
Group Rendezvous in a Synchronous,
Collaborative Environment

Jörg Roth, Claus Unger

University of Hagen, Department for Computer Science, 58084 Hagen, Germany
{Joerg.Roth, Claus.Unger}@Fernuni-Hagen.de

Abstract. Before a session in a synchronous, collaborative environment can
really start, various actions have to be performed: users have to be informed
about planned sessions, network access paths between session participants have
to be determined, etc. In the following, we call all these actions group rendez-
vous. In existing groupware systems, the group rendezvous is often neglected,
i.e. it is assumed that a team has already formed, session information has been
distributed and network paths are known. In reality, this assumption often does
not hold: members with dial-up connections are not permanently online, if they
get their network addresses from an address pool, e.g. via a network access
provider, they are difficult to find even when they are online. This paper de-
scribes a fully decentralised group rendezvous system, which addresses these
problems. Besides session distribution, the system has a component for re-
solving variable network addresses. It has been integrated into the synchronous
groupware system DreamTeam [RU98].

1 Introduction

Synchronous groupware brings together users which are geographically distributed
and connected via a network. Many synchronous groupware systems are based upon
the session metaphor [RG96] (also known as „groupware as meeting“), where users
can join an existing session, can collaborate with other team members and finally can
leave a session when their work is done.
To build a session, the date, the place (in terms of network locations), the collabora-
tive environment as well as the session topics have to be specified and distributed;
shortly before a session starts, it has further to be determined, who is currently online
and how other group members can really be accessed. We call all these operations
group rendezvous.
[Scho96] defines the rendezvous as the action of inviting other users or scanning for
open sessions. This includes Email or WWW-based systems. This kind of rendezvous
has a long-term character - inviting someone via Email or posting a meeting date on a
bulletin board is usually performed hours or days before the session starts. We call
this kind of rendezvous long-term rendezvous. In contrast, the last actions, which are
to be performed shortly (i.e. a few minutes or even seconds) before a session starts,
are called short-term rendezvous. In this phase, the group members connect to the

network if necessary (e.g. establish a modem connection) and start their groupware
systems which then try to detect other members.
A centralised rendezvous approach, as it is realised in many existing groupware sys-
tems, requires a well-known server which holds the states of all group members as
well as the session profiles. The realisation of such an approach is easy: a system
simply asks the central server (or the registrar [RG96b]) for a session list. When a
newcomer wants to join, he gets a list of all group members in the session and their
network addresses. The registrar on the other hand stores the newcomer’s address for
further queries. The registrar must be highly reliable, with regard to hardware as well
as software. A stopped or failed registrar prevents a session from being started, even
if the following communication would run in a decentralised way. Thus, a registrar
can be viewed as the weak point of a groupware system.
Our approach is based upon a fully decentralised architecture and provides a solution
for both rendezvous phases. The corresponding rendezvous component is an integral
part of our own groupware system DreamTeam ([RU98], [RU98b]), which will be
briefly described in the next chapter.

2 The DreamTeam environment

DreamTeam is a platform for synchronous collaboration and offers a variety of ser-
vices for application developers as well as for end-users. The DreamTeam environ-
ment allows the developer to develop co-operative applications like single user
applications, without struggling with network details, synchronisation algorithms, etc.
The environment consists of three parts: a development environment, a runtime
environment and a simulation environment. The development environment [Roth98]
mainly consists of a huge Java class library which contains groupware specific
problem solutions as building blocks. The runtime environment provides an infra-
structure with special groupware facilities. A front-end on top of the runtime environ-
ment allows end-users to control and configure the system. Finally, collaborative
applications can be tested in the simulation environment, which allows to simulate
network characteristics on a single computer.
DreamTeam is based upon a completely decentralised architecture, thus there is no
central server holding session states. The decentralised architecture leads to more
complex algorithms, nevertheless performance bottlenecks are avoided and the
system is much more reliable. Based on this architecture, we realised a rendezvous
component, which will be described in the following in some more detail.

3 Group rendezvous

As mentioned above, we distinguish between long-term rendezvous and short-term
rendezvous. As they are based upon different concepts, we will describe them in
different chapters.

