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Abstract: We define the very rich language of composed conditionals on a three-valued logic and use this lan-

guage as the communication tool between man and machine. Communication takes place for three reasons: 

Knowledge acquisition, query and response. Learning, thinking and answering questions are of pure information 

theoretical nature. The pivot of this knowledge processing concept is the amount of information in [bit] which 

we receive, if we learn a conditional to become true. We follow an axiomatic approach to information theory 

rather than the classical probabilistic approach of Shannon; information comes first, then comes probability. In 

the light of this philosophy query and response experience new interpretations. Both, acquisition and response 

are realized by maximizing entropy and minimizing relative entropy, respectively. The iterative solution of these 

mathematical optimization problems gives new insights into the adaptation of prior knowledge to new informa-

tion. The expert system shell SPIRIT supports this kind of knowledge processing which will be demonstrated by 

suitable examples. 
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1. Introduction 

Probability was first, then came information. Humans like to gamble and feel a strong desire to predict the out-

comes of games. History of probability theory is the history of calculating chances in hazards. The Italian scien-

tists Cardano and Galileo already in the 16-th century studied playing at dice, the French mathematicians Pascal 

and Fermat founded combinatorics and the Dutchman Huygens in 1657 published his work "Tractatus de rati-

ociniis in ludo alea". Leibniz (De incerti aestimatione), Bernoulli (Ars conjectandis) and Montmort (Essay d'ana-
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lyse sure les jeux de hazard) continued the analysis of chances and began to anticipate future developments of 

strategies in games. 

Perhaps the English clergyman Bayes (1702 – 1761) was the first to systematically improve the estimation of 

probabilities by new information. In the 18-th and the first decade of the 19-th century de Laplace, Gauß, Legen-

dre and Poisson smoothed the way for Francis Galton, Karl Pearson, William S. Gosset and Sir Ronald A. 

Fisher. These scientists founded the English school of statistics and their influence on modern probability theory 

is enormous, just as that of the Russian scientists Chebychew, Markov, Ljapunov and Kolmogorov. The axio-

matic development of Kolmogorov joined probability theory and measure/ integration-theory and so made it 

"presentable at court" for pure mathematics. 

Probability during 400 years was always prediction: What is the degree of belief that an event will happen? 

Probability theory was always oriented towards future and never looked back after the game was over. Seldom 

or never the question was "What will I have learned if this specific event realized?" It was the merit of Hartley 

[HAR, 1928] and Shannon [SHA, 1948] to focus things this way. Their intension and especially that of Shannon 

was the maximization of the information rate of messages transmitted from a source to a receiver via a channel. 

To maximize this rate, a suitable codification of the messages was necessary and then the average amount of 

information "we would have learned if we received these messages" is maximum. For an ergodic source, entropy 

measures the average information rate which the receiver "learns". 

The entropy (0⋅ ld 0=0 and ld the dual logarithm) 

)          (1) 

is a function of the signals' or messages' v probabilities and as such a function of a probability distribution. 

Probability theory was first, then came information theory! 

History could have happened the other way around. What if people already in the 17-th century would have 

asked "How much will I have learned?". 

A part of (human) knowledge and intelligence is the ability to condition things to each other. If in our memory 

event A conditions event B, we can conclude B from learning that A evidently is true. The more such conditions 

we memorize the more we know. Highly connected conditioning chains are part of our intelligence. 

If we learn an event to be true which we very likely believed to be true beforehand, little we learn. If it was un-

( ) (vPldvPH
v

⋅−= ∑
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expected, much information we get. Learning and concluding things from memorized conditionals and from 

evident facts is information processing rather than a probabilistic approach! 

In this paper information is first, then comes probability. 

