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Abstract -- Developing software for mobile or ad hoc
scenarios is very cost intensive. Different software and
hardware platforms (e.g., digital cameras, PDAs, elec-
tronic pens, mobile phones) are linked together via dif-
ferent communication technologies (e.g., Infrared,
Wireless LANs or cell phone networks). Often, mobile
devices co-operate with desktop computers, thus commu-
nication links between mobile and traditional infrastruc-
tures have to be considered as well. Currently, the market
for devices and communication technologies is rapidly
changing. To be able to reuse software, even when the
underlying communication infrastructure is modified or
exchanged, applications should not be developed 'from
scratch' but with the help of middleware platforms, which
separate network related functions from the application.
In this paper, we present the Network Kernel Framework
(NKF), a middleware framework for small devices in
mobile environments. Developers who want to integrate
NKF support for new devices only have to realize an
appropriate subset of services, thus NKF is suitable for
devices with small memory and low computational
power.

1.  Introduction

At a first glance, realizing mobile or ad hoc connected
applications currently seems to be very simple: mobile
hardware is highly available and inexpensive; the Inter-
net Protocol (IP), often viewed as the lingua franca of
networking, connects different computers and devices
across platform borders; with the help of higher level ser-
vices such as Java RMI or CORBA, an application devel-
oper can easily develop networked applications by using
powerful programming abstractions, first and foremost
the remote method call.

Having a closer look however, the world is not so
well organized and simple. There are several problems,
an application developer still has to face:

• Serious hardware limitations: some devices (e.g. mo-
bile phones, embedded systems) have currently not
enough computational power to support program-
ming languages such as Java. Higher-level frame-
works often need a large amount of valuable memory,
which, in contrast to desktop computers, is a bottle-
neck for mobile devices. Even if fast processors and
big memories are available in principle, they con-

sume a great amount of valuable battery power. Un-
less battery technology will improve significantly,
mobile devices will always be far behind the capabil-
ities of desktop computers [5].

• Missing IP support: for some network infrastructures
or devices, IP support is inadequate or unavailable.
Having, e.g., an infrared link via IrDA [9], IP support
is only available with some serious drawbacks. In ad-
dition, some devices (e.g. CPen [4]) do not offer
built-in IP support at all.

• Missing platform independence and interoperability:
languages such as Java often do not have the desired
level of platform independence. Java for small devic-
es (J2ME [19]), e.g., is not compatible with Standard
Java, thus we cannot use programs across platforms
without re-implementing major parts of an applica-
tion. The Jini framework [24], actually designed for
ad hoc networks, requires full Java support, thus cur-
rently cannot be used on most mobile devices [23].

• Missing support from manufacturers: even if devices
in principle are able to accommodate high-level com-
munication platforms, such platforms often are not
available for new devices. Currently, the market for
mobile devices and wireless communication technol-
ogy rapidly changes. Device manufacturers often do
not invest the costs for an appropriate development
support for devices with short life cycles. Third-party
solutions often do not reach the required quality and
tend to be unstable.

• Incompatible reference models: looking at the OSI
reference model or the reference model provided by
the IEEE 802 standard, we find strongly structured
hierarchical layers. With these models, it is easy to
exchange some layers without affecting upper layers.
Unfortunately, most of the networks in ad-hoc sce-
narios (e.g. the Bluetooth or IrDA) bring their own
reference models, which are often incompatible to
existing models. 

The lack of middleware platforms leads to monolithic
and unstructured code. Moreover, changes in the com-
munication infrastructure affect applications, which too
often have to be re-engineered. If on the other hand, a
developer wants to use middleware, but no platform is
publicly available for a specific device, the entire devel-
opment process is twofold: in addition to the application,
the developer has to realize at least a rudimentary mid-
dleware platform.



In this paper, we present the Network Kernel Frame-
work (NKF). On one hand, it leads to lean runtime sys-
tems, which even run on very small devices, and at the
same time it separates all network related functions from
the application. Moreover, the framework relieves an
application from additional functions such as data encod-
ing, compression and encryption.