3.1 Long-term rendezvous

If a team starts organising a session via a synchronous groupware system, several
decisions have to be made: regarding the date and duration of the session, the tools to
be used during the session, participation restrictions etc. Such a set of information is
called a session profile.
The DreamTeam session concept allows team members to define session profiles.
The user, who starts a session using a session profile, is called the originator. Only
the originator is allowed to start and stop a session or to modify the session profile. In
addition to sessions which are defined by local users, profiles of remote sessions are
stored by the groupware system. The list of all available session profiles is called the
session list, which gives the user an overview about planned sessions.
Once a session has been started, other team members may join. In order to join, the
session profile has to be made available locally, i.e. has to be copied to each mem-
ber’s session list before the session starts.
Since DreamTeam does not provide a central server, session information must be
distributed in a decentralised way, based on standard Internet services. We use the
Email and Newsgroup services for session announcements (Figure 1).

Originator Part ic ipant

S
M

T
P

N
N

T
P

N
N

T
P

Mailfile

S
M

T
P

/P
O

P
3

In ternet

... Part ic ipant

N
N

T
P

Mailfile

S
M

T
P

/P
O

P
3

Figure 1: Session announcement mechanism

An originator who has created a session profile and wants to distribute this informa-
tion to other group members, can either send emails or put an announcement in a
predefined newsgroup. For this, the DreamTeam rendezvous component supports
SMTP (simple mail transfer protocol [Pos82]) as well as NNTP (network news trans-
fer protocol [KL86]). Announcements can simply be posted within the DreamTeam
environment without using external tools (e.g. news or mail reader).
Besides a user defined announcement text, the binary representation of the correspon-
ding session profile is attached to the message. Whenever a DreamTeam environment
is started, it scans the corresponding mailbox’s incoming file and the newsgroup.
When the scan is successful, the announcement message is presented to the user and
the binary session information is decoded. Afterwards, the session profile can be
included into the local session list, which in turn enables the user to join the corres-
ponding session.

3.2 Short-term rendezvous

While long-term rendezvous support long-term planning and announcements of ses-
sions, at the moment the session actually starts, the user’s system must get additional
information, which cannot be included in the session profile. This information
consists of
• the current list of users who want to attend the session,
• the list of their corresponding network addresses.
Especially network address resolution is not easy in a decentralised system. Since
current network addresses are often not assigned before a user goes online, an Email
or Newsgroup based approach is too slow. Before presenting our solution to this
problem, we introduce a few definitions.

3.2.1 The short-term rendezvous problem in general
Let { }H h hn= 1,... denote the set of hosts in the collaborative group. To every

h Hi ∈ we assign a unique identifier IDi .
In a decentralised rendezvous, there does not exist a well-known host which holds
network addresses or online states. The problem becomes even worse, if there exist
hosts with variable network addresses. To identify such hosts inside a network, it is
necessary to send messages to all potential addresses and wait for an answer. If no
answer returns, with high probability the corresponding host is offline, otherwise the
answer includes the correct network address. Each host has to maintain a list of all
potential addresses of all other hosts.
Let adrpot(h) denote a set of potential addresses of host h. The value of adrpot(h) can be
determined:
We assume that a host either permanently belongs to a LAN or can be connected to
the network via a dial-up connection (e.g. modem or ISDN). We further assume that a
host never changes this characteristic during its lifetime.
In the first case the network address is fix, thus adrpot(h) has only one element. Hosts
with dial-up connections get their addresses from a pool of reserved addresses, nor-
mally administered by an access provider. Since for each dial-up point this pool is
fixed, adrpot(h) can be set to this pool’s addresses.
The considerations above lead to a number of algorithms for solving the short-term
rendezvous problem. One possibility is to find all other hosts in H via multicast. Such
an algorithm is described in [Fu98]. Unfortunately, this method leads to an unaccept-
able high network load. Since every newcomer h performs a multicast search for

every other host, a total of adr mpot

m H h

()
\{ }∈

∑ addresses has to be checked. Even the

absence of a reply message does not necessarily mean that the corresponding host is
really offline. Thus, addresses have to be tested multiple times, which even increases
the load of the network.
The following approach significantly reduces the average network load.

