-method.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 91

a suitable service object, this reference can be used for subsequent calls to the imple-
mented operations. Connections always take place on instance level. The connection
point object does its job by providing special operations capable of taking a reference
to a suitable service object as input which is in turn passed on to the proxy. The use
of connection point objects to establish a connection is demonstrated in example 4.1.14.
The terms concerning connections used so far are now introduced more precisely.

Term 4.1.10 (Connection) Let R be a required service of a component instance A and S be a
provided service of a component instance B. Then R is called to be connected to S, if the proxy
belonging to R holds a reference to the service object belonging to S.

Sometimes we simply say that two component instances are connected to each other
without specifying the services involved in this connection. If we want to stress the
required service R involved in a connection, but are not yet interested in the actual
provided service, we say that R is connected to an instance of B.

Term 4.1.11 (Connection Point Object) A connection point object is an object which be-
longs to a required service of a component instance and which implements the operations used to
establish a connection between the proxy of the required service and a suitable service object or
to disconnect a previously established connection.

The following Figure shows a connection point object CPO implementing the method
connect R which is used to store a reference to a suitable service provider sp for the
required service R.

CPO

CP connect_R (sp)

stores a reference to
sp internally

Connection point object for the required
service R

R

Short notion for a
required service R
with its correspon-
ding connection
point:

service provider sp

R

Legend:

Represents the set of connect- and disconnect-methods
implemented by the connection point object (CPO) corresponding
to the required service R

Represents the required service R

service provider sp

Represents a provided service

Represents a connection (the
proxy for R references sp)

C
R

C

Figure 4.3: Required Services with Connection Points

The stored reference can be used for subsequent calls to sp as long as no discon-
nect method is called on CPO to disconnect the previously established connection3.

3In contrast to COM, our connection point objects are only forced to implement the specified connect-
and disconnect methods of the corresponding required service, not a predefined interface like IConnec-
tionPoint, which is the same interface for all types of outgoing interfaces. COM’s approach would be too
restrictive to be able to integrate arbitrary existing Components Off The Shelf.

92 CHAPTER 4. OUR APPROACH

Disconnect-methods are needed for dynamic topologies or at assembly time to recon-
figure an existing assembly, if the assembly is supported by a tool.

Every connect-method must have at least one parameter having as type the service
interface type of the required service. When calling such a method, a reference to a ser-
vice object implementing the required methods must be passed as the corresponding ac-
tual parameter (see example 4.1.14). Other parameters may exist additionally. To every
connect-method there exists a corresponding disconnect-method to disconnect the pre-
viously established connection. There are no constraints on the names or the number of
parameters of the connect- and disconnect-methods. Due to technical reasons explained
later on in the thesis, only the following constraints exist: for every connect-method
there must be exactly one parameter of the service interface type of the required service
and all other parameters have to be of primitive data types. For disconnect-methods a
parameter having as type the service interface type is not mandatory.

Term 4.1.12 (Connection Point Interface) The connect- and disconnect-methods implemented
by the connection point object are grouped by a connection point interface.

In example 4.1.14 on page 93, form , an instance of CustomerForm , is the connection
point object for the required service DataSetAccess of component instance 1. It imple-
ments the connection point interface I ConnectionPoint CustomDataSetAccess , the
interface declaring the operations used to establish or disconnect a connection. An ex-
ample for a valid connect-methods is
public void connectDataSource(I CustomDataSetAccess dataSource);

from example 4.1.14 on page 93. A call to a connect-method is similar to the registering
of a listener at an event source in the JavaBeans component model (see Section 2.2.1.1).

Besides the services providing part of the functionality of a component, every com-
ponent has to implement a special service access interface to provide a standardized way
to get a reference to

1. the service object implementing the methods belonging to a provided service and

2. the connection point object belonging to a required service. (A reference to the
connection point object is needed to connect the required service to an instance of
a suitable service provider.)

Term 4.1.13 (Service ’ServiceAccess’) The service named ServiceAccess is a provided ser-
vice with corresponding service interface type I ServiceAccess. I ServiceAccess declares two
methods: getServiceReference and getConnectionPointObject. getServiceReference takes as
its parameter the name of a provided service and returns a reference to the service object bound
to the provided service. getConnectionPointObject takes as its parameter the name of a required
service and returns a reference to the connection point object which belongs to the required ser-
vice.

In Java the type of the service access interface may be declared as follows:

4.1. THE UNIFYING COMPONENT MODEL (UCM) 93

interface I_ServiceAccess {
// returns a reference to the service object
// implementing the provided service requested
// by a client
Object getServiceReference (String PServiceName);

// returns a reference to the connection point
// object of the requested required service
Object getConnectionPointObject (String RServiceName);

}

The following code example demonstrates the implementation of components, the
access to provided services and the process of connecting a required service of a com-
ponent instance to a suitable provided service of another component instance. The ex-
ample shows Java code corresponding to example 4.1.1. For simplicity, the example
is entirely written in Java. Instantiation of components is simulated using Java’s new-
operator. In general, instantiation will include additional activities like loading of per-
sistent data as in the JavaBeans component model for example (see Section 2.2.1.1, item
4 on page 21).

Example 4.1.14 (Creation of Component Instances, Service Access and Interconnections)
/*--*/
/* Service interface type for ’ServiceAccess’ */
/*--*/

interface I_ServiceAccess {
Object getServiceReference (String PServiceName);
Object getConnectionPointObject (String RServiceName);

}

/*--*/
/* Service interface types for provided and required services */
/*--*/

public interface I_Configuration {
public void setTextColor (java.awt.Color c);
public java.awt.Color getTextColor ();

}

public interface I_Init {
public void initialization ();

}

public interface I_ChangeNotification {
public void dataSetChanged(CustomDataSet dataSet);

}

public interface I_DataSource {
public void openDataSource (String name);
public void closeDataSource (String name);
public void createDataSource (String name);

}

public interface I_CustomDataSetAccess {
public CustomDataSet getFirst();

94 CHAPTER 4. OUR APPROACH

public CustomDataSet getNext();
public CustomDataSet getByID(int customerID);
public void setByID(CustomDataSet dataSet);
// ...

}

/*---------------------------------*/
/* Types of used connection points */
/*---------------------------------*/

public interface IConnectionPoint_ChangeNotification {
public void addNotificationListener(I_ChangeNotification listener);
public void removeNotificationListener(I_ChangeNotification listener);

}

public interface IConnectionPoint_CustomDataSetAccess {
public void connectDataSource(I_CustomDataSetAccess dataSource);
public void disconnectDataSource();

}

/*---------------------------------*/
/* Helper classes */
/*---------------------------------*/

public class CustomDataSet {
public int customerID;
public String name;
public String surname;
public String phoneNumber;
//

public CustomDataSet () {
// Initialize with default data.

}
public CustomDataSet (int customerID, String name, String surname, String phoneNumber) {

// ...
}

}

public class NamedTextField extends java.awt.Panel {
java.awt.Label label = new java.awt.Label();
java.awt.TextField textfield = new java.awt.TextField (12);

public NamedTextField (String head) {
// Add ’label’ and ’textfield’ to ’this’ and initialize ’label’ with ’head’.

}
}

/*---*/
/* Implementations of service objects other than the component instances */
/*---*/

public class PanelButtons extends java.awt.Panel implements I_Configuration {
private java.awt.Color textColor = java.awt.Color.BLACK;

// Declare buttons btNext, btPrevious, btNew

public PanelButtons () {
this.setLayout(new java.awt.FlowLayout());
// Add buttons to ’this’

}

4.1. THE UNIFYING COMPONENT MODEL (UCM) 95

/**** Implementation of I_Configuration ****/
public void setTextColor (java.awt.Color c) {

textColor = c;
// set the foreground color of all buttons to c

}
public java.awt.Color getTextColor (){

return textColor;
}

}

public class PanelTextFields extends java.awt.Panel implements I_Configuration {
private java.awt.Color textColor = java.awt.Color.BLACK;

// Declare tfCustomerID, tfName, tfSurname, tfPhoneNumber of type NamedTextField

public PanelTextFields () {
this.setLayout(new java.awt.FlowLayout());
// Add the declared textfields to ’this’

}

public CustomDataSet getCustomDataSetFromForm() {
// ...
return new CustomDataSet(tfCustomerID.textfield.getText(), tfName.textfield.getText(),

tfSurname.textfield.getText(), tfPhoneNumber.textfield.getText());
}

public void setCustomDataSetToForm(CustomDataSet dataSet) {
// Display the entries of ’dataSet’ in the corresponding textfields

}

// ...

/**** Implementation of I_Configuration ****/
public void setTextColor (java.awt.Color c) {

textColor = c;
// set the foreground color of all textfield labels to c

}
public java.awt.Color getTextColor (){

return textColor;
}

}

/*-------------------------------*/
/* Implementation of component 1 */
/*-------------------------------*/

import java.awt.*;
import java.awt.event.*;

public class CustomerForm extends Panel implements
I_ServiceAccess, I_Init, I_ChangeNotification,
IConnectionPoint_CustomDataSetAccess {

// The provided services ’Init’ and ’ChangeNotification’
// have the same service object namely ’this’.

// The service objects for the provided services ’ConfigTextfields’ and
// ’ConfigButtons’ are:
private PanelTextFields panelTextfields = new PanelTextFields();
private PanelButtons panelButtons = new PanelButtons();

// Proxy for the required service ’DataSetAccess’.
// The corresponding connection point object is ’this’.
private I_CustomDataSetAccess dataSets = null;

96 CHAPTER 4. OUR APPROACH

public CustomerForm (){
// Set background color and layout manager.
// Add textfields and buttons to the form.
// Initialize the textfields and the button activation state.

// Register ’ActionListeners’ to buttons
panelButtons.btNext.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
// Get actual dataSet from form and store it to data base or file.
// Read next dataSet from data base or file and assign its
// attributes to the edit fields of the form ...
// Change the activation state of the buttons.

}
});

//
}

/**** Implementation of I_ServiceAccess ****/
public Object getServiceReference (String PServiceName) {

if (PServiceName.equals("Init") || PServiceName.equals("ChangeNotification"))
return this;

if (PServiceName.equals("ConfigTextfields")) return panelTextfields;
if (PServiceName.equals("ConfigButtons")) return panelButtons;
return null;

}
public Object getConnectionPointObject (String RServiceName) {

if (RServiceName.equals("DataSetAccess")) return this;
return null;

}

/**** Implementation of I_Init ****/
public void initialization () {

// Read first dataset from data source (data base or file)
// Assign the dataset to the edit fields of the form
// Disable Previous-Button

}

/**** Implementation of I_ChangeNotification ****/
public void dataSetChanged(CustomDataSet dataSet){

// Assign the dataSet to the edit fields of the form, if customerID from
// ’dataSet’ is equal to the customerID shown in the corresponding edit field.
// ...

}

/**** Implementation of IConnectionPoint_CustomDataSetAccess ****/
public void connectDataSource(I_CustomDataSetAccess dataSets) {

this.dataSets = dataSets;
}
public void disconnectDataSource(){

this.dataSets = null;
}

}

/*-------------------------------*/
/* Implementation of component 2 */
/*-------------------------------*/

public class CustomDataSource implements I_ServiceAccess, I_DataSource, I_CustomDataSetAccess,
IConnectionPoint_ChangeNotification {

// Here ’this’ is the service object for the provided services
// ’DataSourceFunctions’ and ’DataSetFunctions’.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 97

private int maxListeners = 10;
private int registeredListeners = 0;

// Proxy for the required service ’ChangeNotification’ with service interface type
// ’I_ChangeNotification’. The corresponding connection point object is ’this’.
private I_ChangeNotification[] changeListeners = new I_ChangeNotification[maxListeners];

private int registered (I_ChangeNotification listener) {
// Check whether ’listener’ is already in ’changeListeners’.
// If true, return the corresponding array index otherwise return -1
// ...

}

/**** Implementation of I_ServiceAccess ****/
public Object getServiceReference (String PServiceName) {

if (PServiceName.equals("DataSourceFunctions") ||
PServiceName.equals("DataSetFunctions")) return this;

return null;
}
public Object getConnectionPointObject (String RServiceName) {

if (RServiceName.equals("ChangeNotification")) return this;
return null;

}

/**** Implementation of I_DataSource ****/
public void openDataSource (String name) {

// Open data base or file.
}
public void closeDataSource (String name) {

// Close data base or file.
}
public void createDataSource (String name) {

// Create new data base or file.
}

/**** Implementation of I_CustomDataSetAccess ****/
public CustomDataSet getFirst() {

// Load first data set from data base or file.
}
public CustomDataSet getNext() {

// Load next data set from data base or file.
}
public CustomDataSet getByID(int customerID) {

// Load data set identified by ’customerID’ from data base or file.
}
public void setByID(CustomDataSet dataSet) {

// Store ’dataSet’ to data base or file.
// Notify change listeners:
for (int i = 0; i < registeredListeners; i++) {

changeListeners[i].dataSetChanged(dataSet);
}

}

/**** Implementation of IConnectionPoint_ChangeNotification ****/
public void addNotificationListener(I_ChangeNotification listener) {

if (registeredListeners < maxListeners && registered(listener) == -1) {
changeListeners[registeredListeners] = listener;
registeredListeners++;

}
}
public void removeNotificationListener(I_ChangeNotification listener) {

// ...
}

}

98 CHAPTER 4. OUR APPROACH

/*---*/
/* Generation and connections of component instances */
/* and service access */
/*---*/

import java.awt.*;
import java.awt.event.*;

public class InterconnectedComponentInstances {

public static void main (String[] argv) {
// Generation of component instances.
I_ServiceAccess form = new CustomerForm();
I_ServiceAccess dataSource = new CustomDataSource();

// Connect the required service ’DataSetAccess’ of component instance 1 (form) to
// the provided service ’DataSetFunctions’ of component instance 2 (dataSource).
IConnectionPoint_CustomDataSetAccess cp_DataSetAccess =

(IConnectionPoint_CustomDataSetAccess)form.getConnectionPointObject("DataSetAccess");
I_CustomDataSetAccess dataSets =

(I_CustomDataSetAccess)dataSource.getServiceReference("DataSetFunctions");
cp_DataSetAccess.connectDataSource(dataSets);

// Connect the required service ’ChangeNotification’ of component instance 2 to
// the provided service ’ChangeNotification’ of component instance 1.
IConnectionPoint_ChangeNotification cp_ChangeNotification =

(IConnectionPoint_ChangeNotification)dataSource.getConnectionPointObject("ChangeNotification");
I_ChangeNotification cn = (I_ChangeNotification)form.getServiceReference("ChangeNotification");
cp_ChangeNotification.addNotificationListener(cn);

// Get access to the provided service ’Init’ of ’form’ and call initialization()
// to load the first dataSet etc.
I_Init initObject = (I_Init)form.getServiceReference("Init");
initObject.initialization();
//....

// Get access to the provided services ’ConfigTextfields’ and ’ConfigButtons’ of ’form’ and call the
// of ’form’ and call the corresponding methods belonging to these services.
I_Configuration conf = (I_Configuration)form.getServiceReference("ConfigTextfields");
conf.setTextColor(Color.BLACK);
conf = (I_Configuration)form.getServiceReference("ConfigButtons");
conf.setTextColor(Color.BLUE);
//....

// The following code is used to visualize the form by adding it to a frame
Frame f = new Frame();
f.setSize (500,200);
f.setLocation (100,100);
f.setLayout(new FlowLayout());

f.add((CustomerForm)form);

f.addWindowListener(new WindowAdapter() {
public void windowClosing (WindowEvent e) {

// Programm beenden
System.exit (0);

}
});
f.setVisible (true);

}
}

4.1. THE UNIFYING COMPONENT MODEL (UCM) 99

4.1.1.2 Plug, A Higher Level Concept

Up to now, we only considered access and interconnections on service level. These
kinds of interconnections are still quite fine-grained and can not reflect the following
situations:

• Two components need mutual access to their provided services, so a bi-directional
connection is needed. (See e.g. Figure 4.1, services DataSetFunctions and Change

Notification .)

• Several services of a component are semantically related and have to be used by
clients as a whole.

For this purpose we introduce the notion of a plug:

Term 4.1.15 (Plug) A Plug is a named unit of interconnection consisting of a set of semanti-
cally related required and/or provided services of the same component defining a certain commu-
nication protocol. All plugs of the same component have to represent disjoint sets of services and
are identified by their names.

Being a unit for interconnections means the following:

1. A client of a provided service belonging to a plug Pl of a component instance C is
also a client of all other provided services belonging to Pl.

2. The client is forced to be itself the provider for all required services of C which
belong to Pl. Thus, the client has to agree on the same communication protocol as
defined by Pl.

A plug allows one to define interconnections and subtyping on a higher level of
abstraction than on service level. To the best of our knowledge, this novel feature does
not exist in any of the existing industrial component models nor in research models. It
is demonstrated in the examples 4.1.23 and 4.2.1.

In the following, some examples are given motivating the use of plugs. The first
example comes from an existing application in the area of packaging machines. The
second one is based on a well-known design pattern: the MVC (Model View Controller)
pattern. The third example deals with compound documents. Services are denoted by
Servicename: I_ServiceType . For corresponding provided and required services
the same names and service interface types are assumed, although weaker conditions
are possible (see Section 4.4.1). In the figures this is denoted by only one occurrence of
Servicename: I_ServiceType at the point where the two services are connected.
For simplicity, the service ServiceAccess which has to be provided by every compo-
nent is omitted. Services which would be good candidates to be grouped by a plug are
visually surrounded by a dotted ellipse.

100 CHAPTER 4. OUR APPROACH

Data-
ServerOperator-Unit

Programming-
Device

Commands :
I_Commands

Notifications :
I_Notifications

Commands :
I_Commands

Notifications :
I_Notifications

Master
Control
System

Machine
1

Machine
n

Machine
2

RS 422

COM-Components (PC) Packaging-Line

.

.

.

CPCP

CP

Good candidates to be
grouped by a plug

Legend:

Figure 4.4: Packaging Machines

Example 4.1.16 (Packaging Machines) A set of packaging machines working together to pack
the same product, is called a line. A line is controlled by a master control system which is con-
nected to all machines in the line. It serves to synchronize the work of all these machines. It
gives commands to each machine, reacts on errors by special shut down mechanisms, it retrieves
data from the connected machines etc. It also interacts directly with the data-server component
(see below), one of the components provided for human users to interact with the system. A hu-
man operator changes the operation mode of a machine directly by pressing a button on a panel
directly connected to the machine. The master control system is notified of such changes which
must in turn be transmitted to the data-server.

On the user side, there are three main components implemented by COM-components: an
operator-unit, a programming-device and a data-server. The operator-unit visualizes selected
states and signals of the connected packaging machines and provides functionality to the operator
for communication with the master control system. The operator can start production (that is,
the process of packaging a special product is started), he can give halt commands (that is, the
process of packaging products is halted for a while), he can start loading new programs to the
connected machines which is necessary, if a new product will be packaged, he can explicitly ask

4.1. THE UNIFYING COMPONENT MODEL (UCM) 101

for the state of signals (e.g. vacuum) of a selected machine etc. The operator-unit uses the data-
server as the interface to the master control system. The data-server is used to send commands
and data over a RS422-interface to the control system and to retrieve interesting data, as e.g.
the actual state of each machine. It polls the connected master control system and notifies the
operator-unit and possibly connected programming devices of data they are interested in. The
programming-device component is used to write new packaging programs, to compile them, and
to send them to the control systems. It may also be used to retrieve data from the connected
machines, to signal errors etc. The programming-device component also uses the data-server
component for the communication with the master control system.

The operator-unit and the data-server need mutual access to provided services of each other
(Commandsand Notifications). The same holds for the programming device and the
data-server. In this case, four connections have to be established: one between the required service
Commandsof the operator-unit and the provide service Commandsof the data-server, the second
one between the provided service Notifications of the operator-unit and the required service
Notifications of the data-server, the third one between the required service Commandsof
the programming-device and the provide service Commandsof the data-server, the fourth one
between the provided service Notifications of the programming-device and the required
service Notifications of the data-server. Using plugs, the number of connections can be
reduced to two plug-connections. The first plug groups the required service Commandsand
the provided service Notifications of the operator-unit resp. the programming-device. The
second plug groups the provided service Commandsand the required service Notifications
of the data-server4. Besides reducing the number of connections, the use of plugs ensures that the
data-server would in any case be reconnected to the appropriate client. This is essential since
each client can announce its individual data of interest. Thus a client only wants to be notified,
if changes occur to its own data of interest. Without using plugs, it can even happen that the
data server is not reconnected to the client; thus the client is not notified at all.

We shortly sketch the interface types of the services Commandsand Notifications to
get an idea of what is going on between the data-server and its clients. The service interface types
are denoted as Java types.
interface I_Commands {

void startPolling (/*...*/);
void stopPolling (/*...*/);
byte[] getSignals (String machine);
void setSignal (String machine, int signalNumber, byte value);
int getOperationMode (String machine);
void setOperationMode (String machine, int operationMode);
void transferLineData (byte[] lineData);
void transferProgramData (String machine, byte[] program);
void selectMachinesOfInterest (String[] machines, int clientID);
/* */

}

interface I_Notifications {
void operationModeChanged (String machine, int operationMode);

4See the dotted ellipses in Figure 4.4.

102 CHAPTER 4. OUR APPROACH

void emergencyStopPressed ();
void newSignals (String machine, byte[] signals);
/* */

}

ModelView

Controller

ReadOPs :
I_TextReadOperations

TextChanges :
I_ChangePropagation

MVC-Components System-Environment

ReadOPs :
I_TextReadOperations

TextChanges :
I_ChangePropagation

Filesystem

WriteOPs : I_TextWriteOperations

ViewEvents :
 I_ViewEvents

FileAccess : I_FileAccess

CPCP

CP

Figure 4.5: Model View Controller

Example 4.1.17 (Model View Controller) This example describes a model view controller
architecture, the classical pattern underlying graphical user interfaces. It distinguishes three
kinds of components:

• The model which represents the application data. In our example, the model represents
text to be edited by a user. The model provides functionality to read and write text, to
load text from a file, to store text to a file etc. For this purpose, it provides the services
ReadOPs, WriteOPs and FileAccess . It notifies views and controllers of changes
on the state of the model. Therefore, it uses the required service TextChanges .

• The views display the model or part of it on the screen. Different views can show different
perspectives of the model. In our example a view provides functionality by the provided

4.1. THE UNIFYING COMPONENT MODEL (UCM) 103

service TextChanges which allows the view to be notified by the model, if text changes
(provided service TextChanges) occur. If notifications about text changes occur, the
view in turn reads data from the model for necessary updates. For this purpose, it uses the
required service ReadOPs. A view also has a required service ViewEvents to notify a
connected controller about user actions.

• The controllers control the interaction between users and the model. If a controller is
notified by a view of user actions triggering operations on the model, the controller calls
the corresponding methods on the model. For this purpose, it uses its required services
ReadOPs, WriteOPs and FileAccess . Its provided service TextChanges is
used by the model to notify the controller of state changes of the model which in turn
reads the modified state. The notification of state changes of the model is especially needed,
if several controllers exist.

Similar to the first example, the model and a view as well as the model and a controller
need mutual access to the provided services ReadOPs and TextChanges of each other. The
number of needed connections depends on the number of views and controllers in the system.
Using plugs grouping the services ReadOPs and TextChanges the number of connections
to be established could significantly be reduced. As in the first example, the use of plugs ensures
that the model is reconnected in each case to the appropriate client (view, controller) which is
essential for the clients to work properly. Without being notified of text changes, a view could
e.g. not display the actual state of the model.

The interface types of the services denoted in Figure 4.5 are shown below.

interface I_FileAccess {
boolean loadFile (String fileName);
boolean storeFile (String fileName);
void newFile ();

}

interface I_TextWriteOperations {
void writeChar (int pos, char ch);
void insertChar (int pos, char ch);
void deleteChar (int pos);
void writeString (int pos, String st);
/**/

}

interface I_TextReadOperations {
char readChar (int pos);
String readString (int pos, int length);
String readWholeText ();
/**/

}

interface I_ChangePropagation {
void newText ();
void charInserted (int pos, char ch);

104 CHAPTER 4. OUR APPROACH

void charDeleted (int pos);
void stringInserted (int pos, String st);
/**/

}

interface I_ViewEvents {
void charTyped (int pos, char ch);
void charDeleted (int pos);
void newFileRequested();
void loadFileRequested(String fileName);
/**/

}

Example 4.1.18 (Compound Documents) Compound documents5 enable users working
within a single application to manipulate data written in various formats and derived from
multiple sources. For example, a user might insert into a word processing document a graph
created in a second application and a sound object created in a third application. Activating the
graph causes the second application to load its user interface, or at least that part containing
tools necessary to edit the object. Activating the sound object causes the third application to play
it. In both cases, a user is able to manipulate data from external sources from within the context
of a single document.

One distinguishes document containers and document servers. Document servers maintain
data and provide means to display and manipulate these data. Examples for document servers
are e.g. the graph application and the sound object application from above. Document containers
do not have their own data. But they can integrate different parts provided by document servers.
Every part gets its own display area. Document containers can also be document servers. In this
case they also come with their own data. An example is the word processing application from
above that is able to integrate graphs and sound objects into a word processing document.

As everything can be edited where it is displayed, the user has the illusion to edit a single
document. Such behavior requires a high cooperation of the applications involved. To reach this
goal, the cooperation can be realized as follows. Every server provides a content object for every
part of a container representing data of this server. On the other hand, a container provides a
client site object for every content object of one of its parts. Both objects interact as depicted in
Figure 4.6.

Some of the methods belonging to the service interface types involved in the interaction be-
tween both objects are described below. Instead of showing exact method signatures, the method
name is denoted as well as an explanation of its functionality. Often used call sequences could
be:

I Object.Initialize → I ClientSite.ShowObject
I Object.Close → I ClientSite.SaveObject,

I Advise.OnClose
5Some of the following text can be found in Microsoft’s MSDN Library.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 105

Object :
I_Object

ClientSite :
 I_ClientSite

Advise :
 I_Advise

Client Site
Object

Content
Object

Figure 4.6: Cooperating Objects in Compound Documents

Methods of I ClientSite Comment
SaveObject Saves embedded object.
ShowObject Asks container to display object.
OnShowWindow Notifies container when object becomes visible or invisible.
NewObjectLayout Asks container to resize display site.

Methods of I Advise Comment
OnDataChange Advises that data has changed.
OnViewChange Advises that view of object has changed.
OnRename Advises that name of object has changed.
OnClose Advises that object has been closed.

Methods of I Object Comment
Close Moves object from running to loaded state.

Following such a call, the object still
appears in its container, but is not open for editing.

Initialize Initializes embedded object from selected data.
DoAction Invokes object to perform one of its enumerated actions

as e.g. the action that occurs when an end user
double-clicks the object in its container.

SetExtent Sets extent of object’s display area. A container calls
SetExtent, when it needs to dictate the size at which
it will be displayed to an embedded object.
Often, this call occurs in response to an end user resizing
the object window.

GetExtent Retrieves extent of object’s display area.
SetColorScheme Recommends color scheme to object application. The container

recommends a color palette to the object application, which
is not obliged to use it.

106 CHAPTER 4. OUR APPROACH

These three closely related services should be grouped by a plug6 on both sides. One reason
is that the three services are semantically related. The other reason is that a plug is a unit of
interconnection. This guarantees that the three connections between a content- and its client
site-object are all established and thus guarantee that all calls belonging to a call sequence can be
executed.

4.1.1.3 Constraints on Connections

While plugs can be described as a special relation between several services, another
relation exists which can be defined between required services only. This relation can be
regarded as a constraint concerning proper connections. Such constraints are explicitly
stated in the component interface specification described in Section 4.1.2. We considered
only one kind of constraint exemplarily. Although a lot of other constraints could be
important, it would go beyond the scope of this thesis to provide a general constraint
language capable of expressing arbitrary constraints.

Assume that a component instance requires several services of the same type. If there
is a component instance providing a service which implements all operations declared
by this type, all these required services could be connected to this provided service. But
this may result in a malfunctioning or at least in an unexpected behavior. To demon-
strate this problem, let us have a look at the following examples.

Example 4.1.19 (Flexible Customer Form) The component realizing the customer form from
Figure 4.2 on page 87 can be made more flexible by enabling a different look and feel for e.g. the
buttons contained in the form. Two different kinds of look and feel are shown in Figure 4.7.

Figure 4.7: Two other Views of the Customer Form

To enable this flexibility, the panel component containing the buttons does no longer create
the buttons. Instead, it defines a required service with the service interface type I Button for

6See the dotted ellipses in Figure 4.6.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 107

every button. Its corresponding proxies are capable of storing a reference to an instance of a
button implementing I Button . Before delivering a customer form component to a customer,
buttons having a look and feel desired by the customer have to be selected for instantiation. The
three button instances needed have to be configured to match their role by setting appropriate
texts and/or icons. Then the required services of an instance of the panel component have to
be connected to the appropriate button instances. The resulting configuration is stored and
delivered to the customer.

Panel with Buttons Buttons

btPrev : I_Button
ConfigButtons

panelButtons : I_Configuration

buttonPrev : I_ButtonC

btNext : I_Button buttonNext : I_ButtonC

btNew : I_Button buttonNew : I_ButtonC
ButtonNew

ButtonNext

ButtonPrev

Panel with Buttons Buttons

btPrev : I_Button
ConfigButtons

panelButtons : I_Configuration

buttonPrev : I_ButtonC

btNext : I_Button buttonNext : I_ButtonC

btNew : I_Button buttonNew : I_ButtonC
ButtonNew

ButtonNext

ButtonPrev

Figure 4.8: Example for Required Different Service Providers

If two or more required services of an instance of the panel component are by a mistake con-
nected to the same instance of a button component, the customer form using the panel compo-
nent can not work properly. Depending on the GUI component used as container for the buttons
(panel component), the wrong connection may result in the display of only one or two buttons.
Actions corresponding to a mouse click on a button may not be executed properly etc.

Therefore, we should have a means to express for a set of required service of the
same component instance that each of these services has to be connected to a service
provider which is distinct from all service providers connected to the other required
services of the set. This constraint acts as a kind of alias control. It declares where
aliasing is not allowed.

108 CHAPTER 4. OUR APPROACH

Term 4.1.20 (Constraint Different Service Providers) A constraint of kind ”Different
Service Providers” is represented by a named set of required services of the same component
with the following semantics: Every service provider connected to one of the required services
belonging to such a constraint set must be distinct from every service provider connected to
one of the other required services belonging to this set. In addition, constraint sets have to obey
the constraint rules 1 and 2 from below.

All constraints of kind Different Service Providers have to obey the following rules:

Constraint Rule 1: Let C be a constraint with constraint set Cset and let M ⊆ Cset be a
set of required services belonging to Cset. If R is another required service different
from all required services in M ({R} ∩M = �) and a service provider for R has to
be distinct from all service providers for the required services in M , then R has to
belong to Cset, too (R ∈ Cset).

Constraint Rule 2: Required services belonging to a constraint of kind Different Service
Providers must not belong to a plug of the same component.

Constraint Rule 1 guarantees that a constraint is uniquely identified by its constraint
set only and that it can not be expressed by other constraints with smaller constraint
sets holding simultaneously for the same component. Thus, in the remainder of this
thesis, we do not distinguish between constraints and constraint sets. Instead of giving
a formal proof, we present a short example which intuitively shows the proof idea.

Let C be a constraint with constraint set Cset={R1, R2, R3}. Then three different ser-
vice providers have to be selected, one for each required service. The same constraint
would be implied by three ’smaller’ constraints C1, C2, and C3 with their corresponding
constraint sets C1

set = {R1, R2}, C2
set = {R2, R3} and C3

set = {R1, R3} which hold simulta-
neously. But Ci

set, 1 ≤ i ≤ 3, are no valid constraint sets, as each of them breaks the
first rule. E.g. R3 does not belong to C1

set although a service provider to be connected to
R3 has to be distinct from the service provider connected to R1 (see constraint set C3

set)
as well as from the service provider connected to R2 (see constraint set C2

set). Thus C is
only represented by Cset.

Constraint Rule 2 is due to the fact that required services belonging to a plug all have
to be connected to services of the same component instance, whereas required services
belonging to a constraint must be connected to services of different component instances.

One might argue that one should generally demand that required services of one
component having the same type have to be connected to different service providers.
But this would be too restrictive. If there is e.g. a component consisting of several sub-
components and, at runtime, every instance of a subcomponent needs a connection to
the same component instance giving access to a common data source, this approach
would not be adequate. We can use a modified version of example 4.1.16 shown in Fig-
ure 4.9 to demonstrate this problem. Here every subcomponent “exports” its required
service I Commands from its enclosing component to enable a connection to the exter-
nal component Data− Server.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 109

Frame Program

Commands-1 :
 I_Commands

Commands-n :
 I_Commands

.

.

.

.

.

.

Programming-
Device n

Programming-
Device 1

Data-Server

Figure 4.9: Component Instances with several Required Services of the same Type,
which have to be connected to a common Service Provider

Here all of the instances ProgrammingDevice 1 up to ProgrammingDevice n have to
be connected to the same instance of the Data−Server which is the sole entity connected
to the master control system controlling all connected machines. The Data−Server itself
has to be reentrant to serve different programming devices in different states.

4.1.1.4 Summary of Concepts

Most of the concepts described in the previous sections are summarized in Figure 4.10.

ServiceAccess:
 I_ServiceAccess...

C

IConnectionPoint_R 1 ,
 [min_R 1 ... max_R 1]

C

...

Provided Services

Required Services

P1: I_P1
Pn: I_Pn

R 1: I_R 1 R m: I_R m

Pn+1 : I_Pn+1

R m+1: I_R m+1

IConnectionPoint_R m ,
 [min_R m ... max_R m]

...
...

R m+k : I_R m+k

Plugs

C

C

CI
 Pn+j : I_Pn+j

...
...

C

 Pn+j+1 : I_Pn+j+1

R m+k+1 : I_R m+k+1

Pl1

Pl2

.

.

Figure 4.10: Component Model

110 CHAPTER 4. OUR APPROACH

Pi : I Pi (1 ≤ i ≤ n+j+1) denotes a provided service with name Pi and correspond-
ing service interface type I Pi and Ri : I Ri (1 ≤ i ≤ m + k + 1) a required service with
name Ri and corresponding service interface type I Ri. IConnectionPoint Ri denotes
the set of connect - and disconnect - methods provided by the connection point object for
the required service named Ri. [min Ri...max Ri] denotes the lower limit resp. upper
limit for connections to the required service Ri.

Pl1 denotes a plug grouping the provided services Pn+1, ..., Pn+j as well as the re-
quired services Rm+1, ..., Rm+k thereby defining a semantic relationship between these
services. Pl2 denotes a plug grouping the provided service Pn+j+1 and the required
service Rm+k+1. For simplicity, the connection point methods as well as the lower and
upper limits were omitted for Rm+1, ..., Rm+k+1.

Although a component is more than a mere grouping of its stand-alone services and
plugs, it manifests itself only by these entities of its component interface.

Term 4.1.21 (Component Interface) A component interface consists of the service ”Ser-
viceAccess”, a further set of stand-alone provided and required services, a set of plugs and a set
of constraints of kind ”Different Service Providers”.

Term 4.1.22 (Component) A component is some piece of code which conforms to a given
component interface, i.e.:

• The component implements the service access interface.
• For every provided service of the component interface the component returns the corre-

sponding service object when queried for it on its service access interface.
• For every required service of the component interface the component returns the corre-

sponding connection point object when queried for it on its service access interface.

4.1.2 Component Interface Specifications

4.1.2.1 General Specifications

The specification of a component’s capabilities and requirements is made available in
the form of metadata written in a simple language. Using metadata, such specifications
can also be provided for components conforming to other component models which do
not support all of our features (e.g. JavaBeans, CCM). The metadata describe a compo-
nent’s interface to the outer world and are therefore called component interface spec-
ification. Using this specification, the interface of a component can be described uni-
formly for all known industrial component models as well as for other kinds of compo-
nents like remote objects or composite UCM-components as introduced in Section 4.2.2.
The component interface specification is divided into three main parts.

The first part contains information concerning the naming conventions used to de-
scribe the service interface types of the services. These naming conventions depend on
the component model used to implement the atomic component which has the specified
component interface. For the JavaBeans component model, the service interface types
are denoted as Java types, for COM components, they are denoted by IIDs, for .NET

4.1. THE UNIFYING COMPONENT MODEL (UCM) 111

components, they are denoted as .NET types etc. The entries for this part are described
in more detail in Section 4.10 on page 182.

The second part contains a description of the component’s services (provided and
required). The description of a required service includes information on the correspond-
ing connection point methods and on the lower and upper limit for the number of con-
nections.

The third part describes relations on the defined services, as there are for example
higher order entities like plugs or the definition of a constraint like Different Service
Providers. Whereas plugs are intended for groups of related services which are all to-
gether used and/or provided by one “partner” component agreeing on the same com-
munication protocol represented by the plug, single services not belonging to a plug
can be used or connected independently of other services of the same component.

The specification of a component interface looks as follows:

ComponentInterface CI {
GeneralDescriptions

NamingConventions = nc (where nc ∈ {JavaType, .NETType, GUID...}
defines the naming conventions for the service
interface types of the component’s services)

ServiceDefinitions
ProvidedServices

ServiceAccess : I ServiceAccess
P1 : I P1

...
Pn+j : I Pn+j

...
RequiredServices

R1 : (I R1, IConnectionPoint R1, [min R1...max R1])
...
Rm+k : (I Rm+k, IConnectionPoint Rm+k, [min Rm+k...max Rm+k])
...

ServiceRelations
Plugs

Pl1 = ({Pn+1, ..., Pn+j}, {Rm+1, ..., Rm+k})
...
Plo = { ... }

Constraints
C1 = {Ri1 , ..., Ril} (where Rij , 1 ≤ j ≤ l and Rjs , 1 ≤ s ≤ p belong to the set of
... required services of CI without those belonging to a plug.)
Cr = {Rj1 , ..., Rjp}

}

Figure 4.11: Component Interface Specification

112 CHAPTER 4. OUR APPROACH

In the component interface specification described above the used notations mean
the following:

• CI denotes the name of the component interface.

• Pi denote the names of the provided services, I Pi the service interface type of
Pi, Ri the names of the required services, and I Ri their corresponding service
interface types.

• IConnectionPoint Ri denotes the set of connect- and disconnect-methods pro-
vided by the connection point object for the required service named Ri and min Ri,
max Ri are the lower limit resp. upper limit on the needed/allowed number of
connections to the required service Ri.

• The plugs part lists the names (Pl1,...,Plo) of all declared plugs together with their
sets of provided and required service names. The first set in the tuple denotes the
provided service names, the second set denotes the required service names.

• The constraints part lists the names (C1, ..., Cr) of all constraints of kind Different
Service Providers together with their sets of required service names, Ci

set (1≤ i≤ r).

For the plugs and constraints in the component interface the following conditions
hold:

• For the reasons already mentioned on page 108 required services belonging to a
constraint must not belong to a plug (constraint rule 2):

∀i, 1 ≤ i ≤ o and ∀j, 1 ≤ j ≤ r : Required(CI, P li) ∩ Cj
set = �.

• For the reasons mentioned below, all plugs have to be distinct from one another.
That is, for two plugs Plk, Pll with l 6= k the following conditions hold :

– Provided(CI, P lk) ∩ Provided(CI, P ll) = �
– Required(CI, P lk) ∩ Required(CI, P ll) = �,

where Provided(CI, P li) is the set of the provided service names of the plug Pli
of the component interface CI and Required(CI, P li) the set of its required service
names.

Reason: Assume two plugs Pl1 and Pl2 which have, let us say, one provided ser-
vice P and one required service R in common. In addition, the two plugs have
further services which are distinct from one another. Then one of the plugs can
be connected to a fitting plug of another component instance thereby breaking the
“integrity” of the other plug as being a unit for interconnection as defined on page
99. This situation is shown in Figure 4.12.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 113

Pl’

C

C
CP’1

P’

R’

R 1

R

P

Pl1

Pl2P 1

Figure 4.12: Overlapping Plugs

Here Pl1 is connected as a whole to a fitting plug Pl′. Via R, Pl1 is a client of
the provided service P ′ of Pl′. Thus, via this connection between R and P ′, Pl2
is also a client of P ′. Thus, as a unit of interconnection, Pl2 would also have to
be a client of P ′

1, the other provided service of Pl′. But this is obviously not true.
Similarly, Pl′ is no client of P1 although it is a client of P . Thus Pl2 and Pl′ are only
partly connected and thus would not agree on a common communication protocol
expressed by the services involved in the protocol.

The following examples present valid component interfaces.

Example 4.1.23 (Interface of a Component used for Data Logging Purposes) Such a
component can be used by a visualization system which visualizes the received data of e.g. differ-
ent sensors of one or more robot(s). The implementing component is assumed to be a JavaBean.
Therefore, the service interface types are denoted as Java types.

The component interface is named CI DataLogging (see also Figure 4.17). It has two
provided services (ServiceAccess and LoggingOptions) as well as two required services
(DataLogging and ErrorMessages). For provided services, only the corresponding service
interface types (e.g. I LoggingOptions) are needed as additional information. For required
services, also the types of their connection point objects (e.g. IConnectionPoint Error) have
to be noted as well as the lower limit (0) resp. upper limit (1) on the number of needed / allowed
connections. All services except ServiceAccess are grouped by a plug named LogServices .
This forces a client of LoggingOptions to be at the same time the receiver of the logged data
and error messages and ensures e.g. that the received data and error messages correspond to
the expected device selected by the client by a prior call to selectDevice . As there are no
constraints of kind Different Service Providers, this part does not appear in the component
interface specification.

114 CHAPTER 4. OUR APPROACH

Java types needed as service interface types Component interface

interface I_ServiceAccess {
// returns a reference to the object
// implementing the requested service
Object getServiceReference

(String PServiceName);
// returns a reference to the connection
// point object of the requested service
Object getConnectionPointObject

(String RServiceName);
//..

}
interface I_LoggingOptions {

// Select actual device / sensor
boolean selectDevice(int deviceNumber);
void startDataLogging();
void stopDataLogging();
//

}
interface I_DataLogging {

byte[] receiveLoggedData();
//

}
interface IConnectionPoint_DataLogging {

void connectReceiverOfLoggedData
(I_DataLogging receiver);

void disconnectReceiverOfLoggedData
(I_DataLogging receiver);

}
interface I_Error {

// Signals time out for returned device number
int timeOut();
int DeviceNoLongerAvailable();
// ...

}
interface IConnectionPoint_Error {

void connectErrorHandler
(I_Error errorHandler);

void disconnectErrorHandler
(I_Error errorHandler);

}

ComponentInterface CI_DataLogging {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
LoggingOptions : I_LoggingOptions

RequiredServices
DataLogging :(I_DataLogging,

IConnectionPoint_DataLogging,
[0...1])

ErrorMessages:(I_Error,
IConnectionPoint_Error,
[0...1])

ServiceRelations
Plugs

LogServices = ({LoggingOptions},
{DataLogging, ErrorMessages}

)
}

4.1. THE UNIFYING COMPONENT MODEL (UCM) 115

Example 4.1.24 (Component Interface of Model) In this example the component interface
specification of the component Model introduced in the Model View Controller example (exam-
ple 4.1.17) is shown.

ComponentInterface CI_Model {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
FileAccess : I_FileAccess
WriteOPs : I_TextWriteOperations
ReadOPs : I_TextReadOperations

RequiredServices
TextChanges :(I_ChangePropagation,

IConnectionPoint_TextChanges,
[0...*])

ServiceRelations
Plugs

Updates = ({ReadOps}, {TextChanges})
}

The provided service ReadOps and the required service TextChanges are grouped by the
plug Updates . As it should be possible to connect an arbitrary number of views and controllers,
there is no upper limit on the number of connections for the required service TextChanges ;
this is denoted by ’*’.

All types of the services are already declared in examples 4.1.17 and 4.1.23. The only Java
type not defined up to now is the type IConnectionPoint TextChanges . This type spec-
ifies the connect- and disconnect-methods for the required service TextChanges and can be
declared as follows:

interface IConnectionPoint_TextChanges {
boolean connectTextChangeListeners

(I_ChangePropagation textChangeListener);
boolean disconnectTextChangeListeners

(I_ChangePropagation textChangeListener);
}

116 CHAPTER 4. OUR APPROACH

A last example demonstrates the use of constraints.

Example 4.1.25 (Component Interface with Constraints)
A component called OrderAdministration administers customer and order data. To per-
form its task, it uses two lists, one to store and retrieve the data for customers and one to store
and retrieve the data for orders. As OrderAdministration should not depend on a special
list implementation, it declares two required services of type I List , one for customers and one
for orders. I List declares the interface expected from a component providing a special list im-
plementation. Every time an instance of the component OrderAdministration is created,
it has to be connected to two different instances of a List -component. To express this re-
quirement, a corresponding constraint called DifferentLists is declared in the component
interface specification for OrderAdministration .

ComponentInterface CI_OrderAdministration {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
Orders : I_Order
Customers : I_Customer

RequiredServices
OrderList :(I_List,

IConnectionPoint_List,
[1...1])

CustomerList :(I_List,
IConnectionPoint_List,
[1...1])

ServiceRelations
Constraints

DifferentLists = {OrderList, CustomerList}
}

In this example OrderAdministration uses the same connection point object for both
required services. The connect- and disconnect-methods therefore need an additional parameter
serviceName which distinguishes between the different services7.

interface IConnectionPoint_List {
void connect (I_List list, String serviceName);
void disconnect (String serviceName);

}

7This gives more flexibility than it is possible in COM or CCM. COM only allows one connect-method
for all outgoing interfaces, Advise . CCM requires distinct connect-methods for all receptacles. The name
of the connect-method has to contain the name of the receptacle.

4.1. THE UNIFYING COMPONENT MODEL (UCM) 117

4.1.2.2 Additional Specifications supporting Automatic Connections

If assemblies are generated using tools, it should be possible to connect a required ser-
vice R and a provided service P selected by a user without further user interaction. As
the connection is established by calling one of the connect-methods belonging to the
required service, the connect-method actually to be used has to be determined from the
connection point interface. To avoid a selection process, a default connect-method can
be determined by a declaration in the component interface specification. Every time, a
connection to the required service R is to be established, this default-method is used if
not otherwise stated by a user. This even simplifies composition in contexts, where no
tools are used. If an assembly is just defined using a composition language as described
in Section 4.2.2, interconnections between two services can be declared without the need
to specify a connect-method (see Figure 4.16).

If a default-method is to be used, this method has to be declared in the component
interface specification by its name and a sequence declaring its parameters. For every
parameter its type is specified as well as a default value. Different parameter specifi-
cations are separated by commas. Due to technical reasons discussed later on in this
thesis, only parameters of primitive data types are allowed with one exception: the pa-
rameter used to assign a reference to the service provider. This parameter has to be
of the service interface type of the required service. Since the value for this parameter
can not be determined in advance, it is represented by a hyphen. Similarly, a default
disconnect-method has to be declared to enable automatic reconfiguration.

Thus, a declaration of a required service containing a default connect- and disconnect-
method, looks as follows.

R : (I R,
IConnectionPoint R,
(connect-method specification,
disconnect-method specification)
[min R...max R])

where the method specifications consist of the method name, parameter types and val-
ues:

methodName (type-par1 value-par1, ..., type-parm value-parm)

Now we give an example of a component interface specification using default connect-
and disconnect-methods.

118 CHAPTER 4. OUR APPROACH

Example 4.1.26 (Default Connect- and Disconnect-Methods) The default methods are de-
clared for the required service SendOperations .
ComponentInterface CI_Sender {

GeneralDescriptions
NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
UserRequests : I_UserRequests
Acknowledgements: I_Acknowledgements

RequiredServices
SendOperations :(I_SendOperations,

IConnectionPoint_SendOperations,
(connectReceiver (I_SendOperations -), /* default methods */

disconnectReceiver(I_SendOperations -)),
[1...*])

ServiceRelations

}

interface IConnectionPoint_SendOperations {
void connectReceiver (I_SendOperations receiver);
void disconnectReceiver(I_SendOperations receiver);
/* ... */

}

4.2 Composition

As already addressed in Sections 2.2 and 3.2.1, most of the mentioned industrial com-
ponent models only provide a flat component model that is, compositions only define a
web of interconnected component instances whereas interconnections are based on in-
terfaces or on events. These models provide no means to define new components with
a dedicated interface to the outer world. In contrast to these flat industrial component
models, COM offers a means to compose components hierarchically by aggregation.
Aggregation means, that a component may provide references to interfaces of an inter-
nal (sub)component to its clients. The clients of the aggregating “outer” component O
do not know about the internal aggregation. They may query a reference to an interface
of the aggregated component by a call to the IUnknown interface of O as if these inter-
faces were directly implemented by O. Unfortunately, there are several drawbacks in
this approach: One of them is that components must be aware, whether they should be

4.2. COMPOSITION 119

used as aggregates in the future. Possible aggregates have to provide special additional
features. Components missing these features can not be used as aggregates later on.
Another drawback is that the means for hierarchical composition provided by COM are
only designed for experienced programmers. They have to use existing programming
languages to compose components, which do not support component composition con-
cepts in a first class manner (see the description of aggregation on page 38).