2.  Related work

The idea of separating network access from applications
is not new; a huge variety of tools and middleware plat-
forms supports developers of distributed applications.
Well-known examples are, e.g., RPC [17], Java RMI
[18], CORBA [11] and IBMs DAE [7]. These platforms
significantly simplify the development of distributed
applications with the help of powerful services such as
remote procedure calls or remote method invocations.
However, to offer this support for new devices, the entire
platform has to be ported to a new hardware or operating
system. This is usually a time-consuming and cost-inten-
sive task. Even if there exists platform support for a new
device, this support sometimes can be viewed as a 'black
box', i.e. the creation of applications is simplified, but the
platform itself cannot easily be modified. This is espe-
cially true, if third parties developed the middleware plat-
form for commercial purposes. Usually such platforms
do not come along with their source codes, thus it is diffi-
cult to integrate new security protocols, access new net-
work infrastructures or include new data encoding
schemes.

Higher services, which heavily use mechanisms such
as RPC and RMI (e.g., [20]), are restricted to the specific
communication paradigm (e.g. remote calls), provided
by the basic platform. Often, such platforms omit a wide
area of other useful communication paradigms. It is not
possible to map mechanisms such as multicast or anycast
on network level directly to remote calls. This forces
applications to inefficiently use 'loops' of unicast instead
of using native multicast capabilities.

Some systems provide limited access for integrating
different network capabilities into existing platforms.
Microsoft Windows uses abstract sockets, so-called win-
socks, which either can be TCP/IP, IPX/SPX or IrDA
sockets [9]. Applications using winsocks can use differ-
ent communication infrastructures without too many
changes. Nevertheless, applications cannot be fully net-
work independent, since there are slightly different
addressing schemes and discovery mechanisms for dif-
ferent networks. Similar to winsocks, Java offers so-
called socket factories, which give developers the oppor-
tunity to integrate new kinds of network connections into
an application. Since original Java sockets base on the
TCP/IP protocol suite, new sockets must have similar
characteristics. 

Other approaches avoid network integration issues
and only define a high-level protocol, thus leave it to the

developers or operating system to make the actual
implementation. OBEX (object exchange protocol) [8] is
a protocol for exchanging arbitrary objects between dif-
ferent devices such as digital cameras, PDAs and mobile
phones. The current OBEX protocol, better known as the
'beaming' protocol [2], uses the IrDA infrared stack for
communication, but in principle can run on every reliable
network transport layer such as Bluetooth or TCP. SOAP
(simple object access protocol) follows a similar concept
[21]. With SOAP we can exchange arbitrary application
objects using XML for data encoding. Since various plat-
forms can interpret XML, SOAP is highly flexible and
interoperable. SOAP uses HTTP to exchange messages,
thus is limited to TCP network connections.

To sum up, there exist different levels of development
support for distributed applications. Higher-level plat-
forms offer powerful services, but request high imple-
mentation efforts to offer this kind of support for new
hardware and software platforms. Lower-level support
can be realized much easier on any device, but leave
much work for the developer. The problem is to find an
appropriate balance between development support and
integration efforts.

3.  The Network Kernel Framework

The Network Kernel Framework (NKF) is a middleware
platform for small devices such as PDAs or digital cam-
eras, as well as for traditional desktop systems. It is espe-
cially designed for supporting new devices, which do not
come along with publicly available middleware plat-
forms such as CORBA or RMI. In such cases, developers
have to implement the middleware in addition to the
actual application, thus NKF is easy to realize and does
not make high demands on target platforms. Though we
implemented NKF on Java and C, NKF does not rely on
a specific programming language paradigm. In the fol-
lowing, we present NKF in more detail.