To develop information processing in a precise syntactical and semantical context we first justify the use of 

composed conditional events in section 2.1 and then give the mathematical prerequisites for the three-valued 

conditional logic on these conditional events in 2.2. In section 3.1 we axiomatically introduce information as a 

real-valued measure on the set of all conditionals and in section 3.2 we derive probability from information. We 

dedicate section 4 the information theoretic process of knowledge acquisition, query and response. Subsection 

4.1 prepares notations, subsection 4.2 developes knowledge processing as a transformation process of informa-

tion measures on the set of conditionals and gives a small example, which was calculated by the expert system 

shell SPIRIT. In sections 4.3 and 4.4 knowledge adaptation undergoes sophisticated information theoretical 

interpretations. Section 5 concludes this paper and refers to the applicability of the new knowledge processing to 

large decision problems. 

 

 

2. Semantics, Syntax and Logic of Conditionals 

2.1 Semantical Preliminaries 

In this paper we study propositions and conditioned propositions about individuals or objects from a vague popu-

lation of which we have incomplete information, only. A vague population is something like "all humans" or "all 

animals" or even worse "all that is describable by certain properties". It corresponds to our perception or even 

contemplation and is never countable piece by piece. About such vague populations we collect information, by 

induction and analogies and by instructions from authorities. Such information usually is of the "if-then" type, it 

is conditioned information about the objects of the vague population. 

Very often we learn provisional things (default rules) and only later, when contraditions arise or when wrong 

estimations cause dissatisfaction, we specify further by conditioning. The default that birds fly, for the first time 

may be abandoned in the zoological garden with a flock of ostriches. A hierarchy of conditioned conditionals 

specify and partionate our knowledge more and more. New characterizing attributes arise, the vague population 
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augments each day when our horizon widens. And all this works very well. 

The focus of our paper is quite different from the one realized in Bayes nets, where a population's distribution is 

fully determined by conditional structure and conditional probabilities, c.f. [JEN, 1994]. We feel that in this case 

there is not enough room for inference of propositions from other propositions. There is only a technically bril-

liant but unpretentious calculation of conditional probabilities in a fully determined contingency table. 

Inference is more. Inference is the result of presumption and logical entailment about the vague population of 

our perception or even contempletation. 

Inference takes place in spite of incomplete information about this population. Knowledge adaptation is infer-

ence and answering questions is based on inference – if it is not the mere repetition of something we have 

learned by heart, earlier. 

So the inference process developed here is of a highly subjective nature and reflects our "as for as I know". 

Knowledge includes the ability to predict propositions. Knowledge is mutual determination of propositions by 

propositions. The more determination, the less surprise if something really happens. And these mutual connec-

tions, which can most adequately be expressed by conditionals, are in continuous transition, as new information 

improves our knowledge. (cf. also [KIS, 2001]) 

The next subsection provides the conditional logic's syntax which enables a semantically sound knowledge adap-

tation and inference process. 

 

2.2 Syntax and Conditional Logic 

The syntax consists of a set of finite valued variables V={Vl,…,VL} and their respective values vl  of Vl. It includes 

the connectives ¯ (not),  (and),  (or) and also the conditional operator | (given), as well as brackets and suit-

able syntactical rules. With elementary formulas VARIABLE = value and the above connectives we describe 

events of the event field 

∧ ∨

( ,Ω ,o/ )∨, ∧,  on elementary events v=vl…vL, being Ω  the all – and o  the empty event. 

We do not distinguish between formulas and events, further on. 

Events in  (or the corresponding formulas) are denoted by capital letters, indexed if necessary: 

A,B,…,A

/

Ω

i,Bi,…,Ej,Fj. They build the language L. 

Events from L can be conditioned by the conditional operator |: B|A. B|A is called a conditional. The set of all con-
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ditionals build the language L|L. 

From a logical point of view, the formula Vl=vl is a literal. A literal is an atomic proposition which is true (t) or 

false (f) for an object or individual of the population. The same holds for any formula A,B,…,Ai,Bi,…,Ej,Fj. Canoni-

cal conjuncts such as V1=v1 ∧…∧ VL=vL  are written as v=v1…vL, for short. They are the finest pattern to identify 

objects and therefore often are called worlds. Negation is indicated by barring the corresponding proposition. 

