
Reusing Single-user Applications to Create

Multi-user Internet Applications

Stephan Lukosch and Jörg Roth

Computer Science Department
University of Hagen

D-58084 Hagen
{Stephan.Lukosch, Joerg.Roth}@Fernuni-hagen.de

Abstract. Although there are many groupware platforms existing
nowadays, collaborative multi-user applications are not yet widely ac-
cepted by end-users. In contrast to single-user applications, groupware
applications often still have prototypical character and are lacking soft-
ware quality. In this paper we introduce a three-step approach for
reusing existing single-user applications for collaboration-aware multi-
user applications. The three-step approach is based upon on our toolkit
DreamTeam and its extension DreamObjects. By offering services for
communication and coordination as well as data management and user
interface development they significantly simplify the transformation of
single-user applications into collaboration-aware applications. At the end
of the paper we validate our approach with two examples: a diagram tool
and a publicly available spreadsheet tool.

1 Introduction

Currently, the Internet offers a big set of applications, which allow groups or
teams to collaboratively work on a joint task, e.g. Email, videoconferencing sys-
tems, newsgroups, or chat tools. Even though these applications cover a wide
range of collaborative tasks, some specific activities cannot be handled conve-
niently with current Internet applications: to collaboratively edit a shared doc-
ument in real-time (e.g. a text document or a spreadsheet) one usually has to
develop a new tool, a difficult and time-consuming process: in addition to the
actual application’s task (e.g. editing texts or spreadsheets) network connec-
tions between collaborating users have to be supported, shared data have to be
managed, and specific group functions have to be provided.

There exist two major approaches for developing collaborative applications
[6]:

– Collaboration-aware applications are especially designed for collaborating
teams. A collaboration-aware application usually has to be developed ’from-
scratch’ but offers a huge variety of group-specific services to end-users.

– Collaboration-transparent applications are single-user applications, which are
run in a collaborative environment (e.g. a shared windows system).

T. Böhme and H. Unger (Eds.): IICS 2001, LNCS 2060, pp. 79–90, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



The latter approach saves development and usage costs, since single-user
applications often provide high quality and users can use them without too
much additional learning efforts in a multi-user environment as well. However,
this approach induces two major problems: data management is hidden inside
the application, thus data consistency can hardly be achieved; in addition, single-
user applications, by definition, do not offer any group-specific services, and can
hardly produce any group feeling (so-called collaboration awareness).

Our new approach combines the advantages of both approaches: we keep
the quality, the functionality, and the user interface of an existing single-user
application, but at the same time transform it into a truly collaboration-aware
application. To minimise transformation costs, we offer a powerful runtime sys-
tem, a set of programming abstractions for distributed data management, and
a set of group-specific user interface elements.

Before describing the necessary transformation steps in detail, we discuss
related work.

2 Related Work

DistEdit [4] and DistView [11] reuse existing single-user application as multi-user
applications. DistEdit allows a transformation of editor programs. Although the
transformation does not require much effort, it uses a floor control mechanism,
which only allows one user at a time to edit a document and thus prevents real
concurrent work.

DistView supports synchronous collaboration by distributing application
windows. Each user can export one of his DistView windows to a central win-
dow server, from which another user may import the window. Interface and data
objects are replicated to the importing site. Since all interface objects, e.g., a
scrollbar or the window itself, are replicated, all users have the same view on the
document. Concurrent work in large documents may lead to so called scroll-wars.

Besides DistEdit and DistView several collaborative toolkits have been de-
veloped during the last years.

GroupKit [12] is a package for implementing shared applications under
Tcl/Tk. A library offers services for session management, communication, and
shared dialogue management. A program library contains basic services for stan-
dard problems, covering session management, communication, and distributed
user interfaces.

Dolphin [17] is a co-operative hypermedia system for co-operatively editing
hypermedia documents. It is written in Smalltalk and provides a single hard-
coded application, a shared hypermedia editor. The underlying platform COAST
[16] offers general services for synchronous, document-based groupware.

Suite [2] extends a framework for developing single-user applications by mech-
anisms supporting groupware aspects. A Suite application consists of a module,
which runs on a central server, and replicated dialogue managers. Because of
their replication, dialogue managers are able to offer individual user interfaces
for each user of a collaborative session.



Habanero [10] has fully been implemented in Java. It focuses on making Java
applets available in a distributed environment. The applets must be available
as source code and in most cases can be converted into a distributed applet
(called Hablet). Interface events are distributed via Habanero’s specific event
distribution mechanism. If a specific applet does not fit with this distribution
mechanism, it is quite difficult to transform it into a collaborative applet.