3.1.  Protocols, Modules, and Methods

Fig. 1 shows an overview of NKF’s architecture. The
framework acts as an intermediate layer between lower-
level services provided by the operating system and
higher layers such as applications or high-level services.
The framework consists of two different kinds of mod-
ules: framework and kernel modules. Four framework
modules are fixed parts of the framework, each offering a
specific service:

• The lookup module looks up other communication
parties inside the network.

• Once the lookup module has found a service, the ne-
gotiation module negotiates parameters for a specific
connection, e.g. which protocol to use and how to
present data.

• The service module performs additional set up and
configuration functions for special network connec-



tions. For a serial connection, e.g., parameters such as
baud rate and parity have to be configured.

• With the help of the inspection module, higher servic-
es can look up properties of a specific connection.
Using, e.g., a cellular phone connection, it may be
helpful to query the current receiver input level.

In contrast to framework modules, kernel modules may
vary in number and specific functionality. We distinguish
three types of kernel modules:
Network modules offer a uniform interface to lower-level
network services. Network modules are, e.g., TCP, UDP,
MulticastIP, IrDA, Bluetooth or RS232 modules. We
describe network modules and their interfaces to upper
modules in more detail later.

Before delivering data to the network, processing
modules pre-process data packets. To save network band-
width, packets may, e.g., be compressed via a deflating
algorithm. Processing modules can be piled up: after
compressing data, e.g., the result can be encrypted with
asymmetric encryption against unauthorized listeners.
On the receiver's site, the same stack of processing mod-
ules has to exist. 

Codec modules encode application data for transpor-
tation. Same codec modules use the same coding across
different platforms and programming languages, regard-
less of the specific internal data format. Application
developers have not to struggle with, e.g., string termina-
tion, integer size or byte ordering. Examples for codec
modules are: C codec (C style data format), Java codec
(Java data stream format) or String codec (every data
transferred as Unicode string). Note that, e.g., the Java
codec may be available for other programming languages
than Java - it determines the transportation format rather
than the interface language to the application.

We give an example to clarify this concept: suppose
two applications want to communicate, one running on a
traditional Windows PC, one on a Palm handheld device
(see Fig. 2). We connect both computers either via a
serial cable, via infrared (IrDA) or via the TCP/IP stack
(which itself either uses a serial cable or infrared). Both
computers are equipped with a number of processing and
codec modules. The 'weaker' device, the Palm, offers
only the very simple compression algorithm RLE (run
length encoding) and a C style data coding, the Windows
PC offers in addition the more complex deflater com-

pression, an asymmetric encryption and Java style data
encoding. To connect, the devices have to choose mod-
ules, which are available on both platforms, i.e. the C
coding, RLE compression and the IrDA network module.
The set of modules can either be specified by the corre-
sponding application or can be negotiated automatically.
We describe the latter case in more detail later.

Once connected, both applications can simply send
and receive data without considering the underlying
infrastructure (Table 1). If in the future, new network,
processing or codec modules are integrated, they can
simply be added without adapting existing applications.

The Windows PC is the initiator of the communica-
tion (new Connection) and the Palm waits for incom-
ing connections (NKF_waitForConnection). Once
a connection has been established, both parties can send
and receive messages (send and receive statements).
A single message consists of one or more data entries,
e.g. strings or integers. A developer uses putX state-
ments to add data to an outgoing message and getX
statements to read data from a received message. After
sending and receiving messages, both parties terminate
the connections (disconnect). To sum up, this exam-
ple outlines the following benefits of NKF:

• The two applications communicate across hardware
platform borders (Windows PC ⇔ Palm device).

• The two applications communicate across program-
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Figure 1: The NKF architecture
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Figure 2: NKF data flow example

Table 1: Source code examples

Java / Windows PC C / Palm device

conn=new Connection
("irda://palm:2000/RLE/
C");
conn.putInt(123);
conn.putString("hello");
conn.putBoolean(true);
conn.send(); 
conn.receive();
i:=conn.getInt();
s:=conn.getString();
b:=conn.getBoolean();

conn.disconnect();

conn=NKF_waitForConnection
("irda://:2000/RLE/C");
NKF_receive(conn); 
i=NKF_getInt(conn);
s=NKF_getString(conn);
b=NKF_getBoolean(conn);

NKF_putInt(conn,456);
NKF_putString(conn,"hello");
NKF_putBoolean(conn,0);
NKF_send(conn);

NKF_disconnect(conn);



ming paradigms (object oriented ⇔ traditional im-
perative) and language borders (Java ⇔ C).

