
Cost and Benefit of Rigorous Decoupling
with Context-Specific Interfaces

 Florian Forster
University of Hagen
Universitätsstraße
D-58097 Hagen

+49 (0) 2331 987-4290

florian.forster@fernuni-hagen.de

ABSTRACT
In Java programs, classes are coupled to each other through the
use of typed references. In order to minimize coupling without
changing the executed code, interfaces can be introduced for
every declaration element such that each interface contains only
those members that are actually needed from the objects
referenced by that element. While these interfaces can be
automatically computed using type inference, concerns have been
raised that rigorous application of this principle would increase
the number of types in a program to levels beyond manageability.
It should be clear that decoupling is required only in selected
places and no one would seriously introduce a minimal interface
for every declaration element in a program. Nevertheless we have
investigated the actual cost of so doing (counted as the number of
new types required) by applying rigorous decoupling to a number
of open source Java projects, and contrasted it with the benefit,
measured in terms of reduced overall coupling. Our results
suggest that (a) fewer new interfaces are needed than one might
believe and (b) that a small number of new interfaces accounts for
a large number of declaration elements. Particularly the latter
means that automated derivation of decoupling interfaces may at
times be useful, if the number of new interfaces is limited a priori
to the popular ones.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces

General Terms
Design

Keywords
The Java Language::Java-specific metrics
The Java Language::Optimization
Software Engineering with Java::Tools for Java Programming

1. INTRODUCTION
Interface-based programming as described in [1] is accepted as a
useful object-oriented programming technique. According to it,

references in a program should be declared with interfaces and not
classes as their types. Two main benefits can be expected from
this: First, flexibility is increased as classes implementing an
interface can be exchanged without notification of the client using
the classes' services via the interface. Second, the access to the
class is restricted to the methods declared in the interface typing a
variable which holds a reference to an instance of the class. While
these interfaces can be automatically computed using type
inference, concerns have been raised that rigorous application of
this principle would increase the number of types in a program to
levels beyond manageability

Nevertheless we have investigated the actual cost of so doing
(counted as the number of new types required) by applying
rigorous decoupling to a number of open source Java projects, and
contrasted it with the benefit, measured in terms of reduced
overall coupling.

The rest of the paper is organized as follows. In section 2 we will
briefly introduce the refactoring and the metrics used in this
paper, which already have been described in [10]. In section 3.1
we introduce our test suite, which consists of six open source
projects. Afterward, we outline the initial situation before the
refactoring using various metrics in section 3.2. The same metrics
are applied on the projects after the refactoring in section 3.3. In
section 3.4 we discuss the costs of the refactoring in terms of new
types required in contrast to the reduced overall coupling. In
section 3.5 we present additional insights gained during the
investigation of our test suite. Section 4 recapitulates our results;
section 5 concludes and provides pointers to future work.

2. THE REFACTORING
2.1 Measuring Coupling
Typing rules in Java enforce the type of a declaration element to
offer at least the set of methods invoked on that declaration
element. Coupling between classes increases to levels beyond
what is necessary, when a declaration element is declared with a
type offering more methods than actually needed by this
declaration element. In the following we use the goal question
metric approach to derive a suitable metric measuring unnecessary
coupling.

The methods publicly available for a type T are a subset of all the
methods declared in T or one of its supertypes1. Let µ(T) be the
set of methods declared in a type T. Then we declare

1 In Java we do not count the methods inherited from Object.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

}|)({:)(methodnonstaticpublicaismTmT µπ ∈=

as the set of methods offered by a type T to all declaration element
typed with T.

In strongly typed languages like Java, each declaration element
has a declared type. Besides its declared type, each declaration
element also has an inferred type. Here, we define the inferred
type of a declaration element d as the type I whose set of publicly
available methods π(I) is the smallest set containing all methods
directly accessed on d, united with the sets of methods accessed
on all declaration elements d possibly gets assigned to. We define
π(I) as a function of d, ι(d), which can be computed by analyzing
the source code using Static Class Hierarchy Analysis as
described in [9]. We call this inferred type I a context-specific
interface or minimal interface for d and ι(d) the access set of d.

