Cost and Benefit of Rigorous Decoupling

with Context-Specific Interfaces

Florian Forster
University of Hagen
UniversitatsstralRe
D-58097 Hagen
+49 (0) 2331 987-4290

florian.forster@fernuni-hagen.de

ABSTRACT

In Java programs, classes are coupled to each tittmrgh the
use of typed references. In order to minimize cimgplvithout

changing the executed code, interfaces can bedinteml for

every declaration element such that each interacgains only
those members that are actually needed from thectsbj
referenced by that element. While these interfacasa be

automatically computed using type inference, cameérave been
raised that rigorous application of this principleuld increase
the number of types in a program to levels beyoadageability.

It should be clear that decoupling is required oimyselected
places and no one would seriously introduce a nahimterface

for every declaration element in a program. Newwetss we have
investigated the actual cost of so doing (countetha number of
new types required) by applying rigorous decouptm@ number
of open source Java projects, and contrasted it thi¢ benefit,
measured in terms of reduced overall coupling. @esults

suggest that (a) fewer new interfaces are needmd dhe might
believe and (b) that a small number of new inte$aaccounts for
a large number of declaration elements. Particulthe latter

means that automated derivation of decoupling fates may at
times be useful, if the number of new interfacefsmited a priori

to the popular ones.

Categoriesand Subject Descriptors

D.2.2 Design Tools and Techniques]: Modules and interfaces

General Terms
Design

Keywords

The Java Language::Java-specific metrics

The Java Language::Optimization

Software Engineering with Java::Tools for Java Paogning

1. INTRODUCTION

Interface-based programming as described in [Bceepted as a
useful object-oriented programming technique. Adow to it,

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oe finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

PPPJ 2006, August 30 — September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM 1-58113-000-0/00/0004...$5.00.

references in a program should be declared witghfextes and not
classes as their types. Two main benefits canxpected from
this: First, flexibility is increased as classespiementing an
interface can be exchanged without notificatiomhef client using
the classes' services via the interface. Secomdaticess to the
class is restricted to the methods declared inrttegface typing a
variable which holds a reference to an instandd®tlass. While
these interfaces can be automatically computed gusype
inference, concerns have been raised that rigomppcation of
this principle would increase the number of types iprogram to
levels beyond manageability

Nevertheless we have investigated the actual cbsioodoing
(counted as the number of new types required) bylyamm
rigorous decoupling to a number of open source pesjects, and
contrasted it with the benefit, measured in termisresluced
overall coupling.

The rest of the paper is organized as follows.eltisn 2 we will

briefly introduce the refactoring and the metricsed in this

paper, which already have been described in [X0kekction 3.1
we introduce our test suite, which consists of gpen source
projects. Afterward, we outline the initial situati before the
refactoring using various metrics in section 3.Be Bame metrics
are applied on the projects after the refactoringeaction 3.3. In
section 3.4 we discuss the costs of the refactaningrms of new
types required in contrast to the reduced overalipting. In

section 3.5 we present additional insights gaineding the

investigation of our test suite. Section 4 recdafets our results;
section 5 concludes and provides pointers to futtme.

2. THE REFACTORING
2.1 Measuring Coupling

Typing rules in Java enforce the type of a dedlamagélement to
offer at least the set of methods invoked on thatlatation
element. Coupling between classes increases tdsléayond
what is necessary, when a declaration elementdsmel with a
type offering more methods than actually needed thig
declaration element. In the following we use thelgguestion
metric approach to derive a suitable metric meagwinnecessary
coupling.

The methods publicly available for a typeare a subset of all the
methods declared i or one of its supertypésLet u(T) be the
set of methods declared in a type T. Then we declar

! In Java we do not count the methods inherited fBiject.