• The two applications communicate regardless the un-
derlying communication technology, security proto-
cols or data compression algorithms.

One weak point of this example is the string "irda://..."
passed to the opening procedures at the beginning of the
applications. This string is obviously not independent
from the underlying communication infrastructure. In a
later section, we describe mechanisms to avoid such
strings.

3.2.  Network Modules

Network modules are the most important NKF modules.
With network modules we can change the underlying
network without affecting processing or codec modules.
Applications only have to be adapted, if they make
explicit use of specific network capabilities via the ser-
vice or inspection module.

To offer a wide variety of network functions to upper
layers, network modules must have an interface to inte-
grate a big number of network protocols such as

• TCP/IP suite protocols (TCP, UDP or Multicast IP);
• a reliable multicast protocol based on Multicast IP

and UDP:
• infrared protocols based on IrDA;
• Bluetooth;
• GSM or UMTS, and
• protocols, which communicate via a USB, Firewire,

or via a serial or parallel port.
For debugging and testing, an additional network module
for simulation is useful. This module can act as a usual
network module, but performs configurable bandwidth
reduction and delays, thus is ideal for testing an applica-
tion under realistic conditions.

Different network modules have different characteris-
tics. A module can support stream connections or data-
grams. If datagrams are used, the module can support
unicast, multicast or anycast; properties concerning
packet loss and packet ordering may be different. To sup-
port different communication capabilities, we defined a
number of methods, each specifying a specific communi-
cation scheme, e.g.:

• STREAM: stream connection (e.g.TCP, IrDA, serial),
• UNICAST: unreliable datagrams (e.g. UDP),
• REL_MULTICAST: reliable multicast
• ANYCAST: unicast to one of a group (available in

IPv6, currently emulated).
Usually, a network module does not support all of the
above methods. Via the inspection module, an applica-
tion can query for methods a module actually supports; a
result can be one of {NOT_SUPPORTED, SUPPORTED,
EMULATED}. We use the EMULATED entry, if a specific
network module does not support a method in a native
manner. A UDP module, e.g., can emulate multicast

using unicast in a loop. This is, of course, much more
inefficient than using native multicast. Nevertheless, if an
application uses the multicast method directly rather than
making a loop of its own, we can install an optimized
network module later without changing the application.

3.3.  Security

Security is an important issue in mobile and ad hoc sce-
narios. A communication infrastructure should address
the following aspects Privacy, Authenticity, and Integrity.
To ensure security, current mobile network protocols use
cryptographic algorithms such as asymmetric and sym-
metric encryption and hash functions. Unfortunately,
cryptographic algorithms, especially asymmetric encryp-
tion algorithms, need a lot of computational power, and
thus in some protocols security is not supported. OBEX
[8], e.g., only provides authentication on session level.
The stronger message-level authentication is not avail-
able. More critical, OBEX ensures neither privacy nor
integrity. Other mobile protocols only use symmetric
encryption and leave it to the application to generate keys
via, e.g., public key exchange mechanisms.

An application developer may want to have fine-
grained control about the level of security provided by
the network. For some applications, no or only low-level
security may be sufficient, whereas other applications
require higher levels of security. NKF offers the desired
flexibility:

• Demanded security functions can easily be integrated
into an NKF stack with the help of processing mod-
ules.

• The negotiation module can initiate key exchange
and session authentication.

• Processing modules can perform authentication on
message-level by adding message authentication
codes (MACs) to outgoing messages and verifying
MACs when receiving messages.