In order to reduce unnecessary coupling between classes we have
to redeclare every declaration element d with the type I so that
π(I)=ι(d), i.e. the new declared type of d offers only those
methods which are actually invoked on d or one of the declaration
elements d possibly gets assigned to. According to the goal
question metric approach described in [14] we can define a metric
for coupling. Our question is how much unnecessary coupling is
introduced to a type T by means of a declaration element d, and
our goal is to reduce this unnecessary coupling. We therefore
define the coupling induced by a declaration element d as the
quotient of the number of methods needed from d, and the number
of methods provided by its declared type T:

|)(|

|)(|

T

d

π
ι

A value of 1 indicates that d is declared with the least specific
(most general or minimal in the sense that it has as few members
as possible) type T, i.e. the type offering only those methods
actually needed, whereas one of 0 implies that none of T’s
methods are used.

Obviously 1 – the quotient is a measure of the possible reduction
of the unnecessary coupling established by the declaration
element d, if d is redeclared with a type I so that π(I)=ι(d). We
have called this metric the Actual Context Distance (ACD) [10]
for a declaration element d with type T and write

|)(|
|)(||)(|

),(
T

dT
TdACD

π
ιπ −=

The Best Context Distance (BCD) for a declaration element d is
then the lowest value of ACD achievable by redeclaring d with a
type T which is already available in the project. It is a measure for
the maximum decoupling that can be achieved by using only
existing types.

We define ACD and BCD for a type T as the average ACD and
BCD of all declaration elements typed with T. The ACD and BCD
for a project is the weighted average, the weight of a type T being
the number of declaration elements typed with T, of the ACD and
BCD for each type of the project.

2.2 Refactoring for interface-based
programming
In order to improve decoupling to the maximum, we can use the
refactoring described in [10]. It reduces ACD(d,T) to zero for
every declaration element d in a project. This is done by either

Table 1: Use of interfaces and decoupling quality in six open source projects before the refactoring

Project: JChessBoard JUnit Mars GoGrinder DrawSWF JHotDraw

Types 49 (100%) 73 (100%) 103 (100%) 118 (100%) 346 (100%) 395 (100%)

 Classes 32 (65%) 48 (66%) 77 (75%) 95 (80%) 282 (82%) 301 (76%)

 Interfaces 17 (35%) 25 (34%) 26 (25%) 23 (20%) 64 (18%) 94 (24%)

 Ratio 1:0,53 1:0,52 1:0,34 1:0,24 1:0,23 1:0,31

Declaration Elements 190 166 278 468 1361 1801

 Class typed 190 71 244 450 1109 395

 Interface typed 0 95 34 18 252 1406

 Ratio - 1:1,338 1:0,139 1:0,040 1:0,227 1:3,560

ACD

 Average 0,365 0,216 0,447 0,567 0,416 0,142

 Highest 0,813 0,997 1 0,998 1 1

 Lowest 0 0 0 0 0 0

BCD

 Average 0,341 0,211 0,336 0,484 0,351 0,100

 Highest 0,813 0,992 0,961 0,998 0,996 0,998

 Lowest 0 0 0 0 0 0

ACD-BCD

 Average 0,024 0,005 0,110 0,084 0,065 0,041

 Highest 0,222 0,326 1 0,795 1 1

 Lowest 0 0 0 0 0 0

a) using an existing, better suited interface I for d with π(I)=ι(d),
or by

b) introducing a new interface I for d tailored to fulfill π(I)=ι(d)

for the redeclaration of d so that ACD(d,I)=0.

For the purpose of redeclaring d with its least specific type I, no
matter if this type already exists or is newly introduced, the type
inference algorithm we use has to consider three cases.

First if the declared type T of a declaration element d is already
minimal, i.e. π(T)=ι(d), no changes to the program are necessary.

If however |π(T)|>|ι(d)|, i.e. d’s declared type is not minimal, and d
terminates an assignment chain, i.e. d is not assigned to any other
declaration element, all we have to do is declare d’s minimal type
I, i.e. π(I)=ι(d), as a supertype of T and redeclare d with I.

Finally d’s declared type might neither be minimal nor terminate
an assignment chain. To illustrate this case we use a primitive
scenario with two declaration elements A a and B b and the
assignment b=a.