If a world v is implicant of A,v⊂A, we write A(v)=t.  

If a world v is implicant of AvA ⊂, , we write A(v)=f.  

If A(v)=t (A(v)=f) for all v, we say A=t(A=f). 

Following Calabrese [CAL, 1991] and earlier de Finetti [FIN, 1972] we define for a conditional B|A: 

( )
( )
( )









⊂
∧=⊂
∧=⊂

=
.Avu

ABABvf
ABBAvt

vAB         (2) 

A conditional might be true or false for a true premise, and otherwise it is undefined. We say that B|A=t (B|A=f), if 

B|A(v) is true (false) in all worlds. 

If A=t we write B|t instead of B|A. So the set of all conditionals B|A includes the set of all (unconditioned) condi-

tionals B|t which is isomorphic to the original event field ( ,Ω ,o/ )∨∧,, . We often call such B|t facts rather than 

conditionals. A conditional B|A is called contradictory, if AB=f. 

We shall now define the negation, conjunction, disjunction and the conditioning of conditionals. Doing so, we 

make use of a boolean extension as it was suggested by Calabrese, following the three-valued logic in Rescher 

[RES, 1969]. Other extensions are possible, cf. [DUP, 1990], [DUP, 1991]. Mind the fact that for conditioning of 

conditionals we differ slightly from Calabrese. 

Let ∨∧,,  behave on  as usual and let { }ft,

uuuuufuftututuu =∨=∧=∨=∨=∧= ,,, fu =∧ .       (3) 

Let the conditional operator behave like follows 

.,, utuftfffuuuufutftfttt =========        (4) 

With these conventions and with the respective syntax rules a highly complex hierarchy of composed condition-
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als is available. 

For that purpose define "pointwise" 

• ( ) ( )vABvAB =  

• ( ) ( )[ ]( ) ( )( ) ( )(vCDvABvCDAB ∧=∧ )         (5) 

• ( ) ( )[ ]( ) ( )( ) ( )(vCDvABvCDAB ∨=∨ )  

• ( )( )[ ]( ) ( )( )( )( ) . 

Mind the fact the right hand sides can be evaluated because of (3), (4). The pointwise assignment in (5) then 

defines composed conditionals on L|L. They might be generalized to any hierarchical level, respecting certain 

syntax rules. 

Such syntactical formulas allow a very rich linguistic semantics on the population of all individuals. The reader 

is invited to construct examples of such connected propositional expressions or study [CAL, 1991], [ROD, 

2000]. 

vCDvABvCDAB =

( ) ( ) ( )( )[ ] ACDABCDAB ∨∨∨=∧

( ) ( ) ( ) CACDABCDAB ∨∨=∨

( ) ( ) ACDBCDAB =

Despite the linguistic richnes of L|L it is often convenient to reduce complex propositional conditional formulas 

to simple ones, i. e. to conditionals of the form B|A and A,B ∈L. This reduction always is possible because of the 

equalities (6), cf. [CAL, 1991] and easy calculations. In detail, we have 

• C  

•         (6) 

• .  

Keep in mind, however that the formulas under such reduction loose their intelligibility and linguistic clearness. 

Conditional Basic Systems CBSs are sets of conditionals which "cover" L|L and represent its overall conditional 

structure. A CBS is a basis of all conditionals similar as is a basis of a vector space. For this reason a CBS must 

"span" L|L.  

 

Definition 1 (c-independent and disjoint conditionals) 

 i) B|A is conditionally or c-independent of D|C iff ( ) ( ) ABCDAB = . 
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ii) B|A and D|C are disjoint iff ABCD=f.  

 

It is straightforward to prove that B|A is c-independent of D|C iff A⊂CD.  

 

Definition 2 (Conditional Basic System) 

A set S of noncontradictory conditionals is a conditional basic system CBS, iff for any pair B|A, D|C from S one of 

the following statements holds: 

• B|A is c-independent of D|C 

• D|C is c-independent of B|A 

• B|A and D|C are disjoint, 

and if each v|t is a conjunction of c-independent elements from S.  

