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Abstract. Subtyping tends to undermine the effects of parametric poly-
morphism as far as the static detection of type errors is concerned. Start-
ing with this observation we present a new approach for type checking
logic programs to overcome these difficulties. The two basic ideas are,
first, to interpret a predicate type declaration as an approximation for
the success set of the predicate. Second, declarations are extended with
type constraints such that they can be more refined than in other con-
ventional type systems. The type system has been implemented in a
system called Typical which provides a type checker for Standard Prolog
enriched with type annotations.

1 Introduction

There are quite a few approaches to typed logic programming. Several type sys-
tems support parametric polymorphism and subtypes e.g. [28,12,8], see also the
collection in [24]. In [18] a classification scheme for the various uses of types
in logic programming is developed. It distinguishes three almost independent
dimensions of using types in logic programming: types for proving partial cor-
rectness, types as constraints, and types as approximations used in consistency
annotations. Another aspect for the comparison of typed logic languages is how
the semantics of typed predicates is defined, depending either on the clauses and
the type declarations (called prescriptive typing [15]) or independent from type
declarations (descriptive typing).

While there are many motivations for introducing types (naturalness of the
representation, efficiency when using types as active constraints, etc.) the soft-
ware engineering point of view seems to be the most important one: The aim
is to detect as many programming errors as possible by static program analysis
before running the program. In this paper, we argue that in logic programming
subtyping tends to undermine the effects of parametric polymorphism as far as
the (static) detection of type errors is concerned. To overcome these difficulties
we use powerful type constraints in predicate type declarations which are inter-
preted as approximations of the intended model. Here, we present an overview
of the Typical system in which these ideas have been implemented.
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In Sec. 2 we motivate our approach by showing shortcomings of polymorphic
type systems with subtypes. In Sec. 3 we tailor the “types as approximations”
dimension of [18] towards Prolog clauses. Sec. 4 describes the Typical system and
shows how predicate declarations with constraints are used as approximations of
the intended model. Typical has been applied successfully to various programs,
including its own source code in Standard Prolog enriched with type annota-
tions. In Sec. 5 we argue why the descriptive approach is useful for Prolog type
checking. Finally, we give some conclusions and point out further work.

2 Problems of Polymorphic Type Systems with Subtypes

An ML-like type system for logic programming was proposed and used by
Mycroft and O’Keefe [21]. It includes explicit type declarations and parametric
polymorphism but no subtypes. Most prominently the languages Gödel [11] and
Mercury [29] are based on this kind of type system. But it is not possible to
model often needed type hierarchies as in ‘integers are numbers and numbers
are expressions’.

There are many different proposals for combining a logical programming
language with a type system comprising parametric polymorphisms as well as
subtyping. Smolka uses type rewriting [28], partial order on type symbols is
used by [3,12], Hanus proposes more general equational type specifications [10]
and also Horn clauses for the subtype relation [9]. Naish uses Prolog clauses
to define polymorphic predicates [22]; the predicate type is specified by some
general constraint expression in [13], and so on. However, these approaches have
a serious shortcoming when it comes to detect obviously ill-typed expressions
involving subtypes.

Example 1. :- type male --> peter; paul. % person
:- type female --> anne; mary. % / \
:- type person. % female male
:- subtype male < person. %
:- subtype female < person. %

:- pred father(male,person).
father(peter,paul).

:- pred mother(female,person).
mother(anne,peter).
mother(mary,paul).

The program defines a small type hierarchy with type person having (disjoint)
subtypes female and male. By and large we follow the syntactical style used
in [21]. Function symbols and their argument types are given by enumeration.
Predicate declarations define the expected types of arguments. If we add

:- pred q1(person).
q1(X) :- father(X,Y), mother(X,Z).

the clause for q1 can be detected as ill-typed. The type constraints for the vari-
able X, i.e., X:male and X:female are not simultaneously satisfiable. However,
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using the common parametric type declaration for equality, i.e., ’=’: T x T,
the clause for q2 in

:- pred q2(person).
q2(X) :- father(X,Y), X = Xm, mother(Xm,Z).

is usually not detected as ill-typed (see e.g. [28,12]) although it is logically equiv-
alent to q1! If the type parameter T in the declaration ’=’: T x T is substituted
by person, then X = Xm is not ill-typed, because the variable X has type male
which is a subtype of person, and the same applies to the type female of the
variable Xm.