• The NKF stack may rely on security functions pro-
vided by the network. If, e.g., the network provides
Transport Layer Security (TSL) [6], no additional se-
curity modules inside NKF are necessary.

A developer may adjust the level of security without
affecting the interface to the application. In other words:
a developer may develop an application without con-
sidering security issues and may add security algorithms
later. Currently, many devices are not able to offer com-
plex security functions. If, in the future, new algorithms
are available in hardware (e.g. encryption chips, special
smart cards with security algorithms), security functions
can easily be integrated into an existing application.

3.4.  Encoding and Decoding Data

To exchange data across operating system and hardware
borders, data have to be encoded in a platform indepen-
dent manner. There exists a variety of solutions to
address this issue:



• Data format specifications for native data types (the
CORBA approach).

• Equivalent virtual machines on different devices (the
Java approach).

• XML to encode data (the SOAP approach).
• MIME types [3] (the OBEX approach).

All these solutions have advantages and disadvantages.
Some applications only transfer small amounts of data,
thus some of the solutions above are strongly oversized.
If, e.g., an application only transfers unstructured data
types such as integers and strings, an XML parser or Java
virtual machine are not adequate, specifying byte order-
ing and string termination are sufficient.

With NKF, a developer can realize all the mecha-
nisms described above; it offers the flexibility to both,
either use high-level concepts such as XML or MIME
types, or lean mechanisms. To realize an NKF stack for a
specific platform, a developer can choose an appropriate
level of support by creating a set of codec modules,
which contain the appropriate pairs of get and set rou-
tines. An application can request specific modules at run-
time or leave it to the negotiation module to negotiate an
appropriate codec module with the communicating party.

3.5.  Identifying Hosts, Devices, and Services

Different network infrastructures use different naming
conventions to address hosts and services. Since the
interfaces of all network modules have to be identical,
the address format has to be identical as well. We use the
simple addressing format (host, channel), where host is a
string specification of the host address and channel is a
number specifying a service on a host. This scheme is
appropriate for most networks. TCP/IP hosts, e.g., are
identified by the IP address or a host name, which both
could be presented as a string. A port number presents a
specific service on a host. In the same way, we identify
IrDA devices by a device name. Services on a device are
distinguished by a number called the Link Service Access
Point number (LSAP). Exceptions of this scheme exist,
but can easily be adapted: a serial connection, e.g., does
not distinguish between different services on one device.
Nevertheless, our solution of the serial network module
implements its own scheme of service numbers with the
help of a simple protocol.

For host names, we use two fundamental different
namings: A global naming has a world-wide unique
name for a specific host or device. A local naming uses
different names for the same host or device. A name is
only unique for a specific other host. Examples for global
namings are TCP and UDP: using a fully qualified Inter-
net name, a host has a worldwide unique address. An
infrared connection based on IrDA uses local naming.
For a specific host, an infrared device in range may have
a name A, where another host has no idea about A
because it is not in infrared range. Even worse, both
hosts may know different devices with the same name B.

The network module specifies the corresponding
naming scheme; an application can query the scheme
using the inspection module. The difference between
local and global names is important when distributing
host names to other devices: another device only can use
global names directly. To access devices with local
names, we use a special process, the communication
gateway. Communication gateways run on top of the
NKF platform and allow a device to address other
devices via their local name. For this, a so-called global
cascading name is used. We define global cascading
names as follows:

c_global_name:
   global_name
   local_name,c_global_name

where global_name and local_name are local or
global device names. The string

local_name1, local_name2...,

local_namen, global_name

addresses a specific device with local name
local_name1, which is connected to a device
local_name2, which in turn is connected to device
local_name3 etc. In order to get a global unique
address, the last device name has to be a global name.
Usual cascading names have not more than two compo-
nents. E.g, CPen,132.176.67.44 addresses the
device 'CPen', which is connected to a TCP host with its
corresponding IP address. Global cascading names are
passed to gateway processes, which serve as a kind of
routers and link different networks together. Gateway
processes are not specified as components inside the net-
work kernel framework, but viewed as higher-level serv-
ers built upon NKF.