 

Observation 1 

Let S be a CBS. Then for each world v, v|t can be written as v|t=

fev
Sef

⊂
∈
∧ . 

Proof: By definition 2, ieif
m

i
tv

1=
= ∧  where the fi|ei are noncontradictory elements from S, a CBS, and for i≠j fi|ei is 

c-independent of fj|ej or vice versa. Let w.l.o.g. the indices be so that fi|ei is c-independent of fi+1|ei+1 which implies 

ei⊂ei+1 fi+1, cf. the last equation in (6). Because of this inclusion we get immediately 

( )

.111
.

...
.

332
.

221

...22111...332221

1

mefemfmemefeefee

memfmefefemfmemefeefee

ieif
m

i
tv














∨−∨∨∨=

∨−∨∨∨=
=

= ∧
 

This can hold only if em=t and if 111
.

...
.

221 femfmemefee ∨−∨∨=v . Since e1f1≠f, cf. definition 2, we have ...221 =fee  

fmfmeme =−= 1  and v=e1f1⊂e2f2⊂…⊂emfm. 

In particular, v⊂eifi for all i, 1…m. 
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Example 1 shows different CBSs. Either one will be a suitable basis to measure information and uncertainty 

inherent in L|L's conditional structure.  

 

Example 1 (Conditional Basic Systems) 

i)  is a CBS. 

ii) 

{ Lvvv ...1=

{ }

}

{ } { 11121 ...... vvvvvv LL −∪∪∪ }is a CBS. 

iii) { } { }111 ......... vvvvvv llLl +∪  is a CBS. 

iv)  ii) and iii) for any permutation l  is a CBS. 

To verify e.g. ii) in example 1 use definition 1, definition 2, the formula for the conditioned conditional in (6) 

and prove the resolution into factors v=v

LlL ...1... of1

1∧(v2|v1)∧…∧(vL|vL-1,…,v1). 

Every conditional B|A is equal to BA|A, see (2). Both propositions, BA and A, obviously can be expressed by their 

canonical disjuncts v and those, in turn, as conjuncts of elements from any CBS S, cf. definition 2. 

This implies the equation 

( ) ( )ef

fev
tindependen

SefAv
ef

fev
tindependen

SefBAv
AB

⊂

∈
∧

⊂
∨

⊂

∈
∧

⊂
∨=        (7) 

Note that we write elements of a CBS as small letters, if convenient. There should be no problem with this nota-

tion. 

Equation (7) allows the decomposition of any B|A into its basic conditionals. We shall need this property further 

on. Given all semantical, syntactical and logical prerequisites, we are now ready to study information measures 

on conditionals. 
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3. From Information to Probability 

3.1 Conditionals and Information 

If we know that A is true, how much do we learn coming to know that B is true? In other words: How much in-

formation do we get from learning that an arbitrary object in our population with property A has also property B 

and how much does this information count? We intuitively agree that this information is some real number and 

that the system of such real numbers on L|L should have some obvious properties: 

• they should be nonnegative, 

• if A is implicant of B, no additional information should result from learning that B is true, given A is true, 

• if B|A is c-independent of D|C or vice versa, informa- tion(s) of learning that B|A and D|C are true should add, 

• it should meet our day by day experience like if somebody "informs us that in a hand of cards there is a 

 spades' ace". 

These characteristics can be formulated as axioms. We call a real-valued function inf on L|L an information 

measure if it fulfills the following axioms: 

A1 ( ) LLABallABinf ∈≥ for0 , 

A2 ( ) BAABinf ⊂= for0 , 

A3 ( ) ( )( ) ( ) ( CDinfA + )BinfCDABinf =∧  for B|A c-independent of D|C or D|C c-independent of B|A, 

A4 ( )ABi

)

inf

i

ABinf ii kk −




−

∑=
∨

( i
ii Binf

i

Binf
kk −





−

∑=
∨

 for all sets of pairwise disjoint Bi and for some k>1. 