Our model supports flat compositions as well as hierarchical compositions. The
composition techniques available to build a web of interconnected component instances
are described in the next section. In addition to interconnections based on interfaces/ser-
vices, our model also allows interconnections based on plugs.

Additionally, our components may be composed hierarchically to new components
of a higher level of abstraction without the need that components used as constituents
must prepare themselves to be composable. It will be possible to compose components
visually and to integrate components of the mentioned industrial component models
(two of the main goals of this thesis). Thus even components from flat component mod-
els may be composed hierarchically.

4.2.1 Interconnections between Component Instances

There are two levels for connections between component instances: one on service level
and the other one on the level of plugs.

4.2.1.1 Connections via services

In Section 4.1.1.1 we have already described, how connections via services can be estab-
lished. Here, we shortly summarize this process. Let A be a component instance with a
required service named R. The service interface of R is I R and the interface declaring
the connection point methods belonging to R is ICP R. Let B be a component instance
with a provided service named P which provides at least all methods declared by I R.
To connect both component instances via R and P , we first have to obtain the service
object SO bound to P and the connection point object CPO belonging to R. Then we
can call one of the connect-methods belonging to ICP R on CPO passing as actual pa-
rameter for the service provider a reference to SO. The connection is established and A
can now call the needed methods on the proxy belonging to R which result in calls on
SO.

The service object SO can be obtained by a call to getServiceReference on the
service access interface of B passing as parameter the name of the provided service,
P . Similarly, the connection point object CPO can be obtained by a call to getCon
nectionPointObject on the service access interface of A passing as parameter the
name of the required service, R. For an example please refer to example 4.1.14 on page
93.

In this context we say that a provided service P matches a required service R, if P de-
clares at least all methods as provided ones which R declares to be required. Matching
services are introduced more precisely in Section 4.4.1.

120 CHAPTER 4. OUR APPROACH

4.2.1.2 Connections via plugs

Connections on a higher level of abstraction can be established using plugs. A plug
Pl of one component instance can be connected to a plug Pl′ of another component
instance, if both plugs represent the same communication protocol. That is, Pl′ has as
many provided services as Pl has required ones and the provided services of Pl′ match
the required services of Pl. The same holds for provided services of Pl and required ser-
vices Pl′. In other words, both plugs have “complementary services” or “counterparts”
which means that the services denote the same functionality, but have inverse roles con-
cerning provided and required attributes/tags. Complementary services are not forced
to have the same names. Two plugs with these characteristics are called to be comple-
mentary plugs. Complementary plugs are defined more precisely by term definition 4.4.7
in Section 4.4.

Using a tool to connect component instances, a connection via plugs can be done by
a single operation from the user’s point of view. Internally, it is reduced to service con-
nections. An algorithm deciding whether two plugs are complementary can be found in
Section 4.11.1.1. Section 4.11.1.2 presents a modified version of this algorithm which au-
tomatically maps corresponding provided and required services of two complementary
plugs to each other.

Provided
Service

Required
Service

Provided
Service

Required
Service

Plug
p1

Plug
p2

Figure 4.13: Connections via Plugs

A plug connection could be regarded as a kind of transaction. If the connection to
one of the partners fails, the plug connection must be aborted. Using two plugs p1 and
p2 with only one required and one provided service this would mean for example: if
the required service of p1 is already connected to the provided service of p2, but the
connection between the required service of p2 and the provided service of p1 fails, the
previously established connection must be disconnected.

4.2.2 Hierarchical Composition

Our approach to compose industrial components hierarchically is to integrate them into
our component model and to use them as atomic components (called atomic UCM-
components). Higher level components are built using a special assembly description,

4.2. COMPOSITION 121

which is capable to specify hierarchically composed components (called composite UCM-
components) in a simple way. This assembly description is referred to as component imple-
mentation because from a user’s point of view it is like a very high level programming
language.

Component interfaces for our developed component model are described by special
metadata introduced in Section 4.1.2. Components of an industrial component model
are integrated in our model essentially by providing these additional metadata for their
component interfaces and a component implementation which simply refers to the com-
ponent of the industrial component model in a suitable way. Therefore our approach
allows us to describe component interfaces and component implementations uniformly
for atomic UCM-components and for composite UCM-components independent of the
industrial component model used for atomic UCM-components.

In the following, the component implementation for our component model is de-
scribed in more detail. The component implementation refers to an existing industrial
component only or it consists of a description of its aggregated component instances,
their interconnections, the exported services and plugs (see below), and eventually a
binding of special component implementations to component interfaces or single con-
stituents. An aggregated component instance (part8) is only described by an instance
name and the type of its component interface. (This corresponds to an attribute dec-
laration for a class.) When a composite UCM-component is instantiated, for every of
its parts component instances are created, too. To be as flexible as possible the parts
are only typed by component interfaces. A binding of component interfaces to compo-
nent implementations can explicitly be done in the ImplementationBinding section of
the component implementation part or left to the runtime system.

Every component implementation has to specify the type of the component interface
it implements. For composite UCM-components every provided service of the imple-
mented interface (except ServiceAccess) must be linked to a provided service of one
of the component’s constituents. The linked service is called exported service: although
it is implemented by an internal part, it becomes accessible from the outside. Simi-
larly, every required service of the implemented component interface must be linked
to a fitting required service of one constituent. Plugs of the component interface may
be linked to several plugs and services of different constituents of the component. This
allows one to define new communication protocols for composite components in which
several constituents of the composite component work together to realize this kind of
protocol.

It is not allowed to link a service of an internal constituent belonging to a plug to a
service of the component interface not belonging to a plug. (Otherwise the semantics of
the internal plug could be broken. See also Section 4.1.2.)

In Figure 4.14 the composite UCM-component CPN consists of the parts pc1, pc2 und
pc3 each representing an instance of type CI1, CI2 resp. CI3 at runtime. The provided
services of pc1 and pc2 are exported as well as the required service of pc3. Also the plug

8The terms part, constituent, aggregated component instance are used synonymously.

122 CHAPTER 4. OUR APPROACH

of pc2 is linked to the plug of the component interface and is thus exported. The required
service of pc1 is connected to the first provided service of pc3 and the required service
of pc2 to the second provided service of pc3. Links of internal services to services of
the component interface of the composite component are denoted by solid lines from
lollipop to lollipop or from socket to socket.

 pc1 :
 CI1

 pc2 :
 CI2

 pc3 :
 CI3

C

C

C

C C

CP

C

CIN

C

CLink

CI

CPN

S
S

S´

Figure 4.14: Example of a Composite UCM-Component

In the following, we give a semi-formal definition of the implementation of an atomic
UCM-component and a composite UCM-component. In these definitions CPN denotes
the name of the component implementation and CIN the name of the implemented
component interface. The specifications concerning existing industrial component mod-
els are specialized in the corresponding subsections of Section 4.10.

Component CPN implements CIN { (implementation of an atomic UCM-component)
GeneralDescriptions

type = atomic (denotes, that CPN is implemented by an
atomic UCM-component)

ComponentModel = CM (where CM ∈ {JavaBeans,
COM, .NET, ...})

ImplementingComponent = IC (where IC is the name of
a Java type in case of JavaBeans,
a Class ID in case of COM components,
a .NET type in case of .NET components etc.)

}

Figure 4.15: Implementation for Atomic UCM-Components

For the sake of clarity the definition of the component implementation of a com-
posite UCM-component abstracts from some details concerning interconnections (e.g.

4.2. COMPOSITION 123

the actual connect method used) and the handling of plugs. The missing details are
described in Section 4.2.3.

Component CPN implements CIN { (implementation of a composite UCM-component)
GeneralDescriptions

type = composite
Parts

pc1 : CI1

...
pcn : CIn

InternalConnections
RequiredServices

pci1 .Rj1 <== pck1 .Pm1

...
pcil .Rjl

<== pckl
.Pml

Plugs
pcir .P ljr <== pckr .P lmr (in which Pljr and Plmr are complem. plugs (see term 4.4.7))

...
Exports

ProvidedServices
CIN.Pi < −− pcki

.Pmi

...
RequiredServices

CIN.Rj < −− pckj
.Rmj

...
Plugs

CIN.P lh < −− pckh
.P lmh

...
ImplementationBinding

CIi <<< CPni

...
pcj <<< CPnj

}

Figure 4.16: Implementation for Composite UCM-Components

In this description pci, 1 ≤ i ≤ n, denote the names of the parts (aggregated compo-
nent instances at runtime), CIi the types of their corresponding component interfaces,
pcix .Rmx the required service with name Rmx of the aggregated internal constituent pcix ,
pcix .Pmx the provided service Pmx of pcix , pcix .P lmx the plug named Plmx of the part pcix ,
CIN.Pi, CIN.Ri, CIN.P li the provided / required service resp. plug named Pi resp. Ri

resp. Pli of the (implemented) component interface CIN . CPni
denote the names of the

components implementing a component interface CIi declared as component interface
type of one of the parts. The binding of component implementations may be done on
component interface level or on part level.

124 CHAPTER 4. OUR APPROACH

The meaning of the symbols <==, < −− and <<< used in Figure 4.16 is as follows.

,<==’ denote connections between parts via services or plugs

,< −−’ denote exported entities, i.e. which entity of the implemented component inter-
face (left hand side) is realized by which entity of which part (internal constituent)
(right hand side)

,<<<’ denotes, which component implementation (identified by its name) has to be
used as implementation for the part specified on the left hand side or for all parts
typed by the component interface specified on the left hand side depending on
whether the name of a part or the name of a component interface is denoted on
the left.

Thus an implementation of a composite UCM-component is like a construction plan
which tells us how to build a composite, i.e. an instance of a composite component, from
interconnected instances of other components.

The following example demonstrates the implementation of an atomic UCM-compo-
nents as well as the implementation of a composite UCM-component.

P_Logging
Control P_Device_1

CP_DataLogging

D
e

vice
-

C
o

m
m

u
n

i-
cation

P_Device_2
Service
Access

D
e

vice
-

C
o

m
m

u
n

i-
cation Service

Access

Service
Access

Service
Access

LogServices

Logging
Options

Data
Logging

Error
Messages

CI_Data
Logging

Service
Access

LogServices

Logging
Options

Data
Logging

Error
Messages

D
evice-

C
o

m
m

u
n

i-
c

atio
n

Device
 Data

Device
 Control

CP CI

Legend :

Required service with its
corresponding connection point

Provided service

Connection between a provided
and a required service

C

C

P_ABC Internal part

Plug

C

Export of a required service

Export of a provided service

Figure 4.17: Composite UCM-Component with its Component Interface

Example 4.2.1 (Component Implementation) This example presents an implementation of
a data logging component providing the component interface already described in example 4.1.23.
An instance of this component consists of instances of three atomic UCM-components: One,

4.2. COMPOSITION 125

controlling data logging (P LoggingControl), and two others, submitting the data of the
connected devices to the controlling component. This component selects one of the connected
device components according to a call of selectDevice , receives the device data (logged data
and error messages) from this component, converts the received data and error messages to the
format expected by I DataLogging resp. I Error and submits these data via the required
services DataLogging resp. ErrorMessages to the outer world. The first table presents
the needed Java types and component interfaces and the second one the needed component im-
plementations.

Additionally needed Java types Component interfaces

interface I_DeviceControl {
void startDataLogging();
void stopDataLogging();
//

}

interface I_DeviceData {
// logged data and error messages
byte[] receiveDeviceData();
//

}

interface IConnectionPoint_DeviceData {
void connectDevice(I_DeviceData deviceData);
void disconnectDevice

(I_DeviceData deviceData);
}

interface IConnectionPoint_DeviceControl{
void connectDeviceController

(I_DeviceControl deviceController);
void disconnectDeviceController

(I_DeviceControl deviceController);
}

public class LoggingControl implements
I_ServiceAccess, I_LoggingOptions,
IConnectionPoint_DataLogging,
I_DeviceData, IConnectionPoint_Error,
IConnectionPoint_DeviceControl {

// ...
}

public class ConnectionPoint_DeviceData
implements IConnectionPoint_DeviceData {

// ...
}

public class Device implements
I_ServiceAccess, I_DeviceControl {

// ...
}

ComponentInterface CI_LoggingControl {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
LoggingOptions : I_LoggingOptions
DeviceData : I_DeviceData

RequiredServices
DataLogging : (I_DataLogging,

IConnectionPoint_DataLogging,
[0...1])

ErrorMessages: (I_Error,
IConnectionPoint_Error,
[0...1])

DeviceControl: (I_DeviceControl,
IConnectionPoint_DeviceControl,
[1...2])

ServiceRelations
Plugs

DeviceCommunication = ({DeviceData},
{DeviceControl})

}

ComponentInterface CI_Device {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
DeviceControl : I_DeviceControl

RequiredServices
DeviceData : (I_DeviceData,

IConnectionPoint_DeviceData,
[1...2])

ServiceRelations
Plugs

// Complementary Plug to ’DeviceCommunication’
// of CI_LoggingControl
DeviceCommunication = ({DeviceControl},

{DeviceData})
}

126 CHAPTER 4. OUR APPROACH

The next table contains the needed component implementations. CP DataLogging is a
composite UCM-component containing three parts: P LoggingControl , P Device 1, and
P Device 2. All entities (services, plugs) defined in a component interface are accessed by
qualified names consisting of the name of the component interface or a part providing this inter-
face and the name of the entity, e.g. CI DataLogging.DataLogging or
P Device 2.DeviceCommunication . The atomic UCM-component LoggingControl
(referred to by CP LoggingControl) implements the connect- and disconnect-methods of
all of its required services by itself whereas Device (referred to by CP Device) uses a sep-
arate connection point object for connections to its required service DeviceData . A refer-
ence to this object can be obtained by a call to the method getConnectionPointObject of
I ServiceAccess .

Atomic UCM-components Composite UCM-components

Component CP_LoggingControl implements
CI_LoggingControl {

GeneralDescriptions
type = atomic
ComponentModel = JavaBeans
ImplementingComponent = LoggingControl
// LoggingControl : Java type of
// implementing class

}

Component CP_Device implements CI_Device {
GeneralDescriptions

type = atomic
ComponentModel = JavaBeans
ImplementingComponent = Device
// Device : Java type of implementing class

}

Component CP_DataLogging implements
CI_DataLogging {

GeneralDescriptions
type = composite

Parts
P_LoggingControl : CI_LoggingControl
P_Device_1 : CI_Device
P_Device_2 : CI_Device

InternalConnections
Plugs

P_LoggingControl.DeviceCommunication
<== P_Device_1.DeviceCommunication

P_LoggingControl.DeviceCommunication
<== P_Device_2.DeviceCommunication

Exports
ProvidedServices

CI_DataLogging.LoggingOptions
<-- P_LoggingControl.LoggingOptions

RequiredServices
CI_DataLogging.DataLogging

<-- P_LoggingControl.DataLogging
CI_DataLogging.ErrorMessages

<-- P_LoggingControl.ErrorMessages

ImplementationBinding
CI_LoggingControl <<< CP_LoggingControl
CI_Device <<< CP_Device

}

4.2.3 More Details on Interconnections and Exports

If the default connect-method is not used to establish a connection to a required service
or the complementary services of two plugs to be connected are not named equally,

4.2. COMPOSITION 127

the information concerning such interconnections has to contain more details as those
shown in Figure 4.16. The same holds for export information, if the equivalent ser-
vices of a plug to be exported and the linked plug of the component interface are not
named equally and it is not possible to derive an unambiguous mapping between the
equivalent services of both plugs. Additional information on the export of a plug is also
needed, if a plug of a constituent is to be composed to a greater plug of the compo-
nent interface of its enclosing component. Thus, the following two sections deal with
refinements needed for interconnections and for exports of plugs in such situations.

4.2.3.1 Details on Interconnections

For every pair of required and provided services R and P one needs to know the
connect-method to be used to establish the connection. If the default connect-method
is not used or if no default connect-method for R is specified, the actually used method
including the values for its parameters have to be specified explicitly. This specification
is done in the corresponding connect statement contained in the subsection ’Required-
Services’ of ’InternalConnections’.

Let pc and pc′ denote parts of a composite UCM-component CC, R a required service
of pc and P a provided service of pc′. The known notation from Figure 4.16

pc.R <== pc′.P

which defines an interconnection between R and P , is refined to

pc.R <== (connect-method specification) pc′.P

The connect-method specification consists of the method name and a sequence declar-
ing its parameters. For every parameter its type is specified as well as the actual value:

pc.R <== (methodName(type-par1 value-par1, ..., type-parm value-parm)) pc′.P

Only parameters of primitive data types are allowed with one exception: the parameter
used to assign a reference to the service provider. This parameter has to be of the service
interface type of the required service. The value for this parameter is represented by a
hyphen as shown in example 4.2.2 : connect(I List -, String OrderList) .

Example 4.2.2 (Interconnections with Connect-Method Specification) The component
CP SpecialOrderAdministration uses a part of type CI OrderAdministration
as declared in example 4.1.25 and two parts of type CI List to implement an order administra-
tion using a special list implementation for its internal lists for customers and order data. To be
able to properly connect the required services of its internal part P OrderAdministration
to one of the parts of type CI List , a call to the connect-method (which is the same for both
services) has to specify the name of the required service to be connected (see example 4.1.25).
Therefore it is necessary to refine each connection specification for a required service of P Order
Administration by a connect-method specification.

128 CHAPTER 4. OUR APPROACH

Component CP_SpecialOrderAdministration implements
CI_SpecialOrderAdministration {

GeneralDescriptions
type = composite

Parts
P_OrderAdministration : CI_OrderAdministration
P_OrderList : CI_List
P_CustomerList : CI_List

InternalConnections
RequiredServices

P_OrderAdministration.OrderList
<== (connect(I_List -, String OrderList)) P_OrderList.List

P_OrderAdministration.CustomerList
<== (connect(I_List -, String CustomerList)) P_CustomerList.List

Exports
ProvidedServices

CI_SpecialOrderAdministration.Orders
<-- P_OrderAdministration.Orders

CI_SpecialOrderAdministration.Customers
<-- P_OrderAdministration.Customers

ImplementationBinding
CI_List <<< ...

}

ComponentInterface CI_SpecialOrderAdministration {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
Orders : I_Order
Customers : I_Customer

}

ComponentInterface CI_List {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
List : I_List

}

4.2. COMPOSITION 129

For interconnections between plugs there are additional details to specify. If comple-
mentary services of two plugs are not named equally, one has to find a mapping which
maps required services of one plug to their provided counterparts of the other plug. If it
is not possible to derive an unambiguous mapping between required and correspond-
ing provided services of two complementary plugs to be connected (see Section 4.11.1),
the mapping has to be done explicitly.

Let pc and pc′ denote parts of a composite UCM-component CC9, Pl a plug of pc and
Pl′ a complementary plug of pc′. The known notation

pc.P l <== pc′.P l′

which defines an interconnection between Pl and Pl′, is refined to

pc.P l <== pc′.P l′ {
pc.Ri1 <== pc′.P ′

j1

...
pc.Rin <== pc′.P ′

jn

pc′.R′
l1

<== pc.Pk1

...
pc′.R′

lm
<== pc.Pkm

}

Ris , 1 ≤ s ≤ n, denote the required services of Pl and P ′
js

, 1 ≤ s ≤ n, the matching
provided services of Pl′. R′

ls
, 1 ≤ s ≤ m, denote the required services of Pl′ and Pks ,

1 ≤ s ≤ m, the matching provided services of Pl. For the sake of simplicity, the connect-
method specifications are omitted.

There is no need to mark provided or required services explicitly as ’provided’ or
’required’. This is due to the fact that, by convention, required services are always
written on the left hand side of an interconnection specification and provided services
on the right hand side.

4.2.3.2 Details on Exports of Plugs

In the component implementation for composite UCM-components described in Figure
4.16 on page 123 the linking of a plug Pl′ of a part pc′ to a plug Pl of the component
interface CI of the encompassing composite UCM-component CC is simply denoted by
CI.P l < −− pc′.P l′. This notation only refers to the names of the two plugs involved in
the link. The mapping on service level is omitted. This is sufficient, as far as each pro-
vided service of Pl′ which should be used as the implementation of a provided service

9This refinement for interconnections between plugs is only described in the context of composite
UCM-components as the notation ’<==’ for interconnections is only introduced in this context. If one
specifies interconnected component instances in the same way in the context of assemblies or applica-
tions, the same refinement notation can then also be used in this new context.

130 CHAPTER 4. OUR APPROACH

of Pl has the same service name or can be mapped unambiguously to its “equivalent”
service of Pl. Equivalent services can e.g. be determined based on their service interface
types. A similar condition has to hold for required services declared in both plugs.

If neither an unambiguous mapping nor a mapping based on name equivalence may
be found, the mapping has to be done explicitly as in the case of interconnections be-
tween complementary plugs.

The known notation

CI.P l < −− pc′.P l′

which defines a link / export between Pl and Pl′, is refined to

CI.P l < −− pc′.P l′ {
ProvidedServices {

CI.Pi1 < −− pc′.P ′
j1

...
CI.Pin < −− pc′.P ′

jn

}

RequiredServices {
CI.Rl1 < −− pc′.R′

k1

...
CI.Rlm < −− pc′.R′

km

}
}

Pis , 1 ≤ s ≤ n, denote the provided services of Pl and P ′
js

, 1 ≤ s ≤ n, the corresponding
provided services of Pl′ thereby defining the mapping f from definition 4.3.17. Rls ,
1 ≤ s ≤ m, denote the required services of Pl and R′

ks
, 1 ≤ s ≤ m, the corresponding

required services of Pl′ thereby defining the mapping g from definition 4.3.17.
As for export specifications, provided services as well as required services may ap-

pear on both sides of the arrow and a component may have equally named provided
and required services, we have to distinguish explicitly between the export of provided
services and the export of required services.

If a plug Pl of the component interface CI of a composite UCM-component CC is com-
posed of plugs and stand-alone services of several parts of CC, we use the following
notation:

4.2. COMPOSITION 131

CI.P l < −− ({ pci1 .Pi11
, ..., pci1 .Pi1n

, ..., pcim .Pim1
, ..., pcim .Pimo

},
{ pcj1 .Rj11

, ..., pcj1 .Rj1p
, ..., pcjs .Rjs1

, ..., pcjs .Rjsq
},

{ pck1 .P lk11
, ..., pck1 .P lk1r

, ..., pckt .P lkt1
, ..., pckt .P lktu

})

pcij denote the parts involved in the link to Pl, Pijk
the provided services, Rijk

the re-
quired services and Plijk

the plugs linked to Pl.
This notation does not yet describe the actual mapping from the services and plugs

of the parts to the services grouped by Pl. Therefore this notation has to be refined to:

CI.P l < −− ({ pci1 .Pi11
, ..., pci1 .Pi1n

, ..., pcim .Pim1
, ..., pcim .Pimo

},
{ pcj1 .Rj11

, ..., pcj1 .Rj1p
, ..., pcjs .Rjs1

, ..., pcjs .Rjsq
},

{ pck1 .P lk11
, ..., pck1 .P lk1r

, ..., pckt .P lkt1
, ..., pckt .P lktu

}) {

ProvidedServices {
CI.P ′

l1
< −− pci1 .Pi11

...
CI.P ′

lw
< −− pcim .Pimo

}

RequiredServices {
CI.R′

h1
< −− pcj1 .Rj11

...
CI.R′

hx
< −− pcjs .Rjsq

}

Plugs {
< −− pck1 .P lk11

{
...

}
...
< −− pckt .P lktu

{
...

}
}

For every mapping of an internal plug to a subset of provided and/or required services
of Pl the specifications shown for simple exports at the beginning of this section have
to be made. This is indicated by the dots inside the brackets for every plug of a part.
For plugs, the left hand side of < −− is left empty. This is due to the fact that there is
no entity of the component interface representing the subset of services of Pl linked to
the internal plug. The mapping is done explicitly inside the brackets.

132 CHAPTER 4. OUR APPROACH

4.3 Used Type System for UCM-Components

In this section a type system for components is introduced including a special kind of
subtyping. This type system especially allows one to define

• when services or plugs of two component instances can be connected to each other,

• when a composition is valid,

• when a component can be substituted by another one.

We use the following terms and conventions:

1. Provided (CI) and Required (CI) denote the sets of names of all provided resp. re-
quired services declared in a component interface CI not belonging to one of its
plugs.

2. Plugs (CI) and Constraints (CI) denote the sets of names of all plugs resp. con-
straints defined in CI .

3. Let Pl be the name of a plug declared in CI , i.e. Pl ∈ Plugs (CI).
Then Required (CI, P l) denotes the set of names of all required services belonging
to Pl and Provided (CI, P l) the set of names of all its provided services.

4. The following predefined tags used in type definitions are introduced to distin-
guish between the different elements of a component interface. PS is used for
provided services and RS for required services. PL identifies plugs and CO con-
straints.

4.3.1 Type Definitions

In this section we introduce types for services, connection points, plugs, constraints and
component interfaces. All types, except types for constraints, rely on sets of method sig-
natures contained in service interfaces or connection point interfaces. Service interface
types and connection point interface types denote named groups of method signatures.
If such an interface type is a subtype of another one, the subtype contains all method
signatures belonging to its supertype. In addition, it can declare additional method
signatures. This is a widespread approach known from many OO-programming lan-
guages like Java, C#, C++ (pure abstract classes) or interface definition languages like
MIDL and CORBA-IDL. Parameter types can be either service interface types or types
of the type system used by the industrial component models chosen for implementing
atomic components10. Parameter types other than service interface types are regarded

10Note that only components (atomic as well as composite) can be composed which depend on the
same industrial component model.

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 133

as being atomic. They can only be checked for identity based on their type name. For
service interface and connection point interface types, structural subtyping is available
as described above.

Types for higher order concepts like plugs and component interfaces are essentially
groupings of such service and connection point interface types with a distinction be-
tween provided and required parts. For these types, structural subtyping will be used,
too. More details on this subject are given in the following subsections.

When integrating components belonging to industrial component models, their ser-
vice interface types as well as the connection point types are denoted by names, e.g. Java
type names in the case of JavaBeans, IIDs in case of COM etc. in their component inter-
face description (see Section 4.10 on page 182). The decision, of whether one interface
type is a subtype of another one depends on the mechanisms available for the industrial
component model under consideration. Nevertheless, these decisions must conform to
our requirement that subtypes comprise at least all method signatures of their super-
types. The current type systems used to describe service interface types of industrial
components are nominal type systems which ensure this property.

In the context of this section, CI denotes a component interface with provided ser-
vices Pi and corresponding service interface types11 I Pi, required services Ri and cor-
responding service interface types I Ri, connection point types IConnectionPoint Ri

as well as the lower and upper limit on the number of connections to Ri, min Ri and
max Ri. TAtomic denotes a set of types treated as atomic. Types belonging to TAtomic can
only be checked for identity.

Type Definition 4.3.1 (Method Type) Let rt m (t1 x1, t2 x2, ..., tn xn), n ≥ 0, be an abstract
syntax for a method declaration of a method named m; rt is the method return type, ti, 1 ≤ i ≤ n,
are the parameter types of the formal parameters and xi, 1 ≤ i ≤ n, are the names of the formal
parameters. rt as well as ti, 1 ≤ i ≤ n, either belong to TAtomic or are of an interface type as
declared in type definition 4.3.2.
Then the type of method m is declared as Mtype(m) = ((t1, t2, ... ,tn), rt).

Type Definition 4.3.2 (Method Based Interface Type) Let I be the name of an interface
declaring methods m1, ..., mk, k ≥ 1, denoted by the following abstract syntax:
I={ rtm1 m1 (tm1

1 xm1
1 , tm1

2 xm1
2 , ..., tm1

nm1
xm1

nm1
), ..., rtmk mk (tmk

1 xmk
1 , tmk

2 xmk
2 , ..., tmk

nmk
xmk

nmk
) }.

Then the type of interface I is declared as Itype(I) = {m1 : Mtype(m1), ..., mk : Mtype(mk) }12.
”mi : Mtype(mi)” denotes a method named mi with type Mtype(mi).

Type Definition 4.3.3 (Service Interface Type) Let S be the name of a service declared to
be provided or required by CI and I S the name of its service interface declaring the methods
provided or required. Then SItype(CI, S) = Itype(I S).

11To simplify our description, service interface types and connection point types additionally have
names. Nevertheless, subtyping is not based on these names, but instead on the type structure as declared
in type definition 4.3.2.

12This definition is similar to the definition of an interface type given in [SC00a]. In the following, we
sometimes use the notation MTmi instead of Mtype(mi) to simplify the representation.

134 CHAPTER 4. OUR APPROACH

Type Definition 4.3.4 (Provided Service Type) Let Pi be the name of a provided service de-
clared in CI and I Pi the name of its service interface. Then PStype(CI, Pi) = SItype(CI, Pi)
= Itype(I Pi).

Unlike other approaches which only regard the service interface type I R as the type
of the required service R, our type definition also takes into account limitations on the
number of interconnections as well as the type of the connection point interface declar-
ing the signatures of the methods needed to connect and disconnect service providers
and requesters. Although the connection point methods are implemented by the com-
ponent or an entity inside the component, they conceptually belong to the required
service. They do not represent provided operations. In addition, the limitations on the
number of connections also have to be regarded in type definitions. Assume two re-
quired services Rj and Ri with the same service interface and connection point types13,
but different limits on the number of connections. Thus, one of these services cannot
be used instead of the other one. Either one required service can not accept all ser-
vice providers the other one can accept and/or one required service needs more service
providers to be connected to it as the other one and can not be used in any composition,
the other one is used without error. Thus we combine the service interface type, the
connection point type and the limit on the number of connections into one (compound)
type characterizing the required service.

Type Definition 4.3.5 (Required Service Type) Let Ri be a required service of CI ,
CPtype(CI,Ri) = Itype(IConnectionPoint Ri) the connection point type of Ri and
Cardtype(CI, Ri) = (min Ri, max Ri) the type reflecting the cardinality constraints on inter-
connections to this required service.
Then RStype(CI, Ri) = (SItype(CI, Ri), CPtype(CI, Ri), Cardtype(CI, Ri)).

In Figure 4.1 on page 86 resp. example 4.1.14 on page 93 we use Java types to denote
service interface types. The following list shows some provided service types and one
required service type used in this example. The component interface of component
1 which was not yet introduced in example 4.1.14 is called CI CustomerForm . It de-
clares the provided services ConfigTextfields:I Configuration , ConfigButtons:

I Configuration , Init:I Init and ChangeNotification:I ChangeNotification as
well as one required service DataSetAccess:(I CustomDataSetAccess,

I ConnectionPoint CustomDataSetAccess, [1...1]) .

/*************** Provided service types ***************/

PStype(CI_CustomerForm, ConfigTextfields)
= Itype(I_Configuration)
= { setTextColor : ((java.awt.Color), void),

getTextColor : ((), java.awt.Color)
}

13The terms “connection point type” and “connection point interface type” are used synonymously.

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 135

PStype(CI_CustomerForm, ConfigButtons)
= Itype(I_Configuration)
= { setTextColor : ((java.awt.Color), void),

getTextColor : ((), java.awt.Color)
}

PStype(CI_CustomerForm, Init)
= Itype(I_Init)
= {initialization : ((), void)}

PStype(CI_CustomerForm, ChangeNotification)
= Itype(I_ChangeNotification)
= { dataSetChanged : ((CustomDataSet), void) }

/*************** Required service type ***************/

RStype(CI_CustomerForm, DataSetAccess)
= (Itype(I_CustomDataSetAccess),

Itype(I_ConnectionPoint_CustomDataSetAccess),
(1, 1))

= ({ getFirst : ((), CustomDataSet),
getNext : ((), CustomDataSet),
getByID : ((int), CustomDataSet),
setByID : ((CustomDataSet), void)

},
{ connectDataSource : ((Itype(I_CustomDataSetAccess)), void),

disconnectDataSource : ((), void)
},
(1, 1)

)
= ({ getFirst : ((), CustomDataSet),

getNext : ((), CustomDataSet),
getByID : ((int), CustomDataSet),
setByID : ((CustomDataSet), void)

},
{ connectDataSource : (({ getFirst : ((), CustomDataSet),

getNext : ((), CustomDataSet),
getByID : ((int), CustomDataSet),
setByID : ((CustomDataSet), void)

}), void),
disconnectDataSource : ((), void)

},
(1, 1)

)

In this example CustomDataSet, int and void belong to TAtomic whereas the inter-
face type names I CustomDataSetAccess and I ConnectionPoint CustomData
SetAccess are mapped to their corresponding method based interface types (type def-
inition 4.3.2).

136 CHAPTER 4. OUR APPROACH

As a plug of a component interface CI can contain several provided services having the
same (service interface) type, it is not sufficient to only include the type of a provided
service when defining the type of a plug. Instead, a provided service belonging to a plug
is identified by a tuple containing its name P as well as its type: (P , PStype(CI, P)). Al-
ternatively, one could abstract from the service names and arrange all provided services
e.g. in a fixed order similar to a record type declaration. This would restrict all vendors
providing a plug which is a subtype or a fitting plug for interconnection to declare the
services in the same order.

For required services belonging to a plug the same arguments hold as for provided
services. Because of their different roles, provided services have to be distinguished
from required ones in the definition of a plug type. When one compares two plugs to
decide whether one of them is a subtype of the other, one compares the types of the
provided services of both plugs with each other and separately the required ones of
both plugs. When one compares two plugs to decide, whether they can be connected
to each other, one compares the provided services of one plug with the required ones of
the other and vice versa.

We decided to distinguish provided services from required ones, by introducing a
special tag, PS for provided, RS for required services. Alternatively, one could have
used a binary tuple to represent the different sets where e.g. the first entry would cor-
respond to the provided services and the second one to the required services. Using
this approach, one has always to have in mind which position in the tuple was used for
which kind of services. For similar reasons we introduced tags for plugs (PL) and for
constraints (CO) as shown in definition 4.3.8.

Type Definition 4.3.6 (Plug Type) Let Pl be a plug of CI. Then the type of Pl is defined by
PLtype(CI, Pl) = { (PS, {(P, PStype(CI, P)) | P ∈ Provided(CI, Pl)}) } ∪

{ (RS, {(R, RStype(CI, R)) | R ∈ Required(CI, Pl)}) }

Type Definition 4.3.7 (Constraint Type) Let C be a constraint of kind Different Service
Providers with its constraint set Cset of required services of CI. Then Ctype(CI, C) = Cset

The constraint DifferentLists from example 4.1.25 has the following type:
Ctype(CI OrderAdministration, DifferentLists) = {OrderList, CustomerList }.

Most other approaches [SC00a, SC02, Sre01, Zen02, COM95, COR02] define the type of a
component as the set of its provided and required service interface types only. Our type
system also integrates the typing of plugs and takes into account constraints on inter-
connections. Not only the service interface types of required services are regarded, but
also the signatures of their connection point methods as well as cardinality constraints
(see definition 4.3.5). Constraints of kind Different Service Providers are integrated into
the type of a component interface for similar reasons as the limit on the number of con-
nections was integrated into the type of a required service. Two component interfaces
may be incompatible only with respect to their constraints. Examples of such incompat-
ibilities are shown in Figure 4.23.

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 137

The advantages of this approach become evident, if a component has to be substi-
tuted by another one. The definitions help us to decide, whether the substituting com-
ponent is compatible with the old one (see Sections 4.3.2.1, 4.3.2.3) and they support an
easy and safe exchange (see Section 4.8).

Type Definition 4.3.8 (Component Interface Type) The type of a component interface CI
is defined as
CItype(CI) = { (PS, { (P , PStype(CI, P)) | P ∈ Provided (CI) }) } ∪

{ (RS, { (R , RStype(CI, R)) | R ∈ Required (CI) }) } ∪
{ (PL, { (Pl, PLtype(CI, Pl)) | Pl ∈ Plugs (CI) }) } ∪
{ (CO, { (C , Ctype(CI, C)) | C ∈ Constraints (CI) }) }

The following two examples show the types of component interfaces already intro-
duced in former examples. For the sake of readability, the method based interface types
for service and connection point interfaces I are only denoted by Itype(I).

Example 4.3.9 (Component Interface Type with Plugs) This example presents the type of
the component interface CI DataLogging shown in example 4.1.23.

CItype(CI_DataLogging) =
{(PS, {(ServiceAccess, Itype(I_ServiceAccess))}),

(RS, {}),
(PL, {(LogServices, {(PS,{(LoggingOptions, Itype(I_LoggingOptions))}),

(RS,{(DataLogging, (Itype(I_DataLogging),
Itype(IConnectionPoint_DataLogging),
(0,1))),

(ErrorMessages,(Itype(I_Error),
Itype(IConnectionPoint_Error),
(0,1)))})

})}),
(CO, {})

}

Example 4.3.10 (Component Interface Type with Constraints) This example presents the
type of the component interface CI OrderAdministration shown in example 4.1.25.

CItype(CI_OrderAdministration) =
{ (PS, {(ServiceAccess, Itype(I_ServiceAccess)),

(Orders, Itype(I_Order)),
(Customer, Itype(I_Customer})),

(RS, {(OrderList, (Itype(I_List), Itype(IConnectionPoint_List), (1,1))),
(CustomerList, (Itype(I_List), Itype(IConnectionPoint_List), (1,1)))}),

(PL, {}),
(CO, {(DifferentLists,{OrderList, CustomerList})})

}

138 CHAPTER 4. OUR APPROACH

4.3.2 Subtyping

In the following sections we introduce subtyping rules for types of service interfaces,
services, plugs and component interfaces. A subtype relation is denoted by “�” includ-
ing the case that both types are equal.

4.3.2.1 Subtyping of Services

We start with a natural subtype relation for method based interface types. An interface
I1 declaring methods m1, ..., mn is a supertype of an interface I2, if I2 contains at least all
method declarations I1 contains that is, I2 declares methods m1, ..., mk, k ≥ n, and for
every method mi its name as well as its method type (Mtype(mi)) are identical in I1 and
I2 for 1 ≤ i ≤ n.

Subtype Definition 4.3.11 (Subtyping for Method Based Interface Types) Let I1 and I2

be two interfaces with their corresponding types Itype(I1) and Itype(I2) denoting sets of elements
consisting of a method name and a method type as declared in type definition 4.3.2. Itype(I2) is
a subtype of Itype(I1) denoted by Itype(I2) � Itype(I1), if Itype(I1) ⊆ Itype(I2).

Theorem 4.3.12 (Transitivity of Subtyping for Method Based Interface Types) Let I1, I2

and I3 be three interfaces with Itype(I1) � Itype(I2) and Itype(I2) � Itype(I3). Then Itype(I1) �
Itype(I3) also holds.

Proof: Theorem 4.3.12 follows directly from subtype definition 4.3.11 and the transitiv-
ity of the subset relation. �

A client of a provided service P can refer to a provided service P ′ instead without
problems, if P ′ provides all methods, P provides. This condition holds, if the service
interface type of P ′ is a subtype of the service interface type of P .

Subtype Definition 4.3.13 (Subtypes for Provided Services) Let P ′ of CI ′ and P of CI
be two provided services with their corresponding service interface type names I P ′ and I P
and types as declared in type definition 4.3.4. PStype(CI ′, P ′) is a subtype of PStype(CI, P)
denoted by PStype(CI ′, P ′) � PStype(CI, P), if Itype(I P ′) � Itype(I P).

Now assume, we have a component instance with a required service R to which one
or more provided services of other component instances are connected. Every connec-
tion was established by a call to a connect-method belonging to the connection point
interface of R. Let us assume that the information on which components and services
are involved in the connections and on how a connection was established that is, which
connect-method was used and which values were used as the actual parameters, is
stored e.g. by an assembly tool in a file which represents the composition and which
can be reloaded later on. We would now like to answer the question, which changes
to the declaration of the required service of the component can be made, e.g. in a new

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 139

release, without invalidating the former existing connections. First, the new component
must not call methods via its required service R which were not present in the former
component. This condition can be satisfied, if the service interface type is a supertype
of the service interface type declared for R in the old component. To be able to estab-
lish all connections to service providers as stored in the file, the new required service
R has to provide all connect-methods which were available for the old one. This can
be achieved by a connection point interface which is a subtype of the connection point
interface used in the old component for R. As all former connections have to be estab-
lished, the new required service must accept at least as many connections as the former
one. Additionally, the new required service must not need connections to more service
providers than the old one. Otherwise, the stored composition might not satisfy all re-
quired connections for R. These ideas are summarized in the subtype definitions 4.3.14
and 4.3.15. In these definitions, R′ of CI ′ and R of CI are two required services with
their corresponding types as declared in type definition 4.3.5.

Subtype Definition 4.3.14 (Cardinality Subtypes) Cardtype(CI ′, R′) is a subtype of
Cardtype(CI,R) denoted by Cardtype(CI ′, R′) � Cardtype(CI, R), if (min R ≥ min R′) and
(max R ≤ max R′).

Subtype Definition 4.3.15 (Subtypes for Required Services) RStype(CI ′, R′) is a subtype
of RStype(CI,R), denoted by RStype(CI ′, R′) � RStype(CI,R), if the following conditions
hold:

1. SItype(CI ′, R′) � SItype(CI,R)

2. CPtype(CI ′, R′) � CPtype(CI,R)

3. Cardtype(CI ′, R′) � Cardtype(CI,R)

Theorem 4.3.16 (Transitivity of Subtyping for Required Services) Let R1 of CI1, R2 of
CI2 and R3 of CI3 be three required services with RStype(CI1, R1) � RStype(CI2, R2) and
RStype(CI2, R2) � RStype(CI3, R3). Then RStype(CI1, R1) � RStype(CI3, R3) also holds.

Proof: We have to show that

1. SItype(CI1, R1) � SItype(CI3, R3)

2. CPtype(CI1, R1) � CPtype(CI3, R3)

3. Cardtype(CI1, R1) � Cardtype(CI3, R3)

Ad 1 RStype(CI1, R1) � RStype(CI2, R2) =⇒ SItype(CI1, R1) � SItype(CI2, R2)

RStype(CI2, R2) � RStype(CI3, R3) =⇒ SItype(CI2, R2) � SItype(CI3, R3)

=⇒ SItype(CI1, R1) � SItype(CI3, R3) (theorem 4.3.12)

(Theorem 4.3.12 can be used as SItype(CIi, Ri), 1 5 i 5 3, are method based inter-
face types, see type definition 4.3.3).

140 CHAPTER 4. OUR APPROACH

Ad 2 RStype(CI1, R1) � RStype(CI2, R2) =⇒ CPtype(CI1, R1) � CPtype(CI2, R2)

RStype(CI2, R2) � RStype(CI3, R3) =⇒ CPtype(CI2, R2) � CPtype(CI3, R3)

=⇒ CPtype(CI1, R1) � CPtype(CI3, R3) (theorem 4.3.12)

(Theorem 4.3.12 can be used as CPtype(CIi, Ri), 1 5 i 5 3, are method based inter-
face types, see type definition 4.3.5).

Ad 3 RStype(CI1, R1) � RStype(CI2, R2) =⇒ Cardtype(CI1, R1) � Cardtype(CI2, R2)
=⇒min R1 ≤min R2 ∧max R2 ≤max R1

RStype(CI2, R2) � RStype(CI3, R3) =⇒ Cardtype(CI2, R2) � Cardtype(CI3, R3)
=⇒min R2 ≤min R3 ∧max R3 ≤max R2

=⇒min R1 ≤min R3 ∧max R3 ≤max R1

=⇒ Cardtype(CI1, R1) � Cardtype(CI3, R3)
(type definition 4.3.5 and subtype definition 4.3.14)

�

4.3.2.2 Subtyping of Plugs

Now we consider the situation, where a plug Pl2 can be used instead of a former plug
Pl1. The contract of clients formerly connected to Pl1 must not be broken, if they are
connected to Pl2 instead. To ensure that both sides involved in a plug-connection agree
on the same communication protocol, we demand that the partner components are con-
nected via complementary plugs Pl′1 (term definition 4.4.7). That is, Pl′1 has as many
provided services as Pl1 has required ones and the provided services of Pl′1 match the
required services of Pl1. The same holds for provided services of Pl1 and required ser-
vices Pl′1. In other words, both plugs have “complementary services” or “counterparts”
which means that the services denote the same functionality, but have inverse roles con-
cerning provided and required attributes/tags.

Figure 4.18 depicts the situation, where the plug Pl2 should be used instead of the
plug Pl1.

To ensure that the functionality expected by Pl′1 is still available and that all former
connections between matching services of both plugs Pl1 and Pl′1 can also be established
between Pl2 and Pl′1, the service types of Pl2 have to be subtypes of the corresponding
service types of Pl1. Here the arguments of Section 4.3.2.1 hold.

We might expect that Pl2 can provide additional services. But as we expect plug-
connections to be established using complementary plugs to ensure that both sides in-
volved in the connection agree on the same protocol, such an additional provided ser-
vice of Pl2 would not have a counterpart in Pl′1. Pl′1 does not know this new kind of
communication protocol.

The following subtype definition for plugs reflects these arguments.

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 141

Pl1

C

C

C

Pl1'

P1 : I 1

P2 : I 2

R 1 : (I 3, ICP, (min, max))

R 1' : (I 1 , ...)

R 2' : (I 2 , ...)

P1' : I 3

Pl2

C

P1'' : I 1'

P2'' : I 2'

R 1'' : (I 3', ICP', (min', max'))

Figure 4.18: Subtyping of Plugs (IConnectionPoint is shortened to ICP)

Subtype Definition 4.3.17 (Subtypes for Plugs) Let Pl1 of CI1 and Pl2 of CI2 be two plugs
with their corresponding types as declared in type definition 4.3.6. Then PLtype(CI2, P l2) is a
subtype of PLtype(CI1, P l1), denoted by
PLtype(CI2, P l2) � PLtype(CI1, P l1), if the following conditions hold:

1. ∃ f : Provided (CI1, P l1) −→ Provided (CI2, P l2), f bijective with
∀ P ∈ Provided (CI1, P l1) : PStype(CI1, P) � PStype(CI2, f (P))

2. ∃ g : Required (CI1, P l1) −→ Required (CI2, P l2), g bijective with
∀ R ∈ Required (CI1, P l1) : RStype(CI1, R) � RStype(CI2, g(R))

The above mentioned conditions express that a plug Pl2 may be used instead of Pl1,
if it consists of the same number of provided and required services denoting “equiva-
lent” services which are more specialized than those of Pl1. “Equivalent” services are
services which provide the same functionality or which require the same functionality.
A service S ′

1 is more specialized than a service S1, if the type of S ′
1 is a subtype of the

type of S1 with respect to our subtype relation.
f and g denote functions mapping the names of the provided resp. required services

of Pl1 to the names of the equivalent services of Pl2
14. In Figure 4.18, it is possible to

use Pl2 instead of Pl1, as Pl2 satisfies all necessary conditions mentioned in subtype
definition 4.3.17. f maps Pi to P ′′

i (1 ≤ i ≤ 2), where Pi are the names of the provided
services of Pl1 and P ′′

i the names of the provided services of Pl2. Similarly g maps R1 to
R′′

1 , where R1 is the name of the required service of Pl1 and R′′
1 the name of the required

service of Pl2. Example 4.3.21 shows a valid subtype relationship between two plugs.

If a plug-connection is stored in a file, for every pair of connected provided and
required services the service names are often also stored in the file (Section 4.2.3.1).
If Pl2 is used instead of Pl1, the service names of Pl2 which differ from the equivalent
services of Pl1 have to be renamed in the file. If two plugs are related by a strong subtype
relationship which retains service names, this problem does not arise.

14Note that the name of a service uniquely identifies the service itself.

142 CHAPTER 4. OUR APPROACH

Subtype Definition 4.3.18 (Strong Subtypes for Plugs) Let Pl1 of CI1 and Pl2 of CI2 be
two plugs with PLtype(CI2, P l2) � PLtype(CI1, P l1). Then Pl2 is a strong subtype of Pl1,

denoted by PLtype(CI2, P l2) ≺= PLtype(CI1, P l1), if both mappings f and g from subtype defi-
nition 4.3.17 can be chosen to be the identity mapping.

As intended, this subtype definition implies that a plug which is a strong subtype of
another plug uses the same names for its “equivalent” required and provided services.
Conversely, if a plug Pl2 uses the same names for its provided and required services as
Pl1 and the subtype relations from definition 4.3.17 hold for every pair of equally named
services of the same kind (provided / required) of both plugs that is, PStype(CI2, P) �
PStype(CI1, P) for all P ∈ Provided(CI1, P l1) and RStype(CI2, R) � RStype(CI1, R) for

all R ∈ Required(CI1, P l1), then PLtype(CI2, P l2) ≺= PLtype(CI1, P l1). Example 4.3.21
also demonstrates strong subtyping between plugs.

Theorem 4.3.19 (Transitivity of Subtyping for Plugs) Let Pl1 of CI1, Pl2 of CI2 and Pl3
of CI3 be three plugs with PLtype(CI1, P l1) � PLtype(CI2, P l2) and
PLtype(CI2, P l2) � PLtype(CI3, P l3). Then PLtype(CI1, P l1) � PLtype(CI3, P l3) also holds.