Each of these platforms significantly restricts the distribution architecture,
the data model and the user interface of the application to be developed, and
thus is not adequate for transforming existing single-user applications into pre-
tentious collaboration-aware multi-user applications. In the following, we present
our approach.

3 The Three-Step Approach

When transforming an existing single-user application into a collaboration-aware
multi-user application, the transformation platform has to meet certain require-
ments: while preserving the functional core of the single-user application it must
allow the developer (”transformer”) to seamlessly integrate group-specific ser-
vices. Though our concept does not depend on a specific object-oriented lan-
guage, the DreamTeam/DreamObjects platform has been implemented in Java
and thus can only be used for Java applications. While DreamTeam [13] pro-
vides a set of collaborative services, DreamObjects [8] focuses on shared data
management.

The transformation consists of three steps:

1. Integrate the application into the platform’s runtime system.
2. Organise shared data.
3. Add awareness services.

In the following, we describe these three steps in more detail.

3.1 Platform integration

In order to collaborate, users must be able to plan and schedule sessions and to
inform all group members about their plans in time. The DreamTeam runtime
system offers a palette of services for setting up, coordinating, and scheduling
sessions as well as for informing group members about planned and active ses-
sions [14]. To provide these services, the runtime system must be able to control
the application, i.e. the developer has to specify

– the application’s name and icon,
– methods for starting and closing the application,
– the application’s version, and
– optional methods for configuring the application.

The name and the icon of an application are used to identify the application
in various overview and configuration windows. A user can, e.g., open a window,



which shows all active applications. While a single-user application usually pro-
vides a main method for starting the application and a menu entry for closing the
application, the multi-user application is started and closed by the DreamTeam
runtime environment via methods to be provided by the application. In a dis-
tributed system, different versions of the same application may run at different
locations. To cope with potential inconsistencies, each application has to pro-
vide its actual version number as well as version numbers of compatible older
versions. When the session manager detects conflicting versions, it prevents the
application from starting and informs the corresponding users.

Before being started, an application may be configured; a teacher, e.g., may
identify a set of slides before he starts a session based upon these slides.

3.2 Shared Data

Usually, a single-user application does not need to manage shared data, whereas
data sharing and data consistency mean a major and difficult task for multi-
user collaborative applications. To transform the data objects of a single-user
application into shared ones, the following steps have to be performed:

1. Identify all data objects that have to be shared and define an adequate
distribution mode for each such object.

2. Configure shared objects for consistency.
3. Couple the user interface with shared data objects.
4. Replace a shared object’s constructor-based creation by its registration with

the runtime environment.

In the following we describe these steps in more detail. If the architecture of a
single-user application follows a style like Arch [18], MVC [5], or PAC [1] – which
all postulate the a clear separation of data, functional core and user interface –
its data objects can easily be identified.

The DreamObjects approach is based upon substitutes [8], a concept similar
to the substitution principle in object-oriented languages. Substitutes offer the
same interface as the substituted data object, and thus can easily be used as
placeholders. The developer does not have to provide any additional classes, he
uses the substitute like a local object, all distribution mechanisms are hidden in
the substitute’s methods.

Since discussions about the best distribution mode are still going on [15]. Our
platform supports replicated as well as central data objects. While replicated
objects may be used for highly responsive tasks, e.g. in group editors, central
objects may be used for objects with extensive data but minor data exchange.

To define the distribution mode of a data object, it has to provide an addi-
tional interface. Just in case of a replicated object, the developer has to imple-
ment one additional method. Fig. 1 shows a class diagram for a replicated object
class SampleRObj and a central object class SampleCObj in UML Syntax. The
class SampleRObj, e.g., implements the interface ReplicatedObject and thus is
replicated. The corresponding substitute class SampleROSubstitute can either be



Substitute

<<Interface>>

SampleCObject SampleRObject

PessimisticCC FloorControl

Serializable

(from io)

<<Interface>>

SharedObject
<<Interface>>

ReplicatedObject
<<Interface>>

CentralObject
<<Interface>>

SharedObjectReferenceSampleCOSubstitute

1 11 1

contains
SampleROSubstitute

11 11

contains

ConsistencyScheme

1

1

1

1

contains

1

1

1

1

contains

Toolkit-generated class

Developer-defined class

Toolkit-provided class

Fig. 1. Shared object class diagram

generated from the command line or the developer can leave it to the runtime
environment to generate the corresponding substitute. Upon registration, the
runtime environment uses these classes to replace the developer-defined classes.
The substitute classes provide the Substitute interface, which offers necessary
methods for the runtime environment. The aggregated SharedObjectReference is
used to identify a shared object at runtime.