3.2.2 The idea
In the following, we introduce a decentralised algorithm, which avoids bulky multi-
casting and thus reduces the average network load. Multicasting cannot always be
avoided, because there may be situations, where no host with a permanent network
address is online. The algorithm works as follows:
Every host h stores a list Lh of entries <ID1,adr1,t1>, <ID2,adr2,t2>, ..., <IDn,adrn,tn>.
We call Lh in the following the online list of h. Each element stores the actual state of
every host hi. The entries are
• IDi: the host identifier,
• adri: the current network address, or „off“ if the host is offline,
• ti: the local time host hi made the last state change (see chapter 3.2.3).
Whenever a group member wants to join a session, his system first builds its own
online list. Hereto its rendezvous component queries all known hosts - beginning with
permanent addresses. A query is successful, if another host is already online and
answers the request. This other host has already built its own online list which it now
transfers to the newcomer. The newcomer can now ask all hosts on his actual online
list to update their online lists. This procedure ensures that, after a certain delay, all
hosts know the state and address of all other hosts in their group. Even in case of
variable addresses, a broadcast can be avoided if at least one group member with a
permanent address is online. In the worst case (every group members have variable
addresses), a broadcast is necessary.
Figure 2 shows a sample session. Every Oi denotes the set of hosts, which host hi

views as online. We assume that host 1 and 2 are already online, host 3 is offline and
host 4 is about to start. The first query of host 4 is directed to host 3 which is unable
to reply. The second query is directed to host 2 which transfers its own online list.
Host 4 now knows that there is a host 1 which has to be informed. After this, the new-
comer host 4 as well as all other hosts have correct online lists.
The example continues with host 3 going online and host 1 going offline.

host is offlinehost is online

Host 1

Host 2

Host 3

Host 4

? ? {1,2}

on

? {1,2,4}

on

on off

off

off

O1

O2

O3

O4

{1,2}

{1,2} {1,2,4}

{1,2,4}

{1,2,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4} {2,3,4}

{2,3,4}

{2,3,4}

Figure 2: Short-term rendezvous session

In pseudo code, the algorithm for host h reads as follows:

Main Program:
state:=“going online“;
build a list Lh and initialise it with <IDi ,“off“,0> for all hosts h Hi ∈ ;
replace element <IDh,adrh,th> in Lh by <IDh,local network address,current time>;
find another host which is in the state “doing work“ and get its online list ; // see below
inform all other hosts hi in Lh with adri<>“off“ about going online;
state:=“doing work“;
// perform tasks, e.g. join a session
...
// task terminated
state:=“going offline“;
replace element <IDh,adrh,th> in Lh by <IDh,“off“,current time>;
inform all other hosts hi in Lh with adri<>“off“ about going offline;

In this algorithm, the find operation is the most complex one and will later be de-
scribed in more detail. If necessary at all, broadcasting is limited to the find operation,
i.e. after a find has been performed, no further message to adrpot(h) is necessary.

3.2.3 Avoiding race conditions
Unfortunately, the algorithm above can cause race conditions which may result in
wrong online lists. All race scenarios have in common that state changes are
happening during a short period of time. An online list just being transferred from
another host may be outdated when it reaches its target.
To address this problem we use the time stamps ti. Whenever host h receives a state
change message from m, both online lists are compared. If one list contains a newer
entry, this entry replaces the older entry in the other list. This operation is called
balance operation (see below). The following listing describes the complete algo-
rithm, which avoids races:

Main Program:
state:=“going online“;
build list Lh and initialise it with <IDi ,“off“,0> for all hosts h Hi ∈ ;
replace element <IDh,adrh,th> in Lh by <IDh,local network address,current time>;
find another host which is in the state “doing work“ and get its online list ; // see below
while (there exists a host i in Lh with adri<>“off“ which has not been informed yet)
begin

send(inform-online, Lh) to i;
receive(Li);
balance(Lh, Li);

end
state:=“doing work“;
// perform tasks, e.g. join a session
...
// task terminated
state:=“going offline“;
replace element <IDh,adrh,th> in Lh by <IDh,“off“,current time>;

while (there exists a host i in Lh with adri<>“off“ which has not been informed yet)
begin

send(inform-offline, Lh) to i;
receive(Li);
balance(Lh, Li);

end

The following thread is being executed, whenever a the host receives a message:

Receive Message:
receive(message kind, Lm);
balance(Lh, Lm);
case message kind:

inform-online, inform-offline:
send(Lm) to m;

end

The balance operation reads as follows:

balance(Lh, Lm):
for each element <IDi ,adri,ti> in Lm begin

get element <IDj ,adrj,tj> of Lh with IDi=IDj;
if (ti>tj)

replace element <IDj ,adrj,tj> in Lh by <IDi ,adri,ti>;
fi

end

Note that the list Lm is added to every state change message, host m performs. On the
other hand, the host h has to reply Lh in order to update m’s list.
The balance operation ensures, that at least when a newcomer informs all other hosts
about going online, the new state information is exchanged. No time synchronisation
problems can occur, since ti and tj were measured by the same host (IDi=IDj). Instead
of using a real-time clock for setting ti, a counter can be used as well.

3.2.4 States and abnormal terminations
Figure 3 shows all rendezvous states. The state „offline“ is not a program state in the
usual sense, since terminated programs have no variables nor can they react on
messages.
A normal life cycle runs clockwise through all these states. An abnormal termination
leads to consistency problems. A host which terminates abnormally (e.g. because of
hardware problems) is no longer able to inform other hosts about its state change.
Other hosts would view such a host as online until they try to communicate. A com-
munication request to a terminated host results in a time-out which can be used to
correct the state information about this host.

offline

going
online

doing
work

going
offline

abnormal
terminat ion

startup

startup
f in ished

shutdown
f in ished

shutdown

Figure 3: States

In order to find abnormally terminated hosts, even if no communication is in pro-
gress, the rendezvous component cyclically sends test messages to each other host,
thus ensuring that after a certain time an abnormal termination is detected.

3.2.5 Performing the find operation
To avoid unnecessary multicast operations, it is useful to try hosts with permanent
addresses first. Another criterion may be the average time, a host was online in the
past. The longer a host was online on average, the higher is the probability that he is
online when a find operation is performed. We define the average online time as
follows:

ot H ot h t t
h t dt

t
past end

t t

t

past

end past

end

: (, ,)
(,)

× × → = −∫
IR IR ,[0,1]

δ
 where δ (,)

()
h t

h O t
=

∈

1

0

 if

 otherwise

The average online time can only be recorded by a host itself, but can easily be dis-
tributed inside the balance operation. Since a host can only compute the online time
inside an online period, tend cannot be chosen arbitrarily. Thus, we use a further
definition:

{ }ot H ot h t t ot h t t h Olast last past past: (, ,) (, ,max ())× × → = ≤ ∧ ∈IR IR ,[0,1] τ τ τ

We can now construct a find operation:

Find:
found:=false;

build a sorted list of all { }m H h∈ \ ,

sorted by adr m weight ot m t weightpot last past() (, ,)⋅ − ⋅1 2current time ;

for each host m in the list begin
send(find-request, Lh) as multicast to adrpot(m);
wait(twait1);
if (found) stop; fi

end
wait(twait2);

The receive thread has to be extended as follows:

Receive Message:
receive(message kind, Lm,);
balance(Lh, Lm);
case message kind:

find-request:
send(find-reply, Lh, state) to m;

find-reply:
receive(statem);
if (statem =“doing work“) found:=true; fi

inform-online, inform-offline:
send(Lm) to m;

end

Note that the balance operation has also to be executed for message kinds find-re-
quest and find-reply in order to avoid race conditions during start-up.
The find operation depends on the following constants which can be tailored to spe-
cific environments:

Table 1: Parameters for the find operation

From these parameters, twait1 is the most crucial one. If the value is small, all mes-
sages are delivered before the first reply arrives, which causes a high network load
but very short response times. On the other hand, if the value is too big, the procedure
takes a long time. The optimal value depends on the specific environment.
A high value of twait2 can cause a newcomer waiting too long, if no other host is on-
line. twait1+ twait2 should be at least as big as the time, a reply from the most distant
host needs to cross the network. If both times are to small, potential replies are
ignored. In the worst case this can cause wrong online lists.