3.6.  Specifying Connection Properties

Usually, an application looks up a service via the lookup
module. When an appropriate connection is established,
a reference (i.e. an object handle or pointer) representing
the connection is passed to the application. The applica-
tion uses the reference for sending and receiving data;
usually it is not required to configure the connection. In
some cases however, an application may want to have
explicit control over the used modules. To conveniently
specify network, processing and codec modules, we use
a notation similar to web URLs:

protocol://target:channel/proc1/...

/procn/codec#method

where target can be one of {<emtpy>, host,
[host1,... ,hostm]}. Empty targets are used when a
host specifies a server end point for incoming connec-
tions. With a list of hosts we address multiple hosts at a
time for, e.g., multicast. Some parts of the string, e.g., the
method, can be left out, if either there exist default values



or the parameters are negotiated at runtime. Example
strings are:

• tcp://carmen:5555: a TCP connection to host
carmen, port 5555, processing and codec will be ne-
gotiated;

• irda://palm/RSA/deflater/Java: an infra-
red connection using RSA encryption, data compres-
sion and Java data encoding.

These strings are passed to a connect operation to estab-
lish the desired connection. With the help of this nota-
tion, an application developer can simply test different
connection types in an application by just adapting a sin-
gle string.

3.7.  Discovery, Lookup, and Negotiation

Passing a predefined string to an application is suitable
for testing scenarios. However, if a device connects to an
unknown environment, it knows neither other host
addresses nor available modules on peer sites. Applica-
tions must have tools to discover the network environ-
ment and negotiate communication properties at runtime.
For this, we use three mechanisms inside the framework:

Discovery is performed by network modules and
returns the address of other accessible hosts and devices.
A discovery of a TCP module, e.g., returns all hosts of a
subnet; a discovery of the IrDA module returns all
devices, which are in infrared range. The discovery
mechanism is the most important function for ad hoc
connected devices. It highly depends on the module and
can be released in many ways. The IrDA protocol stack,
e.g., has a built-in discovery mechanism, thus discovery
is available without extra costs. Other protocols, e.g.
TCP/IP, may need additional functions to discover avail-
able devices. A module can ask network devices such as
routers or switches for the corresponding information or
send discovery messages via native multicast. Regardless
which strategy we use to discover the network, the corre-
sponding mechanisms are encapsulated inside the net-
work module.

Lookup: once having a list of hosts, an application
can look for specific services. Lookup is performed by
the lookup module and makes use of a protocol running
over well-known channels. An application either can
retrieve a complete list of services available or can spec-
ify a query. Each service is specified by a name, a version
number and an instance number. With the latter, identical
services on a single device can be distinguished. If native
multicast modules are available, we use them both, for
discovery and lookup.

Negotiation: when an application decides to connect
to a service, the actual connection properties have to be
negotiated. For this, the negotiation module negotiates
the network module, the stack of processing modules and
the codec module. An application can pass a list of pref-
erences to the negotiation module, which maps modules
to one of {REQUEST, PREFER, EVADE, REFUSE}. This

however can cause a connection operation to fail, if
requested modules are not available on peer sites. Thus, a
developer has to use this feature carefully.

After the module stack is negotiated, the negotiation
module asks the individual modules for module-specific
negotiation. An encryption module, e.g. may want to
exchange public keys with peer devices. Other modules
negotiate runtime parameters. Since this kind of negotia-
tion is highly module-dependent, the modules them-
selves are responsible for it.

3.8.  NKF Support for Very Small Devices

One could argue that building a complete stack of mod-
ules is a lot of work and may not be appropriate for
mobile devices such as cell phones, wristwatches or
PDAs. An example for a lean but fully operable NKF
stack for such devices has one codec, one network and
one service module. Since these modules are fixed, nego-
tiation and inspection modules are not needed. Assuming
that the device directly communicates to another serial
device, the lookup module is useless as well. Merely the
service module is necessary to configure serial parame-
ters such as baud rate, parity etc. This NKF stack is easy
to implement and costs only a few hundred lines of code,
but an application developer can already benefit from the
concept, since the stack can be extended later without
changing the application.