A1 is evident for measures, A2 was explained earlier and so was A3. The crucial point is A4. We shall make a 

special effort to show that A4 meets our intuition and is not just a tricky deviation to probability theory. 

We first derive a straight forward consequence of A3. B|A is c-independent of A and (B|A)∧A=BA. Hence from A3 

we have immediately inf(BA)=inf(B|A)+inf(A) and thus inf(B|A)=inf(BA)-inf(A). Dividing A4 by kinf(A)  yields the uncondi-

tioned form 

A4' . 
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As k-inf=k'-a·inf for a=logk'k changing the basis in (A4') means only changing the scale of inf. So the choice k=2 is not 

restrictive and it suffices to justify A4 in the binary and unconditioned form 

A4'' . 

Each B

( )i
ii Binf

i

Binf −




−

∑=
∨

22

( )
∑=
i

iB*2

∑ −=
i

iBLB inf 2

i is a proposition and inf is intended to measure the information we get from learning that Bi is true. The 

more "laborious" the description of Bi the higher the information if we learn it to be true. Consider the special 

case Ω={ω=(b1,…,bL) and bl=0∨1}. Let the Bi be subsets of Ω built by fixing some of the variables, bl=0 or bl=1, and 

leaving the others free, bl=*. The information we need to determine whether or not some ω lies in such a Bi equals 

the number inf(Bi) of fixed elements in Bi, by intuition. Mind the fact that the number of elements in a Bi is 2*(Bi) 

where *(Bi) counts the free variables. Therefore, inf(Bi)=L-*(Bi). 

If now B and Bi are such sets and if B = ∨ Bi is a disjunction of pairwise disjoint Bi, then the equation 

 and ( )B*2

−L inf2 ,         (8) 

respectively, is evident. Dividing by 2L yields (A4''). 

We esteem equation (8) an intrinsic property of any abstract information measure inf and it should even hold in 

the absence of a naïve integer information count as in the above example. 

Note that A1-A4 determine the inf-measures' properties like nonnegativety and some sort of additivity. In gen-

eral there is an infinite number of measures on L|L. The measure becomes fixed if fixed for all v⊂Ω, for instance. 

A3 and A4 then permit the calculation of inf(B|A) for any (B|A). As the determination of all inf(v) is a laborious 

thing, we relate on a better manner to built an inf-measure in section 4. 

There are some immediate consequences of A1-A4. The proofs are obvious and so we leave them to the reader. 
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Lemma 1 (Properties of inf) 

i) . 

ii) 

( ) ( ) ∞==Ω /o,0 infinf

( ) ( )AinfAinf =  implies ( ) ( ) 1== AinfAinf  

iii) From  we get infAB ⊃ ( ) ( )AinfB ≤ . 

The occurrence of the all-event supplies no information at all, the impossible event would yield an infinite 

amount of information if occurring, inf is monotonous with respect to inclusion and information of equally in-

formative complementary events measures 1. This information unity we call [bit]. 

 

3.2 Information and Probability 

The higher inf(B|A) the more we learn when B|A becomes true. We learn much from the unexpected, unlikely or 

unpro-bable, we learn little from the expected, likely or probable. In some idioms, as in the native tongue of 

these authors, pro-bable = "wahrscheinlich" has the downright meaning "seems to be true". There should be a 

reverse measure to inf which expresses this likelihood to be true. 

A natural property of this reverse measure would be the additivity on disjoint events, we feel, and its mere func-

tional dependency on inf; furthermore we shall opt for normali-sation. This gives rise to the following.  

 

Definition 3 (Probability) 

i) If the function h is such that for any B1, B2 with  ,21 fBB = ( )( ) ( )( ) (( 2121 BinfhBinfhBBinfh +=∨ ))  and h(inf(Ω))=1, 

 then h(inf(B)), all B, is called the inf-corresponding probability measure on L and is written as pinf. 

ii) For h like in i) h(inf(B|A)) is called the conditional's probability or the (conditioned) probability of B given A. 