3.2.6 MBone enhancements
MBone technology [Dee89] offers new possibilities, especially for the rendezvous
problem. MBone is a network facility which reduces network load if a sender sends
the same message to a group of receivers. Inside an MBone-enabled network, a data
package which is directed to many receivers is duplicated at the very last moment,

constant function sample value
weight1 weighting the number of potential addresses 1.0
weight2 weighting online time in the past 1.0
tpast how long in the past should the online time be considered 5 days
twait1 delay after each trial 100 ms
twait2 time-out after which no reply is expected anymore 3 s

thus network resources are used economically. It is more efficient to use MBone
rather than transmitting the same data package inside a loop, especially in case of
bulky real-time transfers e.g. video or audio.
We are interested in a different feature of the MBone technology: to attend a multi-
cast group, a receiver has not to check in centrally. The entire architecture of MBone
is decentralised, thus it significantly speeds up our decentralised rendezvous algo-
rithm.
Unfortunately, MBone multicasts are like UDP datagrams [Pos80] and are not suit-
able for protocols which rely on correct delivery and packet ordering. Whereas our
algorithm as a whole is therefore not a good candidate for using MBone, the find
operation can benefit from MBone multicast. We modify the find operation as fol-
lows:

Find:
found:=false;
send a multicast message to a predefined multicast group;
wait(twait1);
if (found) stop; fi
build a sorted list... // rest see above

If the newcomer and at least one other host are connected to an MBone-enabled net-
work, the operation is completed immediately, thus no further multicasts are required.
Otherwise, only the time twait1 is wasted. This method uses MBone capabilities
whenever they are available. Nevertheless, MBone technology is not a prerequisite
for the correct execution of our algorithm.

3.2.7 Discussion of correctness
In the following we assume that busy periods, where several hosts change their states,
are followed by sufficiently long idle periods where state information is exchanged
between hosts. We will sketch a proof that after a certain time all hosts have identical
online lists.
Let us assume that at time t0 there exists a non-empty set of hosts L={hi} with correct
online lists. Let us further assume that two new hosts h’ and h’’ join the network at t0.
Case 1: both new hosts request online lists from the same hi∈L: either h’ or h’’ gets
the correct online list and updates all online lists of L∪{ h’,h’’};
Case 2: h’ requests an online list from hi, h’’ requests an online list from hj; hi,hj∈L,
i≠j; in the worst case, both online lists are incorrect, i.e. don’t contain correct in-
formation about h’’ or h’. Both hosts, h’ and h’’, send their online lists to all hosts of L.
Let t i' and t i' ' denote the times when hi gets online lists from h’ and h’’.

t i' ' < t i' : h’ gets from hi the correct online list and distributes it to all hosts

L∪{ h’,h’’}
t i' < t i' ' : h’’ gets from hi the correct online list and distributes it to all hosts

L∪{ h’,h’’}.

The proof can easily be extended to the case, where more than two hosts go online at
the ‘same’ time. The new host h* which finally updates the online list of hi, gets back
the correct online list and forwards it to all new and old hosts.
The algorithm even works if no host is already online at t0. At least one of the new
hosts, when vainly searching for a host being in the “doing work“ state, successfully
contacts all other new hosts, and, through the balancing operation, correctly updates
its and their online lists.

3.3 The front-end

As described above, the rendezvous component is part of the DreamTeam collabora-
tive environment. The rendezvous front-end is seamlessly integrated into the Dream-
Team front-end. The rendezvous algorithms are implemented as threads and run in
the background, more or less independently from the rest of the program. Important
state changes open notification windows, which have to be confirmed by the user.
Figure 4 shows a typical desktop.