Proof: We have to show that

1. ∃ f : Provided (CI3, P l3) −→ Provided (CI1, P l1), f bijective with
∀ P ∈ Provided (CI3, P l3) : PStype(CI3, P) � PStype(CI1, f (P))

2. ∃ g : Required (CI3, P l3) −→ Required (CI1, P l1), g bijective with
∀ R ∈ Required (CI3, P l3) : RStype(CI3, R) � RStype(CI1, g(R))

Ad 1 PLtype(CI1, P l1) � PLtype(CI2, P l2) =⇒
∃ f1 : Provided (CI2, P l2) −→ Provided (CI1, P l1), f1 bijective with
∀ P ∈ Provided (CI2, P l2) : PStype(CI2, P) � PStype(CI1, f1(P))

PLtype(CI2, P l2) � PLtype(CI3, P l3) =⇒
∃ f2 : Provided (CI3, P l3) −→ Provided (CI2, P l2), f2 bijective with
∀ P ∈ Provided (CI3, P l3) : PStype(CI3, P) � PStype(CI2, f2(P))

Let f = f1 ◦ f2 : Provided (CI3, P l3) −→ Provided (CI1, P l1)

f1 bijective ∧ f2 bijective =⇒ f bijective

Let P ∈ Provided (CI3, P l3) be chosen arbitrarily.

PStype(CI3, P)� PStype(CI2, f2(P)) ∧ PStype(CI2, f2(P))� PStype(CI1, f1(f2(P)))
= PStype(CI1, f (P))

=⇒ PStype(CI3, P) � PStype(CI1, f (P)) (theorem 4.3.12)

(Theorem 4.3.12 can be used as PStype(CI3, P), PStype(CI2, f2(P)) and
PStype(CI1, f (P)) are method based interface types, see type definitions 4.3.3 and
4.3.4).

Ad 2 The proof is similar to Ad 1. For this proof we need the transitivity of the subtype
relation for required services (theorem 4.3.16). g is selected as
g = g1 ◦ g2 : Required (CI3, P l3) −→ Required (CI1, P l1). �

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 143

For some of the following examples, we need the specifications of two component
interfaces, CI LoggingControl and CI LoggingControlWithNotification .
CI LoggingControl was already introduced in example 4.2.1. It is repeated here to
simplify the comparison of both component interfaces in the context of subtype rela-
tionships.

Example 4.3.20 (Component Interfaces for Data Logging Purposes) We specify the com-
ponent interfaces of CI LoggingControl and CI LoggingControlWithNotification
as follows:

ComponentInterface CI_LoggingControl {
GeneralDescriptions

NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
LoggingOptions : I_LoggingOptions
DeviceData : I_DeviceData

RequiredServices
DataLogging : (I_DataLogging,

IConnectionPoint_DataLogging,
[0...1])

ErrorMessages: (I_Error,
IConnectionPoint_Error,
[0...1])

DeviceControl: (I_DeviceControl,
IConnectionPoint_DeviceControl,
[1...2])

ServiceRelations
Plugs

DeviceCommunication = ({DeviceData},
{DeviceControl})

}

ComponentInterface
CI_LoggingControlWithNotification {

GeneralDescriptions
NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

ServiceAccess : I_ServiceAccess
LoggingOptions : I_LoggingOptionsExtended
DeviceData : I_Device

RequiredServices
DataLogging :

(I_DataLogging,
IConnectionPoint_DataLogging,
[0...1])

ErrorMessages :
(I_Error,

IConnectionPoint_Error,
[0...1])

DeviceControl :
(I_DeviceControl,

IConnectionPoint_DeviceControl,
[1...10])

DeviceManagement :
(I_DeviceManagement,

IConnectionPoint_DeviceManagement,
[0...20])

ServiceRelations
Plugs

DeviceCommunication = ({DeviceData},
{DeviceControl})

}

where
interface I_LoggingOptionsExtended extends I_LoggingOptions { /* ... */ }

interface I_Device extends I_DeviceData { /* ... */ }

interface I_DeviceManagement { /* ... */ }

interface IConnectionPoint_DeviceManagement{ /* ... */ }

Only the Java types not declared in example 4.2.1 are shown.

144 CHAPTER 4. OUR APPROACH

Example 4.3.21 (Subtyping of Plugs) The type of the plug DeviceCommunication of the compo-
nent interface CI LoggingControlWithNotification from example 4.3.20 is a subtype of the type of the
plug DeviceCommunication of CI LoggingControl from the same example that is,
PLtype(CI LoggingControlWithNotification, DeviceCommunication)

� PLtype(CI LoggingControl, DeviceCommunication)

Now we show that this relationship is true. The types of both plugs are as follows:

PLtype(CI_LoggingControlWithNotification, DeviceCommunication) =
{ (PS, {(DeviceData, Itype(I_Device))}),

(RS, {(DeviceControl, (Itype(I_DeviceControl),
Itype(IConnectionPoint_DeviceControl), (1,10)))})

}

PLtype(CI_LoggingControl, DeviceCommunication) =
{ (PS, {(DeviceData, Itype(I_DeviceData))}),

(RS, {(DeviceControl, (Itype(I_DeviceControl),
Itype(IConnectionPoint_DeviceControl), (1,2)))})

}

where

interface I_Device extends I_DeviceData { /* ... */ }

Both plugs only have one provided and one required service.
The service interface type of DeviceData of CI LoggingControlWithNotification is Itype(I Device) .
This is a subtype of Itype(I DeviceData) 15, the service interface type of DeviceData of CI LoggingControl .
Thus PStype(CI LoggingControlWithNotification, DeviceData)

� PStype(CI LoggingControl, DeviceData).
SItype(CI LoggingControlWithNotification, DeviceControl)

= SItype(CI LoggingControl, DeviceControl),
CPtype(CI LoggingControlWithNotification, DeviceControl)

= CPtype(CI LoggingControl, DeviceControl) and
Cardtype(CI LoggingControlWithNotification, DeviceControl)

�Cardtype(CI LoggingControl, DeviceControl), as both lower lim-
its are 1 and the upper limit of DeviceControl of CI LoggingControlWithNotification is greater
than the upper limit of DeviceControl of CI LoggingControl .
Thus RStype(CI LoggingControlWithNotification, DeviceControl)

� RStype(CI LoggingControl, DeviceControl).
Therefore, using the identity as the mapping between the names of the provided services of both plugs and also
between the names of the required services of both plugs, the conditions of subtype definition 4.3.17 hold. f

maps DeviceData of plug DeviceCommunication of CI LoggingControl to DeviceData of plug
DeviceCommunication of CI LoggingControlWithNotification and g maps DeviceControl of
plug DeviceCommunication of CI LoggingControl to DeviceControl of plug DeviceCommunication

of CI LoggingControlWithNotification . As f and g from subtype definition 4.3.17 are identity map-
pings, even strong subtyping holds:
PLtype(CI LoggingControlWithNotification, DeviceCommunication)

≺= PLtype(CI LoggingControl, DeviceCommunication).

15Subtyping for Java interfaces fulfils our requirement that interface subtypes contain at least all meth-
ods of their supertypes.

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 145

4.3.2.3 Subtyping of Component Interfaces

The subtype definition for component interfaces is intended to support polymorphic
component instances to be used in assemblies/composite components as described in
Section 4.8.1. In addition, subtyping between component interfaces should support an
easy adaptation of existing components to changed requirements in new releases.

Especially, if a component interface CI2 is a subtype of a component interface CI1,
then every instance of a component implementing CI1 should be substitutable by an
instance of a component implementing CI2 in any possible existing assembly (see Sec-
tions 4.2.2 and 4.8). This substitution should not affect other component instances of the
assembly. Especially, no additional interconnections or exports should be introduced,
no additional component instances added, existing instances, interconnections or ex-
ports should not be deleted. As shown in Section 4.8, this behavior can be guaranteed,
if subtyping of component interfaces is defined as in subtype definition 4.3.22.

We motivate the different conditions listed in the subtype definition for component
interfaces by explanations following immediately after this definition. The explanations
are structured according to the list of conditions given in the definition and might be
read in parallel.

Subtype Definition 4.3.22 (Subtypes for Component Interfaces) CI2 is a subtype of CI1,
denoted by
CItype(CI2) � CItype(CI1), if the following conditions are satisfied:

1. ∃ f : Provided (CI1) −→ Provided (CI2), f injective with
∀ P ∈ Provided (CI1) : PStype(CI1, P) � PStype(CI2, f(P))

2. ∃ g : Required (CI1) −→ Required (CI2), g injective with
∀ R ∈ Required (CI1) : RStype(CI1, R) � RStype(CI2, g(R))

3. ∀ R ∈ Required (CI2) \ g (Required (CI1)) : min R = 0

4. ∃ h: Plugs (CI1) −→ Plugs (CI2), h injective with
∀ Pl ∈ Plugs (CI1) : PLtype(CI1, P l) � PLtype(CI2, h(Pl))

5. ∀ Pl ∈ Plugs(CI2) \ h(Plugs(CI1)) and ∀ R ∈ Required (CI2, P l) : min R = 0.

6. ∀ C ′ ∈ Constraints (CI2) with | g−1 (C ′
set ∩ g(Required (CI1))) | ≥ 2:

∃ C ∈ Constraints (CI1) with g−1 (C ′
set ∩ g(Required (CI1))) ⊆ Cset

Now we give some explanations for the kind of subtyping chosen.

Condition 1 ensures that all provided services of the supertype are also available in
the subtype, although the new services may have different names as well as service in-
terface types which are subtypes of the old ones. Thus former clients of the supertype
can refer to the subtype instead. The subtype may provide additional services not for-
merly available in its supertype. Such services are simply not used by former clients of
the supertype.

146 CHAPTER 4. OUR APPROACH

Condition 2 ensures that all required services of the supertype are also available in
the subtype although the new services may have different names as well as types which
are subtypes of the old ones. This especially implies that the service interface types of
the new required services are supertypes of the old ones. Unlike other approaches, our
definition postulates that subtypes have at least as many required services as their su-
pertypes. This is especially necessary in the context of composites as will be explained
below. From Section 4.2.2 we know that a composite is built from a set of interconnected
component instances having a predefined interface to the outer world. Dedicated ser-
vices of the internal component instances are exported to the outside, that is, they are
linked to declared services of the component interface of the composite. In Figure 4.19
the component interface of the composite is implicitly represented by the border sur-
rounding the composite and the services sticking out of this border.

: CI1

: CI3

: CI2

C

C

C C

[2,...,5] [1,...,4]
CP

C

C

==>

: CI´1

: CI3

: CI2

C

C C

[1,...,4]
CP

C
Link ?

?

CPN CPN

Figure 4.19: Invalidated Composite UCM-Component

An existing composite should not be invalidated, if one of its internal component
instances is substituted by a component instance implementing a subtype instead of the
original component interface type. That means that it must still be possible to perform
all interconnections and exports originally defined for the composite UCM-component
CPN , especially the ones the substituted component instance was involved in.

If one allows a subtype to have fewer required services than the original component
interface type, this requirement could be violated as shown in Figure 4.19. In this figure,
the component instance typed by CI1 is substituted by a component instance typed by
CI ′1. In contrast to CI1, CI ′1 does not have any required service. Therefore, former
existing connections to an instance of type CI2 can no longer be established and it is
not possible to draw a link to the first required service of the component interface of
CPN . The missing link would result in no connection point object to be available for
this required service16 and thus, it would be impossible to connect a provided service
to this first required service of the composite although the component interface of CPN
demands such a connection.

Nevertheless, components with fewer required services can be wrapped into a new
component which additionally contains e.g. an extra component for each missing re-

16For a precise meaning of a link please refer to term 4.4.11 on page 158.

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 147

quired service which does not provide any functionality, but only serves to enable the
establishment of former connections. This wrapped component can then be used as a
valid subtype. This supports the use of components which come with their own imple-
mentation of a functionality that the supertype still required to be provided by another
component. The component as such can also be installed and used to build new com-
posite components.

Condition 3 means that CI2 may only define additional optional required services.
Otherwise, a mandatory required service would remain for which in actual assemblies
a service provider does not exists since CI1 does not need such a connection. This
situation is illustrated by Figure 4.20.

: CI 1
C

C

C

C

C

C

Service provider
does not exist
but is needed!

P 1

P 2

P’ 1

P’ 2

R 1

R’ 1

R’ 2

mandatory

: CI 2

Figure 4.20: Component Interface violating Subtyping Rules for Required Services

Conditions 4 and 5 Plugs which provide functionality have to be retained in their
subtypes. Here the same argument holds as for stand alone provided services. For plugs
with required services, similar arguments hold as for stand alone required services.
Thus a subtype must have at least as many plugs as its supertype. Additional plugs are
allowed as far as these plugs only have provided services or optional required services.
An additional plug must not declare additional mandatory required services.

Condition 6 expresses that existing constraints on required services of CI1 may only
be weakened on CI2. Preimages of required services of CI2 not belonging to a constraint
may belong to a constraint in CI1. If several required services of CI2 belong to the same
constraint, their preimages also have to belong to a common constraint in CI1.

CI2 may have additional constraints only on optional required services not defined
for CI1 in combination with at most one service which has a preimage in CI1. In Figure
4.21 C2 is weakened to C ′

1, the constraint C1 is no longer defined on CI2 and therefore
weakened, too. Constraints are denoted by ellipses surrounding the required services
belonging to the constraint.

The additional constraint C ′
2 defined in CI2, but not in CI1, is only defined on the

additional optional required services R′
7 and R′

8. Equivalent services are not available in

148 CHAPTER 4. OUR APPROACH

CI 1 CI 2

C

C

C

C

C

C

C

C

C

C

C

C

C

C

.

.

.

.

.

.

.

.

.

R’7 and R’8 are
additional optional
required services
of CI 2

R 1

R 2

R 3

R 4

R 5
R 6

R’1

R’2

R’
3

R’4

R’5
R’6

R’7

R’8

C 2

C’1

C’2

C 1

g : Required (CI 1) -> Required (CI 2)
with g (R i) = R’ i

CICI

Figure 4.21: Subtyping of Constraints

CI1. Thus, these services can not appear in connect statements in assemblies CC which
were generated for constituents typed by CI1. As no connections to R′

7 and R′
8 can be

declared if instances of type CI2 are used instead of instances of type CI1 in CC, they
can especially not be connected to the same service provider and thus, the constraint
can not be violated.

In Figure 4.22 we give an example of a component interface CI2 which violates con-
dition 6. As in Figure 4.21 constraints are denoted by ellipses surrounding the required
services belonging to the constraint.

: CI 1
C

C'

R
1

R
2

R
3

R 4

R’
1

R’
2

R’ 3

R’ 4

P 1

: CI 2

: CI 3

Figure 4.22: Component Interface violating Subtyping Rules for Constraints

If an instance providing CI1 is replaced by an instance providing CI2, the former
existing connections from P1 to R1 and R2 must now be replaced by connections from
P1 to R′

1 and R′
2. But this would violate the constraint C ′ which postulates that only

different service providers may be connected to R′
1 and R′

2.
Figure 4.23 shows some constraints defined in two component interfaces CI1 and

CI2. Circles denote required services having a counterpart with respect to the mapping
g in both component interfaces. Counterparts are shown at the same position in the
ellipses representing the component interfaces. Squares in CI2 denote additional op-

4.3. USED TYPE SYSTEM FOR UCM-COMPONENTS 149

tional required services without any counterpart in CI1. Constraints are denoted by a
border surrounding the required services belonging to this constraint and are named
con i, where i is a number. Constraints violating condition 6 are represented by dotted
borders. Constraints in CI1 and CI2 which are related, are named con i in CI1 and con i’
in CI2. g maps the required services Ri of CI1 to the equivalent required services of CI2

denoted by R′
i.

CI1 CI2

con 1 con 1'

con 3'
con 3

con 2
con 21'

con 22'

con 4'

R1 R’1

R2 R’2
R3 R’3

R’5

R’4

R5

R4

g

Figure 4.23: Valid and invalid Constraints concerning Subtyping

Constraint con 1 is retained by CI2 as con 1’. con 2 is split into two weaker constraints
con 21’ and con 22’. This does not cause any problems, because all service providers
connected to the required services contained in con 2 are all different from one another.
They thus satisfy especially the weaker conditions con 21’ and con 22’ whereas each con-
dition demands different service providers only for two of the required services, not for
all four. con 3’ is stronger than con 3 and thus violates the subtype relation. An instance
of CI2 needs different service providers to be connected to R′

1, R′
2 and R′

3. For an in-
stance of CI1 however, it is only guaranteed that R1 and R2 are connected to different
service providers. R3 can be connected to one of the service providers already connected
to R1 or R2. By similar arguments it can be shown that con 4’ can not be a valid con-
straint, if CI2 is a subtype of CI1. The other two additional constraints in CI2 are valid,
because they only add optional required services of CI2 not declared in CI1. Thus if
an instance of CI2 substitutes an instance of CI1 in an assembly, no connections would
be declared for these additional optional required services in the assembly. Therefore
the constraints cannot be violated. The argumentation is the same as for the additional
optional required services R′

7 and R′
8 from Figure 4.21 on page 148.

Subtyping between component interfaces as defined in subtype definition 4.3.22 does
not enforce a subtype to use the same service and plug names for equivalent services
and plugs. As clients have to refer to services and plugs via their names, the client code
has to be adapted if instances of a subtype are used instead of instances of the supertype.

150 CHAPTER 4. OUR APPROACH

This problem can be alleviated by means of indirection which maps e.g. actual names
stored in a file to variables for the names in the program code. If one wants to avoid
such extra indirection or changes to the client code, a stronger subtype relation which
retains names can be used.

Subtype Definition 4.3.23 (Strong Subtypes for Component Interfaces) Let CI1 and CI2

be two component interfaces with CItype(CI2) � CItype(CI1). Then CI2 is a strong subtype

of CI1, denoted by CItype(CI2) ≺= CItype(CI1), if the three mappings f , g and h from subtype
definition 4.3.22 can be chosen to be the identity mapping. In addition, the subtype relations
between plugs have to be strengthened to strong subtyping:

∀ Pl ∈ Plugs (CI1) : PLtype(CI2, h(Pl)) ≺= PLtype(CI1, P l).

Example 4.3.24 (Subtyping of Component Interfaces) The component interface
CI LoggingControlWithNotification is a subtype of CI LoggingControl from example
4.3.20. The types of both component interfaces are shown below17:

CItype(CI_LoggingControl) =
{ (PS, {(ServiceAccess, Itype(I_ServiceAccess)),

(LoggingOptions, Itype(I_LoggingOptions))}),
(RS, {(DataLogging, (Itype(I_DataLogging),

Itype(IConnectionPoint_DataLogging),
(0,1))),

(ErrorMessages, (Itype(I_Error),
Itype(IConnectionPoint_Error),
(0,1)))}),

(PL, {(DeviceCommunication, { (PS, {(DeviceData, Itype(I_DeviceData))}),
(RS, {(DeviceControl, (Itype(I_DeviceControl),

Itype(IConnectionPoint_DeviceControl),
(1,2)))})

})}),
(CO, {})

}

CItype(CI_LoggingControlWithNotification) =
{ (PS, {(ServiceAccess, Itype(I_ServiceAccess)),

(LoggingOptions, Itype(I_LoggingOptionsExtended))}),
(RS, {(DataLogging, (Itype(I_DataLogging),

Itype(IConnectionPoint_DataLogging),
(0,1))),

(ErrorMessages, (Itype(I_Error),
Itype(IConnectionPoint_Error),
(0,1))),

(DeviceManagement,(Itype(I_DeviceManagement),
Itype(IConnectionPoint_DeviceManagement),
(0,20)))}),

(PL, {(DeviceCommunication, { (PS, {(DeviceData, Itype(I_Device))}),
(RS, {(DeviceControl, (Itype(I_DeviceControl),

Itype(IConnectionPoint_DeviceControl),
(1,10)))})

})}),
(CO, {})

}

17To increase readability, the method based interface types for the service and connection point inter-
faces I of the provided and required services are abbreviated by Itype(I).

4.4. CORRECTNESS OF A COMPOSITION 151

The type of the provided service LoggingOptions of CI LoggingControlWithNotification
is a subtype of the type of the corresponding service in CI LoggingControl . The same holds for
the service DeviceData belonging to the plug DeviceCommunication . The type of the required
service DeviceControl , also belonging to DeviceCommunication , is a subtype of the correspond-
ing type in CI LoggingControl , as this service allows more service providers to be connected to
it. Therefore, the plug DeviceCommunication is a (strong) subtype of the corresponding plug in
CI LoggingControl . This can be verified by using the identity mapping for f and g in Def. 4.3.17.
(The subtype relation between both plugs was already shown in example 4.3.21.) The new component
interface has an additional optional required service DeviceManagement which signals interested
’listeners’, if a new device is added or if an existing one is removed. The required services DataLogging
and ErrorMessages remain unchanged in CI LoggingControlWithNotification .

Because of our subtyping rules, CI LoggingControlWithNotification is a strong subtype
of CI LoggingControl . The component CP LoggingControl (example 4.2.1) used to instantiate
all parts of CP DataLogging typed by CI LoggingControl (especially P LoggingControl)
can thus be upgraded to implement CI LoggingControlWithNotification without invalidating
the existing assembly description of CP DataLogging . For more details please refer to Section 4.8.

4.4 Correctness of a Composition

During composition, normally two or more component instances have to be connected
to each other thereby enabling the interaction needed to fulfill a common task. The
composition may be either a loose assembly of interconnected component instances or
an instance of a composite UCM-component. Loose assemblies use as sole composition
technique composition by interconnection via services or plugs. Thus, for loose assem-
blies, it is only necessary to check whether the needed interconnections are allowed.
If additionally hierarchical composition is used as described in the previous section,
further checks to the composite have to be made which are considered below.

Provided services of the composite have to be implemented by provided services of
internal constituents which is done by linking the implementing service to the corre-
sponding service of the composite.

Every required service of the composite must be linked to a required service of an
internal constituent. An interconnection to a required service of the composite then
results in a connection to the corresponding internal required service. If such a link is
missing, no service provider can be connected to the required service of the composite.

On the other hand, it must be possible to export mandatory required services of
constituents which are not fully satisfied inside the composite by a suitable number
of connections to provided services of other internal constituents. An export is done
by linking the service to a required service of the composite. Thus the requirement of
the internal constituent can be satisfied by a service provider connected to the linked
required service of the composite. Without the link, there will be no possibility to ever
establish the missing needed connections.

152 CHAPTER 4. OUR APPROACH

In the following we describe preconditions which ensure that an interconnection
between a provided service of one component instance and a required service of another
one can be established. We also describe what linking of services means exactly and
which preconditions ensure that a service of a part may be linked to a service of the
composite. Preconditions for proper interconnections between plugs and the export of
plugs are added.

The conditions for valid interconnections are described in the following section.
Valid exports as well as the handling of mandatory required services are described in
Section 4.4.2.

4.4.1 Interconnections between Component Instances

This section only deals with connections between component instances based on ser-
vices and plugs. We introduce conditions which ensure valid interconnections between
component instances via services and plugs. For the following elaboration we have to
clarify what it means for an object to implement an interface.

We model all runtime entities, as e.g. numbers, objects, and methods as values which
are stored to locations in memory. Memory is modelled by an unbounded sequence
of cells where every cell has the same fixed length e.g. in terms of bytes. A location
in memory is a memory block that is, a set of consecutive cells, which is structured
according to the type of entity to be stored in the location. Thus, if a location is used
to hold a value of type long, the location may consist of four cells, an array of three
long-values would be stored in a location consisting of twelve cells structured in blocks
of four consecutive cells, each block holding one long-value etc. Locations may hold
values according to their types or pointers to other locations in memory. We distinguish
locations which can store values of subtypes from those allowing only values of the
exact type to be stored18. We abstract from a possible indirection which is often used
when handling subtypes, that is, variables which also accept values of subtypes do not
hold the values as such, but hold a reference to the location in memory where the actual
value is stored.

Similar to [SC00a], storing of values and pointers to other locations is modelled by a
mapping S, associating locations to values or other locations that is, S(`) = v or S(`) = `’
for ` ∈ Loc, whereas Loc denotes the set of locations. Γ(`) ≡ τ denotes that the location
` is typed by τ and allows only values of the exact type τ to be stored. Γ(`) = τ denotes
that the location ` is typed by τ and allows storing of values of a subtype.

If the implementation of a method m of type MTm is loaded into memory, the
method body denoted by mbody (m, MTm) is stored in a location ` in memory denoted
by S(`) = mbody (m, MTm). The method body includes the list of formal parameters
which means the following. If the method has n formal parameters, it refers to locations

18By this distinction we support languages like C++ or Oberon which allow values of subtypes only to
be assigned to pointer types. Other kinds of variables only allow values of the exact type to be assigned.
In addition, Java needs this model too as it handles value types and reference types differently.

4.4. CORRECTNESS OF A COMPOSITION 153

`par
i ,1 ≤ i≤ n, in memory used to hold the sequence of parameter values. We define an

auxiliary function methMap which takes as parameter a method signature and a value
stored in memory. This function either returns a location in memory which holds the
corresponding method body or it returns an error. We can then define what it means for
an object to implement a method or even an interface. In accordance with current typed
OO-programming languages we state that an object o which implements an interface I
of type τ I is itself of type τ I .

To motivate that a function like methMap makes sense, look at similar functions
which are even available on programming language level. For languages providing
type metadata like e.g. Java or C# these functions are provided by reflection services
(Sections 2.2.1.4 and 2.2.3.4). For COM, these functions are provided by type libraries
(Section 2.2.2.4). E.g. in Java, an object o can be asked whether it implements a certain
method e.g. by o.getClass().getMethod(...) and if so, its code can be executed
by a call to invoke .

Term 4.4.1 (Object implementing a Method) Let o be an object associated to a location ` in
memory . That is, ∃ ` ∈ Loc : S(`) = o. We say o implements a method m of type MTm, if ∃
`′ ∈ Loc : methMap (m : MTm, o) = `′ and S(`′) = mbody (m, MTm).

Term 4.4.2 (Object implementing an Interface) As before let ` ∈ Loc : S(`) = o and I an
interface of type Itype(I) = τ I . We say o implements I, if o implements all methods m of type
MTm belonging to τ I .

Lemma 4.4.3 Let I1 and I2 be two interfaces with corresponding types τ I
1 = Itype(I1) and τ I

2 =
Itype(I2), τ I

2 � τ I
1 . Let o be an object associated to a location ` in memory which implements I2.

Then o also implements I1.

Proof: As τ I
2 � τ I

1 , it follows from subtype definition 4.3.11 that τ I
1 ⊆ τ I

2 . Thus, all meth-
ods belonging to I1 also belong to I2. As o implements I2, it implements all methods
belonging to I2 and therefore especially all methods belonging to I1. �

Before the body of a method can be executed, the actual parameters have to be
passed to the method. This is modelled by the following process. Let `par

i , 1 ≤ i ≤
n, be the locations in memory which are used by the method to refer to its n parameters.
Let `1, ..., `n be the locations in memory, holding the actual parameter values v1, ..., vn

that is, S(`i) = vi, 1 ≤ i ≤ n. Then (’call by value’) parameter passing is expressed by
the following mapping: S(`par

i) = vi. As above, this mapping abstracts from a possible
indirection for formal parameters which allow values of subtypes to be passed that is,
for which Γ(`par

i) = τ for some τ . Usually such parameters do not hold the values as
such, but hold a reference to the location in memory where the actual value is stored.

If Γ(`par
i) ≡ τ par

i for some τ par
i and Γ(`i) ≡ τi with τ par

i = τi this mapping can actually be
done. The mapping can also be done, if Γ(`par

i) = τ par
i and Γ(`i) = τi or Γ(`i) ≡ τi with τi

� τ par
i .

154 CHAPTER 4. OUR APPROACH

The first two cases are obvious. In the most general case Γ(`par
i) = τ par

i and Γ(`i) = τi

the mapping can be done for the following reasons. `i can hold values v of type τ v with
τ v � τi. Thus, if Γ(`i) = τi � Γ(`par

i) = τ par
i and v is stored in `i, then τ v � τi � τ par

i . Thus v
can be stored to `par

i .19 We subsume the preconditions for valid actual parameters in the
following condition.

Condition 4.4.4 (Valid Parameter Passing) Let m be a method with signature ((t1, ..., tn), rt)
and `par

i , 1 ≤ i ≤ n, the locations in memory for its formal parameters. Let vi be values of type
τi, 1 ≤ i ≤ n. Then v1, ...,vn can be passed as actual parameters to the formal parameters of m,

if ∀i, 1 ≤ i ≤ n :

{
τi = ti, Γ(`par

i) ≡ ti;

τi � ti, Γ(`par
i) = ti.

Based on these considerations, we are able to show, that two matching services can be
connected to each other.

Term 4.4.5 (Matching Services) Let P be a provided service of a component interface CI1 and
R a required service of a component interface CI2. Then P and R are called matching services,
if SItype(CI1, P) � SItype(CI2, R) that is, the service interface type of P is a subtype of the
service interface type of R.

That a required service R of a component interface CI2 and a provided service P
of a component interface CI1 match is a necessary precondition for an interconnection
between R and P .

This is due to the fact, that, if a connection is established, the proxy belonging to
R holds a reference to the service object bound to P and calls on the proxy result in
calls on the service object. If SItype(CI1, P) � SItype(CI2, R), then SItype(CI1, P) +
SItype(CI2, R). Therefore, SItype(CI2, R) contains at least one method m : MTm which
is not contained in SItype(CI1, P). Thus, if m is called on the proxy, this may lead to an
error as the service object need not implement this method. It is only forced to imple-
ment the methods belonging to SItype(CI1, P) which does not contain m. On the other
hand, matching services are a sufficient precondition for an interconnection as shown
below.

Theorem 4.4.6 (Valid Service Connection) Let P be a provided service of a component in-
terface CI1 and R a required service of a component interface CI2 with SItype(CI1, P) �
SItype(CI2, R) that is, P and R are matching services. Then P can be connected to R.

19For the type systems under consideration, we assume transitivity of the subtype relation. This is
feasible as we are only interested in passing actual parameters of an interface type. For these types
transitivity was proved by theorem 4.3.12.

4.4. CORRECTNESS OF A COMPOSITION 155

Proof: We have to show that

1. The service object bound to P can be passed as actual parameter to every connect-
method belonging to R. The corresponding formal parameter of every connect-
method is the parameter of type SItype(CI2, R) which represents a reference to a
suitable service provider.

2. Every method belonging to R also belongs to P and can thus be called on the
service object for P .

In the following let I P denote the name of the service interface type of P (PStype(CI1, P))
and I R the name of the service interface type of R (SItype(CI2, R)). SO P denotes
the service object bound to P and par SP denotes the formal parameter of a connect-
method for R used to accept a reference to a suitable service provider. Remember that
we imposed the following conditions on our connect-methods: par SP has to be of
type Itype(I R) and all other parameters have to be of a primitive data type. For the
primitive data types, corresponding locations in memory will allow values to be stored
only of the exact type. For par SP we demand that the formal parameter declaration
allows values of subtypes to be passed, too, that is, Γ(`par SP) = Itype(I R). For current
OO-languages this condition can be easily satisfied. For Java and C# for example this
condition is satisfied in any case.

Ad 1: Term 4.1.8 states that, as SO P is the service object bound to P , it implements I P .
Thus SO P is of type Itype(I P). As P and R are matching services, Itype(I P)
� Itype(I R) holds. Thus, due to condition 4.4.4, SO P can be passed as actual
parameter to par SP .

Ad 2: Using lemma 4.4.3 this follows directly from the fact that Itype(I P)� Itype(I R)
and SO P of type Itype(I P). �

Term 4.4.7 (Complementary Plugs) Let Pl1 be a plug of a component interface CI1 and Pl2
a plug of a component interface CI2. Then Pl1 and Pl2 are called complementary, if the
following conditions hold:

1. ∃ f : Provided (CI1, P l1) −→ Required (CI2, P l2), f is bijective with
∀ P ∈ Provided (CI1, P l1) : SItype(CI2, f(P)) � PStype (CI1, P)

2. ∃ g : Provided (CI2, P l2) −→ Required (CI1, P l1), g is bijective with
∀ P ′ ∈ Provided (CI2, P l2) : SItype(CI1, g(P ′)) � PStype(CI2, P

′)

Thus, two plugs are complementary, if every service of one plug has a one-to-one
counterpart in the other plug with inverse role concerning provided and required at-
tributes. For complementary plugs it follows that

|Provided(CI1, P l1)| = |Required(CI2, P l2)| and
|Provided(CI2, P l2)| = |Required(CI1, P l1)|

This fact will be used by algorithms checking whether two plugs are complementary.

156 CHAPTER 4. OUR APPROACH

f

g
C

C

C

C
C

Pl 1 Pl 2

Figure 4.24: Complementary Plugs

Theorem 4.4.8 (Valid Plug Connection) Let Pl1 of CI1 and Pl2 of CI2 be two complemen-
tary plugs. Then Pl1 satisfies all requirements of Pl2 and vice versa. In addition, Pl1 and
Pl2 can be connected to each other thereby preserving the property of a plug to be a unit for
interconnections.

Proof:

1. First we have to show that ∀ R ∈ Required(CI1, P l1) ∃ P ∈ Provided(CI2, P l2) : P
and R are matching services.

2. Remember (page 99): “Being a unit for interconnections means the following:

(a) A client of a provided service belonging to a plug Pl of a component instance C is
also a client of all other provided services belonging to Pl.

(b) The client is forced to be itself the provider for all required services of C which
belong to Pl. Thus, the client has to agree on the same communication protocol as
defined by Pl.”

ad a) Let C1 be the component instance with plug Pl1 and C2 the component in-
stance with plug Pl2. As a provided service of Pl2 can be connected to a
required service of Pl1 (item 1), C1 is a client of a provided service belonging
to Pl2 via this connection. Thus C1 has also to be a client of all other provided
services of Pl2. If we can show that for every provided service of Pl2 there
exists a matching required service of Pl1, these services can be connected and
thus the first condition is satisfied.

ad b) The second condition tells us that C1 has to provide all services which are
required by C2 via Pl2. If we can show that for every required service of Pl2
there exists a matching provided service of Pl1, the second condition is also
satisfied.

3. Items 1 and 2 have also to hold for Pl1 and Pl2 with inverse roles .

Ad 1: Let R ∈ Required(CI1, P l1). Item 2 from term 4.4.7 ensures that
g−1(R) ∈ Provided(CI2, P l2) with SItype(CI1, R) � PStype(CI2, g

−1(R)).
Thus g−1(R) and R are matching services.

4.4. CORRECTNESS OF A COMPOSITION 157

Ad 2: First we show that ∀ P ∈ Provided(CI2, P l2) ∃ R ∈ Required(CI1, P l1) : P and R
are matching services.

Let P ∈ Provided(CI2, P l2). Then P and R = g(P) ∈ Required(CI1, P l1) are match-
ing services. This follows directly from item 2, term 4.4.7.

Now we show that ∀ R ∈ Required(CI2, P l2) ∃ P ∈ Provided(CI1, P l1) : P and R
are matching services.

For R ∈ Required(CI2, P l2), P = f−1(R) ∈ Provided(CI1, P l1) is a matching pro-
vided service. This follows from item 1, term 4.4.7 similar to Ad 1.

Ad 3: Item 3 can be shown using the same arguments as in Ad 1 and Ad 2. �

A single connection between a provided service P of a component interface CI1 and
a required service R of a component interface CI2 (R <== P) is only allowed, if neither
P nor R belong to a plug.

4.4.2 Export of Services and Plugs

A component implementation CPN must be checked for consistency with its declared
component interface CIN . Every entity declared in the component interface (except
ServiceAccess) must be linked to one or more entities of constituents used in the compo-
nent implementation.

C

C

C

C

C
C

C
[0,...,5] [1,...,4]

CPN

C C

CIN

C
[1,...,4]

C C

CICP
SS S’

Figure 4.25: Exports

Before being able to define when linking is possible, we have to explain what a link
means.

Term 4.4.9 (Link between Provided Services) If a provided service S ′ of an internal con-
stituent of a composite UCM-component CPN is linked to a provided service S of the compo-
nent interface CIN implemented by CPN , then the service object bound to S ′ is also bound to
S. That is, S and S ′ use the same service object.

158 CHAPTER 4. OUR APPROACH

Theorem 4.4.10 (Valid Service Export for Provided Services) Let S be a provided service
of the component interface CIN implemented by a composite UCM-component CPN and S ′ be
a provided service of an internal constituent of CPN typed by CIpart with PStype(CIN, S) �
PStype(CIpart, S

′). Then S ′ can be linked to S that is, S ′ provides a valid implementation for S
via its service object.

Proof: We have to show that the service object bound to S implements all methods
declared in the service interface type of S.
Let PStype(CIN, S) = Itype(I S) be the service interface type of S and PStype(CIpart, S

′)
= Itype(I S ′) the service interface type of S ′. As the service object SO S ′ bound to S ′

implements I S ′ and Itype(I S ′)� Itype(I S), SO S ′ also implements I S (lemma 4.4.3).
By linking S ′ to S, SO S ′ is also bound to S i.e. SO S ′ is used as the service object for S.
As it implements I S, it is a valid service object for S. �

PStype(CIN, S) � PStype(CIpart, S
′) is also a necessary precondition for a possible

link between S and S ′ for the following reasons.
A client of the provided service S assumes that it can call all methods belonging to

PStype(CIN, S) on the service object bound to S. If S ′ is linked to S, then the client ob-
tains a reference to the service object bound to S ′. If PStype(CIpart, S

′) � PStype(CIN, S),
then PStype(CIpart, S

′) + PStype(CIN, S). Therefore, PStype(CIN, S) contains at least
one method m : MTm which is not contained in PStype(CIpart, S

′). Thus, if m is called
on the service object bound to S ′, this may lead to an error as the service object need
not implement this method. It is only forced to implement the methods belonging to
PStype(CIpart, S

′) which does not contain m.

Term 4.4.11 (Link between Required Services) If a required service S ′ of an internal con-
stituent of a composite UCM-component CPN is linked to a required service S of the component
interface CIN implemented by CPN , then S and S ′ use the same connection point object and
proxy to store a reference to a suitable service object. That is, calls on the proxy for S ′ result in a
call to the service object bound to a provided service P connected to S.

Theorem 4.4.12 (Valid Service Export for Required Services) Let S be a required service
of the component interface CIN implemented by a composite UCM-component CPN and S ′ be
a required service of one internal constituent of CPN typed by CIpart with RStype(CIN, S) �
RStype(CIpart, S

′). Then S ′ can be linked to S that is, if the requirements of S are satisfied, the
requirements of S ′ are also satisfied and the maximum number of connections allowed for S can
be established without violating the maximum number of connections for S ′.

Proof: We have to show that

1. All suitable service providers for S are also suitable service providers for S ′. In
more detail: If sp of type CIsp is a suitable service provider for S with a provided
service P which matches S, then P and S ′ are also matching services.

4.4. CORRECTNESS OF A COMPOSITION 159

2. The connection point object for S ′ also implements all connection point methods
of S and can thus be used as a connection point object for S. Especially, every
connect-method used to establish a connection between P and S is also available
for S ′.

3. After establishing a connection between P and S, the service object bound to P
is referenced by the proxy of S ′ and thus serves as an implementation for the
methods belonging to S ′.

4. If the minimum number of connections required by S is established, the minimum
number of connections required by S ′ is also established and thus all mandatory
connections of S ′ are satisfied.

5. The maximum number of connections allowed for S does not exceed the maxi-
mum number of connections allowed for S ′.

Ad 1: Let P be a provided service of CIsp such that P and S match. Let Itype(I P) =
PStype(CIsp, P) denote the service interface type of P , Itype(I S) = SItype(CIN, S)
the service interface type of S and Itype(I S ′) = SItype(CIpart, S

′) the service inter-
face type of S ′.

The definition of matching services 4.4.5 implies that Itype(I P) � Itype(I S).
The subtype relation RStype(CIpart, S

′) � RStype(CIN, S) implies that Itype(I S)
� Itype(I S ′) (see subtype definition 4.3.15). Thus, as the subtyping relation for
method based interface types is transitive (theorem 4.3.12), Itype(I P)� Itype(I S ′).
Therefore P and S ′ are matching services.

Ad 2: Let Itype(ICP S) = CPtype(CIN, S) be the connection point type of S and
Itype(ICP S ′) = CPtype(CIpart, S

′) the connection point type of S ′. As
RStype(CIpart, S

′) � RStype(CIN, S), Itype(ICP S ′) � Itype(ICP S) (see subtype
definition 4.3.15). The connection point object for S ′ implements ICP S ′ and thus
especially ICP S. Therefore, this object can also be used as a connection point
object for S.

Ad 3: Linking S ′ to S results in the same connection point object and proxy used for S
and S ′. Thus, if a provided service P is connected to S, the service object bound
to P is stored in the proxy for S which is the same as for S ′. Thus, connections to
S result in connections to S ′.

Ad 4: As RStype(CIpart, S
′)�RStype(CIN, S), Cardtype(CIpart, S

′)�Cardtype(CIN, S).
That is, min S ′ ≤ min S and max S ′ ≥ max S. If min S - connections are estab-
lished for S, min S - connections are established for S ′, because connections to S
result in connections to S ′ (item 3). As min S ′ ≤min S, all needed connections for
S ′ are established.

Ad 5: Follows directly from max S ≤max S ′. �

160 CHAPTER 4. OUR APPROACH

RStype(CIN, S) � RStype(CIpart, S
′) is also a necessary precondition for a possible

link between the required services S and S ′, similar to provided services. A proof has
to consider the service interface types, the connection point types and the cardinality
types of S and S ′.

For the linking of plugs, the following conditions have to hold. A service of an inter-
nal plug may not be linked to a service of CIN not belonging to a plug. Internal plugs
may only be linked as a whole to a plug of the “same size” or they may be composed to
yield a “greater” plug as discussed below.

Term 4.4.13 (Partially linked Plugs) Let Pl be a plug of the component interface CIN im-
plemented by a composite UCM-component CPN and Pl′ be a plug of an internal constituent
of CPN typed by CIpart. Then Pl′ and Pl are said to be partially linked if

1. ∃ f : Provided (CIpart, P l′) −→ Provided (CIN, P l), f injective with
∀ P ∈ Provided (CIpart, P l′) : P is linked to f (P)

2. ∃ g : Required (CIpart, P l′) −→ Required (CIN, P l), g injective with
∀ R ∈ Required (CIpart, P l′) : R is linked to g(R)

That is, two plugs Pl and Pl′ can be partially linked, if every service S ′ belonging
to Pl′ can be linked to a corresponding service S of Pl of the same kind (provided or
required) and corresponding services can be uniquely determined.

Term 4.4.14 (Fully linked Plugs) Let Pl be a plug of the component interface CIN imple-
mented by a composite UCM-component CPN and Pl′ be a plug of an internal constituent of
CPN typed by CIpart. Then Pl′ and Pl are said to be fully linked, if

1. ∃ f : Provided (CIpart, P l′) −→ Provided (CIN, P l), f bijective with
∀ P ∈ Provided (CIpart, P l′) : P is linked to f (P)

2. ∃ g : Required (CIpart, P l′) −→ Required (CIN, P l), g bijective with
∀ R ∈ Required (CIpart, P l′) : R is linked to g(R)

That is, two plugs Pl and Pl′ can be fully linked, if they can be partially linked and
both plugs have the same number of provided services as well as the same number of
required services.

Term 4.4.15 (Linked Plugs) Let Pl be a plug of the component interface CIN implemented
by a composite UCM-component CPN and Pl′ be a plug of an internal constituent of CPN
typed by CIpart. Then Pl′ and Pl are said to be linked, if they are fully or partially linked.

Theorem 4.4.16 (Valid Plug Export) Let Pl be a plug of the component interface CIN im-
plemented by a composite UCM-component CPN and Pl′ be a plug of an internal constituent
of CPN typed by CIpart with PLtype(CIN, P l) � PLtype(CIpart, P l′). Then Pl′ and Pl can be
fully linked.

4.4. CORRECTNESS OF A COMPOSITION 161

Proof: PLtype(CIpart, P l′) � PLtype(CIN, P l) ⇐⇒ (subtype definition 4.3.17)

1. ∃ f : Provided (CIN, P l) −→ Provided (CIpart, P l′), f bijective with
∀ P ∈ Provided (CIN, P l) : PStype(CIN, P) � PStype(CIpart, f (P))

2. ∃ g : Required (CIN, P l) −→ Required (CIpart, P l′), g bijective with
∀ R ∈ Required (CIN, P l) : RStype(CIN, R) � RStype(CIpart, g(R))

=⇒ ∀ P ′ ∈ Provided (CIpart, P l′) : P ′ can be linked to f−1(P ′) (theorem 4.4.10) ∧
∀ R′ ∈ Required (CIpart, P l′) : R′ can be linked to g−1(R′) (theorem 4.4.12) �

Theorem 4.4.17 (Valid Plug Composition) Let Pl be a plug of the component interface CIN
implemented by a composite UCM-component CPN and Pl′ be a plug of an internal constituent
of CPN typed by CIpart. Let PS ′ ⊆ Provided(CIN, P l) and RS ′ ⊆ Required(CIN, P l) be
subsets of the services belonging to Pl and thus Pl′′ = (PS ′, RS ′) a “subplug” of Pl. Let
PLtype(CIpart, P l′) � PLtype(CIN, P l′′). Then Pl′ and Pl can be partially linked.

Proof: Follows directly from theorem 4.4.16 and term definition 4.4.13. �

If all entities of CIN are completely linked to internal entities, no internal “open
mandatory required service” may remain, which is not linked to an entity of CIN .
“Open mandatory required service” means, that the lower limit on the number of con-
nections is not already reached that is, needed connections are still missing. If such re-
quired service is not exported, there will be no possibility to ever establish these needed
connections.

Following conditions have to hold with respect to constraints:

pc

C

C

C

C

C

C

C

B

P
C´´C

}

: CIN

Figure 4.26: Exported Constraints

Let C be a constraint of kind Different Services Providers with its constraint set Cset

of required services declared for one internal constituent pc of a composite UCM-com-
ponent with component interface CIN . Let C ′

set ⊆ Cset be a subset of required services
of pc which are linked to required services of CIN forming a set B. Then in CIN there
must exist a constraint C ′′ with constraint set C ′′

set for which B ⊆ C ′′
set, if B contains at

least two elements. Otherwise, as C is not known in the context of CIN , the required
services of B may be connected to a common service provider which would result in
this same service provider to be connected to the required services of pc contained in
C ′

set ⊆ Cset (see term 4.4.11). This would violate the constraint C of pc.

162 CHAPTER 4. OUR APPROACH

4.5 Component Lookup

When composing new components or applications from existing ones, one needs a pool
of available component implementations from which components can be chosen. Such
a pool can be realized by storing all components into a directory which is made known
to a tool e.g. by a configuration file. Several directories can be used to provide different
pools which may e.g. contain different versions of the same components. These compo-
nent pools have to be available at runtime, too, to allow composite UCM-components
to be instantiated. When storing a component to a pool, also its component interface
which is described in a file separate from the component implementation file, is stored
in a corresponding component interface pool. We refer to component interfaces belong-
ing to a pool as registered component interfaces.

As in our composite UCM-components parts are only typed by component inter-
faces and a composite UCM-component is not forced to declare the component imple-
mentations to be used for its parts, we may have a problem if we want to instantiate a
composite UCM-component. Therefore, we need a means to map component interfaces
to component implementations to be used for instantiation.

CI CP

Figure 4.27: Pool of Component Interfaces and Component Implementations

For every registered component interface CI , the map provides the set of compo-
nents implementing CI . This map is called implementation registry. Using the imple-
mentation registry, the runtime system can look for valid component implementations
for every component interface typing a part in a composite UCM-component at com-
ponent instantiation time. This approach has the advantage, that components imple-
menting a component interface CI can be replaced by others implementing the same
interface without affecting the implementations of composite UCM-components which
use this interface as type for one of their parts.

Every time, a new component is deployed that is, is added to the component pool,
the implementation registry has to be updated. The same holds, if components are re-
moved from the pool. In this case, the administrator can instruct the runtime system to
use another component as valid substitution for the removed component. This can be
achieved by an additional map, called substitution registry which redirects old compo-
nent implementations to new component implementations.

4.6. INSTANTIATION OF COMPOSITE UCM-COMPONENTS 163

This registry is useful for composite UCM-components which internally specify the
components to be used as implementation for one of their parts. Such components are
not as flexible as components which specify their parts by component interfaces only.
Assume, a component CPold should be replaced by a component CPnew. Then CPold

will be removed from the component pool and CPnew will be deployed instead. If CC
is a composite UCM-component which refers to CPold internally by an explicit imple-
mentation binding, CC can no longer be instantiated. However, if CPnew is registered
as a valid substitution for CPold in the substitution registry, the runtime system behaves
as follows. Every time an instance of CPold has to be created, the runtime system will
search for the old implementation. Since this implementation is no longer available, it
scans the substitution registry to find a component which can be used instead. In our
case, CPnew will be found. Thus, in all places, where CPold occurs in CC, an instance of
CPnew is created.

4.6 Instantiation of Composite UCM-Components

In consensus with other academic approaches and with the industrial component mod-
els we integrate into our model, we assume components which can be instantiated. In
the following we describe the process of instantiating a composite UCM-component.

A composite UCM-component CC is instantiated by first creating instances for all of
its parts and afterwards connecting all parts as declared in the section ’InternalConnec-
tions’ of its component implementation. Exports are realized by a special implementa-
tion of the service access interface of the composite UCM-component which delegates
a call to getServiceReference or getConnectionPointObject to the service ac-
cess interface of the part exporting the requested service. The delegation process termi-
nates on an instance of an atomic UCM-component.