Table 1: Use of interfaces and decoupling quality in six open source proj ects before the refactoring

Project: JChessBoar JUnit Mars GoGrinder DrawSWF HotDraw
Types 49 (100% 73 (100%) 103 (100%6) 118 (10d%) (@46%) 395 (100%
Classes 32 (65%) 48 (66%) 77 (75%) 95 (80%) BIA) 301 (76%)
Interfaces 17 (35% 25 (34%) 26 (25%) 23 (20pb) (1BB6) 94 (24%)
Ratio 1:0,53 1:0,52 1:0,34 1:0,24 1:0,23 1:0J31
Declaration Elements 190 166 278 468 1361 1801
Class typed 19@ 71 244 430 1109 395
Interface typed [0 95 34 1B 252 1406
Ratio - 1:1,338 1:0,139 1:0,040 1:0,227 1:3,560
ACD
Average 0,365 0,21¢ 0,447 0,567 0,416 0,142
Highest 0,813 0,997 L 0,998 1 1
Lowest 0 0 0 0 q q
BCD
Average 0,341 0,211 0,336 0,484 0,351 0,100
Highest 0,813 0,993 0,96{L 0,998 0,906 0,998
Lowest 0 0 0 0 q
ACD-BCD
Average 0,024 0,00% 0,110 0,084 0,065 0,041
Highest 0,222 0,324 L 0,795 1 1
Lowest 0 0 0 0 q [0

n(T):={m0O u(T)|mis a public nonstatic method }
as the set of methods offered by a type all declaration element
typed withT.

In strongly typed languages like Java, each dedateraelement
has a declared type. Besides its declared typdy @eclaration
element also has an inferred type. Here, we ddfieeinferred
type of a declaration elemedias the typé whose set of publicly
available methods(l) is the smallest set containing all methods

directly accessed od, united with the sets of methods accessed

on all declaration elementspossibly gets assigned to. We define
n(l) as a function ofl, y(d), which can be computed by analyzing
the source code usin@atic Class Hierarchy Analysis as
described in [9]. We call this inferred typea context-specific
interface or minimal interface for d andy(d) theaccess set of d.

In order to reduce unnecessary coupling betweessetawe have
to redeclare every declaration elemdntvith the typel so that

n(l)=yd), i.e. the new declared type af offers only those
methods which are actually invoked dor one of the declaration

elementsd possibly gets assigned to. According to the goal

guestion metric approach described in [14] we czfind a metric
for coupling. Our question is how much unnecessanypling is

introduced to a typd by means of a declaration elemeintand

our goal is to reduce this unnecessary coupling. tiéeefore

define the coupling induced by a declaration elgntbras the

quotient of the number of methods needed fchrand the number
of methods provided by its declared typre

[/(d)]
| 72(T)]|

A value of 1 indicates thal is declared with the least specific
(most general ominimal in the sense that it has as few members
as possible) typd, i.e. the type offering only those methods
actually needed, whereas one of 0 implies that nohd’s
methods are used.

Obviously 1 — the quotient is a measure of the iptessseduction
of the unnecessary coupling established by the ads@n
elementd, if d is redeclared with a typeso thatr(l)=y(d). We
have called this metric thactual Context Distance (ACD) [10]
for a declaration elemedtwith typeT and write

AcD(d,T) = D= 1()] ﬂ(T|37|(_r|)/|(d)|

The Best Context Distance (BCD) for a declaration elemedtis
then the lowest value of ACD achievable by redéutpd with a
type T which is already available in the project. It imaasure for
the maximum decoupling that can be achieved bygusinly
existing types.

We define ACD and BCD for a typE as the average ACD and
BCD of all declaration elements typed withThe ACD and BCD
for a project is the weighted average, the weidl typeT being
the number of declaration elements typed Witlof the ACD and
BCD for each type of the project.

2.2 Refactoring for interface-based
programming

In order to improve decoupling to the maximum, va@ cise the
refactoring described in [10]. It reduc&€D(d,T) to zero for
every declaration elemedtin a project. This is done by either

Table 2: Use of interfaces and decoupling quality in six open sour ce proj ects after therefactoring

Project: JChessBoar JUnit Mars GoGrinder DrawSWF HotDraw

Types 92 (100% 110 (100%) 190 (10096) 260 (104%) 9 @D0%) 709 (100%
Classes 32 (35% 48 (43%) 77 (41%) 95 (37%) 23 301 (42%)
Interfaces 60 (65% 63 (57%) 113 (59%6) 165 (63%) 317 (53%) 418 (58%

Ratio 1:1,88 1:1,31 1:1,4f 1:1,74 1:1,03 1:1§39

Declaration Elements 17y 124 267 447 1241 1655
Class typed 103 34 8L 121 404 B1
Interface typed 74 9 186 326 837 1574
Ratio 1:.0,71 1:2,64 1:2,30 1:2,69 1:2,07 1:19{43

Declaration Elements per type 1,92 102 1/41 1,72 ,07 2 2,33

a) using an existing, better suited interfader d with =(1)=u(d),
or by

b) introducing a new interfadefor d tailored to fulfill z(1)=1(d)
for the redeclaration af so thatACD(d,|)=0.