3.9.  Interoperability with Existing Protocols

Connecting solely NKF-enabled devices is a rare case.
Only if all devices and computers for a specific applica-
tion can be equipped with an NKF stack, we can use the
described NKF lookup and negotiation features. Some-
times however, we have to be interoperable with existing
devices and network protocols, which are not under con-
trol by the application developers. To, e.g., connect to a
traditional web server, a device has to use HTTP via
TCP/IP. Common web servers are not able to handle,
e.g., negotiation requests from NKF devices.

NKF can be used in co-existence with existing proto-
col in two ways. An NKF-enabled device can simply
connect to, e.g., a TCP/IP device. For this, it has to be
configured as follows:

• no negotiation and lookup modules,
• no processing module and a null codec (a codec,

which passes bytes to the underlying modules with-
out modifications),

• fixed network module (e.g., TCP).
We call such a configuration the transparent mode.
Stacks in transparent mode can interoperate with other
network stacks, but we give up some advantages of the
NKF concept such as the negotiation facility. However,
using NKF in transparent mode, we still benefit from the
network independent development style of NKF.



The second way is much more complex. It follows an
idea, presented in [1]. An architecture called split con-
nection was originally introduced to solve some transport
layer problems in wireless environments. In this sce-
nario, a mobile device is connected to a base station via
wireless link. The base station has a wired TCP/IP con-
nection to a stationary host.

With this architecture it is possible, to, e.g., connect a
mobile device to a traditional web server without chang-
ing the server application. The mobile device is equipped
with full NKF capability, thus can connect to a base sta-
tion via several protocols (e.g., Bluetooth, IrDA,
WLAN). The base station works as an intermediate host,
converting any kind of network into TCP/IP.

The split connection architecture combines the
advantages of NKF with the TCP/IP interoperability.
Often, base stations are already available for a special
communication infrastructure (e.g. WLAN, GSM), thus
no additional costs result from setting up the specific
gateway application.

3.10.  Ad-hoc Routing

Using mobile devices without the help of stationary base
stations, we have to address the ad-hoc routing problem.
There exists a huge variety of routing protocols, e.g.,
DSDV [13] or TORA [12], which allow the mobile
devices to connect in an ad-hoc manner without the need
of a central administration. However, for a specific real-
ization, we have to face two problems:

• Even if the routing algorithms offer a general solution
for arbitrary networks, an implementation is tailored
to a specific network stack. Once the development
has been finished, it is difficult to use the routing al-
gorithm in other network scenarios without serious
re-implementations.

• So-called overlay networks [10] use more than one
network stack inside the same logical network. There
exist protocols, which make use of such infrastruc-
tures (e.g. [22]). As a major drawback, developers
have to access more than one network stack inside the
same algorithm, which results in additional develop-
ment costs.

NKF can help to overcome these problems. With NKF, a
developer can develop ad-hoc routing algorithms in a
modular and network-independent manner. Once a spe-
cific algorithm has been realized, we can easily re-use it
in other network scenarios without re-engineering.

Using the simulation module, a developer can test a
specific ad-hoc protocol on one computer, without to set
up a wireless network. Setting up a wireless network
with mobile devices is very cost-intensive. Inside the
simulation environment, we can test scenarios, which in
reality would be very difficult to prepare. Once a specific
algorithm is tested and debugged inside the simulation
environment, we can use it without any changes in a real
environment.

3.11.  Higher-level Services

There are many services conceivable, which are currently
not part of the Network Kernel Framework such as trad-
ing or directory services. To keep the framework lean and
suitable for small devices, it is not intended to integrate
such services in the future, but the framework offers a
common platform for construct such services on top of
the platform. Third-party developers may develop, e.g.,
their own directory services on NKF, which then are
highly network independent and portable.