The aggregated ConsistencyScheme defines an object’s consistency proper-
ties. In a multi-user scenario several users may manipulate an object simultane-
ously. To allow a maximum of concurrency, our platform provides a very flexible
concurrency control service [7].

Usually, not all methods of a shared object modify all components of the
object and thus some methods can be executed simultaneously. For each shared
object, the developer can define sets of mutually exclusive methods (EM), which
form the object’s exclusive method set (OEM). To allow simultaneous method ex-
ecution, whenever possible, our concurrency control scheme uses multiple locks,
one for each mutually exclusive method set.

Imagine, e.g., a collaborative sketch editor, where a replicated object keeps
the history of the sketch. Among other methods the history object offers the
methods changeLine and removeLine. The following source code shows how the
execution of these methods can be mutually excluded by adding a set of exclusive
methods to the object’s exclusive method set.

EM em=new EM("Draw.HistoryVector");

em.addMethod("changeLine");

em.addMethod("removeLine");

oem.addExclusiveMethodSet(em);



In contrast to single-user applications the data objects of a multi-user appli-
cation may be manipulated unnoticed from the local application. Thus, there is
a need for an application to react on remote changes. Our toolkit offers a flexible
object coupling service [8], which allows the developer to trace changes in a shared
data object and to propagate these changes to the user interface. This service is
realised via a kind of extended callback mechanism, which avoids the confusing
program code [9] of the normal callback mechanism. It allows to restrict the
passed information to the needs of a developer-defined listener method. For this
the developer has to define a method mapping between a shared object’s method
and a corresponding listener’s method; the listener’s method is called whenever
the shared object’s method is executed; its parameters can be composed from
the shared object’s method parameters, the method call result, and may contain
information about the site, which called the method. Thus a method mapping
consists of a shared object’s method name, a listener’s method name, and the
listener’s method parameters.

The following source code shows the method prototype of a method used to
add a line to the sketch history:

public void addLine(int x1,int y1,int x2,int y2,int c);

The next source code example shows how these arguments are mapped to
two different user interface methods:

CallListenerConfig config=

new CallListenerConfig(CallListenerConfig.METHOD_MAPPING);

config.addMethodMapping(new MethodMapping("addLine","drawLine",

new int[]{0,1,2,3})); // i.e. x1, y1, x2, and y2

config.addMethodMapping(new MethodMapping("addLine","setColour",

new int[]{4})); // i.e. c

Finally, to use a shared object in the DreamObjects environment, the ob-
ject’s constructor-based creation has to be exchanged by a registration with the
runtime environment, which enables the runtime environment to initialise the
shared data object: the runtime environment creates an instance of the shared
object’s substitute class, adds this instance to its object registry, informs all
other sites about the newly registered object, and returns the substitute. De-
pending on the shared object’s distribution mode either a replica or a reference
is distributed. To register a shared object, the developer has to call a special
registration method and provide the shared object’s class name, a unique reg-
istration name and the used consistency scheme as arguments. The following
source code shows how the history object of the sketch editor is registered:

history=(HistoryVector)om.registerObject("Draw.HistoryVector",

"history",new PessimisticCC(oem));

3.3 Awareness

Awareness is an important requirement for multi-user applications. As other
group members are not physically present, a collaborative application has to



provide some group feeling: so-called awareness widgets offer group specific ser-
vices, e.g. an overview about other users’ current activities. In contrast to the
issues discussed in steps 1 and 2, awareness explicitly addresses end-users. Only if
a multi-user application has appropriate support for group functions and aware-
ness included into the user interface, an application will be accepted by end-users.

Our platform supports three kinds of awareness widgets:

1. Widgets, which are offered by the runtime system.

2. Widgets, which can be used as building blocks from the DreamTeam class
library.

3. New widgets, which are created by an application developer.

Using the first kind of widgets does not cause any integration costs.
DreamTeam, e.g., offers a list of all users of a collaborative group, who are
currently online, which is called the online list, where each user is represented
by a small picture. Users in this list are not necessarily working in a collabo-
rative session, but they are ready for collaboration. Using this widget has an
effect of ”hang out in the hallway” [3]. A user can perceive other users, which
are willing to collaborate, and thus may be challenged to spontaneously initiate
a collaborative session.