P

SI

SI

SI

getServiceReference(P)

R
SI

SI

SI

getConnectionPointObject(R)

C

CC

Figure 4.28: Nested Instances of Composite UCM-Components

In Figure 4.28 the service access interface is denoted by SI .

164 CHAPTER 4. OUR APPROACH

To be able to instantiate a part p, a component implementing the component interface
CI which types the part has to be determined. We have to distinguish the following
situations:

• In the section ’ImplementationBinding’ of the composite UCM-component CC,
CI or p is bound to a component implementation CP that is, CI <<< CP or p
<<< CP 20.

• Neither CI nor p are bound to a special component implementation.

In the first case, an instance of CP will be created for p, if CP still exists in the
component pool. Otherwise, the runtime system searches the substitution registry for a
valid substitution. If there is no valid substitution, instantiation is aborted. Otherwise,
an instance of the substituting component is created. If instantiation does not succeed,
the instantiation of CC is aborted.

In the second case the runtime system has to determine a fitting component imple-
mentation for p. For this purpose it searches the implementation registry for the com-
ponents implementing CI . If CI is not registered or no component implementing CI
can be found, instantiation of p fails and instantiation of CC is aborted. If CC can be
successfully instantiated, one obtains a reference to its service access interface.

4.7 Helper Components

There are several situations, where the use of special helper components can simplify
the composition process significantly and make the use of components more secure.
Two such components, a delegator and a multiplexer component are described in this
section. Their intended use and the problems they solve are described in the following.

A delegator component is a component having only one provided and one required
service. The service interface types of the provided and required service are identical. If
a client calls methods on an instance of the delegator component, the instance delegates
the calls to the proxy belonging to its required service. Therefore, before being able
to call the provided methods, a suitable service provider has to be connected to the
required service of the instance of the delegator component. The lower and upper limit
on the number of connections to the required service is one. That is, exactly one service
provider can be connected.

A delegator component can be used to simplify compositions composing several
constituents all having a required service of the same type exported by the composite.
In the following, the composite is denoted by C. The semantics of C could require that

20Remember: “CI <<< CP” denotes that CP is used to instantiate all parts in the enclosing UCM-
component which are typed by CI . “p <<< CP” denotes that CP is used to instantiate p only (see
Figure 4.16).

4.7. HELPER COMPONENTS 165

C1

R1 : I_S

.

.

.

.

.

.

pc1 : CI1

pcn : CIn

Rn : I_S

P : I_S
C C

C C

CP

C2

CP

C
1

R1 : I_S

.

.

.

.

.

.

pc1 : CI1

pcn : CIn

S : I_S
C

C

pc3 :
 CI Delegator

CP

C C

Rn : I_S

P : I_S

C2

CP
S : I_S

S : I_S

Delegator
C

S : I_S

….

CP

 CI Delegator

[1...1]

…. [1...1]

Figure 4.29: Composite UCM-Component with integrated Delegator Component

all these exported required services have to be connected to the same service provider
(see Figure 4.29). Thus, other compositions using an instance of C, have to know about
this semantics. Additionally, they have to establish all connections to these required
services. Using instances of C in other compositions could be significantly simplified, if
C is modified by using an additional delegator component in its implementation.

All required services, formerly exported, are now connected to an instance of the
same delegator component. Instead of the formerly exported required services only
the required service of the instance of the delegator component is exported. Thus the
semantics of C is satisfied internally and other compositions using instances of C only
have to establish one connection to the exported required service of the delegator. This
situation is shown in Figure 4.29. In this figure C corresponds to C1.

Another useful helper component is a multiplexer component. A multiplexer compo-

166 CHAPTER 4. OUR APPROACH

nent is a component, having one provided and one required service only. As in the case
of the delegator component, both service interface types are identical. But in contrast to
the delegator component, the multiplexer component does not defines an upper limit
on the number of connections to the required service. A method called on its provided
service results in a call to the same method on all service providers connected to the
required service of the multiplexer.

CPN

P1 : I_S1

.

.

.

pc 1 : CI 1

pc n : CI n

S : I_S pc :
 CI Multiplexer

CP

C

Pn : I_Sn

S : I_S

Multiplexer
C

S : I_S

….

CP

 CI Multiplexer

[1…*]

C

S : I_S

.

.

.

S : I_S

Figure 4.30: Composite UCM-Component with integrated Multiplexer Component

A multiplexer component can e.g. be used, if an instance of a composite UCM-com-
ponent is asked to perform a task and in turn some or all of its parts also have to per-
form the same task. Examples are initialization tasks, changes to the appearance of
visible parts (resizing, repainting, moving, getting visible or invisible, ...), data storing
etc. Without using multiplexer, all provided services of all parts providing this task
have to be exported and the task called on all these provided services by the client of
the composite UCM-component instance.

4.8 Compatibility / Substitutability

4.8.1 Polymorphic Component Instances

Let pc be a part of a composite UCM-component CC and let pc be typed by the compo-
nent interface CI . If neither CI nor pc is bound to a special component implementation
in CC, we can distinguish three categories of components which can be used to instan-
tiate pc.

4.8. COMPATIBILITY / SUBSTITUTABILITY 167

1. Arbitrary components implementing CI: Such components can be used to instan-
tiate pc by nature.

2. Components implementing CI’ with CItype(CI’) ≺= CItype(CI): For this kind of
components we will show that they can be used instead of a component imple-
menting CI . Such components can be regarded as if they were not only imple-
menting CI ′ but also CI . CI ′ can be regarded as extending CI . This view is
shown in Figure 4.31. This figure shows k components CP1, ..., CPk each imple-
menting the component interface CI and the components CPm, ..., CPn, k < m ≤
n, each implementing CI ′. The components implementing CI ′ are depicted as a
subset of those implementing CI . The dotted arrow denotes an implementation
relationship between components and their component interface.

CI
CI

CI’
CI

CPm

CP

CPn

CP

.

.

CP1

CP

CPk

CP

.

.

strong

Figure 4.31: Strong Subtyping between CI and CI’

3. Components implementing CI’ with CItype(CI’)� CItype(CI): For this kind of
components we show that there is a simple means to wrap them into compos-
ite UCM-components implementing CI which can then be used to instantiate pc.
This situation is depicted in Figure 4.32.

In this figure CP ′
1 - CP ′

n are components implementing CI ′. CP ′CI
1 - CP ′CI

n are
the composite UCM-components wrapping CP ′

1 - CP ′
n thereby implementing CI .

CP1 - CPk are other components implementing the component interface CI .

168 CHAPTER 4. OUR APPROACH

CI
CI

CI’
CI

CP1

CP

CPk

CP

.

.

weak

CP’1
CP

CP’n

CP

CP’1
CI
CP

CP’n
CI
CP

wrappers

.

.

.

.

Figure 4.32: Weak Subtyping between CI and CI’

Category 2: Components implementing CI’ with CItype(CI’) ≺= CItype(CI):

Theorem 4.8.1 (Polymorphic Component Instances) Let pc be a part of a composite UCM-
component CC and let pc be typed by the component interface CI that is, pc : CI . Let neither pc
nor CI be bound to a component implementation in CC. Let C ′ be a component implementing

CI ′ with CItype(CI’) ≺= CItype(CI). Then C ′ can be used to instantiate pc without invalidating
CC.

Proof: If we want to ensure that CC is not invalidated, all services of CI involved in a
connection via pc must also be available in CI ′. The corresponding services in CI ′ must
still allow one to establish the connections declared in CC for pc. In addition, all services
of CI involved in a link via pc to services of the component interface of CC must also be
available in CI ′. The corresponding services in CI ′ must still allow one to establish the
links declared in CC for pc. For plugs, similar conditions have to hold. If all connections
to required services of pc defined in CC and all links declared for required services
of pc are established, there must not remain any open mandatory requirement for pc.
The constraints declared in CI ′ must not be violated by the connections to required
services of pc defined in CC. These conditions are described in more detail below. The
component interface of CC is denoted by CICC .

1. The names of all services of CI which are referred to via pc in CC are also available
in CI ′.

2. If a provided service P of CI was connected via pc to a required service R of
another part in CC typed by CIpart, then the provided service P of CI ′ can be
connected instead.

4.8. COMPATIBILITY / SUBSTITUTABILITY 169

(That is, if pc : CI ∧ pcpart : CIpart ∧ pcpart.R <== pc.P holds, then pcpart.R <== pc.P
remains valid, if the runtime type of pc is CI ′ instead of CI .21)

3. If a required service R of CI was connected via pc to a provided service P of
another part in CC typed by CIpart, then the required service R of CI ′ can be
connected instead.

(That is, if pc : CI ∧ pcpart : CIpart ∧ pc.R <== pcpart.P holds, then pc.R <== pcpart.P
remains valid, if the runtime type of pc is CI ′ instead of CI .)

4. If a provided service P of CI was linked via pc to a provided service PCC of the
component interface CICC of CC, then the provided service P of CI ′ can be linked
instead.

(That is, if pc : CI ∧ CICC .PCC <– pc.P holds, then CICC .PCC <– pc.P remains
valid, if the runtime type of pc is CI ′ instead of CI .22)

5. If a required service R of CI was linked via pc to a required service RCC of the
component interface CICC of CC, then the required service R of CI ′ can be linked
instead.

(That is, if pc : CI ∧ CICC .RCC <– pc.R holds, then CICC .RCC <– pc.R remains
valid, if the runtime type of pc is CI ′ instead of CI .)

6. The names of all plugs of CI which are referred to via pc in CC are also available
in CI ′.

7. If a plug Pl of CI was connected via pc to a complementary plug Pl′ of another
part in CC typed by CIpart , then the plug Pl of CI ′ can be connected to Pl′ instead.

(That is, if pc : CI ∧ pcpart : CIpart ∧ pc.P l <== pcpart.P l′ holds, then
pc.P l <== pcpart.P l′ remains valid, if the runtime type of pc is CI ′ instead of CI .)

8. If a plug Pl of CI was linked via pc to a plug PlCC of the component interface
CICC of CC, then the plug Pl of CI ′ can be linked to PlCC instead.

(That is, if pc : CI ∧ CICC .P lCC <– pc.P l holds, then CICC .P lCC <– pc.P l remains
valid, if the runtime type of pc is CI ′ instead of CI .)

9. If all connections to required services of pc defined in CC and all links declared for
required services of pc are established, there must not remain any open mandatory
requirement for pc.

10. The constraints declared in CI ′ must not be violated by the connections to required
services of pc defined in CC.

21Remember that ’<==’ denotes a connection between a provided and a required service or between
complementary plugs.

22Remember that ’<–’ denotes a link between services of the same kind (export) or between plugs.

170 CHAPTER 4. OUR APPROACH

Ad 1, Ad 6: As CI ′ is a strong subtype of CI , every service and plug declared in CI
has a counterpart in CI ′ which is named identically (see subtype definitions 4.3.23
and 4.3.18).

Ad 2: As P of CI is connected via pc to a required service R of another part of CC
typed by CIpart , CI.P 23 and CIpart.R have to be matching services. We have to
show that then also CI ′.P and CIpart.R are matching services24. Then we know
from theorem 4.4.6 that CI ′.P can also be connected to CIpart.R.

CI.P matches CIpart.R⇐⇒ SItype(CI, P)� SItype(CIpart, R) (term definition 4.4.5)

CItype(CI ′) ≺= CItype(CI) =⇒ SItype(CI ′, P) � SItype(CI, P)
(see subtype definition 4.3.23)

=⇒ SItype(CI ′, P) � SItype(CIpart, R) (theorem 4.3.12)

⇐⇒ CI ′.P matches CIpart.R (term definition 4.4.5)

Ad 3: For CI ′.R we have to show that:

1. CI ′.R and CIpart.P are matching services,

2. the connection point type CPtype(CI ′, R) contains the connect-method used
to establish the connection between CIpart.P and CI.R via pc in CC,
(This is due to the fact that for every connection, the connect-method used to establish
the connection is stored in CC or CICC . These methods are called when instantiating
CC. Therefore CI ′.R has also to provide the connect-method stored in CC or CICC

for the connection between CIpart.P and CI.R via pc.)

3. the conditions for the limits on the number of connections to CI ′.R via pc are
satisfied, if they are satisfied for CI.R.

ad 1 As the required service R of CI was connected via pc to a provided service
P of another part in CC typed by CIpart, CI.R and CIpart.P are matching
services.
CIpart.P matches CI.R ⇐⇒ SItype(CIpart, P) � SItype(CI, R)

CItype(CI ′) ≺= CItype(CI) =⇒ RStype(CI ′, R) � RStype(CI,R)
(subtype definition 4.3.23)
=⇒ SItype(CI ′, R) � SItype(CI, R) (type definition 4.3.5 and

subtype definition 4.3.15)
=⇒ SItype(CIpart, P) � SItype(CI ′, R) (theorem 4.3.12)
⇐⇒ CIpart.P matches CI ′.R (term definition 4.4.5).

23To distinguish the provided service P of CI from P of CI ′, we qualify the service names with the
names of the component interfaces they belong to.

24We also say that P matches R.

4.8. COMPATIBILITY / SUBSTITUTABILITY 171

ad 2 Let m : MTm ∈ CPtype (CI,R) be the connect-method used to establish the
connection between CIpart.P and CI.R via pc in CC.

CItype(CI ′) ≺= CItype(CI) =⇒ RStype(CI ′, R) � RStype(CI,R)
(subtype definition 4.3.23)
=⇒ CPtype(CI ′, R) � CPtype(CI,R) (type definition 4.3.5 and

subtype definition 4.3.15)
CPtype(CI ′, R) � CPtype(CI, R) ⇐⇒ CPtype(CI ′, R) ⊇ CPtype(CI,R).
=⇒m : MTm ∈ CPtype (CI’, R)
Thus, m can also be used to establish the connection between CIpart.P and
CI ′.R via pc.

ad 3 To be able to distinguish lower and upper limits on the number of connec-
tions for R of CI and R of CI ′, we refer to min R and max R as minCI.R,
maxCI.R and minCI′.R, maxCI′.R. We assume that the conditions are satisfied
for CI.R via pc in CC.
Let #conn be the number of connections defined in CC to CI.R via pc.
=⇒minCI.R 5 #conn 5 maxCI.R.

CItype(CI ′) ≺= CItype(CI) =⇒ Cardtype(CI ′, R) � Cardtype(CI,R)
(see subtype definitions 4.3.23 and 4.3.15)
=⇒minCI′.R 5 minCI.R ∧maxCI.R 5 maxCI′.R (subtype definition 4.3.14)
=⇒minCI′.R 5 #conn 5 maxCI′.R.

Ad 4: P of CI can only be linked via pc to a provided service PCC of the component
interface CICC of CC, if PStype(CICC , PCC) � PStype(CI, P) (*).

We have to show that then also PStype(CICC , PCC) � PStype(CI ′, P). Then we
know from theorem 4.4.10 that P of CI ′ can also be linked to PCC .

CItype(CI ′) ≺= CItype(CI) =⇒ PStype(CI ′, P) � PStype(CI, P) (**)
(see subtype definition 4.3.23)

(*), (**) =⇒ PStype(CI ′, P) � PStype(CICC , PCC) (theorem 4.3.12)

⇐⇒ P of CI ′ can be linked to PCC (theorem 4.4.10)

Ad 5: For this proof, similar steps are necessary as in the previous proofs. We need
the transitivity of the subtype relation between required services (theorem 4.3.16),
the definition of a strong subtype relation between component interfaces (subtype
definition 4.3.23) and theorem 4.4.12.

Ad 7: It remains to show that, if CI.P l and CIpart.P l′ are complementary plugs, CI ′.P l
and CIpart.P l′ are also complementary plugs. Then the proposition follows di-
rectly from theorem 4.4.8.

CI.P l complementary to CIpart.P l′ ⇐⇒ (term definition 4.4.7)

172 CHAPTER 4. OUR APPROACH

1. ∃ f : Provided (CI, P l) −→ Required (CIpart, P l′), f is bijective with
∀ P ∈ Provided (CI, P l) : PStype(CI, P) � SItype(CIpart, f(P))

2. ∃ g : Provided (CIpart, P l′) −→ Required (CI, P l), g is bijective with
∀ P ′ ∈ Provided (CIpart, P l′) : PStype(CIpart, P

′) � SItype(CI, g(P ′))

We have to show: CI ′.P l is complementary to CIpart.P l′, that is S 1 and S 2 hold.

S 1 ∃ f ′ : Provided (CI ′, P l) −→ Required (CIpart, P l′), f ′ is bijective with
∀ P ∈ Provided (CI ′, P l) : PStype(CI ′, P) � SItype(CIpart, f

′(P))

S 2 ∃ g′ : Provided (CIpart, P l′) −→ Required (CI ′, P l), g′ is bijective with
∀ P ′ ∈ Provided (CIpart, P l′) : PStype(CIpart, P

′) � SItype(CI ′, g′(P ′))

CItype(CI ′) ≺= CItype(CI) =⇒ PLtype(CI ′, P l) ≺= PLtype(CI, P l)
(see subtype definition 4.3.23)

(with subtype definitions 4.3.18 and 4.3.17) =⇒

1. Provided (CI, P l) = Provided (CI ′, P l) (*)

2. Required (CI, P l) = Required (CI ′, P l)

3. ∀ P ∈ Provided (CI, P l) : PStype(CI ′, P)� PStype(CI, P) (**)

4. ∀ R ∈ Required (CI, P l) : RStype(CI ′, R) � RStype(CI, R))

CI.P l complementary to CIpart.P l′ =⇒ PStype(CI, P)� SItype(CIpart, f(P)) (***)

(**), (***) =⇒ PStype(CI ′, P) � PStype(CI, P) � SItype(CIpart, f(P))

=⇒ PStype(CI ′, P) � SItype(CIpart, f(P)) (theorem 4.3.12)

(Theorem 4.3.12 can be used as PStype(CI ′, P), PStype(CI, P) and SItype(CIpart, f(P))
are method based interface types, see type definitions 4.3.3 and 4.3.4.)

(*) =⇒ f ′ can be set to f =⇒ PStype(CI ′, P) � SItype(CIpart, f
′(P))

Thus S 1 holds. Similarly, S 2 can be shown.

Ad 8: The proof follows from the definition of a strong subtype relation between com-
ponent interfaces (subtype definition 4.3.23), the transitivity of the subtype rela-
tion between plugs (theorem 4.3.19), and the theorems concerning linking between
plugs (4.4.16 and 4.4.17).

Ad 9: The proof can be done similar to Ad 4 in the proof of theorem 4.4.12 based on the
subtype relations for the cardinality types for required services.

Ad 10: We have to show that, if pc holds an instance of type CI ′ instead of type CI ,
the constraints declared by CI ′ are not violated by the connections to required
services of pc defined in CC which only respect the constraints declared for CI .
That is, if R′

1 and R′
2 are two required services of CI ′ which are also declared in CI

4.8. COMPATIBILITY / SUBSTITUTABILITY 173

and which belong to a constraint C ′ of CI ′ then the service providers connected to
them via pc are distinct from each other.

The proposition follows directly from item 6 of the subtype definition for compo-
nent interfaces 4.3.22 which enforces that then g−1(R′

1) and g−1(R′
2) both belong to

a common constraint in CI , too. g: Required(CI) → Required(CI ′) is the mapping
from subtype definition 4.3.22 which defines counterparts in CI and CI ′. Since

CItype(CI ′) ≺= CItype(CI), g is the identity mapping.

If CI ′ declares a constraint which contains a required service which is not declared
in CI , this required service can not lead to a violation, because CC only declares
connections to required services of CI .

�

Category 3: Components implementing CI’ with CItype(CI’)� CItype(CI): For this
kind of components we show that there is a simple means to wrap them into compo-
nents implementing CI which can then be used to instantiate pc.

If CI ′ is only a weak subtype of CI that is, CItype(CI ′)� CItype(CI), service and
plug names of equivalent entities may differ. Therefore, the service and plug names of
CI have to be mapped to the names of the equivalent services and plugs of CI ′. This can
be done by creating a composite UCM-component CP Wrapper CI ′ implementing CI
and having a sole part pc Original of type CI ′. All services and plugs of CI ′ equivalent
to services and plugs of CI are exported and linked to the equivalent entities of CI . If f
denotes the mapping for the provided services, g the mapping for the required services
and h the mapping for the plugs used in subtype definition 4.3.22, CP Wrapper CI ′

looks as follows:

Component CP_Wrapper_CI’ implements CI {
GeneralDescriptions

type = composite

Parts
P_Original : CI’

InternalConnections

Exports
ProvidedServices

CI.p1 <-- P_Original.f(p1)
...
CI.pn <-- P_Original.f(pn)

174 CHAPTER 4. OUR APPROACH

RequiredServices
CI.r1 <-- P_Original.g(r1)
...
CI.rm <-- P_Original.g(rm)

Plugs
CI.pl1 <-- P_Original.h(pl1)
...
CI.plk <-- P_Original.h(plk)

ImplementationBinding
...

}

where f(pi), g(ri) and h(pli) represent the names of the corresponding entities in CI ′

as e.g. pi′, ri′, pli′. Export definitions for plugs have eventually to be refined according
to the rules discussed in Section 4.2.3.2.

Although a component CP ′ implementing CI ′ can not directly be used to instan-
tiate pc of CC, CP Wrapper CI ′ can be used instead. If one wants to ensure that
CP ′ is used for instantiation of P Original, the ’ImplementationBinding’ section of
CP Wrapper CI ′ has to contain the binding CI’ <<< CP’ . Otherwise every other
component implementing CI ′ can also be used for instantiation.

CP Wrapper CI ′ does not only map names of CI to names of CI ′, it automatically
also maps subtypes to supertypes and thus realizes some kind of type cast. This is
due to the fact that the services and plugs of CI may be supertypes of the equivalent
services and plugs of CI ′ which follows from CItype(CI ′)� CItype(CI). By linking the
services and plugs of CI ′ to equivalent services and plugs of CI , an implicit upcast is
realized. In the life-cycle of a component, e.g. service interface types will be specialized
and the corresponding service names will be changed to express the difference to a
former release. Thus this kind of subtyping is natural. In addition, if a component
interface CI ′ is a weak subtype of a component interface CI , the wrapper described
above can be created simply by using the export-mechanism. If the mapping between
the names of equivalent services and plugs of CI and CI ′ is unambiguous, then this
wrapper can even be created automatically by a tool e.g. at deployment time.

Other Wrappers A wrapper-mechanism can also be used for other purposes like adapt-
ing an existing, incompatible service interface type to the needed service interface type.
But in this case, creating a suitable wrapper needs the aid of a person who selects or
implements a suitable adapter converting the incompatible service interface type to the
needed service interface type and who combines the adapter and the existing compo-
nent properly to build a wrapper implementing the needed interface. Such a process is
referred to as component adaptation. We do not consider such changes in the context of
subtype relations.

4.8. COMPATIBILITY / SUBSTITUTABILITY 175

4.8.2 Replacing Components because of Upgrades or Change of Ven-
dors

To remain flexible, companies want to be able to use new versions of already installed
components or to switch to components of other vendors which are more tailored to the
needs of the company as the old ones.

If a company does not want to maintain the formerly used components further more
and wants additionally ensure that all applications and components built using the for-
mer components can still be used without changes made to their code, if the former
components are replaced by new ones, the new components have to obey certain rules.

Thus, in this section we shall examine when an UCM-component can be replaced
by another one without invalidating any existing composite UCM-component which
internally refers to the UCM-component to be replaced.

For this purpose we have to distinguish two kinds of composite UCM-components:

1. composite UCM-components which internally only refer to the component inter-
face of the component to be replaced,

2. composite UCM-components which in addition refer to the component implemen-
tation of the UCM-component to be replaced.

Theorem 4.8.2 (Compatible Components) Let CP with component interface CICP and CP ′

with component interface CICP ′ be two UCM-components with CItype(CICP ′)≺= CItype(CICP).
Then

1. CP can be replaced by CP ′ without invalidating any composite UCM-component which
internally only refers to CICP , but not to the component implementation CP itself.

2. CP can be replaced by CP ′ without invalidating any existing UCM-component, if CP
and CP ′ are named equally or if CP ′ is registered as a valid substitution for CP .

Proof:

Ad 1 If CP is replaced by CP ′, CP is no longer available. Instead of CP , CP ′ has to
be used to instantiate all parts of composite UCM-components which were for-
merly instantiated by CP . Theorem 4.8.1 guarantees that for all composite UCM-
components CC which contain parts pc typed by CICP and which do not refer
to CP in their ImplementationBinding section, CP ′ can be used for instantiation
instead of CP without invalidating CC.

Ad 2 Let CC be a composite UCM-component directly referring to CP in its implemen-
tation binding section that is, CICP <<< CP or pc <<< CP for some pc in CC
typed by CICP . If CP and CP ′ are named equally, the implementation binding
statements need not be changed.

176 CHAPTER 4. OUR APPROACH

The situation is more complicated, if the name of CP ′ is distinct from CP . If the
runtime system tries to instantiate CC, it has to instantiate all parts pc belonging
to CC which are typed by CICP including those for which CP was declared in
the implementation binding section of CC to be used for instantiation. As CP
can no longer be found in the implementation registry (Section 4.5), since it was
replaced by CP ′ the instantiation process can only be terminated successfully, if
CP ′ is registered as a valid substitution for CP in the substitution registry. For
more details on this process please refer to Sections 4.5 and 4.6.

�
Even UCM-components CP ′ with CItype(CICP ′) � CItype(CICP) can be used for

substitution. But instead of replacing CP by CP ′, CP is replaced by the wrapper com-
ponent corresponding to CP ′ as described in Section 4.8.1 (category 3).

4.9 Realisation of Composite UCM-Components

Before showing that and how industrial component models can be integrated into our
model, we show how composite UCM-components can be realized and how component
instances, especially instances of composite UCM-components, can be referred to by a
tool or in the context of a programming language. The discussions of this section give
some insight on what remains to show for the integration of components belonging to
industrial component models. We especially introduce the basics which are needed to
show that instances of composite UCM-components can be built from the implemen-
tation description of a composite UCM-component for each component model under
consideration.

Instead of referring to pure component instances represented by their service ac-
cess interface, our runtime system uses component info objects which internally refer to
the service access interface of the component instance they represent and which pro-
vide additional information as e.g. on the component interface, the component instance
implements. In addition to the possibility to access the functionality of a component
instance via its service access interface, a component info object allows one to query
type meta information about the corresponding component interface. On demand, the
runtime system only returns a reference to the object implementing the service access
interface instead of a reference to the component info object.

A component info object consists of a component interface info object and a component
implementation info object.

The component interface info object holds the name of the component interface im-
plemented by the component instance (field c InterfaceName in Figure 4.33) and
it holds a reference to a component interface object (field c InterfaceSpec in Figure
4.33). The component interface object is built based on the information available in the
component interface specification. It can be queried for information on the services a
component provides or requires, their service interface types, the plugs defined, the de-
fault connect-methods declared for required services, the upper limit on the number of

4.9. REALISATION OF COMPOSITE UCM-COMPONENTS 177

ComponentInfo ComponentInterfaceInfo

ComponentImplementationInfo

String

String

Component
Specification

I_ServiceAccess

. . .

. . .

. . .

. . .

component

c_InterfaceName
c_InterfaceInfo

c_Implementation

 Info

c_InterfaceSpec

c_ImplementationName

Figure 4.33: Component Info Object

connections to a required service, whether a required service is optional or mandatory
and so forth. Thus, this object serves to provide type meta information on the imple-
mented component interface. Some of the methods which have to be implemented by
component interface objects are listed below. The programming language used is Java.

public interface ComponentSpecification {

// Returns the names of all services provided by the component.
public String[] getProvidedServiceNames ();

// Returns the names of all services required by the component.
public String[] getRequiredServiceNames ();

// Returns the names of all mandatory required services.
public String[] getMandatoryConnections ();

// Returns the upper limit on the number of connections to the
// required service ’serviceName’.
public int getMaxNumberOfConnections (String serviceName);

public int getMinNumberOfConnections (String serviceName);

public boolean mandatoryConnection (String rServiceName);

public String getServiceTypeAsString (String serviceName,
boolean providedService);

public Class getServiceType(String serviceName, boolean providedService);

178 CHAPTER 4. OUR APPROACH

// Returns whether a default connect-method is specified for the
// required service ’rServiceName’.
public boolean existsMethod(String rServiceName);

// Returns the name of the default connect- or disconnect-method depending on
// the value of the parameter ’connectMethod’. ’True’ signals to look for the
// connect-method, ’false’ signals to look for the disconnect-method.
public String getMethodAsString (String rServiceName, boolean connectMethod);

public int countMethodParameters(String rServiceName, boolean connectMethod);

// Returns the names of all parameter types for the default connect-method
// corresponding to the required service ’rServiceName’.
public String[] getConnectMethodParamsAsString (String rServiceName);

...
}

The component implementation info object holds the name of the component imple-
mentation and it holds a reference to a component implementation object (field component
in Figure 4.33). The component implementation object implements I ServiceAccess
that is, it represents the service access interface of the component instance. Via this ser-
vice access interface all services and connection points of the component instance can
be accessed. The component instance is built based on the information available in the
component implementation file.

If the component implementation refers to an atomic UCM-component, the type
of the component implementation object depends on the industrial component model
used for atomic UCM-components and on whether the component instance already im-
plements I ServiceAccess or not. In case of JavaBeans, this object is an instance of
the JavaBean-class, if this class implements I ServiceAccess . Otherwise, it is an in-
stance of a special wrapper class only implementing I ServiceAccess and internally
referring to an instance of the JavaBean-class. For COM components, the component
implementation object is an instance of the class AtomicComp (see Section 4.10.2.1). For
more details on these wrapper classes please refer to the explanations on how industrial
component models are integrated into our model in Section 4.10.

The implementation of the class used as type for the component implementation
object in case of composite UCM-components only differs slightly depending on the
industrial component model used for atomic UCM-components. Differences appear
when interconnections between services of two parts have to be established. For this
purpose, the kind of the type metadata and the methods available to explore connec-
tion point types unknown at compile time and to invoke methods on them have to be
used. This varies from component model to component model. For more details on this
subject see the subsections of Section 2.2 concerning type metadata and Section 4.10.

Apart from these differences, composite UCM-components are realized by the same
wrapper class. This class implements I ServiceAccess and holds information on

4.9. REALISATION OF COMPOSITE UCM-COMPONENTS 179

1. the export declarations made in the component implementation of the composite
UCM-component and

2. a list of objects representing its parts. For every part its name is stored as well as
a reference to a component info object representing the corresponding component
instance.

CompositeComponent
(implements I_ServiceAccess)

exportedRServices

exportedPServices

...

partList

ServiceExportEntry String

PartEntry

ComponentInfo

interfaceServiceName

exportingPartName

exportedServiceName

String

String

. . .

. . .

. . .

ServiceExportEntry

. . .

String
. . .

. . .

partName

compInfo

...
...

...
...

...
...

Figure 4.34: Instance of a Composite UCM-Component

As already described above, each component info object internally refers to a compo-
nent implementation object implementing I ServiceAccess . These component im-
plementation objects are instances of the wrapper class for composite UCM-components
or instances of atomic UCM-components depending on the kind of the component im-
plementation (composite, atomic) selected for this part.

The service access interface of the wrapper class for composite UCM-components
delegates a call to getServiceReference or getConnectionPointObject to the
service access interface of the wrapper or maybe bean-class instance stored in the com-
ponent info object of the part exporting the requested service. The delegation process
terminates on a wrapper or maybe bean-class instance of an atomic UCM-component.
See also Figure 4.28.

The interface of the class used to instantiate component info objects is shown be-
low. It is written in Java. ComponentInterfaceInfo is the class used to instantiate
component interface info objects and ComponentImplementationInfo is the class
used to instantiate component implementation info objects. ComponentImplInfos
is a class representing the parsed contents of the component implementation file. De-
pending on whether the component implementation specifies an atomic or composite
UCM-component, instances of this class can be queried for the industrial component

180 CHAPTER 4. OUR APPROACH

model used, for the identification of the component to be instantiated (e.g. CLSID), for
the parts declared, for the export definitions and so forth. The declaration of the inter-
face ComponentSpecification was already shown above.

public class ComponentInfo {
private ComponentInterfaceInfo c_InterfaceInfo;
private ComponentImplementationInfo c_ImplementationInfo;

public ComponentInfo(ComponentImplInfos cii) throws ComponentException {
...

}

// Returns the name of the component implementation
public String getComponentName() {

...
}

// Returns a reference to the component implementation object
public I_ServiceAccess getComponent(){

...
}

// Sets the reference to the component implementation object
public void setComponent(I_ServiceAccess c){

...
}

// Returns a reference to the component interface object
public ComponentSpecification getComponentSpec () {

...
}

// Sets the reference to the component interface object
public void setComponentSpec (ComponentSpecification cpSpec) {

...
}

}

The following description is based on Figure 4.34.
The export information contained in an instance of a composite UCM-component

is used to delegate a call on its service access interface to the service access interface
of the part exporting the service. Thus, if an instance of a composite UCM-component
is queried for a service object bound to one of its provided services, the correspond-
ing ServiceExportEntry is looked up from the list of exported provided services
(exportedPServices in Figure 4.34). This entry contains the name of the part ex-
porting the service (exportingPartName) as well as the name of the part’s own pro-
vided service (exportedServiceName) implementing the service of the composite
UCM-component. Having the name of the part, the corresponding PartEntry can be
looked up in the list partList . This entry holds a reference to the component info

4.9. REALISATION OF COMPOSITE UCM-COMPONENTS 181

object (compInfo) representing the component instance corresponding to the part. Us-
ing getComponent() , the component info object can be queried for a reference to the
component implementation object which is of type I ServiceAccess . On this ob-
ject, getServiceReference is called with the service name of the part used to im-
plement the service of the composite UCM-component. The service object returned is
in turn returned by getServiceReference called on the instance of the composite
UCM-component. The delegation process terminates at a component implementation
object representing an atomic UCM-component (see Section 4.6). A similar process is
used to query an instance of a composite UCM-component for a connection point ob-
ject corresponding to one of its required services. This way, the links between the ser-
vices of a composite UCM-component with interface CI and the services of its parts,
e.g. CI.P <– part.P1, are realized.

When creating an instance of a composite UCM-component the information on how
its parts are interconnected have to be evaluated. We focus on interconnections on ser-
vice level as interconnections on plugs can be reduced to interconnections on service
level. A full-fledged connect entry in the component implementation of a composite
UCM-component between a required service R of a part pc and a provided service P of
a part pc′ looks as follows (see Section 4.2.3.1):

pc.R <== (methodName(type-par1 value-par1, ..., type-parm value-parm)) pc′.P
The corresponding information can be modelled by the following class:

public class InternalConnection {

public String serviceRequester;
public String rServiceName;

public String serviceProvider;
public String pServiceName;

public Vector conMethParams;
public String conMethName;

...
}

serviceRequester holds the name of the part with the required service and rSer-
viceName the name of the required service. Similarly, serviceProvider holds the
name of the part with the provided service and pServiceName the name of the pro-
vided service. conMethName holds the name of the connect-method and conMeth-
Params holds for each parameter one string-value with the parameter type and one
with the value of the actual parameter. Thus, having the name of a part, the corre-
sponding part entry can be looked up and in turn the component implementation object
of type I ServiceAccess retrieved as already shown in the context of export decla-
rations. In the following, we refer to the component implementation object of the part
having the required service as obj serviceRequester and the component implementation

182 CHAPTER 4. OUR APPROACH

object of the part having the provided service as obj serviceProvider. The service object
bound to pServiceName can be retrieved by

obj serviceProvider.getServiceReference(pServiceName)

and the connection point object belonging to rServiceName by
obj serviceRequester.getConnectionPointObject(rServiceName) .

In the following, the service object is referred to by servObj and the connection point
object by conObj. To establish the connection, the connect-method must be invoked on
conObj taking as actual parameter servObj for the formal parameter declared to hold the
needed reference. To be able to do so, we must use the reflection services available for
the industrial component model under consideration to retrieve a method object from
its string representation in InternalConnections and to create the actual parame-
ters other than servObj from their string representations. With these actual parameters,
the method is then called by the invoke-mechanisms available through reflection. The
position of the parameter to be used to pass servObj in the parameter list can be deter-
mined from conMethParams by looking for the parameter with the argument value
“-”.

4.10 Integration of Industrial Component Models

Components of existing component models can only be integrated, if they provide an
interface and implementation specification as defined in Figures 4.11 on page 111 and
4.15 on page 122. From these specifications component info objects as presented in
Section 4.9 will be created representing a component instance.

The contained component implementation object implementing the service access
interface is either an instance of a component of the underlying component model or
an instance of a special wrapper class implementing the service access interface. This
special wrapper class internally refers to an instance of a component of the underlying
component model. The wrapper class is needed to enable the integration of compo-
nents which are still unaware of our component model and will thus not implement the
service access interface.

The component interface object contained in the component info object is queried for
the services and plugs declared as well as the types of the service interfaces. Amongst
others, these types are used to check, whether two types are related by a subtype rela-
tionship.

Therefore, to show that an existing industrial component model can be integrated
into our model we have to answer the following questions:

1. What is a suitable declaration of I ServiceAccess?

As the methods getServiceReference and getConnectionPointObject
must return references to service objects of an arbitrary service interface type and
connection point objects of an arbitrary connection point type, the return type of
these methods must cover all these types.

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 183

2. How does our component interface specification look like for this industrial com-
ponent model? Especially: how are service interface types denoted?

Based on the denotation of the service interface types, we must be able to cre-
ate a type representation which can be used to check service interface types for
a subtype relationship. This check is needed for our subtype relations declared
for provided and required services, plugs and component interfaces. The subtype
relation is essentially used by the rules for substitutability, checks for the correct-
ness of a composition, and by tools supporting features like determining a set of
suitable service providers (see Section 5.1).

In this context we show, how a check for a subtype relationship can be imple-
mented.

3. How does a component implementation for an atomic UCM-component look like?
Especially: how is a component of the industrial component model referred to and
how can an instance be built from this information?

The information must allow one to look up the component needed and to instan-
tiate it. For this purpose we need the mechanisms for component lookup and
instantiation described for the different industrial component models in item Com-
ponent lookup, instantiation and access of their description in Section 2.2.

4. Can a composite UCM-component be built from its component implementation
specification? Especially: Can a connection be established based on the informa-
tion on the connect-method in the component implementation or on the default
connect-method in the component interface specification?

From Section 4.9 we know already that links/exports can be realized by a certain
implementation of the service access interface of a composite UCM-component.
In addition, we know, how the connection point object (conObj) and service object
(servObj) corresponding to a connect-entry in the section ’InternalConnections’ can
be obtained. From Section 4.9 we also know which steps are necessary to end up
in a connection using the connect-method specification.

Following these steps, it remains to show that it is possible

• to determine a method object representing the connect-method which can
then be used to call this method. It must be possible to determine this method
object only based on its name and parameter types given as strings.

• to generate arguments for the method call based on the values given as strings.
(For the argument with value “-”, servObj has to be used as actual parameter.)

• to execute the connect-method on the connection point object.

For this purpose we need the information on the type metadata and the reflec-
tion services described for every component model in their subsections titled Type
Metadata of Section 2.2.

184 CHAPTER 4. OUR APPROACH

To be capable of using the full power of our model, we have to show additionally that

1. an implementation of I ServiceAccess can be provided by a special wrapper for
atomic UCM-components, if the component of the industrial component model
does not implement this interface by itself. That is, the component was not yet
designed with respect to our component model, but can nevertheless be integrated
by only providing a suitable component interface specification and a component
implementation specification.

2. existing approaches for services or event connections can be integrated into our
model.

(For this purpose we need the information on the component interface and com-
position techniques described for every component model in their subsections of
Section 2.2 which are titled Component Model respectively .NET Framework and
Composition Techniques.)

3. concepts like our services and plugs can be used even if related concepts are miss-
ing in the industrial component model under consideration. In addition, service
and plug connections can be applied.

4.10.1 JavaBeans

4.10.1.1 Component Implementations and Component Interfaces Specifications

In this subsection we answer the first four questions from Section 4.10.

Ad 1 What is a suitable declaration of I ServiceAccess?

For JavaBeans, I ServiceAccess as declared in Section 4.1.1.1 on page 93 is
suitable. References for all types of service interfaces and connection points can
be obtained by calls to the methods of I ServiceAccess , since Object covers
all these types.

Ad 2 How does our component interface specification look like for this industrial component
model? Especially: how are service interface types denoted?

Service interface types for JavaBeans are denoted by the names of their corre-
sponding Java interfaces including package information. The fact that Java types
are used to denote service interface types must be announced by setting the value
for ’NamingConventions’ in the component interface specification to ’JavaType’.

For examples of component interface specifications using JavaBeans refer e.g. to
examples 4.1.23 and 4.2.1.

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 185

Subtype relations for service interface types can be determined as shown below,
based on the names of their Java types being available as strings from the compo-
nent interface specification. The Class objects corresponding to the service inter-
face types can be obtained by calling Class.forName passing the string repre-
sentations of the Java types as argument (see Section 2.2.1.4). A method similar to
“isSubtype” is implemented in Sun’s BeanBox.

// Searches the chain of supertypes of ’a’ by calling
// ’isSubtype’ recursively. ’a’ and ’b’ represent interfaces.

static boolean isSubtype(Class a, Class b) {
// We rely on the fact that for any given java class or
// primitive type there is a unique Class object, so
// we can use object equivalence in the comparisons.

if (a == b) {
return true;

}
if (a == null || b == null) {

return false;
}

/* Determine all interfaces extended by interface ’a’. The order of
* the interface objects in the array corresponds to the order of
* the interface names in the extends clause of the declaration of
* the interface represented by ’a’.

*/
Class interfaces[] = a.getInterfaces();
for (int i = 0; i < interfaces.length; i++) {

if (isSubtype(interfaces[i], b)) {
return true;

}
}
return false;

}

...
// If "interface1" and "interface2" are two names of Java interfaces
// and one wants to know whether interface1 is a subtype of interface2,
// one has to call
boolean b = isSubtype(Class.forName("interface1"),

Class.forName("interface2"));
...

Ad 3 How does a component implementation for an atomic UCM-component look like? Espe-
cially: how is a component of the industrial component model referred to and how can an
instance be built from this information?

In component implementations of atomic UCM-components the value for ’Com-
ponentModel’ is set to ’JavaBeans’ and a JavaBean is referred to by the name of its
JavaBean-class including package information.

186 CHAPTER 4. OUR APPROACH

An instance of the JavaBean can be created by a call to java.beans.Beans.
instantiate which takes as input the string representation of the name of the
JavaBean-class (see Section 2.2.1.1 item 4).

For examples of component implementations for atomic UCM-components using
JavaBeans refer e.g. to example 4.2.1.

Ad 4 Can a composite UCM-component be built from its component implementation speci-
fication? Especially: Can a connection be established based on the information on the
connect-method in the component implementation or on the default connect-method in the
component interface specification?

For examples of component implementation specifications for composite UCM-
components using JavaBeans refer e.g. to example 4.2.1. Example 4.2.2 on page
127 shows the declaration of a connect-method with additional parameters:

connect(I List -, String OrderList) .

The data types used as parameter types in connect-method declarations are also
denoted as Java types.

From Section 4.10 we know that it only remains to show that it is possible

• to determine a method object representing the connect-method which can
then be used to call this method. It must be possible to determine this method
object only based on its name and parameter types given as strings.

• to generate arguments for the method call based on the values given as strings.
(For the argument with value “-”, servObj has to be used as actual parameter.)

• to execute the connect-method on the connection point object.

Determine a method object: In the following, the name of the connect-method is
referred to as methodName.

From the parameter types given as strings the corresponding Class objects rep-
resenting their types can be obtained by a call to Class.forName (see Section
2.2.1.4). These Class objects can be stored in an array listing all parameter types
(e.g. Class[] parameterTypes;). The connection point type the connect-me-
thod belongs to can be retrieved from the connection point object conObj by calling
conObj.getClass(); . conObj can be retrieved as shown in Section 4.9. Having
the Class object representing the connection point type one can call getMethod
on this Class object to retrieve the method object representing the connect-method.
The method object is of type java.lang.reflect.Method and is identified by
the method name available as string and the parameter types available by an array
of Class objects:

Method conMeth = conObj.getClass().getMethod(methodName, parameterTypes);

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 187

Before being able to execute the connect-method, we must be able to generate
arguments for the method call based on the values given as strings.

Generate arguments: Since we restricted the argument types for connect-methods
to primitive data types and the type of the corresponding required service, one
can generate the arguments as follows. Arguments for primitive data types like
int, Integer, double, Double, ... can be generated by calling the con-
structors of the corresponding Java classes resp. wrapper classes having a single
parameter of type String . The string value available for the argument of the
connect-method to be generated is passed as argument to the constructor like e.g.
Object value = new Integer(argAsString);

An argument value of "-" for an argument of the connect-method indicates that
the actual parameter is a reference to the object implementing the provided ser-
vice. Therefore this argument can be set to servObj which can be retrieved as
shown in Section 4.9.

Execute the connect-method: As already mentioned in Section 2.2.1.4, a method
represented by an object of type Method can be executed by calling Invoke on
this object. The first parameter of Invoke refers to the object the method is in-
voked from. In our case this is conObj. The second parameter refers to an array of
objects representing the arguments of the method to be executed by Invoke . The
following code snippet shows the fundamental steps for executing the connect-
method.

Object result = null;
int numberParams = paramTypesAsString.length;
Object[] args = new args[numberParams];

for (int j = 0; j < numberParams; j++) {
args[j] = createArgument (paramValuesAsString[j],

paramTypesAsString[j], servObj);
}

result = conMeth.Invoke (conObj, args);

In the code above paramValuesAsString and paramTypesAsString contain
the values and type names for the parameters of the connect-method as strings.
createArgument represents a method generating an argument depending on
its type and value as described in the previous item.

4.10.1.2 Integration of existing Concepts and Support for Services and Plugs

In this section we show items 1. to 3. listed at the end of Section 4.10.

Ad 1 An implementation of I ServiceAccess can be provided by a special wrapper for atomic
UCM-components, if the component of the industrial component model does not imple-
ment this interface by itself. That is, the component was not yet designed with respect

188 CHAPTER 4. OUR APPROACH

to our component model, but can nevertheless be integrated by only providing a suitable
component interface specification and a component implementation specification.

If a JavaBean is unaware of our component model, it will not implement I Service

Access . We can nevertheless integrate such a JavaBean by providing a com-
ponent interface specification which declares all interfaces implemented by the
JavaBean as provided services. A wrapper class can be declared which imple-
ments I ServiceAccess and which has an attribute of the type of the JavaBean-
class. For all services declared as provided ones, this wrapper class returns a ref-
erence to its internally stored bean when getServiceReference is called. A call
to getConnectionPointObject results in a return value of null . The component
implementation specification refers to this wrapper class instead of the original
JavaBean.

Ad 2 Existing approaches for services or event connections can be integrated into our model.

The most relevant concepts used for the JavaBeans component model are proper-
ties and events. Concepts like services and plugs are not supported at all. Never-
theless, event notifications can be integrated into our model as optional required
services.

Event sources can be determined by their implemented (de)registration methods
for EventListeners as described in Section 2.2.1.1 item 3. In the following, these
methods are referred to as add- and removeXYZListener-methods.

Every JavaBean providing an add- and removeXYZListener-method can be regarded
as a component having an optional required service of type XYZListener with
connect-method addXYZListener and disconnect-method removeXYZListener. Only
service providers implementing the corresponding XYZListener type can be con-
nected to the event sources. An implemented EventListener interface (XYZListener)
can be regarded as a provided service of type XYZListener. So event connections
can be regarded as service connections. The add- and removeXYZListener-methods
are combined into an interface IConnectionPoint XYZListener.

The following example shows how the possibility to fire MouseEvents can be
expressed by the declaration of an optional required service of type
java.awt.event.MouseListener .

// Java interface declaring the (de)registration
// methods for MouseListeners
package event_connection_points;
import java.awt.event.*;

public interface IConnectionPoint_MouseListener {
public void addMouseListener(MouseListener l);
public void removeMouseListener(MouseListener l);

}

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 189

// Component interface specification
ComponentInterface CI_... {

GeneralDescriptions
NamingConventions = JavaType

ServiceDefinitions
ProvidedServices

...
RequiredServices

MouseEventFiring :
(java.awt.event.MouseListener,

event_connection_points.IConnectionPoint_MouseListener,
[0...*])

...
ServiceRelations

...
}

Ad 3 Concepts like our services and plugs can be used even if related concepts are missing
in the industrial component model under consideration. In addition, service and plug
connections can be applied.

Provided Services: To provide a service, the JavaBean-class has to implement the
interface specified as the type of the service or it must provide a reference to an in-
ternal object implementing this interface. This reference has to be obtained when
calling getServiceReference for this service on a JavaBean-class object. Al-
though example 4.1.14 on page 93 only uses pure java classes instead of JavaBeans,
this example demonstrates all necessary steps. The classes representing the com-
ponents in this example correspond to the JavaBean-classes.

Required Services: A required service can be realized by declaring an attribute
of the corresponding service interface type in the class realizing the connection
point belonging to the required service. This attribute is used to store a reference
to an object implementing the methods declared by the service interface type of
the required service. The methods used to store or delete such references have to
obey the rules for connection point methods from Section 4.1.1.1 on page 92. (See
example 4.1.14, too.)