Note that the problem illustrated here does not depend on the equality pred-
icate; as we will show in the next sections similar problems occur with many
often-used polymorphic predicates like append, member etc.

Subtyping tends to undermine the effects of parametric polymorphism in the
conventional approaches as far as the detection of type errors is concerned. This
anomaly seems to be generally neglected in the literature; [30] is an exception
mentioning the weakness in type-checking, which is caused by the generally used
method for combining subtypes and parametric polymorphism. We will present
a new type system which enables static type checking and type inferencing to
spot such errors.

Logic programming in general has no modes for input/output. One way to
attack the difficulties for type systems is to restrict logic programming towards a
functional or directional style with fixed modes and then apply ideas known from
typed functional programing (c.f. Sec. 6). Our approach instead is to extend the
type system and make it suitable for general logic programming.

3 Types as Approximations

In this section, by tailoring the “types as approximations” dimension of [18]
towards Prolog clauses, we develop a general method of static program analysis
for finding programming errors like the ones illustrated in the examples above.
We interpret predicate declarations as consistency annotations and take these
annotations as approximations of a set of atoms intended to be true. We will
discuss the applicability of consistency annotations and show how they can rea-
sonably be used to find erroneous expressions. Specific instances of the general
scheme we present here can be found as part of many proposed type systems
(e.g. [22]), although mostly it is used only indirectly.

3.1 Consistency Annotations

For the beginning we will allow a rather general form of predicate declarations.
For each predicate p we assume that there is a function tcp which generates an
appropriate constraint over some theory. The function tcp is directly or indirectly
defined by the type declaration for the predicate p. Given a syntactically well-
formed atom A = p(. . .), then tcp(A) yields a constraint which is wanted to be
satisfiable, otherwise A is called ill-typed.



254 Christoph Beierle and Gregor Meyer

Intuitively, the declaration is an approximation of the set of atoms p(. . .)
which should be true. I.e., a model intended by the programmer is described in
two ways: first by the logical clauses and second by the predicate type declara-
tions. Of course, in practice the predicate declarations are much simpler than
the clauses and they only roughly approximate the intended meaning of a predi-
cate. Thus, for any program we can distinguish the following three models whose
possible interrelationships are illustrated as in the following diagram:

program model

intended modelannotation

p

model

a i

p) The program clauses alone define some model shown as region p; this model
is of central importance. Based on the formal semantics of the program-
ming language in general this model exactly represents the meaning of the
program, i.e., which facts are true and which are false.

a) The predicate types also define a model that may be different from the
program model. With ‘types as approximations’ the model of the predicate
declarations, or annotations in general, should be a superset of the model of
the program clauses.

i) Last but not least, the intended model, i.e., what the program should com-
pute as required by the application domain, is just another model. In an ideal
program the program model should be the same as the intended model.

We do not use the annotation model a in a specification of a program. This differs
from the equation ”Specification = Program + Types” in [22]. A consequence
of the approach in [22] would be to further include modes and other implicit or
explicit assumptions in the specification for a program.

Let us now discuss various cases where the model of the program clauses p
coincides or differs from the other models:

p = i) In the optimal case the program model coincides with the intended
model. I.e., the set of inferred solutions is exactly the set wanted by the
programmer. Formal annotations describe some superset of the intended
and inferred model.

a \ p 6= ∅) There is no problem if the model of annotations a is a strict superset
of the program model p. Annotations are not required and are not even
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intended to describe the model as exactly as the program clauses. They can
only provide an approximation as far as it can be described using the type
language alone.

p \ a 6= ∅) A program may happen to have solutions which are not consistent
with the type annotations, i.e., these solutions are ill-typed and they are
marked as being errors. Such an error may also be due to an inappropriate
type declaration. If an inconsistency between a program solution and the
annotations is detected, it is not possible to decide automatically whether
the program clauses or the annotations are not correct; this decision depends
on the intended model.

i \ p 6= ∅) If a solution in the intended model is not computed by the program
then this corresponds to an error because an intended answer is missing.

p \ i 6= ∅) The difference of the program model and the model intended by the
programmer marks inferred solutions which are ‘not wanted’ by the program-
mer. E.g., ‘append([],3,3)’ is true w.r.t. the usual untyped implementation
of append.