Widgets of the second kind are distributed mouse pointers, which may, e.g.,
be used for discussing shared documents. DreamTeam allows to easily integrate
distributed mouse pointers into an existing application. Usually, a user interface
in Java is created by subclassing predefined Java classes such as Frame, Panel
or Canvas. For distributed mouse pointers, a similar set of DreamTeam classes
has to be subclassed. Each class offers services identical to the original class, but
mouse distribution is automatically provided in the background. The application
can control the behaviour of the mouse pointers via the DreamTeam API. It
can switch on and off the mouse distribution to other users. Because too many
pointers may confuse a user, remote pointers may be enabled and disabled. In
addition, the application can define a string to be displayed below the mouse
shape (normally the user name), as well as a pointer colour.

Another awareness widget is the so-called tracking window (see fig. 2). Track-
ing windows can be used to follow another one’s work, if, e.g., a shared document
may be scrolled independently by different users. The tracking window shows the
current contents of the other user’s window in a 1:3 scale, thus one user can follow
the scrolling of another user.

Usually, an application developer integrates awareness widgets of the first two
kinds into an application, by adding just a few lines of code. If a developer is
not satisfied with the above awareness widgets, he can develop his own widgets.
For this purpose, a widget can use information provided by the platform (e.g.
the user list) and can register for group-related events (e.g. someone joins or
leaves a session). These mechanisms help a developer to efficiently develop new
awareness widgets, which can be collected in a class library and be reused in
other applications.



Fig. 2. Shared document browsing with tracking windows

4 Examples

We validated our approach by transforming some single-user applications. In the
following we describe two example transformations.

4.1 A Diagram Editor

Our first example is a collaborative diagram editor (see fig. 3), which we derived
from a single-user version.

This diagram editor allows the construction of diagrams such as flow charts
or entity relationship diagrams. In contrast to a painting tool, diagram elements
are not stored as bitmaps, and thus can easily be modified. According to our
three-step approach the following transformation actions were performed:

Step 1: Embedding the application into the platform was simple: only one
class, derived from the DreamTeam class library had to be coded. Since the
superclass already contains some default methods, we only had to code some
application-specific methods. The resulting Java class file contains less then fifty
lines of code.

Step 2: The data class hierarchy of the single-user diagram editor consists
of a container object class and a basic diagram element class, from which the
different diagram elements, e.g. a rectangle or a circle, are derived. First, we
transformed the container object class and the basic diagram element class into
replicated objects. By defining different exclusive method sets, e.g. one for text
operations and one for style changes, a maximum of concurrency was achieved.



Fig. 3. A collaborative diagram editor

Next, the user interface was coupled to the container and the basic diagram
element: whenever a diagram element is changed, added to, or removed from the
container the user’s view is updated.

Step 3: All built-in-widgets (e.g. participant windows) are available for the
diagram editor. In addition, we integrated the distributed mouse pointer and
the tracking window. The effort for integrating both elements was very small.
The class, which does the painting inside the diagram had to be derived from a
DreamTeam canvas class instead of the standard Java canvas. In addition, some
lines of code were necessary to control these widgets, e.g. to enable or disable
the pointers.

4.2 A Spreadsheet Tool

The next example is the single-user spreadsheet application, which is part of
Sun’s Java Development Kit JDK. The code for the tool is publicly available,
but only supplied with small documentation, thus the transformation was a real
challenge for our toolkit.

The steps to be performed were similar to the steps for the first application.
In summary, the transformation could be done without considerable problems.
In the following, we discuss our experiences.

4.3 Discussion

It is quite difficult to empirically assess the effort for transformations. Many
factors influence the transformation process: on one hand, it is important how
complex the application is and how well it was designed. On the other hand, the



Fig. 4. A collaborative spreadsheet tool

Table 1. Actions to transform the applications

Single-user Diagram Editor (4786 lines of code)
Step Actions Lines of code
1: Integration Code a single class 43
2: Data Transformation of the container class 15

Transformation of the diagram element class 43
Object coupling 14

3: Widgets Derive the painting class and add statements
to control widgets

75

total 190

Single-user Spreadsheet tool (997 lines of code)
Step Actions Lines of code
1: Integration Code a single class 41
2: Data Transformation of the cell class 18

Object coupling 16
3: Widgets Derive the painting class and add statements

to control widgets
46

total 121

transformation effort heavily depends on the skills of the transforming individual.
Table 1 summarises the transformation efforts for both examples, measured in
lines of code per transformation step.

The effort for reverse engineering the original application has not been in-
cluded into the table. In total, one day of work was needed for each application.