Plugs: Plugs can also be used because they can simply be defined by a suitable
component interface specification enumerating the names of the provided and/or
required services belonging to the plug. No counterpart is needed in the underly-
ing industrial component model.

Interconnections: Interconnections between required and provided services can
be established by calling one of the connect-methods on the connection point ob-
ject associated with a required service and passing as an argument an object im-
plementing the provided service to be connected to the required one. References
to connection point objects and objects implementing the provided service can

190 CHAPTER 4. OUR APPROACH

be obtained by calling the methods of the service access interface. For examples
please refer to example 4.1.14.

4.10.2 Component Object Model (COM)

4.10.2.1 Component Implementations and Component Interface Specifications

As in the case of JavaBeans, here we answer the first four questions from Section 4.10.

Ad 1 What is a suitable declaration of I ServiceAccess?

For COM components, the service access interface is declared as follows.

class I_ServiceAccess {
public:

virtual IUnknown* getServiceReference (BSTR PServiceName) = 0;
virtual IUnknown* getConnectionPointObject (BSTR RServiceName) = 0;

}

BSTRis a special string format used in the context of COM.

I ServiceAccess is suitable because IUnknown covers all COM interface types.

Ad 2 How does our component interface specification look like for this industrial component
model? Especially: how are service interface types denoted?

Service interface types for COM components are denoted by their interface iden-
tifiers (IIDs). The fact that IIDs are used to denote service interface types must
be announced by setting the value for ’NamingConventions’ in the component
interface specification to ’GUID’.

The following example shows how component interface specifications look like
for COM. This example is the COM-version of example 4.1.25. In this exam-
ple, some globally unique identifiers (GUID) are used to identify COM interfaces.
These GUIDs are arbitrarily chosen as shown below. The used interface identifiers
are chosen to be:

• {00000001-0000-0000-0000-000000000040} for I ServiceAccess

• {00000001-0000-0000-0000-000000000050} for I List

• {00000001-0000-0000-0000-000000000060} for I Order

• {00000001-0000-0000-0000-000000000070} for I Customer

• {20000001-0000-0000-0000-000000000001} for IConnectionPoint List.

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 191

/******************** Component Interface ********************/

ComponentInterface CI_OrderAdministration {
GeneralDescriptions

NamingConventions = GUID

ServiceDefinitions
ProvidedServices

ServiceAccess : {00000001-0000-0000-0000-000000000040}
Orders : {00000001-0000-0000-0000-000000000060}
Customers : {00000001-0000-0000-0000-000000000070}

RequiredServices
OrderList :({00000001-0000-0000-0000-000000000050},

{20000001-0000-0000-0000-000000000001},
[1...1])

CustomerList :({00000001-0000-0000-0000-000000000050},
{20000001-0000-0000-0000-000000000001},
[1...1])

ServiceRelations
Constraints

DifferentLists = {OrderList, CustomerList}
}

/***/

Subtype relations for service interface types can be determined based on their IIDs.
If one wants to know whether IID 1 � IID 2 holds, one may search the windows
registry starting at25 HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Interface\{IID_1} .
If IID 1 is directly derived from IID 2, then IID 2 is registered as its base interface
using the registry subkey BaseInterface as shown in Figure 4.35.

The subtype relation holds. If another IID (IID 3) is stored as a base interface for
IID 1 one has to proceed by looking for base interfaces of IID 3 and so forth. The
search stops, if IID 2 is found in the chain of base interfaces or if no further base
interface can be found. In this case IID 1 � IID 2 does not hold.

Another possibility to determine whether IID 1� IID 2 holds is to search the type
library containing a description of the interface with IID 1. For an explanation on
how base interfaces may be determined using type libraries please refer to Section
2.2.2.4.

25Several API-functions allow one to access the Windows registry as e.g. RegOpenKeyEx and
RegQueryValueEx .

192 CHAPTER 4. OUR APPROACH

Figure 4.35: Windows Registry for COM Interfaces

Ad 3 How does a component implementation for an atomic UCM-component look like? Espe-
cially: how is a component of the industrial component model referred to and how can an
instance be built from this information?

In component implementations of atomic UCM-components the value for ’Com-
ponentModel’ is set to ’COM’ and a COM component is referred to by its class ID
(CLSID).

For instantiation, CoCreateInstance from the COM library can be called using
this CLSID while simultaneously querying for a reference to IUnknown .

A special wrapper object for atomic UCM-components is generated implementing
I ServiceAccess and storing the obtained reference to IUnknown . This wrap-
per could e.g. be declared as follows:

class IServiceAccess_COM : public IUnknown {
public:

virtual HRESULT getServiceReference (BSTR PServiceName,
IUnknown** ppUnknown) = 0;

virtual HRESULT getConnectionPointObject (BSTR RServiceName,
IUnknown** ppUnknown) = 0;

}

class I_TypeInfo {
public:

virtual ITypeInfo* getServiceTypeInfo (BSTR PServiceName) = 0;
virtual ITypeInfo* getConnectionPointTypeInfo (BSTR RServiceName) = 0;

}

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 193

class AtomicComp : public I_ServiceAccess, public I_TypeInfo {
...
private:

ITypeLib * pTypeLib;
ITypeInfo * pTypeInfo;
IUnknown * pUnknown;
IServiceAccess_COM * pServiceAccess;

...
}

Then QueryInterface can be called on pUnknown to obtain a reference to
IServiceAccess COM. On success this reference is stored in pServiceAccess .
If the methods of I ServiceAccess are called on the wrapper, it calls the corre-
sponding methods of pServiceAccess if non-NULL. Otherwise it calls
QueryInterface on pUnknown to retrieve references to the requested services
or connection points. This is only needed for COM components being unaware of
our component model. For more information on how to integrate unaware com-
ponents see Section 4.10.2.2.

To be able to retrieve runtime type information on the COM class and its interfaces,
the wrapper also stores a reference to an ITypeLib object representing the type
library containing information for the specified COM class. This reference can
e.g. be obtained by a call to LoadRegTypeLib passing the corresponding LIBID
as parameter. For information on how this LIBID can be found and for information
on the purpose of type libraries please refer to Section 2.2.2.4. The wrapper also
stores a reference to an ITypeInfo object providing the run time type information
for the COM class itself.

// Retrieve the LIBID from the CLSID.
// Get a reference to the type library object.
...
unsigned short verMajor = ...;
unsigned short verMinor = ...;
HRESULT hr;
hr = LoadRegTypeLib(LIBID, verMajor, verMinor, LANG_NEUTRAL, &pTypeLib);

.....

// Get a reference to an ITypeInfo object providing the runtime
// type information for the COM class identified by CLSID.
hr = pTypeLib-> GetTypeInfoOfGuid (CLSID, &pTypeInfo);

.....

The runtime type information will be needed to build composite UCM-components.
Details are described in item Ad 4.

194 CHAPTER 4. OUR APPROACH

An example of two component implementation specifications for atomic UCM-
components is shown below. The example refers to the IIDs and the component
interface specification CI OrderAdministration introduced in item Ad 2.

The class IDs for the two COM components providing a list implementation and
an order administration are chosen as follows:

• {90000001-0000-0000-0000-000000000001} for the COM component provid-
ing a list implementation,

• {90000001-0000-0000-0000-000000000010} for the COM component provid-
ing the order administration.

/******************** Component Interfaces ********************/

ComponentInterface CI_List {
GeneralDescriptions

NamingConventions = GUID

ServiceDefinitions
ProvidedServices

ServiceAccess : {00000001-0000-0000-0000-000000000040}
List : {00000001-0000-0000-0000-000000000050}

}

/**** Component Implementations for Atomic UCM-Components ****/

Component CP_List implements CI_List {
GeneralDescriptions

type = atomic
ComponentModel = COM
ImplementingComponent = {90000001-0000-0000-0000-000000000001}
// CLSID for COM component providing a list implementation.

}

Component CP_OrderAdministration implements CI_OrderAdministration
{

GeneralDescriptions
type = atomic
ComponentModel = COM
ImplementingComponent = {90000001-0000-0000-0000-000000000010}
// CLSID for COM component providing an order administration.

}

/**/

Ad 4 Can a composite UCM-component be built from its component implementation speci-
fication? Especially: Can a connection be established based on the information on the

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 195

connect-method in the component implementation or on the default connect-method in the
component interface specification?

An example of a component implementation specification for a composite UCM-
component is shown below. The example refers to the IIDs, component inter-
face specifications and component implementations for atomic UCM-components
from items Ad 2 and Ad 3.

/************ Component Interface Specification **************/

ComponentInterface CI_SpecialOrderAdministration {
GeneralDescriptions

NamingConventions = GUID

ServiceDefinitions
ProvidedServices

ServiceAccess : {00000001-0000-0000-0000-000000000040}
Orders : {00000001-0000-0000-0000-000000000060}
Customers : {00000001-0000-0000-0000-000000000070}

}

/****** Component Implementations for Composite UCM-Components ******/

Component CP_SpecialOrderAdministration implements
CI_SpecialOrderAdministration {

GeneralDescriptions
type = composite

Parts
P_OrderAdministration : CI_OrderAdministration
P_OrderList : CI_List
P_CustomerList : CI_List

InternalConnections
RequiredServices

P_OrderAdministration.OrderList
<== (connect({00000001-0000-0000-0000-000000000050} -,

VT_BSTR OrderList))
P_OrderList.List

P_OrderAdministration.CustomerList
<== (connect({00000001-0000-0000-0000-000000000050} -,

VT_BSTR CustomerList))
P_CustomerList.List

Exports
ProvidedServices

CI_SpecialOrderAdministration.Orders
<-- P_OrderAdministration.Orders

CI_SpecialOrderAdministration.Customers
<-- P_OrderAdministration.Customers

196 CHAPTER 4. OUR APPROACH

ImplementationBinding
CI_List <<< CP_List
CI_OrderAdministration <<< CP_OrderAdministration

}

/**/

The primitive data types used as parameter types in connect-method declarations
are denoted by enumeration constants for the data types representable by type
VARIANT (see paragraph Type Descriptions for COM Interfaces on page 47). The
data type for the parameter accepting the needed service interface is denoted by
its IID.

As in the case of JavaBeans, to build composite UCM-components it only remains
to show that it is possible

• to determine a method object representing the connect-method which can
then be used to call this method. It must be possible to determine this method
object only based on its name and parameter types given as strings.

• to generate arguments for the method call based on the values given as strings.
(For the argument with value “-”, servObj has to be used as actual parameter.)

• to execute the connect-method on the connection point object.

Determine a method object: To be able to achieve this goal for COM, we need the
runtime type information for the type of the connection point. This type infor-
mation contains descriptions for all methods declared for this type. To be able to
retrieve this information we require26 that the type library assigned to a COM
class also provides type information for all connection point types needed for
its required services with one exception: IConnectionPoint . This is due to
the fact that we want to be able to integrate COM components into our model,
even if they are not designed for this purpose. As these components normally
provide type information on their provided and outgoing interfaces, but not on
IConnectionPoint , we can not insist on type information for IConnection
Point being available by the type library for the COM class under consideration.
For every outgoing interface, IConnectionPoint is used to register suitable lis-
teners for event notification.

To retrieve the type information for a connection point associated with a required
service, we use the method getConnectionPointTypeInfo declared in I Type

26Here we do not consider the possibility that a COM object can implement the interface
IProvideClassInfo . This interface allows one to retrieve type information about the COM object
from the COM object itself. We assume type information to be provided by type libraries only. For more
information on IProvideClassInfo please refer to [EE98].

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 197

Info from Ad 3. In the following, I TypeInfo is referred to as the type-info in-
terface. The implementation of this interface behaves analogously to the service
access interface concerning delegation aspects. The type-info interface of a com-
posite UCM-component delegates a call to getConnectionPointTypeInfo to
the type-info interface of the wrapper stored for the part exporting the required
service. The delegation process terminates on a wrapper for an atomic UCM-
component.

Having the name of a required service (rServiceName), the IID specifying the con-
nection point type of the connection point associated with this required service
(IID CP) can be retrieved from the component interface specification associated
with the atomic UCM-component. The declaration of the required service con-
tains, amongst others, information on the service interface type and the connection
point type, both identified by their IIDs.

The implementation of getConnectionPointTypeInfo from class AtomicComp

which is used to create wrapper instances for atomic UCM-components can use
IID CP to retrieve the type information for this connection point:

// Get a reference to an ITypeInfo object providing the runtime
// type information for the interface used by the connection point
// object to register service providers.
ITypeInfo * pTypeInfo;
HRESULT hr = pTypeLib->GetTypeInfoOfGuid(IID_CP, &pTypeInfo);
if (hr == S_OK) return pTypeInfo;
return NULL;
...

Using this type information, an identifier for the connect-method (memID) can be
retrieved based on the name of the method.

OLECHAR * methodName = ...;
MEMBERID memID;
HRESULT hr = pTypeInfo->GetIDsOfNames(&methodName, 1, &memID);

This memID is used later on to call the associated method. Before being able to do
so, the arguments for the method call have to be created.

Generate arguments: The execution of the connect-method will be done by a call
to ITypeInfo::Invoke already described in Section 2.2.2.4 on pages 46 and 47.
Therefore, every argument has to be of type VARIANT (see Section 2.2.2.4). As
already mentioned in the beginning of this section the parameter types for the
connect-method are denoted by enumeration constants for the data types repre-
sentable by the VARIANT type as e.g. VT BOOL, VT BSTR, VT UNKNOWN....

198 CHAPTER 4. OUR APPROACH

Every variable v of type VARIANThas to be initialized by a call to VariantInit .
Then its field vt used to identify the represented data type has to be set to VT BSTR,
because our values for the arguments are only available as strings. The field
bstrVal used for BSTRs has to be set to the value for the argument. Then Variant
ChangeType can be called to convert the string representation in v to the type
specified by the enumeration constant for the argument as e.g. VT INT . An ar-
gument value of "-" indicates that the actual parameter is a reference to the ob-
ject implementing the provided service. In this case vt has directly to be set to
VT UNKNOWNand the corresponding VARIANT-field pUnkVal to a reference to the
object implementing the provided service, servObj:

v.vt = VT_UNKNOWN;
v.pUnkVal =(IUnknown*)servObj;

Execute the connect-method: The connect-method is executed by
ITypeInfo::Invoke .

The following code snippet shows the fundamental steps.

VARIANT result;
VariantInit(&result);

// Determine the number of arguments to be generated.
// This number can be determined from the string
// representation of the connect-method.
UINT numberParams = ...;

// Declare an array for the arguments.
VARIANTARG args[numberParams];

// Generate all arguments as described above and store them in args.
// Declare a DISPPARAMS variable and assign the generated arguments.
DISPPARAMS params = {args, NULL, numberParams, 0};

// Call Invoke. The first parameter has to be a reference to the
// connection point object. Identify the method to be called by ’memID’
// already determined from the name of the connect-method.
// Pass the generated arguments in params.
hr = pTypeInfo->Invoke(conObj, memID, DISPATCH_METHOD,

¶ms, &result, NULL, NULL);

The connection point object conObj can be retrieved as shown in Section 4.9.

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 199

4.10.2.2 Integration of existing Concepts and Support for Services and Plugs

In this section we show items 1. to 3. listed at the end of Section 4.10.

Ad 1 An implementation of I ServiceAccess can be provided by a special wrapper for atomic
UCM-components, if the component of the industrial component model does not imple-
ment this interface by itself. That is, the component was not yet designed with respect
to our component model, but can nevertheless be integrated by only providing a suitable
component interface specification and a component implementation specification.

If a COM component is unaware of our component model, it will not implement
I ServiceAccess COM. We can nevertheless integrate such a COM component
by providing a component interface specification which declares all interfaces im-
plemented by the COM component as provided services and all outgoing inter-
faces as optional required services with COM’s IConnectionPoint interface as
connection point type (see below). As described in Section 4.10.2.1 item Ad 3, an
instance of a COM component is wrapped by an instance of the class AtomicComp ,
in the following referred to as wrapper AtomicComp. As the COM component does
not implement I ServiceAccess COM, pServiceAccess of wrapper AtomicComp is
NULL.

Querying for provided services: Therefore, if a reference to a provided service is re-
quested on wrapper AtomicComp, it does not delegate this call to pServiceAccess .
Instead, wrapper AtomicComp retrieves the IID corresponding to the requested ser-
vice from the component interface specification and calls QueryInterface on
pUnknown passing this IID to retrieve a reference to the requested service.

Querying for connection point objects: As will be shown in more detail in item Ad
2, outgoing interfaces can be treated as optional required services. The type of the
required service corresponds to the type of the outgoing interface. The connection
point object corresponds to the connection point object declared by COM.

If a reference to a connection point object for a required service is requested by
a call to getConnectionPointObject on wrapper AtomicComp, the IID identi-
fying the type of the required service respectively outgoing interface can be re-
trieved from the component interface specification. wrapper AtomicComp first calls
QueryInterface on pUnknown to retrieve a reference to the COM interface
IConnectionPointContainer . Subsequently, the wrapper calls FindConnec
tionPoint on this interface passing as argument the IID of the required service.
It returns the pointer to the object implementing IConnectionPoint retrieved
from FindConnectionPoint . For details on outgoing interfaces see Section
2.2.2.2.

Connections: As arbitrary COM components are not forced to provide runtime
type information for the interface IConnectionPoint , the procedure from Sec-
tion 4.10.2.1 item Ad 4 using ITypeInfo objects to establish connections can not
be used.

200 CHAPTER 4. OUR APPROACH

To determine whether IConnectionPoint is used as the connection point type
for a required service, the IID of its connection point (IID CP) is determined from
the component interface specification. If IID CP equals IID IConnectionPoint
(B196B286-BAB4-101A-B69C-00AA00341D07), the connection can be established
by the following steps:

IConnectionPoint * pConnectionPoint;
DWORD dwCookie;

pConnectionPoint = (IConnectionPoint*)(
wrapper_AtomicComp.getConnectionPoint(rServiceName)

);

// Establishing the connection using the standard method ’Advise’
pConnectionPoint->Advise((IUnknown*)(

wrapper_AtomicComp.getServiceReference
(pServiceName)

),
&dwCookie

);

Ad 2 Existing approaches for services or event connections can be integrated into our model.
Interfaces provided by a COM component can be used as provided services in
which the type of the service is identified by the IID of the COM interface.

Event connections using outgoing interfaces can be treated as optional required
services. The type of the required service corresponds to the type of the outgoing
interface. The connection point object corresponds to the connection point object
declared by COM. All connection point objects in COM for outgoing interfaces
have to implement the interface IConnectionPoint which declares standard
methods to register and deregister interested listeners (Advise, Unadvise). That is,
for every outgoing interface the type of its connection point is IConnectionPoint .
For details on outgoing interfaces see Section 2.2.2.2. Therefore, outgoing inter-
faces are typically declared in our component interface specifications as follows:

ComponentInterface CI_... {
GeneralDescriptions

NamingConventions = GUID

ServiceDefinitions
ProvidedServices

...

RequiredServices
ExampleName :

({CA000001-0000-0000-0000-000000000099}, // IID of outgoing interface
{B196B286-BAB4-101A-B69C-00AA00341D07}, // IID of IConnectionPoint
[0...*]

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 201

)
...

ServiceRelations
...

}

In the pattern from above ExampleName is exemplarily used as the name of a
required service representing an arbitrary outgoing interface. {CA000001-0000-
0000-0000-000000000099} is used as the IID of the outgoing interface representing
the type of the required service. The service name and the IID will vary depend-
ing on the actual component interface specification and the type of the outgoing
interface. Some outgoing interfaces do not support the registering of an unlimited
number of listeners. In these cases ’*’ from [0...*] has to be set to the upper
limit on simultaneously registered listeners.

Ad 3 Concepts like our services and plugs can be used even if related concepts are missing
in the industrial component model under consideration. In addition, service and plug
connections can be applied.

COM does not directly support the concept of a required service or a plug.

Although outgoing interfaces can be used as optional required services, other re-
quired services can be declared using their own connection point interfaces. For
these required services, it is not necessary that the COM component implements
IConnectionPointContainer . Only I ServiceAccess COMhas to be im-
plemented to be able to retrieve the connection point object for a required service.
Thus it is easier and more efficient to establish a connection using this way. Plugs
can also be used because they can simply be defined by a suitable component in-
terface specification. No counterpart is needed in the underlying industrial com-
ponent model.

4.10.3 .NET

4.10.3.1 Component Implementations and Component Interfaces Specifications

As for JavaBeans and COM, in this subsection we answer the first four questions from
Section 4.10.

We start with an example of component interface and implementation specifications
using .NET components. This example is the .NET pendant to the examples given for
JavaBeans and COM components. We shall refer to this example to discuss the entries
relevant to Ad 1 - Ad 4. In all examples used in this section, assemblies are assumed
to reside in the same application directory. Thus the assembly text name is sufficient to
identify an assembly. For more details on assembly names please refer to the MSDN-
Library. We use C# as programming language for code snippets.

202 CHAPTER 4. OUR APPROACH

Example 4.10.1 (Component Implementations and Interface Specifications for .NET)
The following assumptions are made in the context of this example:

• The class providing the list implementation resides in the assembly ListImplementations
and the class implementing the order administration resides in the assembly
OrderAdministration .

• Component implementations are grouped in the Components namespace.

• Service interfaces are grouped in the namespace Components.ServiceInterfaces
and are defined in the assembly AssemblyServiceInterfaces .

• Connection point interfaces are grouped in the namespace Components.ConnectionPoints
and are defined in the assembly AssemblyConnectionPoints .

/******************** Component Interfaces ********************/

ComponentInterface CI_List {
GeneralDescriptions

NamingConventions = .NETType

ServiceDefinitions
ProvidedServices

ServiceAccess :
’Components.ServiceInterfaces.I_ServiceAccess,AssemblyServiceInterfaces’

List :
’Components.ServiceInterfaces.I_List,AssemblyServiceInterfaces’

}

ComponentInterface CI_OrderAdministration {
GeneralDescriptions

NamingConventions = .NETType

ServiceDefinitions
ProvidedServices

ServiceAccess :
’Components.ServiceInterfaces.I_ServiceAccess,AssemblyServiceInterfaces’

Orders :
’Components.ServiceInterfaces.I_Order,AssemblyServiceInterfaces’

Customers :
’Components.ServiceInterfaces.I_Customer,AssemblyServiceInterfaces’

RequiredServices
OrderList :

(’Components.ServiceInterfaces.I_List,AssemblyServiceInterfaces’,
’Components.ConnectionPoints.IConnectionPoint_List,AssemblyConnectionPoints’
[1...1])

CustomerList :

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 203

(’Components.ServiceInterfaces.I_List,AssemblyServiceInterfaces’,
’Components.ConnectionPoints.IConnectionPoint_List,AssemblyConnectionPoints’
[1...1])

ServiceRelations
Constraints

DifferentLists = {OrderList, CustomerList}
}

ComponentInterface CI_SpecialOrderAdministration {
GeneralDescriptions

NamingConventions = .NETType

ServiceDefinitions
ProvidedServices

ServiceAccess :
’Components.ServiceInterfaces.I_ServiceAccess,AssemblyServiceInterfaces’

Orders :
’Components.ServiceInterfaces.I_Order,AssemblyServiceInterfaces’

Customers :
’Components.ServiceInterfaces.I_Customer,AssemblyServiceInterfaces’

}

/****** Component Implementations for Atomic UCM-Components ******/

Component CP_List implements CI_List {
GeneralDescriptions

type = atomic
ComponentModel = .NET
ImplementingComponent = ’Components.List,ListImplementations’
// .NET class providing a list implementation and residing
// in assembly ListImplementations

}

Component CP_OrderAdministration implements CI_OrderAdministration
{

GeneralDescriptions
type = atomic
ComponentModel = .NET
ImplementingComponent = ’Components.OrderAdministration,OrderAdministration’
// .NET class providing the implementation and residing
// in assembly OrderAdministration

}

/****** Component Implementations for Composite UCM-Components ******/

Component CP_SpecialOrderAdministration implements
CI_SpecialOrderAdministration {

GeneralDescriptions

204 CHAPTER 4. OUR APPROACH

type = composite

Parts
P_OrderAdministration : CI_OrderAdministration
P_OrderList : CI_List
P_CustomerList : CI_List

InternalConnections
RequiredServices

P_OrderAdministration.OrderList
<== (connect(

’Components.ServiceInterfaces.I_List,AssemblyServiceInterfaces’ -,
’System.String’ OrderList))
P_OrderList.List

P_OrderAdministration.CustomerList
<== (connect(

’Components.ServiceInterfaces.I_List,AssemblyServiceInterfaces’ -,
’System.String’ CustomerList))
P_CustomerList.List

Exports
ProvidedServices

CI_SpecialOrderAdministration.Orders
<-- P_OrderAdministration.Orders

CI_SpecialOrderAdministration.Customers
<-- P_OrderAdministration.Customers

ImplementationBinding
CI_List <<< CP_List
CI_OrderAdministration <<< CP_OrderAdministration

}

Ad 1 What is a suitable declaration of I ServiceAccess?

In C# I ServiceAccess is declared as:

interface I_ServiceAccess {
object getServiceReference (string PServiceName);
object getConnectionPointObject (string RServiceName);

}

string is an alias for System.String and object for System.Object .

References for all types of interfaces and connection points can be obtained by
calls to the methods of I ServiceAccess since object covers all these types.

Ad 2 How does our component interface specification look like for this industrial component
model? Especially: how are service interface types denoted?

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 205

Service interface types for .NET components are denoted by the names of their
corresponding .NET interfaces. .NET interface names are themselves denoted by
their fully qualified names that is, including namespace information and, if neces-
sary, the name of the assembly containing the type. The fact that .NET types are
used to denote service interface types must be announced by setting the value for
’NamingConventions’ in the component interface specification to ’.NETType’. For
examples please refer to example 4.10.1.

Subtype relations for service interface types can be determined as shown below,
based on the names of their .NET types being available as strings from the compo-
nent interface specification. The Type object corresponding to the service interface
expected to be a subtype of the other one can be obtained by callingType.GetType

passing the string representation of the .NET type of this interface as argument.
On this Type object one can call GetInterface with signature public Type
GetInterface(string name); . As parameter one passes the string repre-
sentation of the interface expected to be a supertype of the former. If this method
returns a non null reference, the expected subtype relationship between both in-
terfaces holds. In the following, the method IsSuperinterface checks whether
its first argument is a subtype of its second argument.

// Returns ’true’, if the second argument is a supertype of
// the first one. Otherwise, ’false’ is returned.
private bool IsSuperinterface (string subInterface,

string superInterface) {
Type typeSub = Type.GetType(subInterface);
if (typeSub != null) {

Type type = typeSub.GetInterface(superInterface);
if (type != null)

return true;
else return false;

}
else return false;

}

Ad 3 How does a component implementation for an atomic UCM-component look like? Espe-
cially: how is a component of the industrial component model referred to and how can an
instance be built from this information?

In component implementations of atomic UCM-components the value for ’Com-
ponentModel’ is set to ’.NET’ and a .NET component is referred to by its class
name. .NET class names are denoted by their fully qualified names that is, includ-
ing namespace information and, if necessary, the name of the assembly containing
the type.

An instance of the .NET component can be created by first loading the assembly
containing the .NET class by calling Assembly.Load and then instantiating the

206 CHAPTER 4. OUR APPROACH

class by calling assembly.CreateInstance on the assembly object obtained by
the Load operation (see Section 2.2.3.1 item 4 on page 58). Another possibility is to
first retrieve a Type object typeObj for the class by calling Type.GetType and
then creating an instance of the class by calling System.Activator.Create
Instance(typeObj); (see Section 2.2.3.4).

For examples of component implementations for atomic UCM-components using
.NET components refer to example 4.10.1.

Ad 4 Can a composite UCM-component be built from its component implementation speci-
fication? Especially: Can a connection be established based on the information on the
connect-method in the component implementation or on the default connect-method in the
component interface specification?

For examples of component implementation specifications for composite UCM-
components using .NET components refer to example 4.10.1.

The data types used as parameter types in connect-method declarations are de-
noted by their string representation like ’System.String’, ’System.Int32’,

’Components.ServiceInterfaces.I List,AssemblyServiceInterfaces’ etc.
The assembly name succeeds the interface or class name separated by a comma.
For standard data types like e.g. System.String the assembly name can be omit-
ted. The .NET API uses this kind of qualified name representation.

As in the case of JavaBeans and COM components, to build composite UCM-
components it only remains to show that it is possible

• to determine a method object representing the connect-method which can
then be used to call this method. It must be possible to determine this method
object only based on its name and parameter types given as strings.

• to generate arguments for the method call based on the values given as strings.
(For the argument with value “-”, servObj has to be used as actual parameter.)

• to execute the connect-method on the connection point object.

Determine a method object: From the parameter types given as strings the cor-
responding Type objects representing their types can be obtained by a call to
Type.GetType (see Section 2.2.3.4). These Type objects can be stored in an array
listing all parameter types (e.g. Type[] parameterTypes;).

The connection point type the connect-method belongs to can be retrieved from
the connection point object conObj by calling conObj.GetType(); . Having the
Type object representing the connection point type one can call GetMethod on
this Type object to retrieve the method object representing the connect-method.
The method object is of type System.Reflection.MethodInfo and is identi-
fied by the method name available as a string and the parameter types available
by an array of Type objects:

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 207

MethodInfo conMeth = conObj.GetType().GetMethod(methodName, parameterTypes);

Before being able to execute the connect-method, we must be able to generate
arguments for the method call based on the values given as strings.

Generate arguments: Because we restricted the argument types for connect-methods
to primitive data types and the type of the corresponding required service, one can
generate the arguments as follows. Arguments for primitive data types like
System.Boolean, System.Byte, System.SByte, System.Int16,

System.UInt16, System.Int32, System.UInt32, System.Int64,

System.UInt64, System.Char, System.Double, and System.Single

can be generated using the methods of class System.Convert having a single pa-
rameter of type string like
public static bool 27 ToBoolean(string); or
public static double ToDouble(string); .
The following example demonstrates the use of these methods.

public object CreateObjectFromString(string strType, string value)
{

switch (strType) {
case "System.Boolean": return System.Convert.ToBoolean(value);
case "System.Int16" : return System.Convert.ToInt16(value);
case "System.Int64" : return System.Convert.ToInt64(value);
// Code for other primitive data types ...
default : return null;

}
}

An argument value of "-" for an argument of the connect-method indicates that
the actual parameter is a reference to the object implementing the provided ser-
vice. Therefore this argument can be set to servObj.

Execute the connect-method: As already mentioned in Section 2.2.3.4, a method
represented by an object of type MethodInfo can be executed by calling Invoke
on this object. The first parameter of Invoke refers to the object the method is
invoked from. In our case this is conObj. The second parameter refers to an array
of objects representing the arguments of the method to be executed by Invoke .
This procedure is analogous to the one for JavaBeans.

4.10.3.2 Integration of existing Concepts and Support for Services and Plugs

In this section we show items 1. to 3. listed at the end of Section 4.10.

Ad 1 An implementation of I ServiceAccess can be provided by a special wrapper for atomic
UCM-components, if the component of the industrial component model does not imple-
ment this interface by itself. That is, the component was not yet designed with respect

27bool is an alias for System.Boolean .

208 CHAPTER 4. OUR APPROACH

to our component model, but can nevertheless be integrated by only providing a suitable
component interface specification and a component implementation specification.

If a .NET component is unaware of our component model, it will not implement
I ServiceAccess . We can nevertheless integrate such a .NET component by the
same means as already described for JavaBeans.

Ad 2 Existing approaches for services or event connections can be integrated into our model.

The most relevant concepts provided for .NET components as defined in this the-
sis are properties and events. Concepts like services and plugs are not supported
at all. .NET events cannot directly be integrated as subscribing occurs on method-
level instead of interface-level. Nevertheless, event registration can be raised to
the level of interfaces using the mechanisms provided by the JavaBeans compo-
nent model. Several related event notification methods are grouped by an inter-
face, in the following referred to as (event-) interface. Objects interested in a notifi-
cation have to implement this interface. A publisher of the events belonging to the
(event-) interface has to provide a registration method which takes as its argument
a subscriber object having as type the type of the (event-) interface. The following
example demonstrates this technique.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace EventInterfaces {

/************* Interface grouping mouse events ************/
public interface IMouseEvents {

void OnMouseClick();
void OnMouseMove();
void OnMouseOver();
// ...

}

/************* Delegate type for mouse events **************/
public delegate void MouseEvent();

/**************** Publisher for mouse events ***************/
public class MouseEventSource {

private event MouseEvent m_MouseClick;
private event MouseEvent m_MouseMove;
private event MouseEvent m_MouseOver;

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 209

// ...

public void FireMouseClick() {
if (m_MouseClick != null)

m_MouseClick();
}

public void FireMouseMove() {
if (m_MouseMove != null)

m_MouseMove();
}

public void FireMouseOver() {
if (m_MouseOver != null)

m_MouseOver();
}

//...

public void Subscribe (IMouseEvents mouseSubscriber) {
m_MouseClick += mouseSubscriber.OnMouseClick;
m_MouseMove += mouseSubscriber.OnMouseMove;
m_MouseOver += mouseSubscriber.OnMouseOver;
// ...

}

public void Unsubscribe(IMouseEvents mouseSubscriber) {
m_MouseClick -= mouseSubscriber.OnMouseClick;
m_MouseMove -= mouseSubscriber.OnMouseMove;
m_MouseOver -= mouseSubscriber.OnMouseOver;
// ...

}
}

/************* Consumer of mouse events *********************/
public class Form1 : Form, IMouseEvents {

// Declaration of labels and buttons
...

/**** Event source / publisher ****/
MouseEventSource m_MouseEventSource = new MouseEventSource();

private void InitializeComponent() {
// Add labels and buttons to form-window,
// register event handler for buttons ...

}

public Form1()
{

InitializeComponent();

210 CHAPTER 4. OUR APPROACH

/**** Subscribe to event source ****/
m_MouseEventSource.Subscribe(this);

}

public void OnMouseClick() {
label.Text = "Mouse-CLICK-Event occurred";

}

public void OnMouseMove() {
label.Text = "Mouse-MOVE-Event occurred";

}

public void OnMouseOver() {
label.Text = "Mouse-OVER-Event occurred";

}

private void button1_Click(object sender, EventArgs e) {
m_MouseEventSource.FireMouseClick();

}

private void button2_Click(object sender, EventArgs e) {
m_MouseEventSource.FireMouseMove();

}

private void button3_Click(object sender, EventArgs e) {
m_MouseEventSource.FireMouseOver();

}
}

}

The possibility of a component to fire events grouped by an (event-) interface can
be expressed in our model by an optional required service having as service in-
terface type the type of the (event-) interface. The (de)registration methods have
to be grouped in a corresponding connection point interface which has to be im-
plemented by the event source (in our example MouseEventSource). This tech-
nique is outlined by the following example. This example assumes the .NET in-
terfaces to be declared in assembly AssemblyEventHandling .

// .NET interface declaring the (de)registration
// methods for consumers of mouse events resp.
// subscribers to mouse events
namespace EventInterfaces {

public interface IConnectionPoint_MouseEvents {
public void Subscribe (IMouseEvents mouseSubscriber);
public void Unsubscribe(IMouseEvents mouseSubscriber);

}

4.10. INTEGRATION OF INDUSTRIAL COMPONENT MODELS 211

}

// Component interface specification
ComponentInterface CI_... {

GeneralDescriptions
NamingConventions = .NETType

ServiceDefinitions
ProvidedServices

...
RequiredServices

MouseEventFiring :
(’EventInterfaces.IMouseEvents,AssemblyEventHandling’,

’EventInterfaces.IConnectionPoint_MouseEvents,
AssemblyEventHandling’,

[0...*])
...

ServiceRelations
...

}

Ad 3 Concepts like our services and plugs can be used even if related concepts are missing
in the industrial component model under consideration. In addition, service and plug
connections can be applied.

This can be achieved by the same means as for JavaBeans and will not be repeated
here. The only thing stressed for .NET is the possibility to explicitly implement in-
terfaces which are types of provided services. This enables stronger encapsulation
as in the case of JavaBeans. For more details on explicitly implemented interfaces
please refer to Section 2.2.3.1 on page 50.

4.10.4 Comparing Integration for the Various Component Models

Component interface and implementation specifications only vary slightly depending
on the industrial component model integrated. The following table lists where differ-
ences appear in these specifications and where the implementation of the framework
differs, e.g. when instantiating atomic UCM-components, checking for a subtype rela-
tionship between service interfaces or establishing connections.

Task JavaBeans COM components .NET components
Specification of
I ServiceAccess

Specified as Java
interface as shown
in Section 4.1.1.1 on
page 92.

Specified as C++
pure abstract class
as shown in Section
4.10.2.1, item Ad 1.

Specified as C# in-
terface as shown in
Section 4.10.3.1, item
Ad 1.

212 CHAPTER 4. OUR APPROACH

Task JavaBeans COM components .NET components
Component interface
specification:
Setting the value for
’NamingConventions’

The value is set to
’JavaType’.

The value is set to
’GUID’.

The value is set to
’.NETType’.

Component interface
specification:
Specification of service
interface types

Specified as Java in-
terface names.

Specified through
IIDs.

Specified as .NET in-
terface names.

Checking service inter-
face types for a subtype
relationship

Converting service
interface names
from strings to
Class objects us-
ing Java reflection.
Checking the Class
objects for a subtype
relationship using
method isSubtype
as described in Sec-
tion 4.10.1.1, item
Ad 2.

Searching the COM
registry for base in-
terfaces or checking
the type library as
described in Section
4.10.2.1, item Ad 2.

Converting service
interface names
from strings to Type
objects using .NET
reflection. Checking
the Type objects as
shown in method
isSuperinterface
from Section
4.10.3.1, item Ad 2.

Component imple-
mentation for atomic
UCM-components:
Setting the value for
’ComponentModel’

The value is set to
’JavaBeans’.

The value is set to
’COM’.

The value is set to
’.NET’.

Component imple-
mentation for atomic
UCM-components:
Setting the value for
’ImplementingCompo-
nent’

The value is set to
the name of the
JavaBean-class.

The value is set to
the class ID of the
COM component.

The value is set to
the name of the
.NET component-
class.

Creating component
instances for the in-
dustrial component
models

java.beans.Beans
.instantiate

CoCreateInstance Assembly.Load
and in turn
assembly
.CreateInstance

4.11. SOME ALGORITHMS SUPPORTING VISUAL COMPOSITION 213

Task JavaBeans COM components .NET components
Component implemen-
tation for composite
UCM-components:
Specification of the
parameter types in
connect-methods
(Except the connect-
method specification, the
specification of composite
UCM-components does
not differ for the various
component models.)

The parameter types
are denoted as Java
class and interface
names.

All parameters are
of type VARIANT
except the param-
eter used to accept
the service object
which is denoted
by the IID of the
COM interface it
implements.

The parameter types
are denoted as .NET
class and interface
names.

Establishing a connec-
tion

A connection is es-
tablished using Java
reflection as shown
in Section 4.10.1.1,
item Ad 4.

A connection is es-
tablished using type
libraries as shown in
Section 4.10.2.1, item
Ad 4.

A connection is
established using
.NET reflection as
shown in Section
4.10.3.1, item Ad 4.

Type of the component
implementation object
(see Section 4.9)

I ServiceAccess I ServiceAccess
and I TypeInfo

I ServiceAccess

4.11 Some Algorithms Supporting Visual Composition

In this section, we present some algorithms which enable automatic interconnections
between plugs and the composition of plugs to greater ones. These algorithms are espe-
cially useful for visual composition and complete the tool support described in Sections
1.1 and 5.

If a plug groups more than one required and one provided service, the determina-
tion of complementary plugs and an automated service mapping which is required to
connect two plugs automatically is rather difficult. Two algorithms which master this
problem are described in the next section. Section 4.11.2 then sketches an algorithm
which can be used to link a plug of a component interface CI to smaller plugs and
single services of constituents of the composite component implementing CI .

4.11.1 Automatic Interconnections Using Plugs

When we introduced the term plug (term 4.1.15) we mentioned that plugs constitute
units for interconnections between two component instances. Having this concept is
already inherently an advantage, because a compiler or tool can then check intercon-

214 CHAPTER 4. OUR APPROACH

nections between component instances via plugs for correctness. Even if the intercon-
nections are done on service level, it can be checked, whether the services belonging to
one plug are only connected to corresponding services of a complementary plug and
not to stand-alone services of maybe even different component instances. To ensure
the integrity of a plug, all services belonging to one plug have to be connected to corre-
sponding services of one single “partner component” instance. These services have also
to be grouped by a plug to ensure that both components agree on the same communi-
cation protocol.

Allowed interconnection between
complementary plugs

Stand-alone services may not be
connected to the services of a plug

Services of different component instances
may not be connected to services of the

same plug

Figure 4.36: Examples for (not) allowed Interconnections

Knowing whether two plugs can be connected or not is already useful for a user of
a tool. But he profits even more, if the tool is additionally capable to connect two plugs
Pl1 and Pl2 automatically that is, the tool need not ask the user for each individual pair
of services to be connected.

From theorem 4.4.8 we know that complementary plugs can be connected to each
other thereby retaining the integrity condition for plugs. Thus if a tool is able to detect,
whether two plugs are complementary, we know that they can be connected. This ca-
pability of a tool can also be used to search for all plugs which are complementary to a
selected plug. Thus, if a user selects a plug of a component instance residing in the com-
position window of a tool and wants to know which other plugs from other component
instances residing in the composition window can be selected for interconnection, the
tool can provide the set of complementary plugs found. Then each plug belonging to
this set can be used to establish a valid connection.

Therefore, we first look for an algorithm which tells us, whether two plugs are com-
plementary or not. If they are, we need an algorithm determining a one-to-one mapping
from the set of provided services of one plug (Pl1) to the set of required services of the
other plug (Pl2) and vice versa to actually connect both plugs.

Similar to stand-alone matching services of two components, we allow complemen-
tary plugs to have different names and to use different names for their complementary

4.11. SOME ALGORITHMS SUPPORTING VISUAL COMPOSITION 215

(matching) provided and required services. One reason for allowing different names is
that several constituents of a composite UCM-component can expose the same service
or plug. As service and plug-names of the composite component have to be unique,
some of them have to be renamed in the component interface of the composite compo-
nent. Another reason is that two complementary services with service interface types
which are not identical will normally reflect this fact by using different service names.

Since we can not rely on equally named services, we have to map complementary
services only based on their types.

In the following two subsections, Pl1 is a plug of a component interface CI1 and Pl2
a plug of a component interface CI2. For i = 1 and i = 2, Required(Pli) and Provided(Pli)
are defined as

Required(Pli) = {(R, I R) | R ∈ Required(CIi, P li) and I R is the service interface
type belonging to R}

Provided(Pli) = {(P, I P) | P ∈ Provided(CIi, P li) and I P is the service interface
type belonging to P}

To simplify the description of the following algorithms we identify service interface
types by a name e.g. I S and do not distinguish between the name and the set of meth-
ods Itype(I S) making up the type.

4.11.1.1 Checking for Complementary Plugs

In this section we introduce an algorithm which is capable to check whether two plugs
are complementary. In Section 4.11.1.2 this algorithm will be refined to an algorithm
which can be used to (semi-)automatically determine a one-to-one mapping between
complementary sets of provided and required services of two plugs.

Sketch of the algorithm: The idea is to use a similar mechanism as to resolve a method
call in the case of an overloaded method.

The required services of one plug (e.g. Required(Pl2)) are treated as formal param-
eters of an overloaded method declaration. The overloaded methods are generated by
determining all permutations of the required services. If a permutation appears, in
which the types of all parameters are equal to an already existing permutation, the new
one is discarded.

The types of the complementary provided services (e.g. Provided(Pl1)) are treated
as the types of the actual parameters when calling one of the overloaded methods. For
this purpose, the provided services are arranged in an arbitrary order. The algorithm
of service-mapping is reduced to the selection of an applicable method of the Java lan-
guage specification. It is not a problem if there are several applicable methods, since
at this stage we only want to decide whether we can find sets of matching services as
required. We do not yet look for a one-to-one mapping between services as is necessary,
if a connection has to be established.

It follows a more precise description of the algorithm split up into five steps.

216 CHAPTER 4. OUR APPROACH

Step one: The cardinalities of the complementary sets of services of Pl1 and Pl2
are compared to each other. That is, it has to be checked, whether |Provided(Pl1)| =
|Required(Pl2)| and |Provided(Pl2)| = |Required(Pl1)|. If the corresponding cardinali-
ties are not equal, Pl1 and Pl2 are not complementary plugs and the algorithm stops28.
Otherwise it proceeds with step two.

Step two: Let RS ∈ {Required(Pl1), Required(Pl2)}, |RS| = n and Ri (1 ≤ i ≤ n) the
names of the required services belonging to RS with corresponding service interface
types I Ri. Declare a method named m with formal parameters R1 ... Rn like

void m (I R1 R1, I R2 R2, ..., I Rn Rn).

Generate new method signatures for m by determining all permutations of the required
services:

void m (I R2 R2, I R1 R1, ..., I Rn Rn)

and so on. If a permutation appears, where the types of all parameters are equal to an
already existing method declaration, the new one is discarded.

Step three: Let PS ∈ {Provided(Pl2), P rovided(Pl1)} be the complementary set of
services to RS. Then |PS| = n. Let Pi (1 ≤ i ≤ n) be the names of the provided services
of PS and I Pi their corresponding service interface types. Arrange the names of the
provided services in an arbitrary order, let us say (P1, P2, ..., Pn). Treat the sequence of
corresponding service interface types (I P1, I P2, ... , I Pn) as the types of the actual pa-
rameters when calling one of the overloaded methods m. The algorithm of checking for
pairs of matching services can now be reduced to the selection of an applicable method
of the Java language specification (step four).

Step four: The sequence of types of the provided services are treated like the types
of the argument expressions of an actual call of the method m. The sequence is used
to locate method declarations that are applicable, that is, declarations that can be cor-
rectly invoked on the given arguments. A method declaration is applicable to a method
invocation in our context, if and only if the type of each actual argument is equal to
or a subtype of the type of the corresponding parameter. That is, if we have a method
declaration

void m (I Rj1 Rj1 , I Rj2 Rj2 , ..., I Rjn Rjn)

it is applicable, if ∀ i, 1 ≤ i ≤ n : I Pi � I Rji
.

If there is no method declaration which is applicable, the algorithm stops with an
error. More than one method declaration may be applicable to a method invocation
without causing an error. For the purpose of deciding whether two plugs are comple-
mentary it is enough to know whether there is at least one applicable method declara-
tion29. In this case the algorithm proceeds with step five.

Step five: Steps two to four are repeated for the pair of complementary sets RS
and PS not already selected in step two and three during the first run. E.g. if RS and

28See remarks to term 4.4.7.
29A similar algorithm is described in the Java language specification to solve method calls in the context

of overloaded methods.

4.11. SOME ALGORITHMS SUPPORTING VISUAL COMPOSITION 217

PS were selected to be Required(Pl1) and Provided(Pl2) in the first run, in the second
run RS will be Required(Pl2) and PS Provided(Pl1). For this second run we use a
method name m 2 instead of m for the set of overloaded methods generated for this
second set of required services RS. If at least one applicable method can be found the
algorithm succeeds. In this case we could determine pairs of matching services for both
combinations RS and PS from Pl1 and Pl2. This is sufficient to show that both plugs
are complementary.

Example 4.11.1 (Checking whether two plugs are complementary) In the following ex-
ample it will be checked whether the plug from example 4.1.23 on page 113 is complementary to
the plugs of Client 1 (part a)) and Client 2 (part b)). The service interface type I Data used by
Client 2 is declared as

interface I Data extends I DataLogging, I ErrorMessages {... }
and is therefore a subtype of I DataLogging and I ErrorMessages.

LogS
ervices
Lo

gg
in

g
Lo

gg
in

g

LoggingOptions : I_LoggingOptions

DataLogging : I_DataLogging

ErrorMessages : I_ErrorMessages

LoggingOptions : I_LoggingOptions

DataLogging : I_Data

ErrorMessages : I_Data

LoggingOptions : I_LoggingOptions

DataLogging : I_DataLogging

ErrorMessages : I_ErrorMessages

Client 2

Client 1

Figure 4.37: Example for Plugs to be checked whether they are complementary

Part a): First, we shall check whether the plug LogServices is complementary to the plug
Logging of Client 1 using the algorithm described above.

Step one: Check cardinalities:
Provided(LogServices) = {(LoggingOptions, I LoggingOptions)} and
Required(Logging) = {(LoggingOptions, I LoggingOptions)}.
Therefore, |Provided(LogServices)| = 1 = |Required(Logging)|.
Similarly, Provided(Logging) = {(DataLogging, I DataLogging),

(ErrorMessages, I ErrorMessages)}
= Required(LogServices).

Therefore |Provided(Logging)| = 2 = |Required(LogServices)|. The cardinality conditions
are satisfied and we proceed with step two.

Step two: Generate method signatures:
For RS = Required(LogServices) the following methods are generated by permutation over

218 CHAPTER 4. OUR APPROACH

the two required services:
void m (I DataLogging DataLogging, I ErrorMessages ErrorMessages)
void m (I ErrorMessages ErrorMessages, I DataLogging DataLogging)

Step three: Determine a sequence of actual parameter types:
The complementary set of services to RS is PS = Provided(Logging). We arrange the ser-
vices belonging to PS as follows: (DataLogging, ErrorMessages). That is, DataLogging
= P1 and ErrorMessages = P2. Treat the sequence of corresponding service interface types
(I DataLogging, I ErrorMessages) as the types of the actual parameters when calling one of
the overloaded methods m.