Assuming that the program at hand is type correct and using the
rules for typing in Java we know that the type B is the same type
as A or a supertype of A. Computing ι(a) gives us the new type I
for the declaration element a. Unfortunately redeclaring a with I
results in a program which is not type correct, as the assignment
of a to b, i.e. b=a for I a and B b, is undefined in Java, if I is not a
subtype of B .

To solve this issue we can simply declare I as a subtype of B. This
makes the program type correct as A is a subtype of or equal to B
and I is a subtype of or equal to A. However introducing this
relationship might renders I not to be a minimal type for a as it
might add unwanted methods to I coming from B, i.e. π(B) - π(I)
is not empty.

As the introduction of this relationship might result in unwanted
methods added to I, we redeclare the declaration element b with
some type J, so that J is a supertype of I, to make the program
type correct again.

In case J is a real supertype of I, i.e. π(J) ⊂ π(I), we have to make
sure that J is declared as a supertype of I. Furthermore in order to
keep other assignments to b correct we have to make sure that J is
declared as a supertype of B.

2.3 Limitations of the Refactoring for Java
The implementation of the refactoring described in the last section
has a few limitations due to Java’s type system. If fields of a class
are directly accessed using a declaration element, i.e. without
using accessor methods, this declaration element can not be
redeclared with an interface. Even though one could define an
abstract class for the purpose of redeclaration we do not do so, as
multiple inheritance is not possible in Java. Therefore this
workaround would work only in a limit number of cases.
Furthermore redeclaration of a declaration element with an
interface is also not possible if nonpublic methods are accessed on
the declaration element. Thus we excluded these declaration
elements from our investigation as they can not be redeclared, i.e.
unnecessary coupling does not exist.

The second limitation are empty interfaces. Declaration elements
with empty access sets might be redeclared with empty interfaces
as they are an ideal type. However empty interfaces, so called
tagging interfaces or marker interfaces, are used in instanceof
boolean expressions in Java. Typing a declaration element with an
empty interface might therefore lead to circumstances, in which
the boolean expression evaluates to true after the redeclaration. To
avoid these cases we rather redeclare declaration elements with
empty access sets with the root of the type hierarchy, i.e. Object in
Java. As only the number of declaration elements typed with types
defined within the project is considered for the metrics, the
declaration elements retyped with Object disappear. This is
justified by the fact that every declaration element which is typed
with Object has no influence on the coupling as a “coupling” with
Object always exists due to the nature of Java, i.e. every type is
subtype of Object.

Furthermore interfaces already existing in a project might become
superfluous after the refactoring, i.e. no declaration elements are
typed with these interfaces. However, even though we could, we
do not delete these interfaces!

In the remainder of this paper we will use InferType on a number
of open source projects, so that we can evaluate both the costs, in
terms of newly introduced types, and the benefits, in terms of
improved decoupling, of rigorous decoupling.

Table 2: Use of interfaces and decoupling quality in six open source projects after the refactoring

Project: JChessBoard JUnit Mars GoGrinder DrawSWF JHotDraw

Types 92 (100%) 110 (100%) 190 (100%) 260 (100%) 599 (100%) 709 (100%)

 Classes 32 (35%) 48 (43%) 77 (41%) 95 (37%) 282 (47%) 301 (42%)

 Interfaces 60 (65%) 63 (57%) 113 (59%) 165 (63%) 317 (53%) 418 (58%)

 Ratio 1:1,88 1:1,31 1:1,47 1:1,74 1:1,13 1:1,39

Declaration Elements 177 124 267 447 1241 1655

 Class typed 103 34 81 121 404 81

 Interface typed 74 90 186 326 837 1574

 Ratio 1:0,71 1:2,64 1:2,30 1:2,69 1:2,07 1:19,43

Declaration Elements per type 1,92 1,12 1,41 1,72 2,07 2,33

2.4 Implementation of the Refactoring
The refactoring described in [10] was implemented and called
InferType2. The algorithm used for applying the refactoring to a
complete project is outlined below:

changes=false
do
 foreach type in project
 DEs:=getDeclarationElements(type)
 foreach DE in DEs
 refactor(DE)
 if(hasChanged(project))
 changes=true
 endif
 endfor
 endfor
while(changes)

For each type in the project we iterate over all the declaration
elements declared with this type. We then apply the refactoring
described in section 2.2 to each of these declaration elements. If
there was a change, i.e. a new type was introduced to the project
during the refactoring of a declaration element; we repeat the
process until no more changes happen. After using this algorithm
on a project every declaration element in this project is typed with
a minimal type, i.e. ACD(d,T) is always zero.