Figure 4: The rendezvous front-end

The left window shows the current online list. Besides the system user name
(„name@host“), the time the user went online is displayed. The right window pro-
vides additional information.

4 Related Work

Snapshot problem/distributed termination detection: The distributed termination
detection as well as the snapshot problem [CL85] are related to the short-term ren-
dezvous problem. The distributed termination detection finds out, when a distributed
computation has been finished or run into a specific state. Snapshot algorithms de-
termine a consistent global state in a distributed computation. Both algorithms have to
deal with similar problems as the rendezvous algorithm. Nevertheless, there are two
major differences:

• The definition of „state“ in the rendezvous problem includes the offline state
which in terms of the algorithms above is not a state at all. A state for the snapshot
algorithm as well as for the distributed termination detection means a specific point
of computation and applies only to programs which are currently running.

• Both problems assume that all group members can be accessed by a well-known
and stable address.

Thus solutions for the problems above cannot be applied to the short-term rendezvous
problem.
Registrars: Centralised solutions which we mentioned in the beginning are realised in
a variety of session-oriented groupware systems. Groupkit and Habanero may serve
as examples.
Groupkit [RG96b] is based upon a decentralised architecture, the only exception
being the group rendezvous. A registrar runs on a well-known server and is the only
centralised process required in the Groupkit environment. Whenever a session is
created, the session profile is directed to the registrar. A user can load a list of all
sessions (running or not) from the registrar and get information for joining. The regis-
trar itself does not handle the creation of sessions, nor is he involved in users joining
or leaving sessions. Such requests are relayed to local session managers.
Habanero [NCSA] is fully centralised, thus the group rendezvous is easily integrated
into the session management process. In order to enable collaboration, a server ap-
plication has to run on a well-known server. Once the Habanero server is started, a
user can start a client application. Since session profiles reside on the central server, a
list of running sessions as well as the network addresses of current participants can be
loaded.
Directory services: The session directory service sdr [Han96] gives an example for a
completely decentralised service. It is based on IP multicast and provides functions
for announcing and scheduling sessions (e.g. video conferences). The announcement
system can be compared with a radio sender transmitting announcements. The creator
of a session distributes session announcements periodically on a multicast channel.
Everyone who is interested in announcements has to scan this channel. Whenever an
announcement is received, it is added to a local session list. If a receiver fails to re-
ceive a specific session announcement for a certain time, the receiver concludes that
this session is cancelled and deletes it from the local list.
Besides the announcement system, sdr provides a protocol for distributing session
descriptions and scheduling sessions.
Four11 [Four] provides another centralised directory service, the central server is a
WWW server which can be accessed via a common web browser. Four11 clients are
included into several conference systems such as CU-SeeMe [CU] and Netscape
Conference [Net]. The main idea of the Four11 service is to manage a huge database
of registered users. In order to register, users have to submit their names and email
addresses. Via this information, it is possible to search for other users manually. In
addition, Four11 provides rendezvous support for conference tools. During start-up,
the current user is checked into Four11 as being „online“. In order to build sessions,
the tool can then retrieve a list of other users which are currently online.

Mobile IP: The Mobile IP concept ([Per96], [JP97]) addresses a problem related to
the group rendezvous: address resolution. The current IP implementation assumes
that a host always resides in the same subnet during lifetime. Since the subnet address
is part of the Internet address, a host cannot migrate to another subnet without
changing its address. After an address has changed, messages to the old address can-
not be delivered any more.
The Mobile IP concept solves this problem. Mobile computers (e.g. laptops) can be
connected to the Internet via different subnets without changing their addresses. A so-
called home agent intercepts incoming messages for the mobile node and sends them
to the current address. The sender has not to know about this mechanism. Mobile IP
exists as a draft for the actual IP implementation (IPv4) but will be included in the
next IP realisation (IPv6).
Comparison: Many existing groupware systems neglect the group rendezvous. Espe-
cially long-term rendezvous are often not integrated into the environment and have to
be handled manually by an external communication system or tool. We strongly feel
that rendezvous support should be integrated into a groupware environment in order
to gain acceptance by end-users. The registrar concept is the most often used ap-
proach for rendezvous support in existing groupware systems, even if the session
communication is decentralised. The registrar is a straight-forward approach for
systems which are already organised in a centralised way, but we feel that a decentra-
lised rendezvous much better fits decentralised systems.
The session directory service sdr is an example for a decentralised architecture, but
covers only session announcements. The lack of persistence mechanisms leads to
long online times, both for the sender as well as for a receiver of announcements. In
addition, MBone technology is not accessible for a big community, thus a rendezvous
system should not solely be based upon MBone. Mobile IP covers only the address
resolution problem. Online states as well as session announcements have to be
distributed separately.