For the purpose of redeclarinigwith its least specific typé, no
matter if this type already exists or is newly auuced, the type
inference algorithm we use has to consider threesca

First if the declared typ& of a declaration elemeuntis already

minimal, i.e.n(T)=1(d), no changes to the program are necessary.

If however (T)|>(d)|, i.e.d’s declared type is not minimal, add
terminates an assignment chain, dés not assigned to any other
declaration element, all we have to do is deaseminimal type

I, i.e.n(l)=u(d), as a supertype df and redeclard with I.

Finally d's declared type might neither be minimal nor teratée
an assignment chain. To illustrate this case we aiggimitive
scenario with two declaration elememisa and B b and the
assignmenb=a.

Assuming that the program at hand is type corradtasing the
rules for typing in Java we know that the typés the same type
asA or a supertype oA. Computingya) gives us the new type
for the declaration elememt Unfortunately redeclaring with |
results in a program which is not type correctttesassignment
of atob, i.e.b=afor| aandB b, is undefined in Java, ffis not a
subtype ofB .

To solve this issue we can simply declaes a subtype d@. This
makes the program type correctfass a subtype of or equal B
and| is a subtype of or equal t&. However introducing this
relationship might renders not to be a minimal type fax as it
might add unwanted methodslt@oming fromB, i.e.n(B) - x(l)
is not empty.

As the introduction of this relationship might résan unwanted
methods added th we redeclare the declaration elembmith
some typel, so that] is a supertype of, to make the program
type correct again.

In casel is a real supertype of i.e.n(J) O (1), we have to make
sure that] is declared as a supertypel ofFurthermore in order to
keep other assignmentshi@orrect we have to make sure thas
declared as a supertypekf

2.3 Limitations of the Refactoring for Java

The implementation of the refactoring describethimlast section
has a few limitations due to Java’s type systerfields of a class
are directly accessed using a declaration elemeant,without
using accessor methods, this declaration element ret be
redeclared with an interface. Even though one caldfine an
abstract class for the purpose of redeclaratiomevaot do so, as
multiple inheritance is not possible in Java. Thene this
workaround would work only in a limit number of eas
Furthermore redeclaration of a declaration elemeith an
interface is also not possible if nonpublic methadsaccessed on
the declaration element. Thus we excluded thesdardtion
elements from our investigation as they can natedeclared, i.e.
unnecessary coupling does not exist.

The second limitation are empty interfaces. Detlamaelements
with empty access sets might be redeclared withtyemgerfaces
as they are an ideal type. However empty interfasescalled
tagging interfaces or marker interfaces, are used innstanceof
booleanexpressions in Java. Typing a declaration eleméhtam
empty interface might therefore lead to circumséandn which
the boolean expression evaluates to true afterettheclaration. To
avoid these cases we rather redeclare declarakénents with
empty access sets with the root of the type hibgatice.Object in
Java. As only the number of declaration elememgsdywith types
defined within the project is considered for thetnus, the
declaration elements retyped witBbject disappear. This is
justified by the fact that every declaration eletmehich is typed
with Object has no influence on the coupling as a “couplinghw
Object always exists due to the nature of Java, i.e.yewygre is
subtype ofObject.

Furthermore interfaces already existing in a projeight become
superfluous after the refactoring, i.e. no declaratlements are
typed with these interfaces. However, even thoughcauld, we
do not delete these interfaces!

In the remainder of this paper we will use Infer&ygn a number
of open source projects, so that we can evaluatethe costs, in
terms of newly introduced types, and the benefitsterms of
improved decoupling, of rigorous decoupling.