3. ANALYISING RIGOROUS
DECOUPLING WITH CONTEXT-
SPECIFIC INTERFACES
3.1 Introducing the Test Suite
To evaluate the costs and benefits of rigorous decoupling using
minimal interfaces we investigated six picked open source
projects. We created a balanced test suite using popular Java
projects3 which span a number of domains.

2 Available at http://www.fernuni-hagen.de/ps/docs/InferType/.
3 We used the popularity rating provided at

http://www.freshmeat.net.

JChessBoard [2] is a chess game capable using a regular TCP/IP
connection to play against human opponents. Furthermore it is
capable of editing and viewing the PGN4 format.

JUnit [3] is a popular framework for unit testing in the Java
programming language.

Mars [4] is a simple, extensible, services-oriented network status
monitor written in Java.

GoGrinder [5] is a Java program for practicing Go problems
using the SGF5 format to load these problems.

DrawSWF [6] is a simple drawing application written in Java.
The drawings created can be exported as an animated SWF
(Macromedia Flash) file.

JHotDraw [7] is a well-known framework for developing two-
dimensional structured drawing editors.

These projects have been completely refactored using InferType.
Table 1 presents metrics regarding the size of the projects and
decoupling before the refactoring occurs. We will discuss these
results in detail in the next subsections.

3.2 Before the Refactoring
3.2.1 General Observations
In every project we found that there exist more classes than
interfaces. Values range from about two classes per interface to
about five classes per interface. We expect that after the
refactoring the numbers are in favor of the interfaces, i.e. there are
more interfaces than classes in each project.

Table 1 also reveals that there are developers, or project teams,
which use interfaces for typing declaration elements, and those
who don’t. In particular in JUnit and JHotDraw more declaration
elements are typed with interfaces than with classes. Contrary to
these two projects a much smaller number of declaration elements
are typed with interfaces in Mars, GoGrinder and DrawSWF.
Even worse in JChessBoard there is not a single declaration
element typed with an interface.

4 PGN stands for "Portable Game Notation", a standard designed

for the representation of chess game data using ASCII text files.
5 SGF is the abbreviation of 'Smart Game Format'. The file format

is designed to store game records of board games for two
players.

Table 3: Comparison of the situation before and after the refactoring

Project: JChessBoard JUnit Mars GoGrinder DrawSWF JHotDraw

∆Types +43 / +88% +37 / +50% +87 / +85% +142 / +105% +253 / +73% +314 / +80%

 ∆Interfaces +43 / -- +37 / +37% +87 / +335% +142 / +617% +253 / +395% +314 / +343%

∆Declaration Elements -13 / -7% -42 / -25% -11 / -4% -21 / -5% -120 / -8% -146 / -8%

 ∆Class typed -87 / -46 % -37 / -52% -163 / -66% -329 / -73% -705 / -64% -314 / -80%

 ∆Interface typed +74 / +∞ % -5 / -5% + 152 /
+447%

+308 / +1711% +585 / +232% +168 / +12%

∆ACD average -0,365 -0,216 -0,447 -0,567 -0,416 -0,142

ACD average per new type -0,0084 -0,0057 -0,0051 -0,0040 -0,0016 -0,0004

As could be expected given the large number of available
interfaces ACD values for both JUnit and JHotDraw are low. For
example in JHotDraw a declaration element on average does not
use 10% of the available methods, whereas a declaration element
in GoGrinder on average does not use 57% of the available
methods.

However, BCD values indicate that decoupling in all projects
could be improved using only existing types. Nevertheless these
improvements are small and therefore we conclude that
developers already make good use of existing types for typing
declaration elements.