Of course, if we do not have a formal description of the intended model i, we do
not have a chance to automatically analyze the cases involving i. Since in this
paper we do not want to deal with formal program specifications other than the
discussed annotations we will therefore use the annotations as a specification
of a superset of the intended model and assume i ⊆ a. As a consequence, the
declarations can be used for static type checking purposes in the following way:
each program clause is inspected statically if it contains expressions, possibly
the whole clause, that do not fit with the semantics given by the predicate
declarations. If the checking procedure finds that some expression is inconsistent
with the declaration then probably a programming error is detected. In all cases
the semantics of the clauses remain unaffected and well-defined. This is similar
to the detection of redundant code, e.g., unreachable statements in a procedural
program, which is done by many state-of-the-art compilers.

3.2 Inconsistent Atoms

For any atom A = p(t1, · · · , tn) the type-constraint is given by tcp(A). For sim-
plicity we often write tc(A). If there is no type declaration for p in the type part,
by default we take the type constraint to be true.

Clauses that conflict with the predicate declaration will be called type-
inconsistent or ill-typed . We argue that such clauses are useless in the program
because they contain subexpressions which are not satisfiable in the intended
model. A sound but not necessarily complete algorithm for detecting ill-typed
clauses will point out clauses which conflict with the type declaration of the
head atom, or which can be eliminated without affecting the semantics of the
specification. These two cases can be illustrated by the following specification:

:- pred p(male). % type declaration
p(peter) :- p(1). % body is always false
p(2). % conflict with the type declaration



256 Christoph Beierle and Gregor Meyer

In the intended semantics implied by the type declarations, the body of the first
clause is not true. If the body of a clause is known to be unsatisfiable due to its
inconsistency with the type declarations, then such a clause can be called useless:
it is logically redundant. Also the second clause is inconsistent. Usually there is
no reason for a programmer to write such a clause having an unsatisfiable type
constraint, in this case 2:male.

For every atom A that has an instance which is true in the intended model,
we assume that tc(A) is satisfiable. This is a very important assumption, because
it gives the programmer a device to describe properties of the intended model.
If for some atom A we can show that the type constraint tc(A) is not satisfiable,
then we have found an atom that has no instance in the intended model. This
simple correspondence is the basis for an automated type checking method where
unsatisfiable type constraints indicate programming errors.

3.3 Consistency Checks for Clauses

In a program we could translate each clause into a formula where every atom
A is replaced by the type constraint tc(A). If the transformed formula is not
satisfiable, we have shown, using our basic assumption, that the original clause
is not satisfiable in the intended model of the program. Hence, the original
clause probably contains an error (at least, it is inconsistent with the annotation
model). As we will show in the following, in practice we can make a more detailed
analysis of program clauses exploiting predicate declarations.

Horn Clauses: First consider a program which is given by Horn clauses. If there
is a simple fact p(. . .) and tcp(p(. . .)) is not satisfiable, then the fact contradicts
with the intended model as specified by the predicate declaration. Hence this
fact can be marked as erroneous, it contains a programming error with respect
to the predicate declaration. A similar line of reasoning applies to clauses

A← B1, . . . , Bn.

where A and Bi are atoms. If the conjunction of type constraints tc(B1) ∧ . . . ∧
tc(Bn) is not satisfiable, we know that the body of the rule is not satisfiable
(in the intended model). Formally, the complete clause together with the type
constraints is a tautology, but practically we can say that the clause is useless.
I.e., if such a clause appears in a logic program, this clause can be marked
as containing a type error. A similar view is generally taken in type inferencing
frameworks for Prolog, starting with [19]. Furthermore, it is reasonable to require
the type constraint

tc(A) ∧ tc(B1) ∧ . . . ∧ tc(Bn)
to be satisfiable. Otherwise the body of the rule would imply an atom A that
contradicts the consistency requirement as given by its declaration.