Another service intentionally missing is the remote
method invocation or remote procedure call. To access
objects, which have been developed in different lan-
guages, remote calls either require homogenous lan-
guage support (e.g. Java for RMI) or high-level interfaces
(e.g. IDL for CORBA). Both concepts are, in our opin-
ion, not suitable for small computers in heterogeneous
environments. Nevertheless, NKF can act as a framework
for realizing such services if required. If, e.g., all com-
munication peers run Java, it is easy to implement on top
of NKF a remote method invocation protocol, which is
much more network independent and flexible than the
original RMI.

3.12.  Development Issues

As discussed above, developing distributed applications
in mobile and ad hoc scenarios often has two aspects. If
target devices do not come along with a powerful
communication platform, we have both to develop the
actual application and the communication middleware.
The ongoing work on NKF is twofold a well. On one
hand, we have to provide a sufficient set of NKF sample
stacks; on the other hand, we need 'killer applications' to
verify the approach.

We offer support for TCP/IP suite protocols, IrDA
and serial connections. Supported platforms are desktop
systems with Windows, handheld devices with Windows
CE and PalmOS. We currently work on NKF support for
the CPen based on the ARIPOS [4] operating system.

We verified NKF with the help of two realistic appli-
cations. We use a first version of NKF in our groupware
platform DreamTeam [14], which acts as a common plat-
form for distributed applications such as shared white-
boards and shared text editors. DreamTeam was
originally created to run on desktop systems, but, with
the help of NKF, we are currently working on a
DreamTeam extension for palm devices.

We designed the second platform, QuickStep ([15],
[16]), especially for handhelds such as PalmOS or Win-
dows CE devices. With QuickStep, users can share appli-
cation data, e.g., appointments, addresses, memos or
business cards with other users. QuickStep has much
more flexibility than the 'beaming' protocol OBEX.
Users can share entire databases and do not have to trans-
fer data record by record. Moreover, connected users do
not have to be 'in range', i.e. users can share data even



when they reside in different buildings. For this, hierar-
chical connected servers act as relays between end users.

When developing QuickStep, we faced the following
issues:

• Parts of QuickStep are running on traditional work-
stations, others are running on handhelds, Thus dif-
ferent operating systems and different programming
languages got involved.

• Communication links between handhelds and PCs
are wireless where links between the PCs base on tra-
ditional networks.

• For the handheld devices, no appropriate middleware
platform was available.

Due to the heterogeneity of devices and networks,
QuickStep was an ideal application for verifying NKF.
We developped a number of sample applications with
QuickStep, e.g. a calendar tool, which allows members
of a meeting to schedule appointments for future meet-
ings. In addition, we developed a brainstorming tool and
a business card collector.

4.  Conclusion and future work

In this paper, we presented the Network Kernel Frame-
work NKF, a platform for distributed applications in
mobile and ad hoc environments. The NKF approach is
especially useful for new devices, for which traditional
middleware solutions are not available. The framework is
modular; for a specific device a developer may imple-
ment only an appropriate subset of modules. NKF can
easily be implemented on even small devices. Once an
application uses only framework services to access the
network, modules for new communication infra-
structures, new compression or encryption algorithms
and encoding schemes can easily be integrated into the
framework without affecting existing applications. This
saves implementation costs.

To verify the approach, we built two platforms on top
of NKF: DreamTeam and QuickStep. Especially Quick-
Step heavily benefits from NKF since it runs both on
handheld devices as well as on traditional workstation
and can use various network infrastructures.

In the future, we will go into two directions. First, we
want to significantly increase the number of supported
networks and runtime platforms. Secondly, we want to
create high-level services such as communication gate-
ways and service traders on top of NKF. Offering suffi-
cient platform support as well as high-level services, an
application developer significantly benefits from the
NKF concept.
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