Definition 3 determines for any inf-measure the functional relation between inf and pinf, which we show in the 

next theorem.  

 

Theorem 1 (Relation between inf and pinf) 

For any measure pinf obeying definition 3i) and ii) the following statements hold: 
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i) ) , all . 

ii) 

( ) (BinfBinfp −= 2 LB∈

( ) BAinfpABinfp = ( ) )p/ (Ainf , all LLAB ∈ . 

Proof: i) For disjoint B1, B2 we have from axiom A4 ( ) =∨ 21 BBinf ( ) ( ) 




 +− −− 21 22 BinfBinfld  

and from definition 3 i) 

Now taking ( )( ) 221 ldhBBinf 

 


−=∨ ( )1Binf− ( )2Binf





− ( )( )2 1Binfhh =+ ( )( ).2Binfh+ ( ) ( )( )⋅−=⋅ ldhg  we conclude 

. 

This functional equation on IR

( ) ( ) =

+ −− 21 22 BinfBinf ( ) ( ) 





 21 BBg 


+


 −2 infg


 −2 infg

+xIR+ has the solution g(⋅)=a⋅id(⋅) and hence h(⋅)=a⋅2-(⋅). 

Because of h(inf(Ω))=a⋅2-0=1  we have a=1. This concludes the proof of i). 

ii) ( )( ) ( ) ( ) ( ) ( ) ( ) == −−+ AinfBAinfAinf 2/2== − ABinfABinfh 2

( ) ( )AinfpBAinfp /

− BAinf2  

  

This concludes the proof of ii). 

 

Because of theorem 1 there is a one to one correspondence between inf and pinf, respectively. pinf is nonnegative, 

additive and normalised and thus it is a probability measure. Sometimes we write infp instead of inf, if the focus is 

on the information related to the probability measure p. Note that infp(B|A)=- ld p(B|A) is an information measure for 

any p. 

Perhaps this is the right place to emphasize that every fact we learned in elementary (finite) probability theory 

has its counterpart in information theory, of course. Conditional probability now is conditional information, the 

law of Bayes appears in a new shape and p-independence now is inf-independence. The last property reads e.g.: B 

is inf-independent of A iff inf(B|A)=inf(B). And this makes sense! 

Any information measure inf attributes a certain amount of [bit] to a B|A∈L|L. The higher this value the less we 

expected B|A to become true. What is the average uncertainty in inf? This will be the focus of the next section. 
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3.3 Uncertainty 

inf(B|A) for any B|A∈L|L measures the information we receive when we come to know that B is true given A (is 

true). The less we learn the more certain we were beforehand; the more we learn the less certainty we had. There 

is an overall intrinsic uncertainty in the measure inf on L|L. 

Because of equation (7) at the end of section 2.2 inf(B|A) is calculable for each B|A, if the measure is fixed on any 

CBS. Any conditional basic system suffices to determine inf on the whole L|L. Note that in (7) every BA and every 

A is represented as a disjoint disjunct of independent conjuncts of elements from CBS. So because of axioms A3 

and A4 inf(B|A) is available, if only inf is available for the CBS. 

Therefore, to measure the overall uncertainty on L|L we should restrict our attention to a(n arbitrary) CBS. 

The considerations so far give rise to the following definition. 

 

Definition 4 (Uncertainty of inf) 

Let inf and pinf be an information and its related probability measure on the CBS S, respectively. Then 

( ) ( efinffeinfp
Sef

⋅
∈
∑ )          (9) 

is the uncertainty in inf.  

 

The following observations permit a better understanding of definition 4. 

• From f|e we receive inf(f|e) if f|e ∧ e becomes true or if fe becomes true, respectively. 