Clauses with Negation: In the general scheme we develop here we want to be
independent of specific semantics for negation. We assume that for an atom C
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such that a model does not contain any instance of it, with any reasonable
semantics of negation not C is true in the model. If in the extended Horn clause

A← B1, . . . , Bn, not C

tc(C) is not satisfiable then not C will thus be true in the intended model,
and therefore this subexpression can be seen as practically useless. Also, if
tc(B1) ∧ . . . ∧ tc(Bn) ∧ tc(C) is not satisfiable, then we either know that the
conjunction B1, . . . , Bn always fails or not C is always true when the conjunc-
tion B1, . . . , Bn succeeds. In both cases we can argue that the body of the rule
contains a programming error. As before, we will also require the type constraint
of the head atom to be satisfiable simultaneously. I.e., if the type constraint
expression

tc(A) ∧ tc(B1) ∧ . . . ∧ tc(Bn) ∧ tc(C)
is not satisfiable, we argue that the clause contains a type error. If there is more
than one negated atom in an extended Horn clause, i.e. we have

A← B1, . . . , Bn, not C1, . . . , not Ck

we require

tc(A) ∧ tc(B1) ∧ . . . ∧ tc(Bn) ∧ tc(Ci)
to be satisfiable for each atom Ci. We will take a closer look at the following
rule, referring to Example 1:

:- pred p(person).
p(P) :- not mother(P,X), not father(P,Y).

Intuitively, p is true for persons that are neither mother nor father of someone.
If we required the variable P to be of type female, due to its occurrence in
mother(P,X), and also to be of type male, due to its occurrence in father(P,Y),
then these constraints would not be simultaneously satisfiable, because the types
female and male are disjoint. Instead, with our condition the rule for p has no
type error. It is interesting to note that there are other proposals such as [12],
which view this clause as not being well-typed. The reason is that the variable
P is required to have a unique type such that all atoms are well-typed, including
both negated atoms. We think that this requirement is appropriate for pure Horn
clauses but that in general it is too strong for predicate logic formulas or their
variants with negation as failure as the given example illustrates.

4 The Typical System

The aim of Typical is to do static type checking on logic programs. The software
will check Standard Prolog programs that are extended with type declarations.
The type system includes subtyping and parametric polymorphism. In addition
to the usual Prolog clauses, Typical expects type definitions and predicate decla-
rations. No type declarations for variables are needed; variable types are inferred
automatically by Typical.
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4.1 The Type Language

Here we give an overview on the language for defining types in Typical. The basic
form of monomorphic type definitions are the same as already used in Example 1.
If a function symbol has arguments, then the corresponding types must be given
in the definition

:- type machine --> fastm(int,string); slowm(int,string).

Parametric types are defined by using type variables and they can be ordered in
the same way as other types. However, the parameters of parametric types that
have a subtype relation must be the same. E.g., a complete type definition for
the ubiquitous list and for binary trees modelled as a subtype of trees in general
could look like

:- type list(T) --> [] ; [ T | list(T) ].
:- type bintree(T) --> leaf(T) ; bnode(T,bintree(T),bintree(T)).
:- type tree(T) --> node(T,list(tree(T))).
:- subtype bintree(T) < tree(T).

Note that infix notation for operators and types mix well.
There are various technical conditions the defined type hierarchy must ful-

fill, e.g. the existence of greatest lower bounds for non-disjoint types required
for the existence of principal types as needed in Sec. 4.3. For technical simplic-
ity we assume that each function symbol has a unique declared type. Subtype
relationships must be given explicitly, we do not automatically detect subtyping
between types if the set of terms in one type is a subset of the terms in another
type. A precise description of these conditions is given in [17].

4.2 Predicate Declarations

Predicate declarations specify the types which are expected for the actual argu-
ments when a predicated is called. E.g., if the first argument of a predicate
sumlist must be a list of integers and the second argument must be an integer,
the declaration is

:- pred sumlist(list(int), int)).

Declarations may also contain (implicitly existentially quantified) type parame-
ters, written as Prolog variables, e.g., for append

:- pred append(list(T), list(T), list(T)).

More specific type declarations are possible by using type constraints over type
variables occurring in the declaration. In order to identify this new form of
declarations syntactically, we prefix type parameters within formal argument
types with ’@’ [16]:

:- pred sublist(list(@T1), list(@T2)) |> T1 =< T2.

The expressions on the right of |> describe type constraints where =< stands for
the subtype relationship. Syntactically similar type declarations have been used
independently for type dependencies in [7] and in [23].
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4.3 Approximations and Type Consistency

We first illustrate the use of the new form of type declarations for predicates
by means of an example. Intuitively, in Typical a type declaration for a pred-
icate describes a superset of the predicate solutions (cf. Section 3). E.g., the
conventional declaration

:- pred appendold(list(T), list(T), list(T)).

defines that for any (ground) atom append(L1,L2,L3), which is true in some
model, there is a type substitution Θ for the type parameter T such that each
argument is of type Θ(list(T)). With type hierarchies, possibly being rather
deep or even containing a most general type, this semantics leads to anomalies
as pointed out in Section 2. As part of our solution we allow for more exact
declarations using type constraints:

:- pred appendnew(list(@T1), list(@T2), list(@T3))
|> T1 =< T3, T2 =< T3.