Table 3: Comparison of the situation before and after therefactoring

Project: JChessBoar JUnit Mars GoGrinder DrawSWF HotDraw

ATypes +43 / +88% +37 / +50% +87 / +85P6 +142 | +105%+253 / +73% +314 / +809
Alnterfaces +43 [- +37 /1 +37% +87 / +335M%0 +14B1#% | +253/+395% +314 / +343%

ADeclaration Elements -13/-7% -42 [-25% -11/7-4% -21/-5% -120/-8% -146 / -8%
AClass typed -87 /-46 % -37 1 -52% -163 / -66% -BZBB% -705 / -64%) -314 / -80%
Alnterface typed +74 [t % -517-5% + 152/ +308/+1711%| +585/+232% +168 / +12P%6

+447%
AACD average -0,365 -0,216 -0,447 -0,567 -0,416 4D,1
ACD average per new type -0,0084 -0,0057 -0,0051 ,0040 -0,0016 -0,0004

2.4 Implementation of the Refactoring

The refactoring described in [10] was implemented a@alled
InferType?. The algorithm used for applying the refactoriogat
complete project is outlined below:

changes=f al se
do
foreach type in project
DEs: =get Decl ar ati onEl emrent s(type)
foreach DE in DEs
r ef act or (DE)
i f (hasChanged(project))
changes=true
endi f
endf or
endf or
whi | e(changes)

For each type in the project we iterate over all treclaration
elements declared with this type. We then applyréfactoring
described in section 2.2 to each of these deateraiements. If
there was a change, i.e. a new type was introdt@éte project
during the refactoring of a declaration element; rgpeat the
process until no more changes happen. After usiisgaigorithm
on a project every declaration element in thisgubjs typed with
a minimal type, i.eACD(d,T) is always zero.

3. ANALYISING RIGOROUS
DECOUPLING WITH CONTEXT-
SPECIFIC INTERFACES

3.1 Introducing the Test Suite

To evaluate the costs and benefits of rigorous ugary using
minimal interfaces we investigated six picked opsource

projects. We created a balanced test suite usinmlao Java
projects which span a number of domains.

2 Available at http://www.fernuni-hagen.de/ps/doc&IType!/.

3 We used the popularity rating provided at
http:/www.freshmeat.net.

JChessBoard [2] is a chess game capable using a regular TCP/IP
connection to play against human opponents. Furtber it is
capable of editing and viewing the Ptiarmat.

JUnit [3] is a popular framework for unit testing in the Java
programming language.

Mars [4] is a simple, extensible, services-oriented netvebakus
monitor written in Java.

GoGrinder [5] is a Java program for practicing Go problems
using the SGFformat to load these problems.

DrawSWF [6] is a simple drawing application written in Java.
The drawings created can be exported as an aninBiEH
(Macromedia Flash) file.

JHotDraw [7] is a well-known framework for developing two-
dimensional structured drawing editors.

These projects have been completely refactoredyusiferType.
Table 1 presents metrics regarding the size ofptiogects and
decoupling before the refactoring occurs. We wificdss these
results in detail in the next subsections.

3.2 Beforethe Refactoring

3.21 General Observations

In every project we found that there exist moressts than
interfaces. Values range from about two classesinterface to

about five classes per interface. We expect thaer athe

refactoring the numbers are in favor of the integf i.e. there are
more interfaces than classes in each project.

Table 1 also reveals that there are developergraect teams,
which use interfaces for typing declaration elersgiaind those
who don’t. In particular ifJUnit andJHotDraw more declaration
elements are typed with interfaces than with cks€entrary to
these two projects a much smaller number of detider@lements
are typed with interfaces iMars, GoGrinder and DrawSWF.
Even worse inJChessBoard there is not a single declaration
element typed with an interface.

4 PGN stands for "Portable Game Notation", a stahdasigned
for the representation of chess game data usingIA&X files.

5 SGF is the abbreviation of 'Smart Game Format filh format
is designed to store game records of board gameswo
players.

As could be expected given the large number of |aviai
interfaces ACD values for botlunit andJHotDraw are low. For

3.3 After the Refactoring

example inJHotDraw a declaration element on average does not 3.3.1 General Observations

use 10% of the available methods, whereas a dé@olm@ement

Table 2 shows the same metrics as Table 1, buttithes after

in GoGrinder on average does not use 57% of the available Using InferType on the projects. Note that we celitall ACD

methods.

However, BCD values indicate that decoupling in m@ibjects
could be improved using only existing types. Newelgss these
improvements are small and therefore we concludat th
developers already make good use of existing typegyping
declaration elements.