3.2.2 The Projects in Detail
JChessBoard was the smallest project in our test suite. Even
though half of the used types in these projects are interfaces, not a
single declaration element is typed with an interface. This is due
to the fact that JChessBoard extends classes from the JDK. These
classes therefore contain methods from the JDK classes for which
the formal parameters are typed with interfaces. Due to Java’s
typing rules the classes in JChessBoard have to implement these
interfaces to make use of the inherited methods. Additionally 149
out of 190 declaration elements are typed with one out of five
types from the total number of 49 available types. We expect that
the benefit of refactoring in relation to the number of newly
introduced types is biggest for this project.

JUnit is one of two projects in our test suite in which more
declaration elements are typed with an interface than with a class.
In JUnit the difference of the average ACD and the average BCD
is significantly low, i.e. JUnit’s declaration elements are mostly
typed with the best fitting type existing in the project.
Furthermore the interface junit.framework.Test is used to type 68
out of 166 declaration elements. We expect that most of these
declaration elements will be retyped with new interfaces, i.e. we
expect that junit.framework.Test offers more methods than needed
for most declaration elements.

Mars is the counterpart to JUnit regarding the usage of existing
types. Redeclaration of every declaration element with existing
types would already reduce the ACD value by 0,11. Notably,
similar to JChessBoard, five out of 103 types account for 143 out
of 278 declaration elements.

GoGrinder is similar to JChessBoard in terms of typing
declaration elements with interfaces. Only 4% of all declaration
elements in this project are typed with interfaces. Furthermore it
has the highest average ACD value of all projects. We expect that
some types, most likely the ones with a high ACD value, will
trigger the creation of many new interfaces.

DrawSWF has the lowest class-to-interface ratio of all projects.
There are approximately five times as many classes as interfaces
used in this project. Furthermore half of the declaration elements
were typed with 7% of the existing types.

JHotDraw is outstanding in two ways. First it is the project
which makes most use of interfaces for typing declaration
elements. Second both the average ACD value and the average
BCD value are the lowest in our test suite, i.e. there is little
coupling existing in this project and most times the best fitting
and existing type is used to type a declaration element.

3.3 After the Refactoring
3.3.1 General Observations
Table 2 shows the same metrics as Table 1, but this time after
using InferType on the projects. Note that we omitted all ACD
and BCD values as the very purpose of the refactoring is making
these values zero, in which it succeeded.

However, it is surprising that less new interfaces were introduced
to the projects than one might fear. The worst case, i.e. one new
interface for every existing declaration element, never occurred.
Actually all projects were not even close to the worst case as the
last row in Table 2 shows. This is an indication that at least some
declaration elements are using the same access set and could
therefore be declared with the same type. Nevertheless there are
many newly introduced interfaces which are unpopular, i.e. there
are only few declaration elements typed with these interfaces.
Figures 1 to 8 in the appendix show the popularity, in terms of
declaration elements typed with a particular interface, of each
interface for every project.

Yet, not every declaration element is declared with an interface as
its type. Except the two extremes JChessBoard and JHotDraw
around two or three times as many declaration elements are typed
with interfaces as with classes.

A comparison of the situation before and after the refactoring is
show in Table 3. In the next section we will present more detailed
information about the changes which occurred during the
refactoring.

3.3.2 The Projects in Detail
JChessBoard profited the most from the refactoring which is not
astonishing, because it was using no interface at all for typing
declaration elements. About half of the declaration elements are
retyped with interfaces during the refactoring. From 149
declaration elements declared with one out of five types only 73
declaration elements where still typed with these types after the
refactoring. In particular all declaration elements formally typed
with the inner class STR from jchessboard.PGN are now typed
with an interface.

JUnit offered a little surprise as after the refactoring less
declaration elements were typed with interfaces than before the
refactoring. This is due to the fact that declaration elements
formerly typed with an interface are now typed with Object, as the
access set of these declaration elements was empty. To be precise,
42 out of 68 declaration elements of the interface
junit.framework.Test are now typed with Object.

Mars had a similar starting position as JChessBoard. In both
projects a small number of types have been used to type an
overwhelming part of the existing declaration elements. Hence
both projects behaved similar during the refactoring. Like in
JChessBoard, from 143 declaration elements typed with one out
of five types from all available types only 46 of them were still
typed with these types after the refactoring. In particular from the
34 declaration elements typed with the clas org.altara.mars.Status
only one was still typed with this class after the refactoring.