Step four: Looking for applicable methods:
Now we have to determine at least one method declaration that is applicable. Therefore we have
to test whether there exists a method void m (I R1 R1, I R2 R2) with R1 ∈ {DataLogging,
ErrorMessages} and R2 ∈ {DataLogging, ErrorMessages} \ {R1} which is applicable,
that is ∀ i, 1 ≤ i ≤ 2 : I Pi � I Ri. Since I P1 was selected to be I DataLogging and I P2 to
be I ErrorMessages, the only applicable method is
void m (I DataLogging DataLogging, I ErrorMessages ErrorMessages).

Step five: Steps two to four are repeated for the pair of complementary sets
RS = Required(Logging) = {(LoggingOptions, I LoggingOptions)} and
PS = Provided(LogServices) = {(LoggingOptions, I LoggingOptions)}. As both sets only
consist of one service with identical service interface type, I LoggingOptions, the only gener-
ated method
void m 2 (I LoggingOptions LoggingOptions)
is applicable and the algorithm succeeds. Therefore the plugs LogServices and Logging of
Client 1 are complementary.

Part b): Now we shall check whether the plug LogServices is also complementary to the plug
Logging of Client 2.

Steps one and two of the algorithm are the same as in the previous example.
Step three: Determine a sequence of actual parameter types:

The sequence of services is the same as in part a), but the sequence of corresponding service
interface types is (I Data, I Data).

Step four: Looking for applicable methods:
Since I Data � I DataLogging and I Data � I ErrorMessages, both methods generated
in step two,
void m (I DataLogging DataLogging, I ErrorMessages ErrorMessages),
void m (I ErrorMessages ErrorMessages, I DataLogging DataLogging),
are applicable.

Step five of the algorithm is the same as in the previous example. Therefore, the plugs
LogServices and Logging of Client 2 are also complementary.

4.11. SOME ALGORITHMS SUPPORTING VISUAL COMPOSITION 219

4.11.1.2 Service Mapping

As we can see from example 4.11.1 part b), it is possible that more than one applicable
method may be found. If a user determines in advance that this would be no problem
and a mapping could be generated using an arbitrary applicable method, it is sufficient
to extend the existing algorithm as follows. Step four is refined by selecting e.g. the first
applicable method. If this method has the signature

void m (I Rj1 Rj1 , I Rj2 Rj2 , ..., I Rjn Rjn)

then a mapping f : {P1, ..., Pn }→ {R1, ..., Rn } is generated with f(Pi) = Rji
∀ i, 1 ≤ i ≤ n.

Example 4.11.2 (Automatically resolving Ambiguity) In example 4.11.1 part b) we selected
the following sequence of provided services belonging to Provided(Logging):
(DataLogging, ErrorMessages), that is, P1 = DataLogging and P2 = ErrorMessages. The
selection of the first applicable method yields
void m (I DataLogging DataLogging, I ErrorMessages ErrorMessages).
Therefore, a mapping f : {DataLogging, ErrorMessages} → {DataLogging, ErrorMessages} is
generated with f(DataLogging) = DataLogging from Required(LogServices) and
f(ErrorMessages) = ErrorMessages from Required(LogServices).
g30 maps LoggingOptions of LogServices to LoggingOptions of Logging.

If ambiguity should not be resolved arbitrarily, steps two and four of the algorithm
from Section 4.11.1.1 have to be refined. Before presenting these refined steps, we dis-
cuss how far and why our algorithm differs from the handling of applicable methods in
Java in cases in which more than one applicable method exists.

If more than one method declaration is applicable to a method invocation, the Java
programming language [GJS] uses the rule that the most specific method is chosen. One
method declaration is more specific than another, if any invocation handled by the first
method could be passed on to the other one without a compile-time type error. In our
context, a method declaration

void m (I Ri1 Ri1 , I Ri2 Ri2 , ..., I Rin Rin)

is more specific than a method declaration

void m (I Rj1 Rj1 , I Rj2 Rj2 , ..., I Rjn Rjn)

if ∀ k, 1 ≤ k ≤ n : I Rik � I Rjk
. A method is said to be maximally specific for a

method invocation, if it is applicable and there is no other applicable method that is

30f and g are the mappings between corresponding sets of services of two complementary plugs as
introduced in term 4.4.7. g maps the names of the provided services of the plug LogServices to the
names of the required services of the plug Logging.

220 CHAPTER 4. OUR APPROACH

more specific. If there is exactly one maximally specific method, then it is in fact the most
specific method; it is necessarily more specific than any other method that is applicable.
It is possible that no method is the most specific one, because there are two or more
maximally specific methods.

Because our method declarations result from permuting the required services, no
method can be more specific than another one. To show that this statement is true,
assume the opposite. Without loss of generality let

1) void m (I R1 R1, I R2 R2, ..., I Rn Rn) and
2) void m (I Ri1 Ri1 , I Ri2 Ri2 , ..., I Rin Rin)

be two method declarations with different signatures generated by our algorithm,
where the second declaration is more specific than the first one. Let h : {1, ..., n} −→
{1, ..., n} be the bijective mapping corresponding to the permutation of the required
services with h(j) = ij . Thus, the j-th parameter of the first method is Rj and the cor-
responding parameter of the second method is Rh(j). As the second method is more
specific than the first one, for all j ∈ {1, ..., n}: I Rj � I Rh(j). As the signatures of both
methods differ, there exists k ∈ {1, ..., n} such that I Rk 6= I Rh(k). As h represents a per-
mutation, there exists l ∈ {1, ..., n} such that hl(k) = k, where h2(k) = h(h(k)) and hl(k) =
hl−1(h(k)). As the second method is more specific than the first one, it follows that I Rk

� I Rh(k) � I Rh(h(k)) ... � I Rhl(k) = I Rk and thus I Rk = I Rh(k). This contradicts I Rk

6= I Rh(k).
Therefore, as no method can be more specific than another one, every applicable

method is already a maximally specific method.

Now, the refined steps of the algorithm are presented:
Step two: This step differs from step two of the original algorithm mainly in the

handling of permutations when permutations generate method signatures for which the
types of all parameters are identical to the types of the parameters of an already existing
method declaration. For every generated method declaration d there exists additionally
a set Nd of n-tuples (Rj1 , Rj2 , ..., Rjn) representing all sequences of required service
names leading to the same sequence of parameter types as the method declaration d.
If this set contains more than one n-tuple, the method declaration d will lead to an
ambiguity, if d is applicable.

Step four: This step differs from step four of the original algorithm in the handling
of applicable methods.

If no applicable method can be found, the algorithm stops with an error. Otherwise
let D be the set of all method declarations which are applicable and
M =

⋃
d∈D

Nd with Nd as declared in step two.

If M = {(Rj1 , Rj2 , ..., Rjn)}, then the mapping f : {P1, ...,Pn} → {R1, ...,Rn} is unam-
biguous: f(Pi) = Rji

∀ i, 1 ≤ i ≤ n.
If |M | > 1, a mapping would be ambiguous. In this case, the set M is offered to the

user to select a n-tuple to be used for the mapping.

4.11. SOME ALGORITHMS SUPPORTING VISUAL COMPOSITION 221

As already discussed above, this ambiguity can not be resolved automatically by
looking for a most specific method as in Java, since in our context every applicable
method is already a maximally specific method.

Example 4.11.3 (Ambiguous Mapping) In example 4.11.1 part b) the following method dec-
larations were already generated in step two:
d1: void m (I DataLogging DataLogging, I ErrorMessages ErrorMessages)
d2: void m (I ErrorMessages ErrorMessages, I DataLogging DataLogging).

Using the refined step two we must additionally determine the sets Nd1 and Nd2 .
These are: Nd1 = {(DataLogging, ErrorMessages)} and

Nd2 = {(ErrorMessages, DataLogging)}.

As already shown in step four of example 4.11.1 part b) both method declarations are applicable
to the sequence of provided services (DataLogging, ErrorMessages) belonging to the plug
Logging of Client 2. These methods are also maximally specific. Using the refined step four
from above we have to determine the set

M =
⋃

d∈D

Nd, where D = {d1, d2}.

This yields: M = {(DataLogging, ErrorMessages), (ErrorMessages, DataLogging)}.

Since |M | = 2, the set M is offered to the user to select a tuple of his choice e.g.
(ErrorMessages, DataLogging). After the selection the following mapping will be generated:

f : {DataLogging, ErrorMessages} → {DataLogging, ErrorMessages} with
f(DataLogging) = ErrorMessages and f(ErrorMessages) = DataLogging.

4.11.2 Composing Plugs when Creating Composite UCM-Components

When creating composite UCM-components, every plug Pl belonging to the component
interface CIN has either to be linked to a fitting plug of one internal part or it can be
composed of smaller plugs and single services of several internal parts. In the following
we describe an algorithm for composing plugs.

One starts with plugs of parts. The conditions to hold for a plug Pl′ of a part pc
typed by CIpart which should be linked to the greater plug Pl of CIN are:

1. ∃Pl′′ = (PS ′, RS ′) with PS ′ ⊆ Provided(CIN, P l) ∧RS ′ ⊆ Required(CIN, P l) :
PLtype(CIpart, P l′) � PLtype(CIN, P l′′).

2. ∀S ∈ PS ′ ∧ ∀S ∈ RS ′ : S is not already linked to any other internal entity.

222 CHAPTER 4. OUR APPROACH

For a plug Pl′ with

(∗) |Provided(CIpart, P l′)| > |Provided(CIN, P l)| or
|Required(CIpart, P l′)| > |Required(CIN, P l)|

it is impossible to find a ’subplug’ Pl′′ of Pl so that PLtype(CIpart, P l′)� PLtype(CIN, P l′′).
Therefore, such plugs are deleted from a list L of plugs which may be possibly linked
to ’subplugs’ Pl′′ of Pl. From the remaining list of plugs created by the tool the user
selects the one (Plsel) he wants to be linked to Pl. The tool may support the link by
the algorithm described below. If the link is not successful, Plsel is deleted from L and
the user may proceed by selecting another plug from L or by aborting this activity. If
the link is successful, the services of Pl are reduced by the services linked to services of
Plsel. Plsel is deleted from L as well as all other plugs which no longer satisfy condition
(*). From this new list the user selects a further plug and so forth until the user aborts
this activity. He may proceed by linking fitting stand-alone services of parts to the
remaining unlinked services of Pl, if any.

If the user selected a plug Plsel of a part pc′ of type CI ′part to be linked to a ’subplug’ of
Pl, the tool may support the linking by determining a fitting ’subplug’ Pl′′ of Pl which
may be linked to Plsel. The determination of Pl′′ is done as follows.
Let nPsel

= |Provided(CI ′part, P lsel)| and nRsel
= |Required(CI ′part, P lsel)|.

Let PS = {PS ′|PS ′ ⊆ Provided(CIN, P l) with |PS ′| = nPsel
} and

RS = {RS ′|RS ′ ⊆ Required(CIN, P l) with |RS ′| = nRsel
}

Select Pl′′ = (PS ′, RS ′) for arbitrary combinations of PS ′ ∈ PS and RS ′ ∈RS. Check,
whether PLtype(CI ′part, P lsel)� PLtype(CIN, P l′′). If OK, then a link may be established
between fitting services of Plsel and Pl′′ and the search can be abandoned. If not OK,
further combinations have to be checked.

The algorithm may be improved by restricting the sets PS and RS to

{PS ′|PS ′ ⊆ Prov(CIN, P l)} and {RS ′|RS ′ ⊆ Req(CIN, P l)}
whereas Prov(CIN, P l)⊆ Provided(CIN, P l) and Req(CIN, P l)⊆Required(CIN, P l)

are determined by excluding services which do not fit to any of the provided resp. re-
quired services of Plsel. That is,

Prov(CIN, P l) =⋃
P ′∈Provided(CI′

part,P lsel)

{P | P ∈ Provided(CIN, P l)∧ PStype(CI ′part, P
′) � PStype(CIN, P)}

Req(CIN, P l) is declared accordingly.

The process of composing Pl from smaller plugs and stand-alone services of in-
ternal constituents is completed, if all services belonging to Pl are linked to internal
constituents.

Chapter 5

Evaluation

This chapter evaluates the concepts from Chapter 4 and introduces some additional
features supporting visual composition. Section 5.1 presents the Bean Plug Composition
Environment or short BPCE, a tool to compose and test JavaBeans which can be con-
nected via events, services or plugs visually. Service and plug connections are available
to beans conforming to our component model and all other beans enriched with suitable
specification information describing the services and plugs provided and/or required
by the bean. This tool demonstrates how JavaBeans can be used as atomic compo-
nents and how the support for visual composition can look like. Section 5.2 presents
the Composite Component-Builder, a tool which allows us to compose UCM-components
hierarchically. It demonstrates that arbitrary composite UCM-components of an arbi-
trary level of complexity can be built and their methods called without knowing their
services and service interface types in advance.

5.1 The BPCE as a “Proof of Concept”

The Bean Plug Composition Environment or short BPCE is our extension of Sun’s Bean-
Box. The original BeanBox is a test tool for JavaBeans. It allows one to select JavaBeans
from a tool box, to place corresponding instances onto a composition window, to config-
ure them by changing their properties, and to connect bean instances based on events.
The BPCE extends the features of the BeanBox. It supports our component model using
JavaBeans as atomic components. Interconnections between component instances are
extended to additionally support interface and plug connections. Interface and plug
connections can be performed visually and are available to beans conforming to our
component model and all other beans enriched with specification information describ-
ing its component interface (Section 4.1.2). Existing JavaBeans without specification
information can still be composed in the well-known manner based on events. The tool
analyzes the specification information provided by the components to know about their
capabilities and requirements and provides advanced support in connecting component
instances and checking for consistency.

223

224 CHAPTER 5. EVALUATION

All component instances needed for an assembled application are selected from a
tool box and placed onto a composition window. Two component instances residing in
the composition window are connected via interfaces by first selecting a source and one
of its required services and afterwards selecting a target and one of the target’s provided
services. After the selection is finished, the tool connects both component instances
by internally calling the default connect-method of the selected required service of the
source. A similar process holds for plugs. The selected component instances are referred
to as “source” and “target” according to the direction of the selection process.

Every component instance in the composition window is represented by a wrapper
object which holds references to the corresponding instance of a JavaBean realizing the
behavior of the component, a component interface object created from the component
interface description, and a connection info object which stores information on the con-
nections already established for the required services of the component instance.

In the following, the assembly process is described in more detail referring to some
screen shots of the BPCE.

Figure 5.1: User Interface of the BPCE

Figure 5.1 shows the user interface of the BPCE which is made up of four windows:
the tool box on the left, the composition window in the center, the property editor win-
dow on the right, and below a window showing some tracing information. The tool box

5.1. THE BPCE AS A “PROOF OF CONCEPT” 225

is filled with components from the component pool (Section 4.5) realized by a directory
with a predefined name. The property editor is used to set properties of the active com-
ponent instance in the composition window as e.g. for- and background colors or text
fonts.

The composition window in Figure 5.1 already contains three component instances.
The top most component instance labelled Object Oriented Programming (in the following
denoted by source) should be connected to the one labelled Chapter (in the following
denoted by target) via interfaces. To be able to determine the required services of the
source, the source has to be selected by a mouse click to become the active component
instance. To get its list of required services, the menu item interface from the edit menu
has to be selected. Then the required services of the source component are listed in a
popup menu. Every required service is marked as optional or mandatory depending
on its limits on the number of connections and the connections already established. The
required service which should be connected to a provided service of the target has to be
selected from this popup menu (see left figure in Table 5.1).

Table 5.1: List of the Required Services of the Selected Source Component (left figure)
Selection of a Service Provider, here Chapter (right figure)

226 CHAPTER 5. EVALUATION

To create the list of required services (term 4.1.4) used to fill the popup menu, the
BPCE asks the component interface object for all required services declared in the com-
ponent interface not belonging to a plug (term 4.1.15) including the information con-
cerning their lower and upper limit on the number of connections (Section 4.1.1.3). For
every required service R obtained, the BPCE asks the connection info object for the num-
ber of already established connections. If this number exceeds the lower limit min R,
R is marked as optional even if R is declared to be a mandatory required service (term
4.1.6) in the component interface. This is due to the fact that the needed number of con-
nections is already reached and thus further connections may be done, but are not re-
quired. If the number of connections already established equals the upper limit max R,
then R is not added to the list of required services. Thus, a user can no longer select
this required service for a connection. Thereby the BPCE ensures that the number of
connections established does not exceed max R.

After the selection of the required service of the source which has to be connected to
a provided service of the target, the target (here Chapter) has to be selected by a mouse
click to become the active component instance. The process of selecting a target is visu-
alized by dragging a line from the source to the target (see right figure in Table 5.1).

After a target was selected, a window opens which shows all provided services of
the target matching the selected required service of the source (see Figure 5.2). From
this window the provided service to be connected to the previously selected required
service of the source component instance has to be chosen.

Figure 5.2: List of Matching Provided Services

To create the list of provided services shown in the window, the BPCE asks the com-
ponent interface object for all provided services (term 4.1.3) declared in the component
interface not belonging to a plug. For every provided service P obtained, the BPCE

5.1. THE BPCE AS A “PROOF OF CONCEPT” 227

checks, whether its corresponding service interface type is a subtype of the service in-
terface type of the selected required service R. If true, P and R are matching services
(term 4.4.5) and can thus be interconnected (theorem 4.4.6). Therefore, P is added to the
list. If P and R are no matching services, P is not added to the list. Thus the list only
contains provided services fitting to the selected required service. Thereby the BPCE
prevents invalid connections.

After a provided service was selected from the list of matching services, the BPCE
establishes the connection. To establish the connection, the BPCE asks the bean instance
realizing the source component instance for the connection point object CPOR (term
4.1.11) belonging to R via the bean’s service access interface (term 4.1.13). Similarly,
the BPCE asks the bean instance realizing the target component instance for the service
object SOP (term 4.1.8) bound to P . It then calls the default connect-method obtained
from the component interface object on CPOR with SOP as the actual parameter for the
formal parameter representing the service provider.

Similarly, connections between component instances via plugs may be established.
Instead of services, plugs are listed as sets of required and provided services.

The process of connecting two component instances described so far is additionally
supported by several other features simplifying the composition process significantly.
In the following, the features already presented so far as well as some new features are
summarized for services, but they also hold for plugs. In the following description,
min-connections denotes the lower limit, max-connections the upper limit on the number
of connections corresponding to a required service.

Edit/Interfaces (Table 5.1) The list of the required services of the source is reduced to
those services which are not yet fully connected. The list also contains information
on whether a required service is optional or mandatory. The status changes from
mandatory to optional, as soon as all needed connections (min-connections) are
established.
A required service is called fully connected, if already max-connections component
instances are connected to it.

(How this feature is implemented is already described on page 226.)

ServiceTargetDialog (Figure 5.2) The list of provided services of the target is reduced
to those services matching the required service of the source.

(How this feature is implemented is already described on page 226.)

Mark components still to be connected (Figure 5.3) All beans in the composition win-
dow which still have open mandatory required services are marked by a red rect-
angle surrounding them. Open mandatory required service means, that the lower
limit on the number of connections is not yet reached.

(The BPCE implements this feature by checking all component instances in the composi-
tion window. For each of these component instances C and each of its required services

228 CHAPTER 5. EVALUATION

R the BPCE asks the connection info object corresponding to C for the number of already
established connections for R. If this number is less than the minimum number of connec-
tions for R, C has open mandatory required services and must be marked.)

Mark fitting target components (Figure 5.3) The BPCE provides a connection support
by marking all component instances in the composition window, which would be
suitable service providers (term 4.1.5) to the selected required service of the source
going to be connected.
In this context the term suitable service provider is used more restrictive as in term
4.1.5 as we additionally demand that the service provider is not excluded by the
constraint explained in Section 4.1.1.3 paragraph Different Service Providers.

(For the following explanations, we call the selected required service of the source going to
be connected R. The BPCE implements this feature by checking all component instances in
the composition window. For each of these component instances C and each of its provided
services P the BPCE checks, whether P matches R. If P matches R, the BPCE then checks
additionally, whether C is not excluded by a constraint of kind Different Service Providers
(term 4.1.20). Thus, if R belongs to a constraint set of a constraint of kind Different Service
Providers, the BPCE checks, whether a provided service of C is already connected to one
of the other required services belonging to the constraint set by asking the connection info
object of C for the necessary information. If so, C is no longer a suitable service provider.)

Guide connection (Figure 5.3) An automated connection support can be chosen. If se-
lected, the BPCE behaves as follows: If a target is to be connected to a source and
the target has still open mandatory required services, the BPCE gives an error mes-
sage. The user may then choose other component instances and connect them to
the target first. Not until all mandatory required services of the target are at least
connected to min-connections service providers, the target is in turn connected to
the source.

The last three options can be enabled or disabled using the Check menu as shown in
Figure 5.3.

After all component instances are selected and wired together, the user may save the
assembly by selecting the menu item Save from the File menu.

Before the assembly is actually saved, the assembly is checked for consistency (Sec-
tion 4.4). If any of the component instances in the composition window has still open,
mandatory required services, the BPCE gives an error message and rejects to save the
assembly. If there are still optional required services which are not connected to any ser-
vice provider, a warning is given, but the assembly is saved. Existing interconnections
do not have to be checked for consistency, because by the way the tool allows one to
establish connections it enforces proper connections.

5.2. THE CC-BUILDER 229

Figure 5.3: Enabling or Disabling additional Connection Support

5.2 The CC-Builder

We developed a tool called Composite Component-Builder (CC-Builder) used to create
new applications and new composite UCM-components from atomic and other com-
posite UCM-components. Thus, the CC-Builder allows composite UCM-components to
be built hierarchically.

Hierarchical Composition: The typical composition process to build new components
from existing ones looks as follows.

A programmer selects components from the list of available components and places
instances of them onto the composition window. Then he selects each of the compo-
nent instances C residing in the composition window which has at least one required
service. He selects one of the mandatory required services R of C by clicking on the
representation of the service, a little button labelled ’REQ’ on the right hand side of the
component. The service name appears as soon as the mouse is moved over the button.
Then he selects a fitting provided service of another component instance in the compo-
sition window by clicking on its button representation labelled ’PROV’. The connection
is visualized by a line drawn between both services. The programmer continues this
process, until all mandatory requirements are resolved except for those which are to be
exposed by the new composite component just being built.

230 CHAPTER 5. EVALUATION

Figure 5.4: Hierarchically Composed Components

All optional required services the programmer wants to connect are connected using
the same process. The programmer can save the new composition as a new component.
He can select between the following two possibilities:

1. The tool creates a fitting component interface declaration for the new composite
component automatically by a predefined algorithm.

2. The programmer selects each service he wants to be exposed explicitly and, if
necessary or desired, declares a name for the service in the context of the new
composite component. The tool then generates the corresponding service for the
composite component and visualizes the export by a line drawn from this service
to the service of the component instance exposing it.

The newly created component can further be composed to a higher level component.
Figure 5.4 shows an instance of a composite component named “P PanelWithContents”

5.2. THE CC-BUILDER 231

which consists of three parts and which is itself used to build a higher level component
“CP FrameWithContents”.

Creation of a New Component Interface: If the tool creates a fitting component inter-
face declaration for the new composite component automatically, it uses the following
predefined algorithm: All services of constituents not connected to services of other
constituents are exported. For every exported service the tool has to declare a service
in the component interface which gets the same name and service interface type as the
exported one. For required services the tool adopts the connection point and cardi-
nality types, too. All already connected required services for which the lower limit on
the number of connections is not yet reached are exported, too. When exporting such
services, the lower and upper limits on the number of connections are reduced by the
number of already established connections. If two services of the same kind (provided
or required) having the same name are exported, the names of the two corresponding
services of the component interface are built by appending a number to the original
name. This is necessary since services of the same kind belonging to the same compo-
nent interface must not have the same names.

Components and the User Interface: The CC-Builder uses a component pool realized
by a directory which is made known to the CC-Builder at program start up. All atomic
and composite UCM-components belonging to this component pool are listed in the left
most panel of the CC-Builder. From this list a component can be selected for composi-
tion. Instantiation of the selected component is done by a mouse click on Build instance.
The instance generated is represented by a window shown in the composition window
of the CC-Builder. Each component instance has three different views: a functional view,
an implementation view, and a part view.

For every newly created component instance the functional view is shown by de-
fault. It shows all provided services of the component instance as folders. Each folder
can be opened which results in showing all methods belonging to the service (see the
component instance labelled “P AWTFrame” in Figure 5.4). A method can be executed
by double-clicking on it. The user has to enter a value for every of the method’s argu-
ments. In this first version only arguments of primitive data types are supported and
of types having a nullary constructor that is, a constructor without parameters. If the
instantiation of a component causes a visible GUI-element to be shown as e.g. a frame,
execution of methods can often be observed directly. If a method call changes the ap-
pearance of the shown GUI, e.g. its foreground or background color, this will be directly
visible.

232 CHAPTER 5. EVALUATION

The other views can be shown by selecting the corresponding riders labelled “Im-
plementation” and “part” at the bottom of the window representing the component
instance. The implementation view shows the UCM-code of an atomic or composite
component as shown by the component instance labelled “P AWTTextfield” in Figure
5.4. The part view shows the parts a composite UCM-component consists of, the exist-
ing links to services of its component interface as well as the interconnections between
its parts. The component instance labelled “P PanelWithContents” is represented as a
part view.

Each component instance represents the services it provides by buttons labelled
“PROV” on the left hand side of the component instance. Similarly, required services
are represented by buttons labelled “REQ” on the right hand side of the component in-
stance. The name of the service represented by a button is shown as a tooltip as soon as
the mouse is moved over the button.

Look & Feel: A user may select between different appearances of the GUI elements.
Thus, a user may select a look & feel according to his needs. The following screen shots
show the selection of a style as well as the representation of the user interface in Motif-
and Windows-style.

Figure 5.5: Selection of a Style

5.2. THE CC-BUILDER 233

Figure 5.6: Motif-Style

Figure 5.7: Windows-Style

Chapter 6

Related Work

This chapter presents various scientific fields which deal with component based devel-
opment. We shall focus on what constitutes a component, how components can be built,
which kinds of composition are supported, which dependencies between components
can be modelled, whether it is possible to build new components from existing ones,
and whether and how types and subtypes are supported. The first two fields concern
language support for component based development, the other two fields concern sys-
tem design.

In the area of language support, we discuss component-oriented languages and com-
position languages. Whereas component-oriented languages try to integrate compo-
nent development and component composition, composition languages are not targeted
to develop new components from scratch. Instead, their focus is on composing applica-
tions and, in some approaches, new components from already existing ones delivered
by third parties. They are related to our description of composite UCM-components.

In the area of system design, we deal with architecture description languages (ADLs)
and the UML 2.0-approach to component based development. ADLs provide language
support to model systems built from interconnected components in the context of soft-
ware architecture. Here, means to represent component and system hierarchies are es-
sential. UML 2.0 is related to our approach by its graphical means to denote intercon-
nected components as well as component hierarchies.

6.1 Component-Oriented Languages

Programming languages contribute to component based development by providing
programming language constructs dealing with components as first class entities like
classes (see e.g. [SC00a, SC02, Sre01, ACN01, ACN02, Zen02]. As an important feature,
such languages provide explicit language support for composition. Existing component
oriented programming languages differ significantly from one another. The description
of all existing approaches would go beyond the scope of this thesis. Thus only some ap-
proaches are discussed here. Component Pascal [Com01a] is mentioned for the sake of

234

6.1. COMPONENT-ORIENTED LANGUAGES 235

completeness although it is not a component oriented language in our sense as it does
not treat components as first class entities. It does not provide extra communication
paths between components nor composition concepts which allow one to simply stick
components together or to nest component instances inside others.

Our description of the languages discussed is structured into three main parts con-
cerning components and their interconnections, component hierarchies, as well as sub-
typing and dependencies.

6.1.1 ArchJava

ArchJava [ACN01, ACN02, Arc] is a component-oriented language which tries to smooth-
ly integrate architectural aspects of a software system into a programming language
thereby focusing on components and their communication paths.

Components and Interconnections: Components are declared by the keyword com-
ponent class. The declaration of a component comprises the specification of the compo-
nent’s interface as well as its implementation. In contrast to our approach, there is no
possibility to define a component interface apart from its implementation such that the
interface can be implemented by different component classes. Components have ports
to communicate with each other. A port is a named entity declaring all methods in-
volved in a communication via this port. Ports can contain provided as well as required
and broadcast methods. Component instances at the same level are only allowed to
communicate via their connected ports. Provided methods of a port must not be called
directly, only via an established connection. In contrast to required methods which can
only be bound to one fitting provided method, a broadcast method can be bound/-
connected to several fitting provided methods. Calling a broadcast method results in
calling all the connected provided methods, one after the other.

A connection is established by an explicit connect-statement which designates all
ports involved in the connection. A port P of one component instance can be connected
to several other ports of other component instances simultaneously through one con-
nection as far as these ports collectively provide all the methods required by P and P as
well as the other ports can fulfill all the requirements of any of the other ports. For every
required method belonging to one of the ports exactly one provided method with the
same signature may be provided by the other ports which is then bound to the required
method. As more than two ports can be involved in the same connection, it is especially
possible that P is connected to two ports A and B, where A provides all the methods
P requires and B requires all the methods P provides. Thus P does not enforce a bi-
directional connection between itself and a single other party. Although bi-directional
connections on method level can be realized through ports, a port is, in contrast to our
plugs, not primarily intended to model bi-directional connections. Instead, a port sim-
ply acts as a communication channel between two or more component instances listing
all methods involved in this kind of communication between all participants. A concept

236 CHAPTER 6. RELATED WORK

like our plug, grouping ports to higher level entities, does not exist. In contrast to our
approach, connections once established can not explicitly be removed.

Component Hierarchies: Component instances can be contained in other component
instances, their container. A container can communicate with its parts via ports or by
directly calling the public methods of the parts not belonging to a port. Port communi-
cation can be achieved by connecting a private port of a container to a public port of one
of its parts. As containers can directly call the public methods of its parts, communi-
cation between component instances is not strictly interface-based. In our approach all
interaction is done through our services. Additionally, component instances contained
in our composites can be declared by their component interface types only which allows
different implementations to be chosen without affecting the composite components.

Subtyping and Dependencies: In ArchJava, a component class can extend another
component class. Inheritance of component classes is similar to inheritance in Java.
Fields, methods, ports and connections are inherited from the component superclass.
New fields, methods and ports can be added as well as new connections between new
fields of component type. Inherited ports are immutable with respect to the method
signatures and the port modifiers (provides, requires). Especially, provided or required
methods must not be added to an inherited port. But as in Java, provided methods
can be overridden that is, their implementation can be changed while their signature
remains unchanged. New ports must not contain new required methods. We allow
additional provided methods in a subtype as well as additional required services as
long as they are optional. Allowing inheritance between components, ArchJava sup-
ports white box reuse for components. Thus in ArchJava the fragile base class problem
[MS97] holds for components as it does for normal Java classes. We only allow black
box reuse of components, the recommended kind of reuse in componentware, to avoid
the problems known from the white box reuse of classes.

In ArchJava, dependencies on other components are declared in terms of required
methods only, not in terms of entire interfaces. Although a port can group several re-
quired methods, the corresponding provided methods they are connected to need not be
provided by one component only. Instead the corresponding provided methods can be-
long to several different components. In ArchJava there is no means to declare, whether
a dependency is optional or mandatory.

Miscellaneous: As components are mapped to Java classes and interfaces comprising
the required methods of their ports at compilation time, components will not really be
deployment units or units of third party composition which can be used as a black box.
Industrial component models can not be integrated into ArchJava.

6.1. COMPONENT-ORIENTED LANGUAGES 237

6.1.2 ComponentJ

Components and Interconnections: ComponentJ components [SC00a, SC02] commu-
nicate to the outer world only through their component interfaces which are defined in
terms of provided and required ports. A port has a name and is typed by a Java inter-
face declaring the methods belonging to the port. The functionality of a provided port
is implemented by so-called method-blocks inside the component or by provided ser-
vices of internal parts (see Component Hierarchies). A method-block is a named block
enclosed in curly brackets which contains method declarations and implementations.
A method-block must be attached explicitly to a provided port by a plug-statement1.
Although not explicitly stated, we assume that the attachment is only valid, if at least
all methods declared by the port type are implemented in the method-block.

A method belonging to a port can directly be called by a client of the component.
In addition, provided ports of one component can be connected to required ports of
other components to fulfill their requirements. A connection between a required and
a provided port of two components is established by the same plug-statement already
used to attach method-blocks to ports. A connection can only take place, if the type of
the provided port is equal to or a subtype of the type of the required port.

In contrast to our approach, connections once established can not be released. This
can be a disadvantage if components should be assembled using an assembly tool. Such
a tool creates instances of components selected by a user and connects them accord-
ing to the user’s needs. If the user wishes to reconfigure the assembly, it may become
necessary to release existing connections. In addition, it is not possible to declare op-
tional dependencies. Thus no support exists for possible extensions or notification ser-
vices. Higher level entities on top of ports as our plugs, enforcing and simplifying
bi-directional connections between components, are not available.

Components in ComponentJ, like components in ArchJava, specify their interface
to the outer world implicitly by declaring their ports in the context of their implemen-
tation. That is, similar to classes in Java, components in ComponentJ have an implicit
interface which means that the interface is not declared explicitly by a separate language
construct, but has to be inferred from the implementation. It is also possible to declare
separate component interface types which can be compared to interface declarations in
Java. Such component interface types consist of a set of provided and a set of required
port-declarations only. But in contrast to Java and our approach, these component in-
terface types can not explicitly be related to a component declaration via an implements
relationship. Thus, component interface types are not introduced to declare an explicit
relationship between component implementations and component interface types, but
are introduced to type variables in a composite component thereby allowing to select
between several different component implementations (see ’Component Hierarchies’).

1Plug-statements correspond to connect-statements in our approach.

238 CHAPTER 6. RELATED WORK

Component Hierarchies: Component instances can contain other component instances
as parts. This relationship is expressed in the outer component’s code by some kind of
variable declaration starting with the keyword intro followed by the name of the com-
ponent to be used for instantiation followed by the name of the part. Instead of directly
referring to the component to be used for instantiation, a component interface type can
be used. A component implementation fitting to the component interface type can be
assigned by a compose-expression or by parameter passing. Unfortunately, it is not
explicitly mentioned, when an implementation fits to a component interface type.

A compose-expression creates a nameless component implementation at runtime
and can directly be assigned to a variable of a component interface type. Parameter
passing can be used, when components are return values of methods. This is e.g. useful
for factory methods which generate component implementations by compose-expres-
sions which depend on the actual implementations passed for one or more of the parts
in the composite component. The following example from [SC02] shows port interface
and component interface declarations as well as the declaration of components and the
use of compose-expressions.

/* -- */
port interface IPrint {

void print(string);
}
component interface TPrint {

provides IPrint p;
}
/* -- */
port interface IDo {

void doIt();
}
component interface TDo {

provides IDo d;
}
/* -- */
port interface IFactory {

// Factory method returning a component of type ’TDo’
TDo make(TPrint);

}

// Component declaration
component Factory {

provides IFactory f;

// Method block ’m’ implementing method ’make’ from
// port ’f’ of type ’IFactory’
declare m {

TDo make(TPrint printer) {
// Compose expression creating a component which
// provides a port ’d’ of type ’IDo’. Thus, the
// created component is of type ’TDo’. When creating
// the component, the component ’printer’ of type ’TPrint’

6.1. COMPONENT-ORIENTED LANGUAGES 239

// which is passed to ’make’ as parameter, is used as
// implementation for instantiating ’p’.
return compose {

provides IDo d;
intro TPrint p = printer;
declare mm {

void doIt() {
p.p.print("Hello World");

}
}
plug mm into d;

};
}

}
plug m into f;

}
/* -- */

A provided port of an internal part can be used as the implementation for a provided
port of the composite component through a connection between both ports. Similarly,
a required port of the composite component can be connected to a required port of one
of its parts. In accordance with our approach, an internal provided port implementing
an external one must be of a subtype, an internal required port connected to an external
required port must be of a supertype.

As long as compose-expressions are not used, parts in composite components have
to be specified by referring to a special component implementation which can not be
changed without affecting the code of the composite component. Variable declarations
in our composite UCM-components can be made using component interface types only
which allows different implementations to be chosen without affecting the composite
components.

Subtyping and Dependencies: All dependencies of a component have to be resolved
at component instantiation time. Thus, when a component instance with required ports
is created, fitting service providers have to be specified as well as the required ports to
which they will be plugged as e.g. in

tm = new CToDoExtension() {plug new DList() into list; }
from [SC00a].

Our component instances can be created even with open requirements. This allows
several component instances to be loaded and configured in a visual environment and
then connected to each other visually. In our approach, only complete applications
are forbidden to contain components with mandatory requirements which are not sat-
isfied inside the application. Whether a new component is built or an application, is
determined by the visual builder tool through corresponding menu-entries selected by
a user.

In ComponentJ a component type T1 is a subtype of a component type T2, if T1 has
at least as many provided ports as T2 and at most as many required ports as T2. In

240 CHAPTER 6. RELATED WORK

addition, the types of provided ports of T1 must be equal to or subtypes of the types
of the corresponding provided ports of T2. A contravariant relationship holds for cor-
responding required ports. Although not explicitly stated, corresponding ports are de-
termined based on equal port names which corresponds to our strong subtyping. Our
weak subtyping is not supported. Allowing subtypes to have less requirements can
cause problems in composite components having as part a component of the supertype.
Required ports of the supertype no longer contained in the subtype and occurring in a
plugging-operation can no longer be accessed. Due to this problem, our subtype defi-
nition does not allow a subtype to have less required services (ports) than its supertype
as is allowed in ComponentJ. In addition, it allows additional optional requirements
which enable e.g. additional notifications. As ComponentJ does not support entities
like our plugs or constraints on interconnections, such entities can not be found in type
and subtype definitions.

Miscellaneous: As in ArchJava, components are first mapped to Java classes and then
compiled using a normal Java compiler. The resulting Java classes are packed into a
JAR file for distribution. It is not clear whether these class files can be reused in Com-
ponentJ code as being a ComponentJ component. However the class files can be used
by pure Java code. Components can be instantiated and their ports accessed by special
framework classes.

As in the case of ArchJava, ComponentJ does not support the integration of indus-
trial component models.

6.1.3 Component Pascal

Component Pascal [Com01a, Com01b] is a programming language which combines im-
perative programming language features with object oriented features. It is a refinement
of Oberon-2 [Mös98]. Although it calls itself a component-oriented language, it does not
support components as first class entities. Instead, modules are called components as
discussed below. Additionally, Component Pascal does not provide extra communica-
tion paths between components nor composition concepts which allow one to simply
stick components together or to nest component instances inside others. Thus essential
concepts of component oriented programming languages are missing.

Components and Interconnections: In Component Pascal, modules are called com-
ponents. Modules are essentially the modules known from imperative programming
languages. They differ however, in that they can contain classes and are runtime units.
As runtime units, modules can be loaded into memory and run explicitly by executing
one of their commands. In this context, a command is a parameterless procedure ex-
ported by the module. A command is specified by the module name, followed by the
name of the procedure separated by a dot (e.g. Trees.TestTree , see the following
example).

6.1. COMPONENT-ORIENTED LANGUAGES 241

Modules can contain type, variable and procedure declarations as known from im-
perative programming languages. In addition, record types can be extended. The new
type is compatible with the extended one and can contain additional field declarations.
A record type extending another one denotes the name of the extended type in paren-
theses as in CenterNode = RECORD(Node) ...END; . Pointer types adapt the ex-
tension relationship of the record types they point to, thus POINTER TO CenterNode
is an extension of POINTER TO Node.

Class declarations are based on record type declarations. There is no extra class-
construct that is, classes are not declared as units comprising field and method decla-
rations. Instead, class declarations essentially consist of a record type declaration and
procedure declarations which are made apart from the type declaration. Procedures are
correlated with the types they manipulate by an explicit ’this’ or ’receiver’-parameter
following the keyword PROCEDURE as in

PROCEDURE (t: Tree) Insert (node: Tree) .
Here the ’this’ resp. ’receiver’ parameter is t: Tree . Procedures declaring a this-
parameter are called methods.

If record types are classes that is, if for these types methods are declared oper-
ating on them, then a record type extension also comprises that additional methods
can be declared operating on the extended type. This corresponds to subclasses pro-
viding new methods not known in their superclasses. Overriding of methods is also
supported as shown in the following example. The code mainly combines code snip-
pets from [Com01a]. It shows a class declaration (Tree) inside a module declaration2.
CenterTree is a subclass of Tree and overrides method Insert from class Tree .

MODULE Trees; (* exports: Tree,Node,CenterTree,CenterNode,Insert,TestTree *)
IMPORT StdLog;

TYPE
Tree* = POINTER TO Node;
Node* = EXTENSIBLE RECORD

key- : INTEGER;
left, right : Tree;

END;

CenterTree* = POINTER TO CenterNode;
CenterNode* = RECORD(Node)

width : INTEGER;
subnode : Tree;

END;

PROCEDURE (t: Tree) Insert* (node: Tree), NEW, EXTENSIBLE;
VAR p, father: Tree;

2’*’ or ’-’ are export marks. Identifiers marked like this can be used from outside the module. ’*’ allows
read/write access and ’-’ restricts access to read-only access. Identifiers without marks are for private use
in a module only. They can not be seen from the outside.

242 CHAPTER 6. RELATED WORK

BEGIN p := t;
REPEAT father := p;

IF node.key = p.key THEN RETURN END;
IF node.key < p.key THEN

p := p.left
ELSE

p := p.right
END

UNTIL p = NIL;
IF node.key < father.key THEN

father.left := node
ELSE

father.right := node
END;
node.left := NIL;
node.right := NIL

END Insert;

PROCEDURE (t: CenterTree) Insert* (node: Tree); (* redefinition *)
BEGIN

StdLog.Int (node(CenterTree).width);
t.Insertˆ (node) (* calls the Insert method of Tree *)

END Insert;

PROCEDURE TestTree*; (* Command which can be called as ’Trees.TestTree’ *)
VAR

tree : CenterTree;
node : CenterTree;

BEGIN

NEW(tree);
treeˆ.key := 1;
treeˆ.left := NIL;
treeˆ.right := NIL;
treeˆ.width := 55;
treeˆ.subnode := NIL;

NEW(node);
nodeˆ.key := 2;
nodeˆ.left := NIL;
nodeˆ.right := NIL;
nodeˆ.width := 60;
nodeˆ.subnode := NIL;

tree.Insert(node);
END TestTree;

BEGIN
...
StdLog.String("Trees loaded"); StdLog.Ln

CLOSE

6.1. COMPONENT-ORIENTED LANGUAGES 243

...
StdLog.String("Trees removed"); StdLog.Ln

END Trees.

Record types and classes are final by default. Record types and classes which should
be extended in the future, have to be marked by extra keywords like EXTENSIBLE or
ABSTRACTas in Node* = EXTENSIBLE RECORD ... END; .

Some new features like the limited use of a type add new valuable hiding concepts.
Annotating a RECORDtype with the keyword LIMITED allows variables of this type
only to be allocated in the module containing the type definition. Extensions to this
type are also only allowed within the boundaries of its declaring module.

Nevertheless, Component Pascal has no means to define extra communication paths
between components as e.g. in terms of extra entities like ports which allow simple
connections to be established between them.

Component Hierarchies: As components are not types, it is not possible to declare
variables of a component type nor to instantiate components. Consequently, component
instances can not be nested into others as in other component oriented languages.

Components can refer to others by IMPORT-declarations (see below), but this is a
uses-relationship instead of nesting components into others.

Subtyping and Dependencies: As modules are no types, subtyping between compo-
nents is not declared.

If modules depend on other modules, the required ones have to be imported ex-
plicitly by an IMPORT-declaration. Entities, exported by a module A which is itself
imported by a module B, are referred to in B by qualifying their names with the module
name A, e.g. A.x.

Miscellaneous: Components written in Component Pascal can be used as black boxes,
which can be developed independently of their use. Components can be deployed sep-
arately and used by third parties. Components required by deployed components must
also be available.

When a component is loaded into memory, all components/modules it depends on
are loaded first. Upon loading, code specified in a special BEGIN-section of the module
is executed. This code is usually used to initialize the variables of the module. Circular
dependencies between components are not allowed. Immediately before removing a
module from memory, code specified in a special CLOSE-section of the module is exe-
cuted.

Component Pascal is available as a .NET language. From a conceptual point of view,
components in Component Pascal can be compared to assemblies in .NET.

244 CHAPTER 6. RELATED WORK

6.1.4 Others

ACOEL: ACOEL [Sre01] is a component-oriented language similar to ComponentJ
and ArchJava. Components communicate via their provided and required ports only,
in ACOEL called in and out ports. In addition to interface types, ACOEL also supports
function types as types for ports. Provided ports typed by interfaces are implemented
by classes internal to the component instead of method blocks as in ComponentJ. These
relationships are made explicit by attach statements assigning classes to provided ports.
A similar attachment is needed to assign a method implemented by a component to one
of its provided ports typed by a corresponding function type. Components internally
declaring variables of other component types as parts are not allowed to call methods
of the provided ports of their parts directly. Instead, a composite component has to de-
clare required ports for all provided ports of the parts it wants to use. The correspond-
ing ports of the composite component and the internal parts have to be connected. An
instance of a composite component can then invoke methods of its parts by calling the
corresponding methods on its own required ports. A component can extend another
component. In this case, the extended component inherits all ports of its base compo-
nent. It is not clear how subtyping in ACOEL really works.

Prototype Based Component Evolution: Zenger uses a prototype based approach to
develop and compose components [Zen02]. As in other approaches, a component pro-
vides a set of services and can require a set of services from other components. Services
are identified by the names of their types instead of port names.

In contrast to the approaches already discussed here, a component can only be repre-
sented as an extension of an already existing component. To be able to start from scratch,
a special empty component exists which has to be refined stepwise. In one step, only
one service can be added, except, when mixins are used (see below). Services already
implemented can be overridden later on. Similar to ComponentJ, all requirements of a
component have to be resolved at instantiation time. The implementation of a service
can be forwarded to a service of another component.

Forwarding and mixin techniques are used to declare component hierarchies. If a
component C is extended by a component D via an mixin-operation, the new compo-
nent has all provided services that are provided by either C or D. It requires all services
that are either required by C or D and that are not provided by C or D. If D and C both
provide the same service, the implementation of C is overridden by that of D.

Component types and subtyping between components are defined similar to [SC00a].
I suppose that this kind of component oriented programming is not suited for com-

mercial software development. Too many steps have to be done to develop a compo-
nent providing several services. Which services a component provides can hardly be
derived from the program code. Additionally the kind of programming is rather com-
plicated and too far away from current programming languages as demonstrated by the
following code snippets from [Zen02] which still shows simple components. Here com-
ponent is the empty component, CustomerID, CustomerDB, StockDB and OrderDB are

6.2. COMPOSITION LANGUAGES 245

types of services, MyCustomerIDs is an implementation for CustomerID and MyCus-
tomerDB for CustomerDB. The declarations of the service types and implementations
are omitted.

c0 = component provides CustomerID as This with new MyCustomerIDs();
c1 = c0 provides CustomerDB as This with new MyCustomerDB(This);
d0 = ...; e0 = ...;
f0 = d0 provides StockDB as This with

(new (e0 provides OrderDB as Me with This::OrderDB))::StockDB;

Cells: Rinat and Smith introduce cells [RS02] as a special kind of components. Cells
are containers for objects and code. In addition to attribute-declarations and operation-
implementations known from classes, the implementation of cells can also contain class-
implementations, references to other cells, link-commands to connect to other cells and
calls to other cells’s services. Cells can be registered and retrieved similar to remote
objects.

A cell can communicate to other cells through so-called services and connectors.
Services are single operations which can be called on a cell in a client server fashion
without an extra linking process. Connectors are entities which are used for commu-
nication and import/export of classes from/to other cells. Connections via connectors
have to be established explicitly using a link command. After linking, communication
or import/export via the linked connectors is possible. When linking a connector of
one cell to a connector of another cell, both cells can do security checks. Depending on
the result, connections can be accepted or refused. In contrast to the other languages
already presented, established connections can be disconnected explicitly.

Connectors consist of plugins (required operations or classes) and/or plugouts (pro-
vided operations or classes). Connectors declaring only operations as plugins and
plugouts can be compared to ports in ArchJava. Connectors for classes are used to
import classes from other cells which represent e.g. class libraries. Imported classes can
be used and specialized in the importing cell. Class-based connectors can only be used
locally. They can not be used for cells residing in different CVMs (Cell Virtual Machine).

Cells can not be nested. Thus component hierarchies can not be realized.
Cells are typed by their set of operations provided as services and their set of connec-

tors. A subtype has at least to provide the same services and connectors as its supertype.
Corresponding connectors may have more plugouts and less plugins which bears the
same problems as already mentioned for ComponentJ.