3.2.2 TheProjectsin Detail

JChessBoard was the smallest project in our test suite. Even
though half of the used types in these projectsraeefaces, not a
single declaration element is typed with an inwefarhis is due
to the fact that JChessBoard extends classes fred@K. These
classes therefore contain methods from the JDkKsetafor which
the formal parameters are typed with interfacese Bu Java’'s
typing rules the classes in JChessBoard have ttemgnt these
interfaces to make use of the inherited methodslitAahally 149
out of 190 declaration elements are typed with oot of five
types from the total number of 49 available typ#/e. expect that
the benefit of refactoring in relation to the numbkd newly
introduced types is biggest for this project.

JUnit is one of two projects in our test suite in whiclorm
declaration elements are typed with an interfaea thith a class.
In JUnit the difference of the average ACD and the aveB@P

is significantly low, i.e.JUnit's declaration elements are mostly
typed with the best fitting type existing in the ojact.
Furthermore the interfagenit.framework.Test is used to type 68
out of 166 declaration elements. We expect thatt mbshese
declaration elements will be retyped with new ifgees, i.e. we
expect thafunit.framework.Test offers more methods than needed
for most declaration elements.

Mars is the counterpart tdUnit regarding the usage of existing
types. Redeclaration of every declaration elemeitit wxisting
types would already reduce the ACD value by 0,ldtahly,
similar to JChessBoard, five out of 103 types account for 143 out
of 278 declaration elements.

GoGrinder is similar to JChessBoard in terms of typing
declaration elements with interfaces. Only 4% dfdaclaration
elements in this project are typed with interfadasithermore it
has the highest average ACD value of all projasts.expect that
some types, most likely the ones with a high ACDuea will
trigger the creation of many new interfaces.

DrawSWF has the lowest class-to-interface ratio of all pctg.
There are approximately five times as many classemterfaces
used in this project. Furthermore half of the dextlan elements
were typed with 7% of the existing types.

JHotDraw is outstanding in two ways. First it is the project
which makes most use of interfaces for typing datien
elements. Second both the average ACD value anégvtbmge
BCD value are the lowest in our test suite, i.erehis little
coupling existing in this project and most timeg thest fitting
and existing type is used to type a declaratiometfd.

and BCD values as the very purpose of the refamjds making
these values zero, in which it succeeded.

However, it is surprising that less new interfasese introduced
to the projects than one might fear. The worst caseone new
interface for every existing declaration elemergtyar occurred.
Actually all projects were not even close to thest@ase as the
last row in Table 2 shows. This is an indicatioattht least some
declaration elements are using the same accesansetould

therefore be declared with the same type. NeversBethere are
many newly introduced interfaces which are unpopule. there

are only few declaration elements typed with thederfaces.

Figures 1 to 8 in the appendix show the popularityterms of

declaration elements typed with a particular irteef of each
interface for every project.

Yet, not every declaration element is declared waithinterface as
its type. Except the two extremd€hessBoard and JHotDraw
around two or three times as many declaration el&srere typed
with interfaces as with classes.

A comparison of the situation before and after rfactoring is
show in Table 3. In the next section we will prasaore detailed
information about the changes which occurred durihg
refactoring.

3.3.2 The Projectsin Detail

JChessBoard profited the most from the refactoring which is not
astonishing, because it was using no interfacell domatyping
declaration elements. About half of the declaragtements are
retyped with interfaces during the refactoring. rRrol49
declaration elements declared with one out of fiyges only 73
declaration elements where still typed with thegees$ after the
refactoring. In particular all declaration elemefdsmally typed
with the inner classSTR from jchessboard.PGN are now typed
with an interface.

JUnit offered a little surprise as after the refactorifess
declaration elements were typed with interfaces thafore the
refactoring. This is due to the fact that declaratielements
formerly typed with an interface are now typed withject, as the
access set of these declaration elements was efphe precise,
42 out of 68 declaration elements of the interface
junit.framework.Test are now typed witlObject.

Mars had a similar starting position akChessBoard. In both
projects a small number of types have been usetyge an
overwhelming part of the existing declaration elatae Hence
both projects behaved similar during the refactprihike in
JChessBoard, from 143 declaration elements typed with one out
of five types from all available types only 46 dem were still
typed with these types after the refactoring. Irtipalar from the

34 declaration elements typed with the degaltara.mars. Status
only one was still typed with this class after tefactoring.