GoGrinder was the second worst project -JChessBoard being the
worst- in terms of using interfaces for typing declaration elements.
Furthermore it had the highest average ACD value of all projects,
i.e. a declaration element in GoGrinder on average did not use
57% of the available methods, and we expected that some types

will trigger the creation of many new interfaces. For example
GoGrinder.ProbCollection, the most popular type before the
refactoring, triggered the creation of 19 new interfaces for
redeclaring the declaration elements formally typed with
GoGrinder.ProbCollection.

DrawSWF had the lowest class-to-interface ratio before the
refactoring and after the refactoring not much changed. It is
interesting to note that one of the newly introduced interfaces is
more popular than any interface or class before the refactoring6.
This leads to the conclusion that this new interface is used to
redeclare declaration elements from various types, a strong
indication that an unwanted structural match occurred. This leads
to circumstances in which two declaration elements are
considered in terms of types, and therefore the methods which can
be accessed, even though one of the objects is not. Thus even the
program is type correct; semantics of the program might have
changed. Furthermore 158 of the 253 newly introduced interfaces
were so specific that each of them was used to retype only one
declaration.

JHotDraw was the project which made the heaviest use of
interfaces for typing declaration elements. Furthermore the ACD
values were small throughout, i.e. the amount of unused methods
was relatively small. Thus newly introduced interfaces are very
specific. As a matter of fact, 164 out of 324 newly introduced
interfaces were used to redeclare just one declaration element.

3.4 Costs of Rigorous Decoupling
About twice as many types exist after the refactoring than before
refactoring in every project. Even though the introduction of
additional types is necessary for removing unnecessary
decoupling every additional type makes the type hierarchy harder
to understand and maintain. For example the class
GoGrinder.ProbCollection in the project GoGrinder implements
as many as seventeen interfaces after the refactoring. Therefore to
evaluate the refactoring we use the number of newly introduced
types as the cost for the refactoring.

Table 3 shows the average reduction of the ACD value in relation
to the number of new types introduced, i.e. the higher the value
the better. We will use this number as our cost/benefit ratio as the
number of new types is our cost of the refactoring, and the
average reduction of the ACD value is the benefit of the
refactoring.

The low number for JHotDraw is eye-catching but not surprising,
as this project already used more interfaces for typing declaration
elements than classes before the refactoring. As mentioned in the
last section about half of the new interfaces were so specific that
they were used to type just one declaration element each.

The cost/benefit ratio for DrawSWF is similar to the one of
JHotDraw. This is due to the fact that during the refactoring many
very specific interfaces have been introduced to this.

In the remaining four projects the newly introduced interfaces
were not as specific as in the above mentioned projects. This
circumstance is reflected in the higher values of the cost/benefit
ratio. Still a big part of the newly introduced interfaces was so

6 Unfortunately we have to omit the data which provided this

insight due to its length.

specific that only few declaration elements could be redeclared
with these interfaces. Figures 1 to 8 in the appendix show the
popularity of the newly introduced types for a project. It is eye-
catching that all projects have a few popular and many unpopular
types.

3.5 Popular Types
Therefore the most interesting insight we gained after refactoring
for each project is that popular access sets, which lead to popular
interfaces during the refactoring, exist in every project. Figures 1
to 8 in the appendix show the popularity of each inferred
interface. The popularity of an interface is defined as the number
of declaration elements (the y-axis in the figures) declared with
this interface.

All the diagrams in Figures 1 to 8 suggest a pareto distribution
[13]. As a matter of fact the distribution of declaration elements
among the types approximately follows the 80/20 rule, i.e. 80% of
all declaration elements are typed with 20% of the available types,
whereas the remaining 20% of all declaration elements are typed
with 80% of the available types. Unfortunately most areas in
which such a distribution occurs suffer from the so called long
tail. In our case the long tail are all those types which are used
only by a few declaration elements.

The results JHotDraw provides strong evidence that the
cost/benefit ration also suffers from this distribution and that
popular interfaces should be preferred. The average ACD value of
this project was already low before the refactoring, i.e. the
declared types provided a good decoupling. The refactoring
introduced many unpopular types which were used to retype just
one declaration element. This consequently led to the worst
cost/benefit ratio. We therefore conclude that using only the most
popular types, i.e. the 20% which are used by 80% of the retyped
declaration elements, instead of using minimal interfaces
everywhere results in a better cost/benefit ratio in terms of average
ACD decrease per type.