6.2 Composition Languages

In contrast to component oriented languages, composition languages [WCD+01, Bir01,
BH00, Nie99, AN01] are not designed to develop new components from scratch. Instead
their focus is on composing applications and, in some approaches, new components
from already existing ones delivered by third parties. Thus composition languages are

246 CHAPTER 6. RELATED WORK

simpler than component oriented programming languages or other OO-programming
languages. Their instruction sets are intensively reduced. They generally have first-class
syntax and semantics to support composition operations and are typically interpreted.
Some of them provide a means to hierarchically compose component instances to yield
new components, even if these instances belong to flat component models.

6.2.1 Bean Markup Language

The Bean Markup Language [WCD+01] is a composition language designed to build
applications or new JavaBeans by composing already existing JavaBeans. It is a small,
simple, XML-based language allowing to instantiate beans, to manipulate their prop-
erties and fields, to call their methods, to connect beans via events, to group beans by
containers and to build new JavaBeans.

The limited set of available operations is shown in the following table.

Element Description
<bean> Create a new bean or look one up
<args> Specify constructor arguments

<string> Create a new string bean or look one up
<property> Set or get a bean property

<field> Set or get a bean field
<event-binding> Bind an event from one bean to another
<call-method> Call a bean method

<cast> Type convert a bean to be of another type
<add> Insert a bean into a container

<script> Defines a BML script to be used somewhere
<beanDef> Defines a new bean

<constructorDef> Defines a constructor for a new bean
<methodDef> Defines a method for a new bean
<propertyDef> Defines a property for a new bean

<eventDef> Defines a set of related events fired by a new bean
Table 6.1: BML-Operations

The composition mechanisms provided by BML are the connection of beans via
events using event adapters if needed, the nesting of beans into containers and the hi-
erarchical composition of beans yielding new JavaBeans.

Using the <event-binding> tag, event connections are established by registering a
suitable listener at an event source or by binding a script to an event fired by a bean. The
script can contain e.g. arbitrary method calls to other beans. When scripts are bound to
events, BML uses special event adapters which can be registered at the event source as
a suitable listener and which are able to execute the corresponding script.

Beans can be added to instances of arbitrary container types like Vector , JFrame

6.2. COMPOSITION LANGUAGES 247

etc. by executing the <add> instruction. In BML, the structure of this command is equal
for all kinds of containers. When executing such an instruction, the BML interpreter/-
player maps this add-command to one which fits to the type of the container the bean
is added to. E.g. if the container is of type Vector , addElement is used; if it is of type
JFrame , <add> is mapped to a sequence of method-calls: getContentPane followed
by the add -method of the content pane. These mappings are stored in a so-called adder
registry.

Hierarchical compositions of beans, in BML referred to as recursive composition, are
introduced by a <beanDef> element. The methods, properties and events of the new
bean can be defined by delegation or direct implementation. Implementation by del-
egation maps a property, method or event to a property, method or event of a bean
the new one is composed of. Direct implementation means implementation by a BML
<script> element which must not contain any <beanDef> elements. The implementa-
tion of methods by delegation may become ambiguous, if a bean provides overloaded
methods and the method delegated to is only referred to by its name. Events belonging
to the same event set which are fired by different internal beans can not be exported
simultaneously.

BML allows some kind of macro expansion by allowing a <bean> tag to specify the
name of a BML-file instead of a class name to be used for instantiation. This allows
e.g. already pre-configured beans to be reused in other BML scripts.

In contrast to our approach which supports different component models, BML is de-
signed to compose JavaBeans only. BML has the same shortcomings as the JavaBeans
component model discussed in Section 3.1. When building composites, BML only al-
lows one to export properties, events and methods of its parts, not whole interfaces or
plugs. Similarly connections based on interfaces and plugs are not supported, only con-
nections based on events. By referring to a bean class in the <bean> tag, beans being
part of a composite component are already bound to a special implementation. In our
approach, the type of a part can be specified only by its component interface type and
thus allows implementations from different vendors to be used without problems, as
far as these implementations conform to the component interface type.

The nesting of component instances into containers not explicitly supported in our
approach can be modelled as follows. The container declares an optional required inter-
face of a type identifying the component instances which can be inserted. The connect-
method corresponding to this required interface refers to the adder-method or a se-
quence of methods used to insert component instances into the container.

6.2.2 Bean Plans

Birngruber and Hof introduce bean plans [BH00] to simplify the assembly process espe-
cially for non experts. A bean plan describes a set of pre-configured and pre-connected
beans with still some degrees of freedom. Bean plans are created by developers of class
libraries, so-called bean suites, and reflect the developers’ knowledge of the underlying

248 CHAPTER 6. RELATED WORK

bean suite and its typical composition patterns. The bean plans are provided to appli-
cation programmers to simplify their assembly task. The plans relieve the application
programmer from routine configuration tasks and a deep knowledge of the underlying
bean suite. A bean plan can be regarded as a composition template with predefined
placeholders for certain property settings and beans to be chosen by the application
programmer from a predefined set of beans.

Bean plans are typically interpreted by a plan builder which guides the application
programmer through the assembly process similar to a wizard. The plan builder instan-
tiates the declared beans, configures them by setting their properties and wires them to-
gether via events according to the plan. Additionally, it adds beans to containers when-
ever requested by the plan. If the plan builder detects a placeholder, called an interactive
decision spot, the tool asks the application programmer for the information needed. De-
cision spots can comprise one or more choices to select a JavaBean. Choices are denoted
in angle brackets and are separated by “|” as e.g. in < FlowLayout | BorderLayout |
CardLayout >. This choice means that the application programmer can select one of
these three layout managers or one of their subclasses. If subclasses are not allowed,
the bean-classes in the choices have to be prefixed with the keyword fixed. The plan
builder offers all possible classes matching the choices declared by the decision spot in
a user dialogue from which the programmer can select the one he wants to use. If a
property value can be chosen by an application programmer, the corresponding cus-
tomizer or property sheet will be shown by the plan builder to ask the programmer for
a value. Once, all decision spots of a bean plan are resolved, the plan-builder produces
an XML-representation of the configured and connected beans. This representation can
be interpreted by an assembly tool which in turn produces the set of Java class files
making up the assembled application. The creation of new beans from assembled ones
is not supported.

The following example shows a bean plan from [BH00] which adds a button and
scroll-pane containing a JTable into a JPanel . The background color for the JPanel
can be chosen by the application programmer as well as a subtype of TableModel as
the model to be used to access the data shown in the JTable .

import javax.swing.*;
import java.awt.event.* ;
import java.awt.Color;
import java.awt.BorderLayout;
import javax.swing.table.TableModel;
plan JTableView {

Bean refreshButton = new JButton {
text = Refresh; // set property

}
// ask the programmer to pick a TableModel and show
// the appropriate customizer or property sheet of the model
Bean tableModel = customized new <TableModel> { }
Bean tableView = new JTable {

autoCreateColumnsFromModel = true;
model = tableModel;

6.2. COMPOSITION LANGUAGES 249

}
Bean jScrollPane1 = new JScrollPane {

viewPortView = tableView;
}
Bean container = new JPanel {

layout = new BorderLayout;
// ask the programmer for a background color
// using the appropriate property editor
background = <>;
add (jScrollPane1, BorderLayout.CENTER);
add (refreshButton, BorderLayout.SOUTH);

}
// interconnect beans using events
on refreshButton.Action.actionPerformed call tableView.repaint();

}

In [Bir01] the bean plans are generalized to component plans written in CoPL, a lan-
guage to describe such plans. CoPL is designed to be independent from a certain com-
ponent model. The components assumed are binary ones with one or more interfaces
giving access to the functionality of the component. The components are self-contained
that is, they do not have required interfaces. Connections between components are
based on events although the event model is not actually described. A plan with no
open decision spots is translated into an assembly description in CoML, an XML-based
language, which is similar to BML but which does not allow to compose components
to new ones. Interpreters for Java and .NET were already implemented. Cross platform
composition was not yet supported.

6.2.3 Piccola

Piccola [Nie99, AN01] is a language which models components and compositions in
terms of communicating agents which exchange forms over channels. Agents perform
computations and forms are the communicated values. As is summarized in [Nie99]:

“A component is viewed as a set of interconnected agents. The interface of a compo-
nent is represented as a form, a special notion of extensible records. Piccola models
composition in terms of agents that exchange forms along private channels whereas
higher-level compositional abstractions are introduced as sets of operators over sorts
of components.”

A form is a mapping from labels to values whereas forms themselves are values as
shown in the following example from [AN01].

baseForm =
Text = "foo"
Name = Text
Size = (x = 10, y = 20)

250 CHAPTER 6. RELATED WORK

In Piccola nearly everything is represented as a form:

• component interfaces (as sets of services),

• user defined services,

• arguments for services, and

• contexts.

Agents live in contexts which contain the services and forms available to the agent.
Services can be invoked by agents and correspond to function calls. A hidden label
belonging to the form representing a service gives access to the agent evaluating the
body of the service. Services can be defined by Piccola scripts or by external components
integrated into Piccola using special libraries. The following service hello is defined
as Piccola script (see [AN01]).

hello() =
println("hello world")

Piccola does not expect a special component model with a predefined plugging con-
cept. Thus, Piccola does not provide a fixed composition model as e.g. interface based
connections or event based connections. Instead, Piccola allows a user to determine his
own architectural style defining how components should look like and how such com-
ponents should be plugged together. For example, components could be files, streams
and filters which should be composed in a pipe and filter style. In another context,
components could be AWT components composed by adding them to containers and
by wiring them via events.

In a pipe and filter architecture, streams are e.g. expected to provide the services
next , isEOF , and close and can be composed with a filter using the ’|’ -operator
yielding a transformed/filtered stream. The composition operators allowed on streams
must be defined by suitable Piccola scripts as shown in [Nie99]. Then these operators
can be used to represent a sequence of streams and filters as e.g.

filteredStream = inputStream | filter1 | filter2

Thus these operators represent the “higher-level compositional abstractions over
sorts of components” already cited above.

In the context of AWT components, components are expected to be sources of special
kinds of events. In addition, such components are expected to be capable of registering
suitable listeners which respond to the events fired by corresponding actions. This kind
of composition is shown in [AN01]. Registering a listener at an event source is modelled
by the ’?’-operator defined for AWT components. Creation of a fitting listener is done
by evaluating an expression of the form E(R) where E represents an event type, and R
the expected response of the listener.

6.3. ARCHITECTURE DESCRIPTION LANGUAGES 251

waveButton ? Action(do: duke.wave(val = 1))

In this example waveButton represents an AWT button, Action an event type (E)
and do: duke.wave(val = 1) the response (R) of a suitable listener. The listener
is created by evaluating E(R) and is registered at waveButton using the ’?’-operator.
When the do-script is executed, a waving duke is shown. For more details please refer
to [AN01].

Although pure Piccola is not suited to simply stick components together, libraries of
Piccola scripts can be created by experts, reflecting a special architectural style. Then
these libraries may be used by non-experts to simply compose components conform-
ing to one of the supported styles. An interface to Java is provided by Piccola’s core
libraries. The Piccola language itself is translated to an abstract machine with agents,
channels and forms which implements a variant of the π - calculus [Mil91].

6.3 Architecture Description Languages

Software architecture also extensively relies on components. Architecture description
languages (ADLs) like e.g. Darwin [MK96], ACME [GMW00], and WRIGHT [All97]
are used to describe software systems on a high level of abstraction modelling a system
by components and their interconnections using configuration descriptions. Configu-
ration descriptions specify the components belonging to a system as well as their inter-
connections. Interconnections are often modelled using explicit connectors specifying
communication protocols between components.

Medvidovic and Taylor [MT00] introduce a classification framework for architecture
description languages to distinguish ADLs from other approaches like formal specifi-
cations, module interconnection, simulation, and programming languages. The frame-
work also serves to classify and compare existing ADLs. The interested reader is en-
couraged to use this paper for further references to existing ADLs not mentioned here.

6.3.1 Darwin

Darwin [MDK94, MDEK95, MK96] is mainly designed to describe the static and dy-
namic architecture of a concurrent system in terms of hierarchically composed com-
ponents which interact via services. Darwin supports distribution by allowing one to
specify a mapping from components to machines they run on explicitly.

The interface of a component is determined by a set of provided and required ser-
vices. In all approaches discussed so far, services represent units of functionality pro-
vided or required by a component. In contrast to these approaches, services in Darwin
model certain kinds of communication e.g. port based communication, stream based
communication etc. Thus service types are specified as tuples consisting of a communi-
cation type and the type of the data/messages to be transmitted. The service types are

252 CHAPTER 6. RELATED WORK

implemented by C++ templates which are expected to be available at each platform a
component runs on. The following example shows a part of the C++ template for the
port type from [MDK94]. Port objects are queues of messages of a type T.

template <class T>
class port: public portbase {
public:

void in (T &msg); // receive message of type T into msg
void out (T &msg); // synchronous send msg of type T
void send (T &msg); // asynchronous send msg of type T
...

};

Components can be either primitive or composite. Primitive components are imple-
mented by C++ classes and are specified in Darwin as component declarations contain-
ing only the declaration of the provided and required services (see component filter
below). Composite components consist of a set of variables representing interconnected
component instances which are wired/bound together via their provided and required
services. Services of internal constituents can be bound to services of the composite
component thus making them available to the outside. Binding can only be done, if
the communication type (port, stream etc.) and the message type (T) are the same for
both services to be bound. Services of composite components may only be specified by
a name, a type can be omitted. In this case, the type is inferred from the type of the
internal constituent bound to the service of the composite component.

The following example from [MDEK95] shows a pipeline of filters of variable length
n, where the output service of one filter is bound to the input service of the next fil-
ter. The communication pattern used is stream based communication and the messages
passed are of type char . Thus the service type for the input and output service of a
filter component is <stream char> .

component filter {
provide output <stream char>
require input <stream char>

}

component pipeline (int n) {
provide output;
require input;

array F[n] : filter;
forall k : 0..n-1 {

inst F[k] @ k + 1;
when k < n-1

bind F[k + 1].input -- F[k].output;
}
bind

F[0].input -- input;
output -- F[n - 1].output;

}

6.3. ARCHITECTURE DESCRIPTION LANGUAGES 253

Components can be parameterized, as e.g. pipeline by n in the example above, to
allow families of equal architectures to be defined. Distribution to different machines is
done by assigning an integer number to a variable representing a component instance as
in inst F[k] @ k+1; . The integer identifiers are mapped to real machines by the Regis
runtime system, executing Darwin configurations.

Darwin supports the declaration of components for lazy instantiation. That is, a
component is not instantiated until one of its services is called the first time.

In contrast to our approach, Darwin can not be used to create new components from
existing ones which can then be deployed and reused independently. Instead, Darwin
is used to master the complexity of an application by describing it as a hierarchical
composition of interconnected component instances. Thus Darwin does not address
substitutability of components nor subtyping between components.

Component services represent communication patterns instead of functionality. Op-
tional requirements can not be declared. One required service may only be bound to one
provided service. Higher level entities grouping several services can not be declared,
as e.g. a port communication and a corresponding event communication which could
be required from the same communication partner. In our approach, this feature is ad-
dressed by plugs. Primitive components are restricted to C++ classes. Components of
industrial component models can not be integrated.

6.3.2 Acme

Acme [GMW00] is an architecture description language developed to provide a min-
imum common basis for many diverse ADLs. To support the various peculiarities of
the different ADLs, Acme allows ADL specific information to be specified additionally.
Such information is left uninterpreted in Acme, but can be interpreted by ADL specific
tools. Such ADL specific tools have to use Acme as their common basis that is, they
must be able to read and write Acme descriptions.

The core elements of Acme are components, connectors, ports, roles, systems, representa-
tions, and representation maps (rep-maps for short).

Components model computational elements which can communicate to their envi-
ronment through a set of ports. Ports identify the points of interaction of a component
to its environment and can e.g. represent single operations, a set of related operations
or an event multicast interface.

Connectors are entities in their own right. They model communication between two
or more components. Every connector declares a set of roles which identify the partici-
pants involved in a communication via this kind of connector. Connectors may be RPC
connectors with roles caller and callee, pipe connectors with roles reading and writing,
message passing connectors with roles sender and receiver etc. Components can be
interconnected via a connector by attaching component ports to roles of the connector.

Systems are built from sets of components and connectors related by assigning com-
ponent ports to connector roles. The following example from [GMW00] shows a simple

254 CHAPTER 6. RELATED WORK

Acme system consisting of a client component, a server component and an RPC connec-
tor which connects client and server:

System simpleCS = {
Component client = { Port sendRequest }
Component server = { Port receiveRequest }
Connector rpc = { Roles {caller, callee} }
Attachments : {

client.sendRequest to rpc.caller ;
server.receiveRequest to rpc.callee }

}

To enable hierarchical structures in Acme, components and connectors can be rep-
resented by one or more lower level descriptions called representations. Rep-maps are
needed to define, how these internal representations are mapped to the interface of
the entity they refine. That is e.g., which ports of which internal components repre-
sent external ports. The following shortened example form [GMW00] shows the client-
server system from above with a refinement serverDetails for the server compo-
nent. The server component consists of three components, a connectionManager , a
securityManager and a database . The port externalSocket of the connection
Manager is mapped/bound to the server’s port receiveRequest .

System simpleCS = {
Component client = { ... }
Component server = {

Port receiveRequest;
Representation serverDetails = {

System serverDetailsSys = {
Component connectionManager = {

Ports { externalSocket; securityCheckIntf; dbQueryIntf } }
Component securityManager = { ... }
Component database = { ... }
Connector SQLQuery = { ... }

...
Attachments {

...
}
Bindings { connectionManager.externalSocket to server.receiveRequest }

}
}
Connector rpc = { ... }
Attachments { client.sendRequest to rpc.caller ;

server.receiveRequest to rpc.callee }
}

These core elements of Acme can be enriched with additional information through
properties which are uninterpreted in Acme. Every property has a name, an optional
type and a value. If a client expects a special request rate at its port it would e.g. attach
the following property specification to its port:

6.3. ARCHITECTURE DESCRIPTION LANGUAGES 255

Properties requestRate : float = 17.0;
These additional properties can be ADL specific and interpreted by tools for other
ADLs.

Constraints can also be attached to the core elements. Constraints can be either
invariant or heuristic. Invariant constraints must be preserved whereas heuristic con-
straints should be preserved, but may be violated. For further details on constraints
please refer to [GMW00].

To enable the reuse of architectural elements, Acme allows a user to define types
of components, connectors, ports and roles called structured types. Each type definition
specifies a type name, its substructure, properties and constraints. An instance of this
type must at least contain all substructure elements and properties and has to respect
the constraints. In addition to structured types, styles can be declared, called families in
Acme, which specify a whole set of similar systems. The following example shows both
approaches, a family of Pipe and filters using certain component and connector types.
The system simplePF is defined as an instance of the family PipeFilterFam .

Family PipeFilterFam = {
Component Type FilterT = {

Ports { stdin; stdout; };
Property throughput : int;

};
Component Type UnixFilterT extends FilterT with {

Port stderr;
Property implementationFile : String;

};
Connector Type PipeT = {

Roles { source; sink; };
Property bufferSize : int;

};
Property Type StringMsgFormatT = Record [size:int; msg:String;];
Invariant Forall c in self.Connectors @ HasType(c, PipeT);

}

System simplePF : PipeFilterFam = {
Component smooth : FilterT = new FilterT
Component detectErrors : FilterT;
Component showTracks : UnixFilterT = new UnixFilterT extended with {

Property implementationFile : String = "IMPL_HOME/showTracks.c";
};
// Declare the system’s connectors
Connector firstPipe : PipeT;
Connector secondPipe : PipeT;
// Define the system’s topology
Attachments { smooth.stdout to firstPipe.source;

detectErrors.stdin to firstPipe.sink;
detectErrors.stdout to secondPipe.source;
showTracks.stdin to secondPipe.sink; }

}

256 CHAPTER 6. RELATED WORK

6.3.3 Wright

Wright [All97] is an architecture description language which does not only describe
the static architecture of a system, but also includes semantic descriptions for its basic
language elements.

As Acme, Wright knows components, ports, connectors, and roles. Systems in Acme
correspond to configurations in Wright. Hierarchies are supported by allowing the be-
havior of components and connectors to be further refined by architectural sub-descrip-
tions.

Components in Wright are defined by their ports, building the interface of the com-
ponent to its environment, and by a computation which defines the behavior of the com-
ponent. The computation can be either defined by a subsystem (see above) or directly
by a CSP3-like specification [Hoa85]. This kind of specification allows a user to describe
behavior in terms of processes engaged in events. The behavior of ports is also de-
fined in a CSP-like notation. If a computation is specified by a subsystem, a binding
has to map ports of subcomponents to ports of the refined component like in Acme,
e.g. C.Combined = Service (see [All97], p. 47). Combined is a port of the subcom-
ponent Cwhich is mapped to the port Service of the enclosing component.

Connectors are defined by roles and glue. While roles have the same meaning as in
Acme, glue is unknown to Acme. Glue specifies, how the different roles, identifying
participants in the communication via this connector, are coordinated to achieve the
overall cooperation. The behavior of roles and glue is specified in the same CSP-like
notation as computations and ports.

The following slightly modified example from [All97] shows a Wright configuration
with three filter components and one pipe connector. The configuration contains one
instance of every filter component as well as three instances of the pipe connector. The
first filter (Split) is connected via pipe P1 to the filter Upper converting lower case to
upper case. Via P2, Split is also connected to the filter Merge . Upper and Merge are
connected via P3. Split splits the input stream into two streams. One is sent to Upper
which capitalizes every character and in turn sends the resulting stream to Merge . The
second stream is sent from Split to Merge without being modified. Merge recombines
both streams to one output stream. As in Acme, the connections between components
and connectors are described by attachments which relate ports of components to roles
of connectors.

Configuration Capitalize
Component UpperCase

Port Input ...
Port Output ...
Computation ...

Component SplitFilter
Port Input = DataInput

3CSP is an abbreviation for “Communicating Sequential Processes”.

6.3. ARCHITECTURE DESCRIPTION LANGUAGES 257

Port Left = DataOutput
Port Right = DataOutput
Computation ...

Component MergeFilter
Port Left ...
Port Right ...
Port Output ...
Computation ...

Connector Pipe
Role Source ...
Role Sink ...
Glue ...

Instances
Split : SplitFilter
Upper : UpperCase
Merge : MergeFilter
P1, P2, P3 : Pipe

Attachments
Split.Left as P1.Source
Upper.Input as P1.Sink
Split.Right as P2.Source
Merge.Right as P2.Sink
Upper.Output as P3.Source
Merge.Left as P3.Sink

End Capitalize.

In the example above all behavior specifications of ports, roles, computations and
glue are only indicated by ’...’ except for the ports of the component SplitFilter .
These ports are defined by the interface types DataInput and DataOutput , special
types declaring reusable input and output behavior for filter components. In general,
Wright allows one to define arbitrary interface types to specify certain kinds of behavior.
Behavior specified by interface types can then be used for various ports and roles by
assigning this type to a certain port or role as shown above for the ports Input, Left
and Right . Thus, instead of specifying each port (or role) of a component (connector)
having the same behavior by a separate CSP-expression, the same interface types can be
assigned specifying this behavior only once. A typical interface type for input ports of
filter components as well as a typical interface type for output ports of filter components
is shown below.

Interface Type DataInput = (read → (data?x → DataInput

� end− of − data→ close → §))
u (close → §)

Interface Type DataOutput = (write!x → DataOutput) u (close → §)

258 CHAPTER 6. RELATED WORK

DataInput specifies a process which can internally decide, whether to initiate a read
event or a close event. The internal choice is denoted by u. In contrast to events ob-
served by a process as end−of−data, events initiated by a process as read and close are
denoted by an overbar. Once DataInput has initiated the read event, it either observes
arriving data (data?x)4 or end − of − data. The environment of the process determines
which one of these events will be observed. Such an external choice is indicated by �.
Once end − of − data is observed, the process initiates a close event signalling that it
is being terminated. The actual, successful process termination is indicated by § which
denotes the immediately terminating success process. Thus DataInput describes the be-
havior that it reads data repeatedly and closes the port at or before end− of − data.

Similarly, DataOutput writes data repeatedly (write!x →DataOutput)5. If no further
data is written, DataOutput closes the port to signal end-of-data by initiating a close
event. For further details on process specifications please refer to [All97].

To support reuse of components, components can be parameterized by numbers or
by other information to be filled in for corresponding placeholders in the component
description. Such information could e.g. be the CSP-specification for the computation
part of a component. Numbers are used to vary the number of ports with the same
meaning and behavior. E.g. a filter component may have several output ports with a
behavior specified by DataOutput.

Additionally, families of configurations can be specified by styles. Styles declare
properties which hold for all configurations in the style. Such properties, as e.g. that
all connectors are pipes or that filters have only ports of type DataInput or DataOutput,
can be specified by constraints, based on first order predicate logic. In the following
example, showing a pipe and filter style, all behaviors are only shown informally as
comments in squared brackets.

Style Pipe-Filter
Connector Pipe

Role Source [deliver data repeatedly, signalling termination by close]
Role Sink [read data repeatedly, closing at or before end-of-data]
Glue [Sink will receive data in the same order as delivered by Source]

Interface Type DataInput = [read data repeatedly,
closing the port at or before end-of-data]

Interface Type DataOutput = [write data repeatedly,
closing the port to signal end-of-data]

Constraints

∀ c:Connectors • Type(c) = Pipe

∧∀ c:Components; p:Port | p ∈ Ports(c) • Type(p)=DataInput ∨ Type(p)=DataOutput

Substyles can be declared which further constrain the properties defined in a style.
A substyle is denoted by the keyword style followed by the names of the sub- and super-
style separated by a colon as e.g. Style Pipeline : Pipe-Filter . The substyle

4Receiving data is denoted by ’?’.
5Writing data is denoted by ’!’.

6.4. THE UNIFIED MODELING LANGUAGE 2.0 259

knows and respects all definitions and constraints of the superstyle and may add addi-
tional constraints.

Wright defines several consistency checks for the various elements of a configura-
tion. Based on the CSP-specifications of ports and computation, Wright provides a test
which checks, whether a computation is consistent with its ports that is, whether a com-
putation models all interactions correctly. Another kind of check validates, whether a
port may be attached to a role. An attachment is possible, if 1) the port handles all ob-
served events specified by the role and 2) if the port chooses to initiate an event, the
port must select one that is specified by the role. The port may observe other additional
events or may disallow options for initiating events which are permitted by the role.
Other tests concern e.g. whether critical attachments are missing or whether connectors
are deadlock-free.

6.4 The Unified Modeling Language 2.0

The Unified Modeling Language (UML) is a visual modeling language for describing
software systems. It can be used to specify a system, to document it and to visualize its
artifacts as well as their dependencies. Using UML, the static structure as well as the
dynamic behavior of a system can be described.

Version 2.0 of UML comes with several new diagrams supporting especially com-
ponent based development. Unfortunately, the official document which can be down-
loaded at the moment “Unified Modeling Language: Superstructure version 2.0, for-
mal/05-07-04, August 2005” still contains some inconsistencies and obscurities. In the
following we shall present the main concepts described so far and will point at obscuri-
ties which yet have to be eliminated.

Then we shall compare our approach to that of UML 2.0 (especially to composite
structures) as far as it is possible with respect to the existing obscurities.

6.4.1 Components

In UML 2.0 a component is regarded as an encapsulated, modular unit which com-
municates to its environment only through well-defined interfaces. A component may
provide interfaces to its clients and it may be dependent on other elements of a system.
These dependencies are specified in terms of required interfaces.

The set of interfaces provided and required by a component is regarded as the type
of the component. A component may be replaced by another component, if the two
components are type conformant. Additionally, a component may be used in different
contexts as far as these contexts conform to the contract specified by the provided and
required interfaces of the component. Unfortunately, the meaning of type conformance in
the context of component types is not defined precisely. The specification only states the
following ([UML05] p.142):

260 CHAPTER 6. RELATED WORK

“ A component defines its behavior in terms of provided and required interfaces. As
such, a component serves as a type whose conformance is defined by these provided
and required interfaces (encompassing both their static as well as dynamic seman-
tics). One component may therefore be substituted by another only if the two are
type conformant.”

This definition particularly does not clarify how to handle required interfaces of a
component. Must a type conformant component use the same set of required interfaces
or is a subset sufficient? What about the types of the interfaces etc? For a discussion on
this topic please refer to Section 4.3.2.

In the UML standard, classes and interfaces can be represented by different classi-
fiers and related by an implements relationship. But it is not possible to separate the
declaration of the interface of a component to its environment (as represented by the set
of its provided and required interfaces) from its implementation. A component is iden-
tified by a single classifier6. The UML standard profile L2 has to be used for applications
which need to differentiate between the interface of a component and its various imple-
mentations. In this profile two stereotypes << specification >> and << realization >>
are defined referring to component interfaces and component implementations.

Every provided/required interface of a component is regarded as being implement-
ed/used by the component or as being exposed by one of its ports. Ports are an addi-
tional means to explicitly define named interaction points of a component which may
expose one or more interfaces (provided and/or required). Since a component may
form the abstraction for a set of classifiers that realize its behavior, a provided/required
interface need not be implemented/used directly by the component; it may be imple-
mented/used by one of its realizing classifiers7.

For every component artifacts that implement the component may be specified. Typ-
ical artifacts are e.g. JAR-files, EXE-files and DLL’s. Artifacts should be capable of being
deployed and re-deployed independently, for instance to update an existing system.

Several components may be used to build a new component or a subsystem. The
used components are “wired” together via their required and provided interfaces. This
wiring can be structurally defined by using dependencies between component inter-
faces and is done on classifier level, not on instance level (see Figure 6.3).

In the following some UML component diagrams are shown. They are taken from
the current UML-specification. Some of them are adopted slightly to our needs.

The first diagram shows different levels of detail which may be used to specify a
component. The second diagram shows another representation equivalent to the first
one. Only the indication of the used artifacts is missing in diagram 6.2. The third
diagram (Figure 6.3) shows the wiring between components using dependencies8 be-

6In UML a classifier denotes a “collection of instances that have something in common”. Classifiers
include among others interfaces, classes, datatypes, and components.

7It does not become clear whether realizing classifiers may only be classes in the sense of OOP or
whether they also comprise subcomponents. We assume the latter case especially because components
may be assembled from other (sub-)components.

8For the semantics of dependencies please refer to [Fow04, JRH+04].

6.4. THE UNIFIED MODELING LANGUAGE 2.0 261

tween interfaces on structure diagrams (see above). This diagram also shows a map-
ping from the external view (exposed interfaces) of a component to its internal view
(realizing classifiers). The realizing classifier OrderHeader exposes its required inter-
face AccountPayable .

<<component>>

Order

<<component>>

Order

<<provided interfaces>>
 OrderEntry
 AccountPayable
<<required interfaces>>
 Person

<<realizations>>
 OrderHeader
 LineItem

<<artifacts>>
 Order.jar

<<provided interfaces>>
 OrderEntry
 AccountPayable
<<required interfaces>>
 Person
 FindbyName (…)
 create (…)

Figure 6.1: Black- and White-Box Views of a Component (taken from [UML05] with
slight modifications)

C

<<component>>
Order

Person

OrderEntry

AccountPayable

OrderHeader

LineItem

order

item

1

*

C
<<component>>

Order
Person

OrderEntry

AccountPayable

Figure 6.2: Another Representation of the Black- and White-Box View of a Component
(taken from [UML05] with slight modifications)

262 CHAPTER 6. RELATED WORK

C

<<component>>
Order 2

AccountPayable

<<focus>>

OrderHeader

LineItem

*

concerns

C

<<component>>
Account

account
/ordereditem

Orderableitem

<<component>>
Product

1

1

Figure 6.3: Wiring through Dependencies on a Structure Diagram (taken from [UML05])

6.4.2 Internal Structure of a Component

Structure diagrams as described in Section 6.4.1 are useful to show which components
are needed in a system and how they depend on each other on the classifier level. But
these diagrams are not appropriate to express all the information needed for intercon-
nected components on the instance level. Let us have a look at the following example.

<<component>>
DataLogging

C

<<component>>
LoggingControl

<<component>>
Device

I_LoggingOptions

I_DeviceData

I_DeviceData

C
I_LoggedData

Figure 6.4: Data Logging Component

A data logging component collects data from several connected devices and stores
these data to e.g. a database via its required interface I LoggedData . It collects data only
from one device which can be selected by a client via the provided interface I Logging

Options . This interface also provides operations to start and stop data logging.

6.4. THE UNIFIED MODELING LANGUAGE 2.0 263

The data logging component is realized by two other components:LoggingControl
and Device which are wired together through their provided and required interfaces
I DeviceData .

This representation of the component does not show implementation details as for
example that there are only two devices available (as can be expressed by a different
representation as shown in Figure 6.5) or even that there exists one device for selecting
data from a supplier belt and one for data from a robot (see Figure 6.6). In the last case
both devices play different roles in the containing component.

To be able to describe such details, an internal structure consisting of parts and con-
nectors can be defined for a component. A part constitutes a named set of instances
typed by the same classifier and playing the same role in the containing component.
Instances represented by a part are owned by the enclosing component instance. In Fig-
ure 6.5 there exist two parts: one with name LC and typing classifier LoggingControl
and one with name controlledDevice and typing classifier Device . LC denotes
only one instance of LoggingControl whereas controlledDevice denotes two in-
stances of Device indicated by the multiplicity declaration [2] following the typing
classifier Device . The multiplicity declaration for a part restricts the number of in-
stances belonging to this part.

<<component>>
DataLogging

C

<<component>>

LC :
LoggingControl

<<component>>

controlledDevice:
Device [2]

I_LoggingOptions

I_DeviceData

C
I_LoggedData

Figure 6.5: Data Logging Component using Parts

Figure 6.6 presents a more detailed view by introducing three parts: one for the
instance of a LoggingControl component and two for the different devices.

264 CHAPTER 6. RELATED WORK

<<component>>
DataLogging

C

<<component>>
LC :

LoggingControl

<<component>>
supplierBelt :

Device

I_LoggingOptions

I_DeviceData

<<component>>
robot :
Device

C
I_LoggedData

Figure 6.6: Detailed View of the Data Logging Component

Parts may be connected by assembly connectors. An assembly connector is a con-
nector wiring a required interface or port(see below) to a provided interface or port.
A request originating in a required interface of a connected component instance corre-
sponding to one part results in the invocation of the corresponding operation of the con-
nected provided interface of the component instance corresponding to the other part.

Besides parts, ports may be declared defining distinct interaction points to the envi-
ronment of the component instance. Ports can be used to completely isolate the internals
of a component from its environment. Through ports, functionality realized or needed
by internal parts may be exposed to the environment.

Ports may be typed by one or more interfaces which are provided and/or required.
A port which is only typed by one interface is called provided port or required port
depending on whether the exposed interface is provided or required. Ports typed by
several interfaces are called complex ports. Ports allow one to distinguish interfaces
by introducing explicit port names and to logically group interfaces. Especially as mul-
tiplicities may be declared for ports there may exist several ports typed by the same
interface(s), although this is not explicitly stated in the UML specification.9

To express that interfaces exposed by ports are realized or used by special parts,
delegation connectors are introduced.

“p. 150: A delegation connector is a connector that links the external contract of a
component (as specified by its ports) to the internal realization of that behavior by
the components parts. It represents the forwarding of signals (operation requests
and events): a signal that arrives at a port that has a delegation connector to a part
or to another port will be passed on to that target for handling.

9 If a component uses ports to communicate with its environment, it is not clear how the different ports
are considered in the type of a component, especially, if several of these ports have the same interface type.
The type of a complex port is not clarified either. In the examples presented in the UML-specification only
the provided interface of a port grouping one provided and one required interface is denoted as its type.

6.4. THE UNIFIED MODELING LANGUAGE 2.0 265

p. 151: Delegation connectors are used to model the hierarchical decomposition of
behavior, where services provided by a component may ultimately be realized by
one that is nested multiple levels deep within it. The word delegation suggests that
concrete message and signal flow will occur between the connected ports, possibly
over multiple levels. It should be noted that such signal flow is not always realized
in all system environments or implementations (i.e., it may be design time only).”

If we modify Figure 6.6 such that the data logging component uses ports and del-
egation connectors to expose its provided and required interfaces and to express the
delegation to / from internal parts, we obtain the following figure.

<<component>>
DataLogging

C

<<component>>

LC :
LoggingControl

<<component>>
supplierBelt :

Device

I_LoggingOptions

I_DeviceData

<<component>>
robot :
Device

C
I_LoggedData

C
<<delegate>>

<<delegate>>

I_LoggedData
I_Logging
Options

Figure 6.7: Data Logging Component using Parts, Ports and Connectors

It is left open how complex ports may be connected. Do they have to be connected to
a complementary complex port that is, has the port to be connected to expose the same
set of provided and required interfaces, but with reversed roles concerning provisions
and requirements? Or which restrictions have to be adhered to? How can connections
between complex ports be represented graphically? May interfaces belonging to a com-
plex port be connected to interfaces of different ports? Whereas the UML-specification
states the following with respect to complex ports (page 176):

“The required interfaces characterize services that the owning classifier expects from
its environment and that it may access through this interaction point: Instances of
this classifier expect that the features owned by its required interfaces will be offered
by one or more instances in its environment. The provided interfaces characterize
the behavioral features that the owning classifier offers to its environment at this in-
teraction point. The owning classifier must offer the features owned by the provided
interfaces. ”

Rumbaugh, Jacobson, and Booch [RJB05] state on page 526:

266 CHAPTER 6. RELATED WORK

“Two internal ports connected together must be of complementary types, because
a request sent by one is serviced by the other. Two types are complementary if the
required services of each are a subset of the provided services of the other. ”

If a component containing parts and ports is instantiated, instances corresponding to
all parts are also instantiated, immediately or at a later time. If the component instance is
deleted, all instances corresponding to its parts are deleted with it. That is, a component
containing parts has the responsibility for the existence and storage of the instances
corresponding to the parts (whole/part relationship). An instance corresponding to a
part may be included in at most one containing component instance at a time. Similarly
upon component instantiation time instances for all ports are created. Instances of ports
are referred to as interaction points and provide unique references.10 The interaction
point object must be an instance of a classifier that realizes the provided interfaces of
the port. Also links corresponding to the connectors wiring different parts or ports
and parts are created upon instantiation of the containing component. A link defines a
communication path between the connected entities (instances corresponding to ports
/ parts). A link may be realized in many ways: e.g. by a simple pointer or even by a
complex network connection.

The following figure summarizes almost all of the concepts introduced to describe
the internal structure of a component.

C

C C

C

<<component>>

:Order

<<component>>

:Product

<<component>>

:Customer

OrderEntry

Account

OrderableItem

OrderableItem

Person

Person

<<component>>
Store

<<delegate>>

OrderEntry

Account
<<delegate>>

delegation connectorassembly connector

part

provided
port

required
port

Figure 6.8: Internal Structure of a Component containing other Components as Parts
(taken from [UML05])

10 The semantics of an interaction point does not become clear. There should e.g. exist a link from
an interaction point to the instance of the containing classifier/component: “A link from that instance to
the instance of the owning classifier is created through which communication is forwarded to the instance of the
owning classifier or through which the owning classifier communicates with its environment.” But as component
instances may be abstract in the sense that “an object specified by the component does not exist, that is, the
component is instantiated indirectly, through the instantiation of its realizing classifiers or parts” what does a
link to it mean?

6.4. THE UNIFIED MODELING LANGUAGE 2.0 267

6.4.3 Comparison of the UML- and our UCM-Approach

In the following, the concepts of UML concerning components are compared to our
UCM approach.

Concept UML UCM
Specification of
the interface of
a component

In contrast to interfaces which
are implemented or used by
classes, basically there does not
exist any explicit notion for the
interface of a component to its
environment e.g., as a classifier
in its own right apart from its
implementation. The interface
of a component is implicitly de-
fined by the set of its provided
and required interfaces which
can be represented in the differ-
ent black- and white-box views.
Only when using the standard
profile L2 it is possible to dis-
tinguish between the specifica-
tion of a component’s interface
and its realizations by using the
stereotypes << specification >>
and << realization >>.

The interface of a component
is declared apart from an im-
plementation of a component.
Several component implemen-
tations can be related to the
same component interface spec-
ification by an implements rela-
tionship.

Type of a com-
ponent

As described on page 259 the
UML specification states that
the type of a component is re-
garded as the set of its provided
and required interfaces. Unfor-
tunately it is not clear, how far
ports are incorporated in this
definition especially if several
ports of a component are typed
by the same interface or if a com-
ponent has complex ports. The
meaning of type conformance is
not clear either. For further dis-
cussions see page 259 and 264.

The type definition of a com-
ponent supports the occurrence
of several interfaces of the same
type. They are distinguished by
their (service-) names. In con-
trast to UML, our type definition
(definition 4.3.8) also takes into
account the grouping of services
by plugs (which can in some
sense be compared to complex
ports; see below) as well as con-
straints concerning interconnec-
tions. Type conformance is pre-
cisely defined by our subtype re-
lation for component interfaces.

268 CHAPTER 6. RELATED WORK

Concept UML UCM
Realizations The set of classifiers that real-

ize the behavior of a component.
It remains unclear whether re-
alizing classifiers may only be
classes in the sense of OOP or
whether they also comprise sub-
components. But in the con-
text of components being assem-
bled from subcomponents, we
assume the latter case.

The set of classifiers denoting
subcomponents realizing the be-
havior of a component corre-
sponds in our approach to the
set of component implementa-
tions to be used for the parts
a composite UCM-component is
built from (see Chapter 4 and
Section 4.2.2). For an atomic
UCM-component there exists
only one realizing classifier de-
noting the implementing com-
ponent which belongs to an in-
dustrial component model. This
classifier is referred to by the en-
try ’ImplementingComponent’
in the component implementa-
tion description needed for our
model. This entry contains the
necessary information for the
lookup and instantiation of the
needed component.

6.4. THE UNIFIED MODELING LANGUAGE 2.0 269

Concept UML UCM
Artifacts In the context of components ar-

tifacts are typically physical en-
tities that implement the compo-
nent. Typical artifacts are e.g.
JAR-files, EXE-files, DLL’s, class
files and source files.

Something like artifacts only
occurs in component imple-
mentations of atomic UCM-
components. The entry ’Im-
plementingComponent’ may re-
fer to the name of a Java class
identifying a JavaBean. Nor-
mally this entry does not re-
fer to the physical entity con-
taining the code of the needed
(industrial) component as e.g.
the name of an exe-file con-
taining a COM-server manag-
ing a needed COM-class or a
Jar-archive containing the class-
files implementing a needed
JavaBean or EJB component. In-
stead, this entry is used to pro-
vide the necessary information
for the lookup and instantiation
of the needed component. It
therefore refers to the needed
component by some kind of in-
direction as e.g. by using a class
ID for an installed COM compo-
nent or the JNDI-name for an al-
ready deployed EJB.

270 CHAPTER 6. RELATED WORK

Concept UML UCM
Part A part represents a set of in-

stances of one component that
are owned by an enclosing com-
ponent instance and play the
same role therein (see e.g. Fig-
ure 6.5). The cardinality of
this set is restricted by the mul-
tiplicity denoted for this part.
A component containing parts
has the responsibility for the
existence and storage of the
instances corresponding to the
parts (whole/part relationship).
An instance corresponding to
a part may be included in at
most one enclosing component
instance at a time.

Our parts may be compared to
parts in UML annotated with
a multiplicity of one. A part
therefore corresponds to exactly
one instance of a component.
In contrast to UML where parts
are typed by classifiers which
can not distinguish between the
interface of a component and
its implementation (see Section
6.4.1), our parts are always
typed by component interface
types. The component used at
instantiation time is either se-
lected according to the assign-
ment of component implemen-
tations to component interfaces
in the ’ImplementationBinding’
section of the component imple-
mentation, if present, or else by
the runtime system (see Section
4.2.2).

Provided /
required ports

Provided resp. required ports
are typed by only one interface.
A port defines a distinct interac-
tion point of a component where
the component communicates to
its environment or to internal
parts. Ports separate the inter-
nals of a component from its
environment. Ports allow one
to distinguish interfaces of the
same type by introducing ex-
plicit port names.

Our services may be compared
to simple (i.e. non-complex)
ports. Provided services cor-
respond to provided ports and
required services to required
ports. For every provided ser-
vice of a component at runtime
there exists an interface object
handling the requests. This ob-
ject is created by an instance
of an atomic UCM-component
(see Section 4.2.2) which imple-
ments this interface and which
may be nested multiple levels
deep within the enclosing (com-
posite) component.

6.4. THE UNIFIED MODELING LANGUAGE 2.0 271

Concept UML UCM
Provided /
required ports
(continued)

A reference to this interface ob-
ject is made available to the
environment of the containing
component instance.
There does not exist a sepa-
rate interaction point object that
hides the interface object from
the environment and performs
explicit delegation of requests to
this interface object.

Complex ports A complex port is a port which
groups a set of provided and
/or required interfaces to build
a distinct interaction point. At
instantiation time, an interaction
point object providing a unique
reference is created “that must be
an instance of a classifier that real-
izes all the provided interfaces of the
port”.
Although the terms “interaction
point object” and “providing a
unique reference” used in the
UML-specification suggests an
object in the sense of OOP, it is
not really clear whether this ’ob-
ject’ may also be an ’abstract’
component instance where the
interfaces are realized by inter-
nal parts.

Our plugs are also used to
logically group a set of pro-
vided and required interfaces.
But plugs allow a grouping, in
which an interface may occur
more than once. This is due
to the fact that plugs group
services (i.e. named interfaces
allowing to distinguish inter-
faces of the same type) instead
of merely interfaces. In UML
a plug would correspond to a
grouping of simple ports.
If a client wants to access an op-
eration provided by one of the
services grouped by a plug, it
gets access to the interface ob-
ject corresponding to this ser-
vice. There is no need for
providing an object that imple-
ments all of the provided ser-
vices grouped by the plug as
seems to be intended by UML.
Such a demand would cause a
problem for plugs grouping sev-
eral services of the same (inter-
face) type.

272 CHAPTER 6. RELATED WORK

Concept UML UCM
Complex ports
(continued)

Also the type of a complex port
remains obscure. In the ex-
amples presented in the UML-
specification only the provided
interface of a port grouping one
provided and one required in-
terface is denoted as its type.
The required interface is not
taken into account.
The connection between com-
plex ports remains obscure, too.
For further details please refer to
page 265.

In contrast to UML, we exactly
define the type of a plug which
takes also required services into
account. Based on this defini-
tion, we declare when two plugs
may be connected to each other
and how this may be achieved.

Assembly
connector

An assembly connector connects
a required interface or port of a
part to a provided interface or
port of another part.

The definition of an assembly
connector is equivalent to our
definition of an internal connec-
tion between a required service
of one part and a provided ser-
vice of another part in the sec-
tion ’InternalConnections’ of a
component implementation.

Delegation
connector

A delegation connector is used
to express that an interface of a
component exposed by one of
its ports is realized or needed by
a special part of the component.

The concept of a delegation con-
nector corresponds to our ex-
port of services. An export defi-
nition links a service of the com-
ponent interface to a service of a
fitting type of one of the compo-
nent’s parts.

In the following we relate the graphical representation of the component
CP DataLogging introduced in example 4.2.1 and already shown in Figure 4.17 to an
almost equivalent representation in UML. For the sake of simplicity, the graphical rep-
resentation of this component using our notation is repeated below.

6.4. THE UNIFIED MODELING LANGUAGE 2.0 273

P_Logging
Control P_Device_1

CP_DataLogging

D
e

vice
-

C
o

m
m

u
n

i-
cation

P_Device_2
Service
Access

D
e

vice
-

C
o

m
m

u
n

i-
cation Service

Access

Service
Access

Service
Access

LogServices

Logging
Options

Data
Logging

Error
Messages

CI_Data
Logging

Service
Access

LogServices

Logging
Options

Data
Logging

Error
Messages

D
evice-

C
o

m
m

u
n

i-
c

atio
n

Device
 Data

Device
 Control

CP CI

Figure 6.9: Composite UCM-Component CP DataLogging with its Component Inter-
face CI DataLogging

CP DataLogging contains the parts P LoggingControl , P Device 1 and
P Device 2. From example 4.2.1 we know that P LoggingControl is of type
CI LoggingControl which is implemented by CP LoggingControl . P Device 1
and P Device 2 are both of type CI Device which is implemented by CP Device .

According to the naming conventions used throughout example 4.2.1, the types of
all services can be derived from their names by prefixing the service names by I . Only
the service ErrorMessages is of type I Error instead of I ErrorMessages . The
service types were omitted for the sake of simplicity.

Mapping our representation to an (almost) equivalent representation in UML we
obtain Figure 6.10. Since DeviceCommunication , the name of the used plugs, was
too long, we changed it to DeviceCM in the corresponding UML-diagram.

Services are represented by ports. Service names are mapped to port names. The
interfaces are annotated by their type names.

In our approach parts are always typed by component interfaces which is not pos-
sible in standard UML because component interfaces can not be declared apart from
component implementations (see ’Specification of the interface of a component’). But as
in our example for every component interface an implementation is defined which has
to be used for the parts typed by these component interfaces, we can use these imple-
mentations as classifiers for the parts in UML.

Since plugs group services instead of interfaces which would refer to a grouping
of simple ports instead of merely interfaces in UML, plugs can not always be mapped
to equivalent complex ports. A plug grouping two or more services of the same type
can not be mapped to a complex port. In our example however, where all plugs group
services of different types, an unambiguous mapping to complex ports is possible.