Now an atom append(L1,L2,L3), where the arguments L1, L2, and L3 have
the principal (or least) types list(A), list(B), and list(C) respectively, is
well-typed (also called type consistent) if the conjunction of type constraints
A =< C, B =< C is satisfied.

We can easily transform the declaration for appendold into an equivalent
one using the new framework, yielding

:- pred appendold(list(@T1), list(@T2), list(@T3))
|> T1 =< T, T2 =< T, T3 =< T.

which is obviously weaker than the appendnew declaration. (Note that type
variables occurring only in the constraint part of a predicate declaration - like T
here - are implicitly existentially quantified.) The following figure illustrates the
type constraints imposed by appendold and appendnew, respectively:

T1 T2 T3

T

T1 T2

T3

Now consider the appendnew declaration. Since predicate declarations are
seen as annotations that approximate the intended semantics of the program, the
atom append([1],[-1],L) is well-typed with the variable L having the (least)
type list(int). Given the least type of the first argument [1] as list(nat)
and the least type of [-1] as list(negint), the type constraints nat =< int
and negint =< int are satisfied.

On the other hand, if the variable L is constrained to the type list(nat)
the same atom is not well-typed, because there is no type T2’ such that [-1]
has (least) type list(T2’) and also T2’ =< nat. This indicates that the atom
as a goal literal will always fail, because with the intended meaning there is no
list of natural numbers that contains a negative number.



260 Christoph Beierle and Gregor Meyer

Similarly, the atom append(L2,[-1],[1]) is not well-typed under the decla-
ration for appendnew although it is considered well-typed w.r.t. the conventional
typing for appendold.

4.4 Principal Types

One of the central notions within the Typical type system is the principal type
of a term, which is the most specific type of a term. A principal type π of the
term t has the property: t has type π (denoted as t : π) and if t has type τ then
there is a type substitution Θ such that Θ(π) ≤ τ , i.e.,

π is principal type of t ⇔ t : π and (∀τ) (t : τ ⇒ (∃Θ) Θ(π) ≤ τ).

The principal type is as minimal as possible with respect to the type order, but
it is also as polymorphic as possible.

Example 2. Given the type declaration
:- type pair(T, S) --> mkpair(T, S).

and usual declarations for int and list then the term mkpair([1],[]) has
type pair(list(int),list(int)), as well as pair(list(nat),list(nat)),
pair(list(nat),list(T)), etc. The latter is the principal type of the term.

The notion of principal types is well-known from typed functional programming.
Our definition is somewhat different because in our framework we don’t have λ-
abstraction and the principal type does not depend on type constraints.1

The syntactical appearance of type constraints in declarations is similar to
declarations in functional programming with parametric types and subsumption
[20,6], commonly known as F≤. However, their impact within Typical is rather
different. As an important factor we will see that a type parameter with an
@-prefix matches with the principal type of an argument term. Therefore, a
declaration for appendnew should not be seen as a simple ‘logical variant’ of
functional declarations such as
func app: list(T1)×list(T2)×list(T3) → bool with T1≤T3, T2≤T3.
func app: list(T1)×list(T2) → list(T3) with T1≤T3, T2≤T3.

because of the following observations: The first function declaration is simi-
lar to appendold because the expression app([1],[-1],L) is well-typed even
if L has type list(nat). The type parameter T3 can be instantiated with
int. The second function declaration is closer to the declaration appendnew
in Typical. An equation L = app([1],[-1]) is detected as ill-typed when L has
type list(nat). However, this requires a fixed partitioning of input and output
arguments which is not appropriate in logic programming.

1 A similar definition of principal types is used in [12]. Neglecting technical problems
in [12] (see [2]) our approach is rather different in the way how principal types are
used for checks of type consistency.
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4.5 Procedure for Type Consistency Checks

In general, a predicate declaration has the form

p : pattern1 . . . patternn � Constraint.