GoGrinder was the second worst projedChessBoard being the
worst- in terms of using interfaces for typing deation elements.
Furthermore it had the highest average ACD valuallgirojects,
i.e. a declaration element iBoGrinder on average did not use
57% of the available methods, and we expectedsiiaie types

will trigger the creation of many new interfacesor Fexample
GoGrinder.ProbCollection, the most popular type before the
refactoring, triggered the creation of 19 new ifstegs for
redeclaring the declaration elements formally typedth
GoGrinder.ProbCollection.

DrawSWF had the lowest class-to-interface ratio before the

refactoring and after the refactoring not much desh It is
interesting to note that one of the newly introdLagterfaces is
more popular than any interface or class beforerefectoring.
This leads to the conclusion that this new interfég used to
redeclare declaration elements from various typesstrong
indication that an unwanted structural match o@mliriThis leads
to circumstances in which two declaration elemeri®e
considered in terms of types, and therefore théaast which can
be accessed, even though one of the objects iShos even the
program is type correct; semantics of the prograightmhave
changed. Furthermore 158 of the 253 newly introdungerfaces
were so specific that each of them was used tgpeebnly one
declaration.

JHotDraw was the project which made the heaviest use
interfaces for typing declaration elements. Furtieme the ACD
values were small throughout, i.e. the amount afsed methods
was relatively small. Thus newly introduced integfa are very
specific. As a matter of fact, 164 out of 324 newiyroduced
interfaces were used to redeclare just one deiaratement.

3.4 Costsof Rigorous Decoupling

About twice as many types exist after the refaopthan before
refactoring in every project. Even though the idtrotion of
additional types is necessary for removing unnecgss
decoupling every additional type makes the typeanady harder
to understand and maintain. For example the
GoGrinder.ProbCollection in the projectGoGrinder implements
as many as seventeen interfaces after the refagtorherefore to
evaluate the refactoring we use the number of némtlpduced
types as the cost for the refactoring.

Table 3 shows the average reduction of the ACDevalurelation
to the number of new types introduced, i.e. théndiighe value
the better. We will use this number as our cos#fieratio as the
number of new types is our cost of the refactoringd the
average reduction of the ACD value is the benefitthe
refactoring.

The low number fodHotDraw is eye-catching but not surprising,
as this project already used more interfaces fointy declaration
elements than classes before the refactoring. Agiamed in the
last section about half of the new interfaces veerespecific that
they were used to type just one declaration elemact.

The cost/benefit ratio foDrawSWF is similar to the one of

(0]

=

JHotDraw. Thisis due to the fact that during the refactoring many

very specific interfaces have been introduced i® th

In the remaining four projects the newly introdudederfaces
were not as specific as in the above mentionedept®j This
circumstance is reflected in the higher valueshef ¢ost/benefit
ratio. Still a big part of the newly introduced erflaces was so

& Unfortunately we have to omit the data which pded this
insight due to its length.

specific that only few declaration elements cou#l rbdeclared
with these interfaces. Figures 1 to 8 in the appestow the
popularity of the newly introduced types for a eaj It is eye-
catching that all projects have a few popular arghyrunpopular

types.

3.5 Popular Types

Therefore the most interesting insight we gainedragfactoring
for each project is thatopular access sets, which lead tgopular
interfaces during the refactoring, exist in every projectgiliies 1
to 8 in the appendix show the popularity of eaclferied
interface. The popularity of an interface is defiress the number
of declaration elements (the y-axis in the figurdsglared with
this interface.

All the diagrams in Figures 1 to 8 suggest a padéstribution
[13]. As a matter of fact the distribution of deelgon elements
among the types approximately follows the 80/2@,ruk. 80% of
all declaration elements are typed with 20% ofatailable types,
whereas the remaining 20% of all declaration elémare typed
with 80% of the available types. Unfortunately maseas in
which such a distribution occurs suffer from thecsdled long

tail. In our case the long tail are all those typescivtare used
only by a few declaration elements.

The results JHotDraw provides strong evidence that the
cost/benefit ration also suffers from this disttibn and that
popular interfaces should be preferred. The avefgge value of
this project was already low before the refactoring. the
declared types provided a good decoupling. Thectefing
introduced many unpopular types which were usecbtype just
one declaration element. This consequently led h® worst
cost/benefit ratio. We therefore conclude that giginly the most

class popular types, i.e. the 20% which are used by 80#heretyped

declaration elements, instead of using minimal rfates
everywhere results in a better cost/benefit ratiterms of average
ACD decrease per type.