In [11] we presented a metric, a tool and a guideline for finding
popular access sets for a specific type. Using the refactoring
however explicitly declares interfaces for all popular access sets in
a project. These popular interfaces can be introduced to the
original version of the project to reduce the ACD value, yet
keeping the number of new types limited.

4. LESSONS LEARNED
In [12] the author noted that interfaces represent the roles a class
plays and vice versa. However using an automatic refactoring to
introduce minimal interfaces for every declaration element
violates this principle. For example all declaration elements typed
with junit.framework.Test in JUnit obviously play a specific role
which is designated by the name of the interface. After redeclaring
these declaration elements with Object no indication to a role is
left. In section 3.5 we have shown that popular types exist in
every project after the refactoring. [11] has shown that in many
cases a role can be found for these popular types.

Rigorous decoupling comes with a high cost as shown in section
3.4. In section 3.5 we argued that introducing only popular
interfaces might significantly reduce coupling, yet keeping the
number of new types small.

Finally the results from section 3.2 indicate that finding the best
fitting and existing type in a project for typing a declaration

element is not a problem. The difference of ACD and BCD value
was low amongst all projects. This might be due to the fact that
refactorings in prominent IDEs like Eclipse and IntelliJ exist
which help the developer to find the best fitting type among all
existing.

5. FUTURE WORK AND CONCLUSION
We have used an existing refactoring to evaluate both cost and
benefit of the most rigorous decoupling as made possible by
introducing context-specific types. Our results provide evidence
that -as would be expected- rigorous decoupling is not a good
idea. Too many unpopular interfaces are introduced during the
refactoring. The data we have shown indicate that the best trade-
off between decoupling and number of types is to introduce only
the most popular interfaces for classes. We will have to adjust our
refactoring and present data which either confirms or disproves
our assumption.

6. ACKNOWLEDGMENTS
The author thanks Andreas Meißner and Phillip Mayer for
implementing most of the described refactoring.

7. REFERENCES
[1] Löwy, J. Programming .NET Components, O’Reilly Media,

2005.

[2] JChessBoard is available from
http://jchessboard.sourceforge.net

[3] JUnit is available from http://www.junit.org.

[4] Mars is available from http://leapfrog-mars.sourceforge.net/.

[5] GoGrinder is available from
http://gogrinder.sourceforge.net/.

[6] DrawSWF is available from http://drawswf.sourceforge.net/.

[7] JHotDraw is available from http://www.jhotdraw.org/.

[8] Gamma, E. et al., Design Patterns, Addison-Wesley
Professional, 1997.

[9] Dean, J. , Grove, D. and Chambers, C., Optimization of
object-oriented programs using static class hierarchy
analysis, In: Proc of ECOOOP, 1995, 77-101.

[10] Steimann, F., Mayer, P. and Meißner, A., Decoupling classes
with inferred interfaces, In: Proceedings of the 2006 ACM
Symposium on Applied Computing, (SAC) (ACM 2006).

[11] Forster, F., Mining Interfaces In Java Programs, Technical
Report, Fernuniversität Hagen, 2006.

[12] Steimann, F., Role = Interface: a merger of concepts,
Journal of Object-Oriented Programming 14:4, 2001, 23–32.

[13] Pareto Distribution,
http://en.wikipedia.org/wiki/Pareto_distribution, last visit
27.05.2006

[14] Basili, V.R., Caldiera, G. and Rombach, D., The goal
question metric approach, In: Encyclopedia of Software
Engineering, (John Wiley & Sons, 1994).

Appendix A

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Figure 1: Popularity of new interfaces in JChessBoard

0

10

20

30

40

50

60

70

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253

Figure 2: Popularity of new interfaces in DrawSWF

0

2

4

6

8

10

12

14

16

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141

Figure 3: Popularity of new interfaces in GoGrinder

0

20

40

60

80

100

120

140

160

180

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307

Figure 4: Interface Popularity of JHotDraw

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Figure 5: Interface Popularity of JUnit

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85

Figure 6: Interface Popularity of Mars