5 Conclusion

Reusing existing single-user applications for collaborative scenarios is an impor-
tant step for reducing development costs and increasing end-user acceptance.
On the other hand, collaborative applications have to provide for collaboration
awareness. Our approach minimises the effort for changing the single-user appli-
cation, but at the same time adds collaboration awareness and group functions



to the collaborative application. Because of the simple transformation steps, in
many cases even poorly designed single-user applications can easily be trans-
formed into collaborative applications. In contrast to other platforms, our plat-
form supports a variety of architectures, distribution mechanisms, concurrency
schemes, and can thus be used for transforming a variety of single-user appli-
cations in an adequate way. We validated our approach with various single-user
applications; two of them were discussed in this paper.

References

[1] Gaëlle Calvary, Joëlle Coutaz, and Laurence Nigay. From Single-User Architec-
tural Design to PAC∗: a Generic Software Architecture Model for CSCW. In
Human Factors in Computing Systems: CHI’97 Conference Proceedings, pages
242–249. ACM, 1997.

[2] Prasun Dewan and Rajiv Choudhary. A High-Level and Flexible Framework for
Implementing Multiuser Interfaces. ACM Transactions on Information Systems,
10(4):345–380, October 1992.

[3] H. Gajewska, M. Manasse, and D. Redell. Argohalls: Adding Support for Group
Awareness to the Argo Telecollaboration System. In Proceedings of the 8th annual
ACM symposium on User interface software and technology, pages 157–158, 1995.

[4] Michael J. Knister and Atul Prakash. DistEdit: A Distributed Toolkit for Sup-
porting Multiple Group Editors. In Proceedings of the ACM 1990 Conference on
Computer Supported Cooperative Work, pages 343–355, Los Angeles, California,
USA, October 1990.

[5] Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August 1988.

[6] J. C. Lauwers and K. A. Lantz. Collaboration awareness in support of collabora-
tion transparency: requirements for the next generation of shared window systems.
In CHI ’90 Conference on Human factors in computing systems, special issue of
the SIGCHI Bulletin, pages 303–311, Seattle, Washington, USA, April 1990.

[7] Stephan Lukosch and Claus Unger. Flexible Synchronization of Shared Groupware
Objects. ACM SIGGROUP Bulletin, 20(3):14–17, December 1999.

[8] Stephan Lukosch and Claus Unger. Flexible Management of Shared Groupware
Objects. In Proceedings of the Second International Network Conference (INC
2000), pages 209–219, University of Plymouth, Great Britain, July 2000.

[9] Brad A. Myers. Separating Application Code from Toolkits: Eliminating the
Spaghetti of Call-Backs. In Proceedings of the 4th annual ACM symposium on
User interface software and technology, pages 211–220, Hilton Head, South Car-
olina, USA, November 1991. ACM SIGGRAPH.

[10] NCSA Habanero Homepage. http://havefun.ncsa.uiuc.edu/habanero.
[11] Atul Prakash and Hyong Sop Shim. DistView: Support for Building Efficient Col-

laborative Applications using Replicated Objects. In Proceedings of the ACM 1994
Conference on Computer Supported Cooperative Work, pages 153–164, Chapel
Hill, NC, USA, 1994.

[12] Mark Roseman and Saul Greenberg. Building Real-Time Groupware with
GroupKit, A Groupware Toolkit. ACM Transactions on Computer-Human In-
teraction, 3(1):66–106, March 1996.



[13] Jörg Roth. ’DreamTeam’: A Platform for Synchronous Collaborative Applica-
tions. AI & Society, 14(1):98–119, March 2000.

[14] Jörg Roth and Claus Unger. Group Rendezvous in a Synchronous, Collabora-
tive Environment. In 11. ITG/VDE Fachtagung, Kommunikation in Verteilten
Systemen (KiVS’99), March 1999.

[15] Jörg Roth and Claus Unger. An extensible classification model for distribution ar-
chitectures of synchronous groupware. In Proceedings of the Fourth International
Conference on the Design of Cooperative Systems (COOP2000), Sophia Antipolis,
France, May 2000. IOS Press.

[16] Christian Schuckmann, Lutz Kirchner, Jan Schümmer, and Jörg M. Haake. De-
signing object-oriented synchronous groupware with COAST. In Proceedings of
the ACM 1996 Conference on Computer Supported Cooperative Work, pages 30–
38, Cambridge, MA, USA, July 1996.

[17] N. A. Streitz, J. Geißler, J.M. Haake, and J. Hol. DOLPHIN: Integrated Meeting
Support across LiveBoards, Local and Remote Desktop Environments. In Pro-
ceedings of the ACM 1994 Conference on Computer Supported Cooperative Work,
pages 345–358, Chapel Hill, NC, USA, 1994.

[18] The UIMS Tool Developers Workshop. A Metamodel for the Runtime Archi-
tecture of an Interactive System. ACM SIGCHI Bulletin, 24(1):32–37, January
1992.