5 Conclusion

This paper presents a solution for the rendezvous problem. While long-term rendez-
vous, which emphasises session announcements, short-term rendezvous manages
online lists and perform address resolution.
Our solution covers both rendezvous and is based upon a completely decentralised
architecture. The long-term rendezvous uses two mechanisms. One mechanism di-
rectly exchanges session profiles when two or more members are online at the same
time. A second mechanism uses the standard services Email and Newsgroup for dis-
tributing session profiles.
The short-time rendezvous is supported by an algorithm which is economically from
the view of network traffic. Bulky broadcasts are avoided as far as possible, MBone
enabled networks are used to further reduce network loads.

References

[CL85] Chandy K. M., Lamport L.: Distributed Snapshots: Determining Global States of Dis-
tributed Systems, ACM Transactions on Computer Systems, Vol. 3, No. 1, Feb. 1985, 63-75

[CU] Enhanced CU-SeeMe Home Page http://www.cu-seeme.com
[Dee89] Deering S.: RFC 1112:Host Extensions for IP Multicasting, Request For Comments,

Aug. 1989
[Four] Four11 directory service, http://www.four11.com/
[Fu98] Fuchs T.: Entwurf und Realisierung einer Rendezvous-Komponente für eine dezentrale,

synchrone CSCW Umgebung, Diploma thesis, Fernuniversität Hagen, Apr. 1998
[JP97] Johnson D. B., Perkins C.: Mobility Support in IPv6, Mobility Support Working Group,

Internet Draft, Nov. 1997
[Han96] Handley M.: The sdr Session Directory: An Mbone Conference Scheduling and

Booking System, Department of Computer Science, University College London, Apr. 1996
[KL86] Kantor B., Lapsley P.: RFC 977: Network News Transfer Protocol, Request For

Comments, Feb. 1986
[NCSA] NCSA Habanero Homepage http://www.ncsa.uiuc.edu/SDG/Software/Habanero/

HabaneroHome.html
[Net] Netscape Home Page http://www.netscape.com
[Per96] Perkins C. (ed): RFC 2002: IP Mobility Support, Request For Comments, Nov. 1996
[Pos80] Postel J.: RFC 768: User Datagram Protocol, Request For Comments, Aug. 1980
[Pos82] Postel J.: RFC 821: Simple Mail Transfer Protocol, Request For Comments, Aug.

1982
[RG96] Roseman M., Greenberg S.: TeamRooms: Network Places for Collaboration, Proc. of

the ACM Conference on Computer Supported Cooperative Work, ACM Press, Nov. 1996,
325-333

[RG96b] Roseman M., Greenberg S.: Building Real-Time Groupware with GroupKit, A
Groupware Toolkit, ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1,
Mar. 1996, 66-106

[Roth98] Roth J., How to write shared applications with „DreamTeam“, Technical Reference,
Fernuniversität Hagen, Jan. 1998

[RU98] Roth J., Unger C.: Dream Team - a synchronous CSCW environment for distance
education, Proc. of the ED-MEDIA / ED-TELECOM 98, Freiburg, Jun. 1998

[RU98b] Roth J., Unger C.: Dream Team - a platform for synchronous collaborative applica-
tions, in Th. Herrmann, K. Just-Hahn (eds): Groupware und organisatorische Innovation (D-
CSCW'98), B. G. Teubner Stuttgard 1998, 153-165

[Scho96] Schooler E. M.: Conferencing and collaborative computing, Multimedia Systems,
Vol. 4, 1996, 210-225