Given some atom p(. . .), for each argument we will determine the most specific
instance of each patterni that matches the type of the corresponding argument
and the constraint part is checked for satisfiability. Thus, in order to check if an
atom p(t1, . . . , tn) is type-consistent with respect to a declaration p : π1 . . . πn�C
the following steps are performed (where the whole procedure fails if any of the
steps fails):

1. compute the principal type τi of every argument ti,
2. for each τi determine the least instance Θi(πi) with τi ≤ Θi(πi),
3. check if there is a substitution Θ such that Θ(πi) = Θi(πi) for each i.
4. check if Θ(C) is satisfiable.

The first three steps implement the abstract function tcp as used in Section 3.1.
As usual, a clause is type-consistent if every atom in it is type-consistent w.r.t.
the same variable typing.

Example 3. The steps to compute type consistency are illustrated by checking
the atom append([],[-1],[1]) with respect to the declaration

:- pred appendnew(list(@T1), list(@T2), list(@T3))
|> T1 =< T3, T2 =< T3.

In the first step the principal types for the argument terms are computed. The
empty list [] has the principal type τ1 = list(α), For [-1] and [1] the principal
types are τ2 = list(negint) and τ3 = list(nat), respectively. If there was any
argument term which is not type correct, e.g., [1|2] does not conform to the
declaration of [ | ] because 2 is not a list, then the atom would not be type
consistent.

Second, the principal types τi are matched against the formal types πi in the
predicate declaration. The least instances Θi(πi) are given by Θ1 = {T1 ← α},
Θ2 = {T2 ← negint}, and Θ3 = {T3 ← nat}. If there is no least instance of a
formal type πi, e.g., if an integer occurs where a list is expected, then the atom
would not be type consistent.

Third, all substitutions are combined into a single substitution Θ = {T1 ←
α, T2← negint, T3← nat}. In case of conflicts between the single substitutions
Θi, e.g., if Θ3 was {T2← nat} then the atom would not be type consistent.

In the last step we determine that the constraint set Θ({T1 ≤ T3, T2 ≤ T3}) =
{α ≤ nat, negint ≤ nat} is not satisfiable. Hence, append([],[-1],[1]) is not
type consistent. For the atom append([],[1],[1]), however, we would get the
set of constraints {α ≤ nat, nat ≤ nat} which is satisfiable with the substitution
{α← posint}, i.e., the modified atom is type consistent.

Consider the Typical type declaration
:- pred ’=’: @T x @T.
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With this declaration for ’=’ the type error in the clause (from Section 2)
q2(X) :- father(X,Y), X = Xm, mother(Xm,Z).

is detected since the atom X = Xm with X of type male and Xm of type female is
illtyped.

Example 4. Using the declarations
:- pred abs(int, nat).
:- pred member(@T1, list(@T2)) |> T1 =< T2.

the expression
member(X,[-1,-2]), abs(Z,X)

is found to be not type consistent: The principal type of X in the first subgoal is
inferred to be negint which is incompatible with the type nat required for X in
the second subgoal.

Further examples of type declarations in Typical are:
:- pred reverse(list(@T), list(@T)).
% principal types of arguments must be identical
:- pred intersection(list(@T1),list(@T2),list(@T)) |> T=<T1, T=<T2.
% intersection(L1,L2,L) :- elements of L are in both L1 and L2.
:- pred overlap(list(@T), list(@U)) |> V =< T, V =<U.
% overlap(L1,L2) :- lists L1 and L2 have members in common.

Our notion of ill-typing does not preclude standard Prolog idioms, such as
the failure driven loop. For instance, consider

q :- p(X), side effect(X), fail.
q :- succeed.

where we assume that p and side effect constrain their arguments to be of
the same type and the type constraints of the nullary predicates are always
true. Although in a purely declarative setting the body of the first clause is not
satisfiable (assuming fail to be always false), i.e. the whole clause is trivially
true, it is not rejected as ill-typed because we use the constant true as type
constraint for the atom fail.

In [17] typing rules are given that precisely define well-typedness for a pro-
gram and clauses by a set of logical inference rules. A complete type inferencing
algorithm together with a description of the involved (finite domain) constraint
solving over a partially ordered set of type symbols is also given in [17].