274 CHAPTER 6. RELATED WORK

<<component>>
P_Device_1 :
CP_Device

<<component>>
P_Device_2 :
CP_Device

<<component>>
P_LoggingControl :
CP_LoggingContro l

C

C

C

C

C C

<<component>>
CP_DataLogging

Logging
Options

Data
Logging

Error
Messages

DeviceCMDeviceCM
I_DeviceData

I_DeviceControl

DeviceCM

I_Logging
Options

I_Data
Logging

I_Error

LogServices

I_LoggingOptions
I_DataLogging

I_Error

Figure 6.10: CP DataLogging represented in UML Notation as a Composite Structure
Diagram

Although in the superstructure document of UML 2.0 examples are missing which
use delegation connectors from / to complex ports or assembly connectors between
complex ports, we suppose we correctly represented such connectors in Figure 6.10.

Constraints on interconnections like a lower and upper limit on the number of con-
nections to a required service as represented in Figure 4.25 or a constraint like Different
Service Providers represented in Figure 4.21 have no counterpart in UML.

Chapter 7

Summary and Perspectives

This chapter summarizes the work at hand and outlines future work.

7.1 Summary

The importance of components for software development in our world of high pro-
ductivity with a focus on maximizing profit is recognized. The vision of component
based software development which promised to decrease time to market, to increase
reliability and to reduce development costs by just composing prefabricated, reusable,
well-tested components to new applications has already partly come true by the various
component models introduced by industry in the last years. A lot of prefabricated com-
ponents especially for graphical user interfaces were developed. A company using such
prefabricated components, however, has to use the component model the components
were constructed from. Unfortunately, the various component models differ a lot as we
could see in Sections 2.2 and 3.1. A company which wants to use different component
models simultaneously for its various applications has to investigate time and money
for a well-trained staff.

Thus, our first goal was to develop a unifying component model which comprises
the main features of current industrial component models and which allows us to in-
tegrate the existing models. We called our unifying component model UCM (Section
4.1). Now less skilled programmers can refer to UCM only and need not worry about
the different underlying industrial component models. Prefabricated components from
existing component models can be integrated and need not be re-implemented.

UCM: In addition to the main concepts of the industrial component models, UCM
(see Section 4.1) provides some other useful features like plugs and a certain kind of
alias control. The main characteristics of the model are summarized below.

• A component communicates with its environment through a well-defined inter-
face only.

275

276 CHAPTER 7. SUMMARY AND PERSPECTIVES

• The component interface is specified apart from the component implementation.
Several components can implement the same component interface.

• The component interface is specified by a set of provided and required services
as well as a set of plugs. Services including required ones are already known e.g.
by CCM as facets and receptacles. Plugs, as groups of semantically related ser-
vices, acting as a unit for interconnection and especially supporting bi-directional
connections between two parties are new, to the best of our knowledge.

• In contrast to other models, we distinguish optional and mandatory required ser-
vices. Whereas mandatory required services are services a component needs to
work properly, optional required services are mainly used for notification pur-
poses and possible extensions.

• Our required services have an explicit means to declare a lower and upper limit
on the number of connections established to them.

• Connections to a required service are established via an explicit connection point
object which belongs to the required service. This object implements the methods
available to establish or release a connection. Every required service may declare
its own methods for connection. This is essential to be able to integrate existing
concepts as e.g. event connections in the JavaBeans component model, which de-
fines its own standard methods to register listeners. As we want to support the
various approaches of the different component models, we can not dictate how
connect methods should look like.

• Our model allows us to define a pair of connect- and disconnect-methods together
with their default parameter-values which can be used by tools to establish and to
release connections without user interaction.

• Our model supports a certain kind of alias-constraint which ensures that each
required service of a component instance belonging to a specified set is connected
to a different service provider.

• Components belonging to industrial component models can be integrated as atomic
UCM-components.

This component model simplifies composition by an easy means to connect compo-
nent instances via services and even plugs. But there is still a gap between this approach
and the goals of CBD, namely to simply stick components together to build a new appli-
cation. Still programming languages have to be used to connect component instances.

Therefore we introduced a simple composition language which allows us to easily
declare interconnections by abstracting from the programming language details. The
language is enhanced by an easy means to compose components to new ones hierarchi-
cally. This helps us to reduce the complexity of building an application and thus further
contributes to the goal of simplifying the process of building a new application.

7.1. SUMMARY 277

A Composition Language supporting Hierarchical Composition: Our composition
language which allows us to connect component instances via services and plugs and to
compose UCM-components hierarchically to new ones, has the following characteristics
(see Figure 4.16):

• The language allows one to declare constituents in a field-like manner by a name
and the component interface they implement as their type.

• Interconnections between services of the constituents can be described by a simple
statement which only needs to know the names of the two constituents involved
as well as the names of the required and provided services to be connected.

• For interconnections between plugs, instead of the service names, the plug names
are sufficient in most cases. The UCM runtime system which is able to interpret
these composition descriptions determines a mapping between fitting services of
both plugs to be connected and establishes the connections on service level. For
the purpose of determining fitting services of both plugs, the algorithms described
in Section 4.11 can be used. If these algorithms are not able to determine an un-
ambiguous mapping, the connection information for the two plugs must include
the service mapping explicitly.

• By a simple export statement, the services and plugs of the constituents which are
exposed as the services and plugs of the composite component can be specified.

• In addition to the simple export statement for plugs which allows us to link a plug
of a constituent to a compatible plug of the same size of the enclosing composite
component, the composition language also supports plugs and single services of
several constituents to be composed to a greater plug of the enclosing compos-
ite component. For this purpose, a more elaborate variant of the simple export
statement exists.

• The composition language allows strict interface based programming. Constituents
can be specified by their names and component interfaces only. Although one can
specify the component to be used to instantiate this constituent by a certain bind-
ing statement, one is not forced to do so. If a binding is missing, the UCM runtime
system searches for a fitting component by itself as described in Section 4.5. Strict
interface based programming simplifies the exchange of components. New com-
ponents can replace old ones without affecting existing compositions as far as they
implement the same component interface. Even components of subtypes can re-
place old ones.

The next step in simplifying the composition process is to provide an appropriate
tool support which even hides the composition language.

278 CHAPTER 7. SUMMARY AND PERSPECTIVES

Tool Support: We contributed to tool support by our prototypes, the BPCE (see Sec-
tion 5.1) and the CC-Builder (see Section 5.2). Whereas the CC-Builder focuses on hi-
erarchical composition, the BPCE focuses on visual support for connections based on
services and plugs and on simplifying the composition process especially by support-
ing the selection of suitable components and consistency checking of new compositions.
Only some of the features of the BPCE, especially providing visual support, are sum-
marized below:

• The BPCE allows one to connect component instances via services and plugs vi-
sually.

• On demand, the set of service providers fitting to a required service or plug se-
lected for connection is depicted by displaying all fitting service providers in the
composition window in a certain color.

• On demand, all component instances in the composition window which still have
unresolved mandatory required services are highlighted by a certain coloring.

• A feature called Guide connection guides a user in establishing all needed connec-
tions in a predefined order.

When checking new compositions for consistency, the BPCE refers to our UCM type
system described in Section 4.3.

In addition to these consistency checks, the type system allows us to decide, whether
a component can be replaced by another one without invalidating any existing compo-
sition already referring to the component to be replaced.

Type System: In contrast to other type systems, the type definition of an UCM-compo-
nent as well as the subtype relation between UCM-components distinguish optional and
mandatory required services and include

• the connection point types belonging to required services as well as the lower and
upper limit on the number of connections,

• the plugs declared,

• and our alias-constraints.

Adapters: A last means for simplifying compositions considered in this thesis are spe-
cial adapters for multiplexing and delegation as described in Section 4.7.

7.2. PERSPECTIVES 279

7.2 Perspectives

Although we have already made a big step towards unifying and simplifying composi-
tion by providing fundamental concepts as well as concrete language and tool support,
the following different perspectives demonstrate that our work can be extended in var-
ious directions which may be of interest for different groups of scientist as well as for
industry. The perspectives are organized with respect to the main features of an ideal
tool as described in Section 1.1.

Tool Box and Composition Window: It should be possible to easily import compo-
nents not already prepared as UCM-components such that these components can be in-
serted into the tool box and used for composition. The BPCE already allows JavaBeans
to be inserted into the tool box which are not aware of our component model. For such
JavaBeans, the BPCE creates a component interface specification automatically. Such an
import of unaware components should be extended to components of other industrial
component models than JavaBeans and should include the automatic generation of the
corresponding UCM implementation description.

Selection of Suitable Components: The determination and visualization of sets of
fitting service providers as available by the BPCE should be extended to components
in the tool box. This helps, if no fitting service provider resides in the composition
window and a component from the tool box has to be selected prior to connection. A
more advanced feature would allow us to specify a best fitting service provider with
respect to certain criteria which are evaluated by our tool. Then an explicit selection of
a suitable service provider can be avoided as far as the definition of a best fitting service
provider allows this service provider to be determined unambiguously. Another useful
feature would enable a user to specify different search criteria for components which
are evaluated by the tool. Last but not least, in addition to pure syntactical aspects
we should consider semantical aspects, too, when looking for fitting components. This
would cause our type system to respect semantical aspects, too.

Visual Support for Connections: A great step to further simplify visual composition
would be to allow a user to select a whole set of component instances for which he can
demand that all needed connections are established automatically without further user
interaction.

Hierarchical Composition: As our composition language, used to describe composite
UCM-components, can be used to develop composite UCM-components directly that
is, without the aid of a tool, it should be made more readable e.g., by using suitable
keywords for connections, exports and implementation bindings.

A more elaborate task would be to allow composite UCM-components to be built
from atomic UCM-components belonging to different industrial component models. To

280 CHAPTER 7. SUMMARY AND PERSPECTIVES

reach this goal, a lot of work has still to be done in order to bridge the gap between
the different representations of data types, the different infrastructures, the different
reflection services used to instantiate components and to execute their methods etc.

Creation of New Applications: The CC-Builder allows a limited kind of application
to be built. An application is essentially a composite UCM-component without any
exports. In future releases it should be possible to enrich applications with initialization
code which is executed at application start up.

Deployment: The deployment process realized so far supports storing of newly cre-
ated components in the directories expected by the CC-Builder. In future releases we
want to realize an implementation registry and a substitution registry as described in
Section 4.5.

Reconfiguration: Based on our subtype relation between component interfaces, the
UCM type system already allows us to decide whether a component can be substituted
by another one. In the future we would like to support the whole substitution process
by tools. The old component has to be removed and the new one deployed. The support
should include the automatic creation of wrappers for the new components, if they im-
plement component interfaces only related by a weak subtype relationship as described
in Section 4.8.

Another reconfiguration task to be supported in future releases is the modification of
existing composite UCM-components. At the moment, such composite components can
be modified by changing their composition code manually. Future tool support should
allow changes to be done visually. The tool should control all changes to the component
implementation and component interface and allow a user only to extend the existing
component interface to a compatible one with respect to our subtype relation.

Adaptation: In Section 4.7 we already introduced special adapters for multiplexing
and delegation. Adaption can be further supported. If a component A should be re-
placed by a component B and B comes with incompatible service interface or connec-
tion point types, adaptation can be used to adapt the incompatible service interface
or connection point types such that the adapted component can be used to replace
A. Adaptations which only require to replace names, as e.g. method- and parameter
names, could be supported by means of refactoring. Adapter chains as introduced in
[Gsc02] can be used to finally adapt two types for which no single adapter is available.

7.3. CONCLUSION 281

7.3 Conclusion

Component based software composition is a dream almost as old as the idea of soft-
ware engineering itself. Despite the wide recognition of the importance of this subject,
the most recognized and disseminated component models today are commercial, influ-
enced by little, if any, theoretical insights. Given this fact, it should come as no surprise
that component models differ more than warranted by the posed problem (which is ba-
sically the same across all domains and technologies), and that uniform tool support is
largely lacking.

This thesis hopes to provide some theoretical underpinnings of several commercial
component models and to transform them into a Unifying Component Model (UCM)
that provides for a general framework for component composition, as well as for a con-
ceptual basis for uniform tool support. A prototype tool based on this model has been
presented.

Appendix A

Summary of Used Graphical Elements

In the following two sections we list the graphical elements introduced in Chapter 4 and
demonstrate their usage by typical diagrams.

A.1 Graphical Elements

Concept Graphical Representation Notes

Component
Interface

Component Interface
Name

CI

See e.g. Section 4.

Component
ComponentName

CP

CI-Name CI-Name denotes the name of
the component interface imple-
mented by the component. See
e.g. Section 4.

Provided
Service

ServiceName : ServiceInterfaceType See e.g. Section 4.1.1.

Required
Service

InterfaceType declaring the
connection point methods

 [min ... max]

C
ServiceName : ServiceInterfaceType

See e.g. Section 4.1.1.

282

A.1. GRAPHICAL ELEMENTS 283

Concept Graphical Representation Notes

Plug
PlugName

...... C C

See e.g. Section 4.1.1.

Constraint
Different Service
Providers

ConstraintName

.

.

.

C
C

C
C

See e.g. Sections 4.1.1.3 and
4.3.2.3.

Part PartName : CI-Name

CP-Name

CI-Name denotes the name
of the component interface
which types the part of a com-
posite UCM-component CC.
CP-Name denotes the name of
the component implementation
bound to the part or to the com-
ponent interface it is typed by.
The binding is done in the ’Im-
plementationBinding’ section
of CC. If no implementation
binding exists for this part or for
CI-Name, CP-Name is omitted.
See e.g. Section 4.2.2.

Component
Instance

CP-Name

InstanceName :
CI-Name

CP-Name denotes the name of
the component used to cre-
ate the component instance.
CI-Name denotes the compo-
nent interface the component in-
stance conforms to.

Link / Export ———–
Denotes a link from a service of
an internal part of a composite
UCM-component to a service of
its component interface. See e.g.
Section 4.2.2, especially Figure
4.14.

284 APPENDIX A. SUMMARY OF USED GRAPHICAL ELEMENTS

Concept Graphical Representation Notes

Connections on
Service Level

C Denotes a connection between a
provided service and a required
service.

Implementation
Relationship

Denotes that the component at
the lower side of the arrow im-
plements the component inter-
face at the arrowhead.

Annotations like the names of components, component interfaces, part names, ser-
vice interface types etc. or graphical representations of services may be omitted, if they
are not of interest for what should be stressed in a special diagram.

A.2. TYPICAL DIAGRAMS 285

A.2 Typical Diagrams

In the following some typical diagrams are shown using the graphical elements de-
scribed in the previous section. Some of them were already shown in previous sections.

The following diagram derived from Figure 4.10 shows a typical graphical represen-
tation of a component interface with its provided and required services as well as its
plugs.

ExampleInterface

ServiceAccess:
 I_ServiceAccess

C

IConnectionPoint_R 1 ,
 [min_R 1 ... max_R 1]P1: I_P 1

P2: I_P 2

Pl

R1: I_R 1

P3: I_P 3 R2: I_R2

CI

C IConnectionPoint_R 2 ,
 [min_R 2 ... max_R 2]

Figure A.1: Representation of a Component Interface

286 APPENDIX A. SUMMARY OF USED GRAPHICAL ELEMENTS

The next diagram shows a composite UCM-component with its aggregated parts,
connections between the parts and links to the entities (services / plugs) of the com-
ponent interface. The component interface is implicitly represented by the border sur-
rounding the component and the services and plugs sticking out of this border.

 pc2 :
 CI1

 pc3 :
 CI2

C

C

C

C C

CP

Pl

CLink Connection

CP
1

CP
3

CompositeComp

CI-CompositeComp

P : I_P

P’1 : I_P’ 1

 P’’1 : I_P’’1

 R : I_R

...

...

 pc4 :
 CI3

 P’’2 : I_P’’ 2...

P’2 : I_P’ 2 R’ : I_R’

 ICP_R’, ...

PS 3 : I_S 3

...

PS 4 : I_S 4
...

RS 2 : I_RS 2

...

...

 ICP_RS 2, [1…4]

C
P : I_P R : I_R

...

 pc1 :
 CI1

C

RS 1 : I_RS 1

 ICP_RS 1, [0…*]
CP1

PS 1 : I_S 1

…

Figure A.2: Representation of a Composite UCM-Component

The following figure depicts a set of component instances where some of them are
interconnected. These component instances together with their interconnections are
created, if an instance of the composite UCM-component from Figure A.2 is created.

C

C

C

C

Connection

CP1

CP3

P : I_P

P’1 : I_P’1

 P’’1 : I_P’’1

 R : I_R

...

...

 P’’2 : I_P’’2...

P’2 : I_P’2
 ICP_R’, ...

CP2

 R’’ : I_R’’

...

 ICP_R’’, ...

C

CP1

P : I_P R : I_R

...

pc4 :
 CI3

 pc2 :
 CI1

 pc1 :
 CI1

pc3 :
 CI2

Figure A.3: Set of Component Instances

Bibliography

[ACN01] J. Aldrich, C. Chambers, and D. Notkin. Component-oriented pro-
gramming in ArchJava. In OOPSLA Workshop on Language Mechanisms
for Programming Software Components, Technical Report NU-CCS-01-06,
pages 1 – 8. Northeastern University, Boston, MA, 2001.

[ACN02] J. Aldrich, C. Chambers, and D. Notkin. Architectural Reasoning in
ArchJava. Technical Report Technical Report UW-CSE-02-04-01, Uni-
versity of Washington, 2002.

[All97] R. Allen. A Formal Approach to Software Architecture. Ph.D Thesis
CMU Technical Report CMU-CS-97-144, Carnegie Mellon University,
1997.

[AN01] F. Achermann and O. Nierstrasz. Applications = Components + Scripts
- A Tour of Piccola. In M. Aksit, editor, Software Architectures and Com-
ponent Technology, pages 261 – 292. Kluwer, 2001.

[Arc] ArchJava Language Reference Manual. Available at
http://archjava.fluid.cs.cmu.edu/papers/archjava-language.pdf.

[Bea] The Bean Builder. Available at https://bean-builder.dev.java.net/.

[BH00] D. Birngruber and M. Hof. Interactive Decision Spots for JavaBeans
Composition. In W. Weck, J. Bosch, and C. Szyperski, editors, Proceed-
ings of the Fifth International Workshop on Component-Oriented Program-
ming (WCOP 2000), June 2000. ISSN: 1103-1581.

[Bir01] D. Birngruber. A Software Composition Language and Its
Implementation. In D. Bjorner, M. Broy, and A. V. Za-
mulin, editors, Perspectives of System Informatics (PSI 2001), vol-
ume 2244 of Lecture Notes in Computer Science, pages 519 –
529. Springer Verlag, 2001. Available at http://www.ssw.uni-
linz.ac.at/General/Staff/DB/Research/Publications/.

[BM97] J. Bosch and S. Mitchell, editors. Object-Oriented Technology: ECOOP’97
Workshop Reader, volume 1375 of Lecture Notes in Computer Science.
Springer Verlag, Juni 1997.

287

288 BIBLIOGRAPHY

[Bos97] J. Bosch. Adapting Object-Oriented Components. In W. Weck, J. Bosch,
and C. Szyperski, editors, Proceedings of the Second International Work-
shop on Component-Oriented Programming (WCOP’97), TUCS General
Publications No 5, pages 13 – 21. Turku Centre for Computer Science,
September 1997. ISBN: 952-12-0039-1 ISSN: 1239-1905.

[Bra01] P. Brada. Towards Automated Component Compatibility Assessment.
In Proceedings of the Sixth International Workshop on Component-Oriented
Programming (WCOP 2001), 2001.

[Bro97] D. Brookshier. Java Beans Developer’s Reference. New Riders Publishing,
Indianapolis, 1997.

[BRS+00] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A For-
mal Model for Componentware. In G. T. Leavens and M. Sitaraman,
editors, Foundations of Component-Based Systems, pages 189–210. Cam-
bridge University Press, New York, NY, 2000.

[BS97] M. Buechi and E. Sekerinski. Formal Methods for Component Soft-
ware: The Refinement Calculus Perspective. In W. Weck, J. Bosch, and
C. Szyperski, editors, Proceedings of the Second International Workshop on
Component-Oriented Programming (WCOP’97), TUCS General Publica-
tions No 5, pages 23 – 32. Turku Centre for Computer Science, Septem-
ber 1997. ISBN: 952-12-0039-1 ISSN: 1239-1905.

[CER03] A. Charfi, D. Emsellem, and M. Riveill. Dynamic Component Com-
position in .NET. Journal of Object Technology, 3(2):37–46, 2003. Special
issue: .NET: The Programmers Perspective: ECOOP Workshop 2003.

[COM95] The Component Object Model Specification, Ver-
sion 0.9, October 24 1995. Available at
http://www.microsoft.com/com/resources/comdocs.asp.

[Com01a] Component Pascal Language Report, March 2001. Available at
http://www.oberon.ch/pdf/CP-Lang.pdf.

[Com01b] What’s New in Component Pascal?, March 2001. Available at
http://www.oberon.ch/pdf/CP-New.pdf.

[COR02] CORBA Components Version 3.0, June 2002. Document: formal/02-06-
65, Available at http://www.omg.org/technology/documents/
formal/components.htm.

[CRN03] D. Clarke, M. Richmond, and J. Noble. Saving the world from bad
beans: Deployment-time confinement checking. In ACM Conference on

BIBLIOGRAPHY 289

Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA’03), volume 38 of ACM SIGPLAN Notices, pages 374 – 387. ACM
Press, October 2003.

[DCO96] DCOM Technical Overview, November 1996. Available at
http://www.iconics.com/support/pdfs/whitepapers/msdcom.pdf,
Last access: October 2006.

[DCO98] Distributed Component Object Model Protocol-DCOM/1.0, draft, Jan-
uary 1998. Available at http://samba.osmirror.nl/samba/ftp/specs/
draft-brown-dcom-v1-spec-03.txt, Last access: October 2006.

[DP00] S. Denninger and I. Peters. Enterprise JavaBeans. Addison-Wesley,
München, 2000.

[EE98] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft Press
Deutschland, Unterschleissheim, 1998. ISBN: 3-86063-459-3.

[EJB03] Enterprise JavaBeans TM Specification, Version 2.1, November 12 2003.
Available at http://java.sun.com/products/ejb/docs.html#specs.

[Fow04] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley, 2004.

[FWA+99] N. Ford, E. Weber, T. Azzouka, T. Dietzler, J. Streeter, and C. Williams.
Borland JBuilder 3 Unleashed. SAMS Publishing, 1999. ISBN: 0-672-
31548-3.

[GJS] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
http://java.sun.com/docs/books/jls/second edition/html/
expressions.doc.html#289905.

[GJS96] J. Gosling, B. Joy, and G. Steele. Java Language Specification. Sun Mi-
crosystems, 1996.

[GMW00] D. Garlan, R. Monroe, and D. Wile. Acme: Architectural description of
component-based systems. In G. T. Leavens and M. Sitaraman, editors,
Foundations of Component-Based Systems. Cambridge University Press,
2000.

[Gri98] F. Griffel. Componentware: Konzepte und Techniken eines Softwareparadig-
mas. dpunkt - Verlag, Heidelberg, 1998. ISBN: 3-932588-02-9.

[Gro02] M. Groth. Creating Components in .NET, February 2002.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/componentsnet.asp.

290 BIBLIOGRAPHY

[Gru99] J. Grundy. Aspect-Oriented Requirements Engineering for Component-
Based Software Systems. In Proceedings of the 4th IEEE International Sym-
posium on Requirements Engineering, pages 84–91. IEEE CS Press, June
1999. ISBN 0-7695-0188-5.

[Gsc02] T. Gschwind. Adaptation And Composition Techniques for Component-
Based Software Engineering. PhD thesis, Vienna University of Technol-
ogy, 2002.

[GT00] V. Gruhn and A. Thiel. Komponentenmodelle. DCOM, JavaBeans, Enter-
prise JavaBeans, CORBA. Addison-Wesley, München, 2000.

[HC98a] C. S. Horstmann and G. Cornell. Core Java 1.1, Volume I - Fundamentals.
Sun Microsystems Press, Palo Alto, 1998. ISBN: 0-13-766965-8.

[HC98b] C. S. Horstmann and G. Cornell. Core Java 1.1, Volume II - Advanced
Features. Sun Microsystems Press, Palo Alto, 1998. ISBN: 0-13-766965-8.

[HLS97] K. De Hondt, C. Lucas, and P. Steyaert. Reuse Contracts as Component
Interface Descriptions. In W. Weck, J. Bosch, and C. Szyperski, editors,
Proceedings of the Second International Workshop on Component-Oriented
Programming (WCOP’97), TUCS General Publications No 5, pages 43 –
49. Turku Centre for Computer Science, September 1997. ISBN: 952-12-
0039-1 ISSN: 1239-1905.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
Available at http://www.usingcsp.com/cspbook.pdf.

[HR99] D. Heuzeroth and R. Reussner. Dynamic coupling of binary compo-
nents and its technical support. In Proc. GCSE’99 Young Researchers
Workshop, Erfurt, pages 30–31, 1999.

[Jav97] JavaBeans TM, Version 1.01, July 24 1997. Available at
http://java.sun.com/products/javabeans/docs/spec.html.

[JRH+04] M. Jeckle, C. Rupp, J. Hahn, B. Zengler, and S. Queins. UML 2 glasklar.
Carl Hanser Verlag, 2004.

[KR01] G. Kotonya and A. Rashid. A Development Strategy for Minimising
Risks in Component-Based Development. In Proceedings of the 27th Eu-
romicro Conference: Workshop on Component-Based Software Engineering,
RE’99, pages 12–21. IEEE Computer Society Press, September 2001.

[LC99] M. Larsson and I. Crnkovic. New Challenges for Configuration Man-
agement. In Proceedings of the SCM-9 workshop, volume 1675 of LNCS,
1999.

BIBLIOGRAPHY 291

[LLF98] M. Leventhal, D. Lewis, and M. Fuchs. Designing XML Internet Applica-
tions. Prentice Hall PTR, Upper Saddle River, 1998. ISBN: 0-13-616822-1.

[Löw05] J. Löwy. Programming .NET Components. O’Reilly, 2005. ISBN: 0-596-
10207-0.

[LR01] C. Lüer and D. S. Rosenblum. WREN - An Environment for
Component-Based Development. In V. Gruhn, editor, Proceedings of the
Joint 8th European Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-9),
pages 207–217. ACM Press, 2001.

[LvdH02] C. Lüer and A. van der Hoek. Composition Environments for Deploy-
able Software Components. Technical Report UCI-ICS-02-18, Depart-
ment of Information and Computer Science, University of California,
Irvine, August 2002.

[McI68] M. D. McIlroy. Mass-Produced Software Components. In P. Naur and
B. Randell, editors, Software Engineering: Report on a Conference sponsored
by the NATO Science Committee, Garmisch, Germany, 7th to 11th October
1968, pages 138–155, 1968.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed
Software Architectures. In Proceedings of the 5th European Software Engi-
neering Conference, pages 137–153. Springer-Verlag, 1995.

[MDK94] J. Magee, N. Dulay, and J. Kramer. Regis: A constructive development
environment for distributed programs. Distributed Systems Engineering,
1(5):304–312, September 1994.

[Mil91] R. Milner. The Polyadic pi Calculus: A tutorial. Technical Report ECS-
LFCS-91-180, Computer Science Dept., University of Edinburgh, 1991.

[MK96] J. Magee and J. Kramer. Dynamic structure in software architectures. In
Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 3–14, October 1996.

[Mös98] H. Mössenböck. Objektorientierte Programmierung in Oberon-2. Springer,
Berlin, 1998. ISBN:3540646493.

[MS97] L. Mikhajlov and E. Sekerinski. The Fragile Base Class Problem and
Its Impact on Component Systems. In J. Bosch and S. Mitchell, editors,
Object-Oriented Technology: ECOOP’97 Workshop Reader, volume 1375 of
Lecture Notes in Computer Science, pages 353 – 363. Springer Verlag, Juni
1997. ISBN: 3-540-64039-8 ISSN: 0302-9743.

292 BIBLIOGRAPHY

[MSD] Grundlagen der Komponentenprogrammierung.
http://msdn.microsoft.com/library/deu/default.asp?url=/library/
DEU/cpguide/html/cpconComponentProgrammingEssentials.asp.

[MT00] N. Medvidovic and R. N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description Lan-
guages. IEEE TSE, 26(1):70–93, December 2000. Available at
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/
dl/trans/ts/&toc=comp/trans/ts/2000/01/e1toc.xml.

[Nie99] O. Nierstrasz. Piccola - A Small Composition Language. In Proceed-
ings of the Workshop on Object-Oriented Technology, London, UK, 1999.
Springer-Verlag.

[NL97] O. Nierstrasz and M. Lumpe. Komponenten, Komponentenframe-
works und Glueing. HMD - Theorie und Praxis der Wirtschaftsinformatik,
197:8 – 23, September 1997. ISBN: 3-89864-101-5 ISSN: 1436-3011.

[Now99] P. Nowack. Interacting Components - A Conceptual Architecture
Model. In Proceedings of the Workshop on Object-Oriented Technology, vol-
ume 1743 of Lecture Notes in Computer Science, pages 66–67, London,
UK, 1999. Springer-Verlag.

[NT95] O. Nierstrasz and D. Tsichritzis. Object-oriented software composition.
Prentice Hall, 1995. ISBN: 0-13-220674-9.

[Obe01] J. Oberleitner. The Component Workbench. Master’s thesis, Vienna
University of Technology, October 2001.

[OG02] J. Oberleitner and T. Gschwind. Composing Distributed Components
with the Component Workbench. Technical Report TUV-1841-02-17,
Vienna University of Technology, February 2002.

[Pat00] T. Pattison. Programming Distributed Applications with COM & Microsoft
Visual Basic. Microsoft Press, 2000.

[Per87] D. E. Perry. Version Control in the Inscape Environment. In Proceed-
ings of ICSE87, Monterey, CA, pages 142–149. ACM Press, 1987. ISBN
0-89791-216-0.

[Pet95] M. T. Peterson. DCE: A Guide to Developing Portable Applications.
McGraw-Hill, 1995.

[PH02] A. Poetzsch-Heffter. Software-Architektur, 2002. Lecture at the Univer-
sity of Hagen.

BIBLIOGRAPHY 293

[Puc02] R. Pucella. Towards a Formalization for COM Part I: The Primitive Cal-
culus. In C. Norris, B. James, and J. Fenwick, editors, Proceedings of the
17th ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, volume 37 of ACM SIGPLAN Notices, pages
331 – 342. ACM Press, November 2002. ISBN:1-58113-471-1 ISSN: 0362-
1340.

[RJB05] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual, Second Edition. Addison Wesley, 2005.

[RS02] R. Rinat and S. F. Smith. Modular Internet Programming with Cells.
In Boris Magnusson, editor, ECOOP 2002 - Object-Oriented Program-
ming, 16th European Conference, Malaga, Spain, June 10-14, 2002, Proceed-
ings, volume 2374 of Lecture Notes in Computer Science, pages 257 – 280.
Springer Verlag, 2002. ISBN: 3-540-43759-2.

[SC00a] J. C. Seco and L. Caires. A Basic Model of Typed Components. In
ECOOP 2000 - Object-Oriented Programming, volume 1850 of LNCS,
pages 108 – 128. Springer Verlag, 2000.

[SC00b] J. C. Seco and L. Caires. Parametrically Typed Components. In WCOP
2000 - Workshop on Component Oriented Programming, 2000.

[SC02] J. C. Seco and L. Caires. ComponentJ: The Reference Manual. Technical
Report UNL-DI-6-2002, Departamento de Informática FCT/UNL, 2002.

[Sch97] S. Schreyjak. Coupling of Workflow and Component-Oriented Sys-
tems. In W. Weck, J. Bosch, and C. Szyperski, editors, Proceedings of
the Second International Workshop on Component-Oriented Programming
(WCOP’97), TUCS General Publications No 5, pages 77 – 85. Turku Cen-
tre for Computer Science, September 1997. ISBN: 952-12-0039-1 ISSN:
1239-1905.

[Sch05] U. Scheben. Hierarchical composition of industrial components. Sci-
ence of Computer Programming, 56(1-2):117–139, April 2005. Available at
http://authors.elsevier.com/sd/article/S0167642304001807.

[SG99] J. P. Sousa and D. Garlan. Formal Modeling of the Enterprise JavaBeans
Component Integration Framework. In J.M. Wing, J. Woodcock, and
J. Davies, editors, FM’99 Formal Methods, World Congress on Formal Meth-
ods in the Development of Software Systems, volume 1709 of Lecture Notes
in Computer Science, pages 1281 – 1300. Springer Verlag, 1999.

[SG01] J. P. Sousa and D. Garlan. Formal Modeling of the Enterprise JavaBeans
Ccomponent Integration Framework. Information and Software Technol-
ogy, 43(3):171 – 188, March 2001.

294 BIBLIOGRAPHY

[SGM03] F. Steimann, J. Gößner, and T. Mück. On the Key Role of Composition
in Object-Oriented Modelling. In P. Stevens, J. Whittle, and G. Booch,
editors, UML 2003: Proceedings of the 6th International Conference, pages
106–120. Springer-Verlag, 2003.

[Sie00] J. Siegel. CORBA 3 Fundamentals and Programming. John Wiley & Sons,
Inc., New York, 2000. ISBN: 0-471-29518-3.

[SM05] F. Steimann and P. Mayer. Patterns of Interface-Based Programming.
Journal of Object Technology, 4(5):75–94, 2005.

[SPH01] U. Scheben and A. Poetzsch-Heffter. Demonstration der Prob-
lematiken beim Einsatz von Komponenten anhand eines Lernkurses
aus JavaBeans-Komponenten. Technical Report AIB-2001-11, RWTH
Aachen, Department of Computer Science, December 2001. ISSN: 0935-
3232.

[SPH03] U. Scheben and A. Poetzsch-Heffter. Concepts and Techniques sim-
plifying the Assembly Process for Component Instances. In U. Ass-
mann, E. Pulvermüller, I. Borne, N. Bouraqadi, and P. Cointe,
editors, SC 2003: Workshop on Software Composition Affiliated with
ETAPS 2003, volume 82 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, April 2003. Available at http://www.elsevier.nl/gej-
ng/31/29/23/133/47/33/82.5.011.pdf.

[SPJF02] A. Speck, E. Pulvermüller, M. Jerger, and B. Franczyk. Component
Composition Validation. International Journal of Applied Mathematics and
Computer Science., 12(4):581 – 589, December 2002.

[SR02] H. Schmidt and R. Reussner. Automatic component adaption by con-
current state machine retrofitting. Technical Report 2000/81, School of
Computer Science and Software Engineering, Monash University, Mel-
bourne, 2002.

[Sre01] V.C. Sreedhar. ACOEL: A component-oriented extensional language.
Technical report, IBM T.J. Watson Research Center, 2001.

[Str00] B. Stroustrup. The C++ Programming Language, Special Edition. Addison-
Wesley, Boston, 2000. ISBN: 0-201-70073-5.

[Szy98] C. Szyperski. Component Software. Beyond Object-Oriented Programming.
Addison-Wesley, New York, 1998.

[TW01] P. Tabatt and H. Wolf. Java programmieren mit JBuilder4. Software &
Support Verlag GmbH, Frankfurt, 2001. ISBN: 3-935042-04-3.

BIBLIOGRAPHY 295

[UML05] Unified Modeling Language: Superstructure version 2.0, August 2005.
Available at http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[vdAvHvdT02] W. M. P. van der Aalst, K. M. van Hee, and R. A. van der Toorn.
Component-based software architectures: A framework based on in-
heritance of behavior. Science of Computer Programming, 42(2-3):129–171,
2002.

[Völ03] M. Völter. A Taxonomy of Components. Journal of Object Technology,
2(4):119–125, July-August 2003.

[WCD+01] S. Weerawarana, F. Curbera, M. J. Duftler, D. A. Epstein, and
J. Kesselman. Bean Markup Language: A Composition Language
for JavaBeans Components. In 6th USENIX Conference on Object-
Oriented Technologies and Systems, January 29 - February 2, 2001,
San Antonio, Texas, USA, COOTS. USENIX, 2001. Available at
http://www.usenix.org/publications/library/proceedings/coots01/
weerawarana.html.

[Wes02] R. Westphal. .NET kompakt. Spektrum Akademischer Verlag, Heidel-
berg; Berlin, 2002. ISBN: 3-8274-1185-8.

[WF94] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

[Zen02] M. Zenger. Type-Safe Prototype-Based Component Evolution. In
B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming, vol-
ume 2374 of Lecture Notes in Computer Science, pages 470 – 497. Springer
Verlag, 2002.

[ZW97] A. M. Zaremski and J. M. Wing. Specification matching of software
components. ACM Transactions on Software Engineering and Methodology,
6(4):333–369, 1997.

296 BIBLIOGRAPHY

Index

.NET, 49
assembly, 50, 53
attributes, 50
common language runtime, 50
common type system, 50
component, 53
component interface, 54
component lookup, 58
composition techniques, 60
events, 55
interface implementation

explicit, 50
implicit, 50

intermediate language, 50
properties, 54
reflection, 65
substitutability, 67
type metadata, 65
type system, 64

abbreviations
ADL, 251
BDK, 18
CBD, 2
CCM, 2
CLR, 50
CLSID, 33
CO, 132
COM, 2
Constraints (CI), 132
CTS, 50
EJB, 2
IDL, 31
IID, 31
IL, 50
JAR file, 18

MIDL, 31
PL, 132
Plugs (CI), 132
Provided (CI), 132
Provided (CI, P l), 132
PS, 132
Required (CI), 132
Required (CI, P l), 132
RS, 132
ser-file, 18
UCM, 85
UML, 259

adapter, 24
architecture description language, 251

Acme, 253
Darwin, 251
Wright, 256

assembly, 13, 73, 75, 81, 92, 117, 145, 149,
151, 228, 237, 247

assembly time, 14
assembly tool, 13

client, 14
COM, 30, 69, 71, 74, 77, 80, 122

aggregation, 38, 118
category, 43
class factory, 30
class identifier (CLSID), 33
coclass-declaration, 33
COM class, 30, 269
COM object, 30
component, 30, 178
component interface, 31
component lookup, 33
composition techniques, 37
connectable object, 31, 37

297

298 INDEX

connection point object, 37
emulation, 49
IConnectionPoint, 37
IConnectionPointContainer, 37
IDL compiler, 31
integration, 190, 211
interface, 30, 133
interface definition language, 31
interface identifier (IID), 31
interface pointer, 34
IUnknown interface, 31
outgoing interface, 31, 37
provided interface, 31
QueryInterface, 33
server, 30, 269

in-process server, 30
local server, 30
remote server, 30

sink object, 37
substitutability, 48
type COM class, 42
type COM interface, 40
type library, 44

COM class:type description, 46
COM interface:type description, 47
ITypeInfo, 45
ITypeLib, 44
typeinfo, 44

type metadata, 44
type system, 40
valid composition, 48
virtual function table, 35

complementary plugs, 155
component, 12, 110, 256, 259
component instance, 12
component interface, 12, 110
component model, 13, 15, 68, 73, 246

.NET, 49
COM, 30
JavaBeans, 17
UCM, 2, 68, 82, 85, 275

component-oriented language, 234
ACOEL, 244

ArchJava, 235
Cells, 245
Component Pascal, 240
ComponentJ, 237
prototype based component evolution,

244
composite, 14
composite component, 14
composite structure, 259, 274
composition, 14
composition language, 14, 73, 234, 245,

277
Bean Plans, 247
BML, 246
Piccola, 249

composition techniques
.NET, 60
COM, 37
JavaBeans, 22
UCM, 118

configuration time, 14
connection, 13, 91

via events
.NET, 55
JavaBeans, 23

via outgoing interfaces, 37
via plugs, 120
via services, 119

connection point interface, 92
connection point object, 37, 91
connector, 245, 251, 253, 256, 263

assembly, 264
delegation, 264

constituent, 14, 83, 84, 119
constraint ’Different Service Provider’, 108

dependency
dynamic, 15
static, 15

deployment, 14

enabling required service interface, 13
examples

INDEX 299

ambiguous mapping, 221
automatically resolving ambiguity, 219
check for complementary plugs, 217
collection customer data, 86
component implementation, 124
component instances, service access,

interconnections, 93
component interface for data logging,

113
component interface of model, 115
component interface type with con-

straints, 137
component interface type with plugs,

137
component interface with constraints,

116
component interfaces for data logging,

143
compound documents, 104
connect-method specification, 127
declarations in IDL, 32
default connect-method, 118
event handling JavaBeans, 20
flexible customer form, 106
model view controller, 102
packaging machines, 100
subtyping of component interfaces,

150
subtyping of plugs, 144
UCM descriptions for .NET, 202
wiring of beans based on events, 23
wordprocessor, 72
wordprocessor connections, 89

fully linked plugs, 160

ImplementationBinding section, 123, 164,
174, 175, 270

implicit interface, 15, 54, 59, 77, 237

JavaBeans, 17
adapter, 24
BeanInfo, 21, 25, 27
component, 18

component interface, 19
component lookup, 21
composition techniques, 22
event listener, 19
event source, 19
events, 19
EventSetDescriptor, 27
introspector, 21, 28
Java archive, 18
manifest file, 18
MethodDescriptor, 27
patterns

(de)registration methods, 20
notification methods, 19

properties, 19
property editor, 21
PropertyDescriptor, 27
reflection, 26
serialized bean, 18
substitutability, 29
type metadata, 26
type system, 25
wiring of beans, 23, 55

link, 266
fully linked plugs, 160
linked plugs, 160
linked provided services, 157
linked required services, 158
partially linked plugs, 160

linked plugs, 160
linked provided services, 157
linked required services, 158

matching services, 154

object implementing a method, 153
object implementing an interface, 153

part, 11, 83, 121, 231, 232, 236, 237, 244,
247, 263

partially linked plugs, 160
plug, 99
port, 235, 237, 253, 256, 264

300 INDEX

provided service, 88
proxy, 90

required service, 88
mandatory, 89
optional, 89

server, 14
service, 88
service ’ServiceAccess’, 92
service interface, 12
service object, 89
service provider, 89
substitutability

.NET, 67
COM, 48
JavaBeans, 29
UCM, 166

subtype definitions
for .NET components, 64
for COM classes, 44
for COM classes (Szyperski), 43
for COM interfaces, 41
for JavaBeans, 26
UCM-components

for cardinality types, 139
for component interfaces, 145
for method based interface types,

138
for plugs, 141
for provided services, 138
for required services, 139

suitable service provider, 89

terms
complementary plugs, 155
component, 110
component interface, 110
connection, 91
connection point interface, 92
connection point object, 91
constraint ’Different Service Provider’,

108
fully linked plugs, 160

link between provided services, 157
link between required services, 158
linked plugs, 160
matching services, 154
object implementing a method, 153
object implementing an interface, 153
partially linked plugs, 160
plug, 99
provided service, 88
proxy, 90
required service, 88

mandatory, 89
optional, 89

service, 88
service ’ServiceAccess’, 92
service object, 89
suitable service provider, 89

theorems
compatible components, 175
polymorphic component instances, 168
transitivity of subtyping for interfaces,

138
transitivity of subtyping for plugs, 142
transitivity of subtyping for required

services, 139
valid export plugs, 160
valid export provided services, 158
valid export required services, 158
valid plug composition, 161
valid plug connection, 156
valid service connection, 154

type definitions
.NET component type, 64
COM class type, 43
COM class type (Szyperski), 42
COM interface type, 41
JavaBean type, 25
UCM-components

component interface type, 137
constraint type, 136
method based interface type, 133
method type, 133
plug type, 136

INDEX 301

provided service type, 134
required service type, 134
service interface type, 133

type identifier
Cardtype, 134
CItype, 137
CPtype, 134
Ctype, 136
Itype, 133
Mtype, 133
PLtype, 136
PStype, 134
RStype, 134
SItype, 133

type system, 77
.NET, 64, 78
CCM, 78
COM, 40, 77
EJB, 79
JavaBeans, 25, 77
UCM, 132

UCM, 85
component implementation

atomic components, 122
composite components, 123

component interface, 110, 111
component lookup, 162
composition techniques, 118
correctness composition, 151
substitutability, 166
type system, 132

unified modeling language, 259

wiring, 13, 23

Verzeichnis der zuletzt erschienenen Informatik-Berichte

[322] Abellanas, M., Hurtado, F., Icking, Chr., Ma, L., Palop, B., Ramos, P. A.:

Best Fitting Rectangles
[323] Roth, J.:

A Decentralized Location Service Providing Semantic Locations
[324] Roth, J.:

2. GI/ITG KuVS Fachgespräch Ortsbezogene Anwendungen und Dienste
[325] Fernandez, A.:

Groupware for Collaborative Tailoring
[326] Grubba, T., Hertling, P., Tsuiki, H., Weihrauch, K.:

CCA 2005 - Second International Conference on Computability and Complexity in
Analysis

[327] Heutelbeck, D.: Distributed Space Partitioning Trees and their Application in Mobile
Computing

[328] Widera, M., Messing, B., Kern-Isberner, G., Isberner, M., Beierle, C.:
Ein erweiterbares System für die Spezifikation und Generierung interaktiver
Selbsttestaufgaben

[329] Fechner, B.:
A Fault-Tolerant Dynamic Multithreaded Microprocessor

[330] Keller, J., Schneeweiss, W.:
Computing Closed Solutions of Linear Recursions with Applications in Reliability
Modelling

[331] Keller, J.:
 Efficient Sampling of the Structure of Cryptographic Generators’ State Transition
 Graphs
[332] Fisseler, J., Kern-Isberner, G., Koch, A., Müller, Chr., Beierle, Chr..:
 CondorCKD – Implementing an Algebraic Knowledge Discovery System in a

Functional Programming Language
[333] Cenzer, D., Dillhage, R., Grubba, T., Weihrauch, K..:

 CCA 2006 - Third International Conference on Computability and Complexity in
Analysis

[334] Fechner, B., Keller, J.:
Enhancement and Analysis of a Simple and Efficient VLSI Model

[335] Wilkes, W., Ondracek, N., Oancea, M., Seiceanu, M.:
Web services to resolve concept identifiers supporting effective product data
exchange

[336] Kunze, C., Lemnitzer,L., Osswald, R. (eds.):
GLDV-2007 Workshop - Lexical-Semantic and Ontological Resources

	Abstract
	Acknowledgements
	Contents
	Introduction
	A Vision of a Builder Tool
	Contributions made by this Thesis
	Organisation of the Thesis

	Foundations
	Terminology
	Component Models
	JavaBeans
	Component Model
	Composition Techniques and Consistency
	Type System
	Type Metadata
	Compatibility / Substitutability

	Component Object Model (COM)
	Component Model
	Composition Techniques
	Type System
	Type Metadata
	Consistency / Correctness of a Composition
	Compatibility / Substitutability

	.NET
	.NET Framework
	Composition Techniques
	Type System
	Type Metadata
	Consistency / Correctness of a Composition
	Compatibility / Substitutability

	Improvements over Existing Approaches
	Component Models
	Composition Techniques
	Industrial Component Models
	Visual Assembly

	Type Systems for Components

	Our Approach
	The Unifying Component Model (UCM)
	Basic Component Model
	General Basic Concepts
	Plug, A Higher Level Concept
	Constraints on Connections
	Summary of Concepts

	Component Interface Specifications
	General Specifications
	Additional Specifications supporting Automatic Connections

	Composition
	Interconnections between Component Instances
	Connections via services
	Connections via plugs

	Hierarchical Composition
	More Details on Interconnections and Exports
	Details on Interconnections
	Details on Exports of Plugs

	Used Type System for UCM-Components
	Type Definitions
	Subtyping
	Subtyping of Services
	Subtyping of Plugs
	Subtyping of Component Interfaces

	Correctness of a Composition
	Interconnections between Component Instances
	Export of Services and Plugs

	Component Lookup
	Instantiation of Composite UCM-Components
	Helper Components
	Compatibility / Substitutability
	Polymorphic Component Instances
	Replacing Components because of Upgrades or Change of Vendors

	Realisation of Composite UCM-Components
	Integration of Industrial Component Models
	JavaBeans
	Component Implementations and Component Interfaces Specifications
	Integration of existing Concepts and Support for Services and Plugs

	Component Object Model (COM)
	Component Implementations and Component Interface Specifications
	Integration of existing Concepts and Support for Services and Plugs

	.NET
	Component Implementations and Component Interfaces Specifications
	Integration of existing Concepts and Support for Services and Plugs

	Comparing Integration for the Various Component Models

	Some Algorithms Supporting Visual Composition
	Automatic Interconnections Using Plugs
	Checking for Complementary Plugs
	Service Mapping

	Composing Plugs when Creating Composite UCM-Components

	Evaluation
	The BPCE as a ``Proof of Concept''
	The CC-Builder

	Related Work
	Component-Oriented Languages
	ArchJava
	ComponentJ
	Component Pascal
	Others

	Composition Languages
	Bean Markup Language
	Bean Plans
	Piccola

	Architecture Description Languages
	Darwin
	Acme
	Wright

	The Unified Modeling Language 2.0
	Components
	Internal Structure of a Component
	Comparison of the UML- and our UCM-Approach

	Summary and Perspectives
	Summary
	Perspectives
	Conclusion

	Summary of Used Graphical Elements
	Graphical Elements
	Typical Diagrams

	Bibliography
	Index