In [11] we presented a metric, a tool and a guidefor finding

popular access sets for a specific type. Using réfactoring

however explicitly declares interfaces for all ptawlaccess sets in
a project. These popular interfaces can be intredu the

original version of the project to reduce the ACBlue, yet

keeping the number of new types limited.

4, LESSONSLEARNED

In [12] the author noted that interfaces represeatroles a class
plays and vice versa. However using an automafactaring to
introduce minimal interfaces for every declarati@ement
violates this principle. For example all declaratElements typed
with junit.framework.Test in JUnit obviously play a specific role
which is designated by the name of the interfaderAedeclaring
these declaration elements wibibject no indication to a role is
left. In section 3.5 we have shown that popularesygxist in
every project after the refactoring. [11] has shawat in many
cases a role can be found for these popular types.

Rigorous decoupling comes with a high cost as shiowsection
3.4. In section 3.5 we argued that introducing oplypular
interfaces might significantly reduce coupling, yeteping the
number of new types small.

Finally the results from section 3.2 indicate tfiating the best
fitting and existing type in a project for typing declaration

element is not a problem. The difference of ACD &&D value
was low amongst all projects. This might be dughi fact that
refactorings in prominent IDEs like Eclipse andelhid exist
which help the developer to find the best fittiygpe among all
existing.

5. FUTURE WORK AND CONCLUSION

We have used an existing refactoring to evaluaté lsost and
benefit of the most rigorous decoupling as madesiptes by
introducing context-specific types. Our resultsvide evidence
that -as would be expected- rigorous decouplingds a good
idea. Too many unpopular interfaces are introdugedng the
refactoring. The data we have shown indicate thatbest trade-
off between decoupling and number of types is tomoduce only
the most popular interfaces for classes. We wileh@ adjust our
refactoring and present data which either confiomslisproves
our assumption.

6. ACKNOWLEDGMENTS
The author thanks Andreas MeiBner and Phillip Maf@r
implementing most of the described refactoring.

7. REFERENCES
[1] Lowy, J.Programming .NET Components, O'Reilly Media,
2005.

[2] JChessBoard is available from
http://ichessboard.sourceforge.net

[3] JUnitis available from http://www.junit.org.

[4] Mars is available from http://leapfrog-mars.souocgé.net/.

[5] GoGrinder is available from
http://gogrinder.sourceforge.net/.

[6] DrawSWF is available from http://drawswf.sourcefarget/.

[7] JHotDraw is available from http://www.jhotdraw.arg/

[8] Gamma, E. et alDesign Patterns, Addison-Wesley
Professional, 1997.

[9] Dean, J., Grove, D. and Chambers,@ptimization of
object-oriented programs using static class hierarchy
analysis, In: Proc of ECOOOP, 1995, 77-101.

[10] Steimann, F., Mayer, P. and Meil3ner, Becoupling classes
with inferred interfaces, In: Proceedings of the 2006 ACM
Symposium on Applied Computing, (SAC) (ACM 2006).

[11] Forster, F.Mining Interfaces In Java Programs, Technical
Report, Fernuniversitat Hagen, 2006.

[12] Steimann, F.Role = Interface: a merger of concepts,
Journal of Object-Oriented Programming 14:4, 2(XB532.

[13] Pareto Distribution,
http: //en.wikipedia.org/wiki/Pareto_distribution, last visit
27.05.2006

[14] Basili, V.R., Caldiera, G. and Rombach, Dhe goal
question metric approach, In: Encyclopedia of Software
Engineering, (John Wiley & Sons, 1994).

Appendix A

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Figure1: Popularity of new interfacesin JChessBoard

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253

1 8 1522 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141

Figure 2: Popularity of new interfacesin DrawSWF

Figure 3: Popularity of new interfacesin GoGrinder

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Figure 4: Interface Popularity of JHotDraw

Figure5: Interface Popularity of JUnit

1 5 9 13 17 21 25 29 33 37 4145 49 53 57 6165 69 73 77 81 85

Figure 6: Interface Popularity of Mars