5 Why Syntactical Type Checking is Useful for Prolog

By writing type declarations for predicates, the programmer gives hints on the
intended semantics for that predicate. Every atom intended to be true shall be
well-typed with respect to the declaration. Nevertheless, our type system pre-
sented so far remains purely syntactical. While a corresponding semantics for
well-typed models could be defined, e.g. using results from [9], we believe that
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it is reasonable to consider syntactical type checking for its own. Assume a pro-
grammer wants to define the absolute difference of numbers by the (erroneous)
clauses

:- pred absdist(int, int, nat).
absdist(X,Y,D) :- X < Y, D is Y - X.
absdist(X,Y,D) :- X >= Y, D is Y - X.

Of course, the second clause should have ‘D is X-Y’ instead of ‘D is Y-X’. Both
clauses are well-typed under the variable typing {X:int, Y:int, D:nat}. Neverthe-
less, using normal Prolog-resolution, the goal absdist(5,4,D) gives the result
D = -1, which is not intended and, even more, does not correspond to the type
declaration of the predicate absdist. With respect to the type system the usual
reaction is to reject such an approach for typed logic programming and require
the resolution and its unification to obey the type constraints on variables. In
that case, i.e. using an inference calculus implementing the correct order-sorted
unification as in e.g. [3], the goal absdist(5,4,D) fails. With respect to detect-
ing the programming error in this example, the practical consequences of using
or leaving out order-sorted unification are essentially the same: the program is
well-typed but it does not produce the intended results. Type-correct inference
calculi tend to (correctly) produce a logical failure instead of reporting a type-
error. Here a difference between our approach and [22] becomes apparent. While
[22] uses checks for type consistency to find clauses which would produce a type
incorrect answer, we use type consistency also to find clauses which produce no
answer at all.

Thus, rephrasing Millner’s slogan Well-typed [functional] programs don’t go
wrong yields Well-typed logic programs fail instead of going wrong. On the other
hand, for our types-as-approximations approach whose purpose is to detect use-
less atoms and clauses we get the slogan Type inconsistent clauses don’t succeed
[in the intended model].

Is it reasonable to allow the logic inference calculus to produce results that do
not conform to type declarations? On the positive side there are strong practical
arguments: We have a type system that allows natural modeling of data struc-
tures and also enables detailed static program analysis proceeding incrementally
clause by clause. At the same time the runtime execution of the program can
still be done by any (efficient, commercially available) Prolog system that does
not have to provide any form of typed unification. Other approaches to define
an expressive type system and a new typed inference calculus in combination
sometimes have to cope with severe undecidability problems, or they restrict the
language or impose a run-time overhead that is not accepted by most program-
mers.

6 Conclusions and Further Work

Generally used type systems for logic programming with parametric polymor-
phism and subtyping have an anomaly which weakens the ability to detect type
errors as shown in Sec. 2. Our new type system Typical overcomes this anomaly.
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It provides type checking at a very detailed level without restricting common
programming practice.

The Typical typing approach is independent of any mode system for
specifying an input/output behavior for predicates. In this way it dif-
fers from other proposals e.g., using so-called implication types [26,25]
or type dependencies (e.g. [14]). An example for a type dependency is
append〈list(T ), list(T ), list(T )/1, 2 → 3; 3 → 1, 2〉. Its meaning is: For all
τ , if the first two arguments of append have the type list(τ) then so does the
third argument, and vice-versa. This type dependency has a similar effect for
append as our declaration with type constraints. But there are other declara-
tions, e.g. for overlap, that are not expressible with type dependencies. Typical
does not impose a functional or directional view on logic programs as it is done by
further systems with ‘directional types’ and variants thereof (see e.g. [5,27,1,4]).
It doesn’t matter if the inference calculus is top-down as in Prolog or bottom-up
as it can be in a deductive database system. In [7] and similarly in [23] mode
declarations are used which are syntactically similar to our type declarations.
However, in Typical the declarations are exploited for checking clauses for logical
consistency with the model of the declarations instead of checking input/output
correctness.

Here, we could only present an overview of the complete type checking and
inferencing algorithms underlying Typical; they are spelled out in detail in [17].
Apart from providing a method for dealing with negation, Typical contains sev-
eral extensions for higher-order programming and extra-logical built-ins (e.g. a
built-in type goal which is used in declarations like :- pred call(goal).) such
that the system could be applied successfully to its own source code of about
4000 lines of Prolog code [16,17]. A more refined treatment of such higher order
features within the types-as-approximations approach is subject of our current
work.
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