• If f|e, h|g are disjoint, then fe and hg are disjoint (cf. definition 1). Consequently (9) contains a weighted sum of 

 their corresponding information, as it should be. 

• If either f|e is c-independent of h|g or h|g is c-independent of f|e, the weighted information should also appear in 

 (9), even if they are not disjoint. More on that in the proof of the next theorem. 

• Uncertainty measures in [bit] 

Definition 4 makes sense only if uncertainty does not depend on the special CBS. This is garanteed by the fol-

lowing theorem.  
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Theorem 2 (Uniqueness of uncertainty) 

The uncertainty in inf as in formula (9) is the same for any CBS S and equals ( ) ( tvinf
tv

tvinfp ⋅ )∑ . 

Proof: Let S be an arbitrary CBS. Due to Observation 1 we have 

e ( ) ( ) ( )∑∑ 









⋅=⋅ ∧ efinftvinfptvinftvinfp

Now writ
 


∈Seftvtv

S

N

∑

w

(

v

e

 

E

C

c

∑

∑

T

 

   ( ) ( ) ( ) ( )

( ) ( ).∑

∑ ∑∑ ∑

∈
⋅=

⋅
⊂

=
⊂

⋅=
 ⊂

Sef
efinffepinf

efinf
tv

tvinfp
fevtv fev

efinftvinfp

fev

ince the CBS was chosen arbitrarily, this concludes the proof. 

ote that the v=v|t are the elementary (unconditioned) events in Ω and so ( ) ( tvinftvinfp
tv

⋅ )∑  can be written as 

,         (10) ( ) ( )vinfvinfp
v

⋅

hich is the well-known entropy of pinf on Ω, as inf(v)=-ld pinf(v) from theorem 1. The entropy measures in [bit]. 

10) measures uncertainty in any CBS – and so in L|L – only on elementary events, no real conditional is in-

olved. This might cause uneasiness, but this uneasiness should be prevented by the proof of theorem 2 and by 

xample 2.  

xample 2 (Conditional structure in inf or pinf) 

onsider again the CBS of example 1 ii): {v1}∪{v2|v1}∪…∪{vL|vL-1…v1}. Because of theorem 2 (or by direct verifi-

ation) we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).......... 1111221

11

vvvinfvvinfpvvinfvvinfp

vinfvinfpvinfvinfp

LLL

v

−⋅++⋅

+⋅=⋅

∑

∑
 

his can be developed further to 
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The last expression in example 2 intuitively represents conditional structure in inf better than (10), as it involves 

conditionals. But it is the same! 

Information was first, then came probability. (10) cha-racterises uncertainty in either measure. We are now pre-

pared to process in section 4.2 information measures for the purpose of learning and answering questions from 

the acquired knowledge, subsection 4.1 provides preliminaries. 

 

4. Information, Knowledge and Inference 

4.1 Uncertainty Change 

Theorem 2 of section 3.3 is essential for the inference process to be developed here. Remind the fact that for any 

CBS its inherent uncertainty is the same and equates entropy. We now assume that – for whatever reason – the 

information measure infp has changed to infq. With this change the average uncertainty is altered, too. As it suf-

fices to consider p.e. the CBS {v}, this average uncertainty change is 

.        (11) 

The information divergence for any v to become true, measures infp(v)-infq(v). And in the light of the new informa-

tion measure the average change is (11). 

In the set of all inf-measures there is a distinguished element, denoted infp0. infp0 is the one with maximum uncer-

tainty: 

.        (12) 

It is well-known, that for this infp0 all infp0(v) are equal and measure infp0(v)=ld|Ω|, all v. In infp0 we learn an equal 

amount of [bit] for any v to become true. Maximum uncertainty corresponds to minimum knowledge. The more 

uncertainty reduction is still possible in an inf-measure, the less we know! infp0 corresponds to absolute ignorance. 

The average uncertainty change against ignorance is of great importance. 

 15



( ) ( )( )∑ vqinf-vpinfinfq 0          (13) 

measures average uncertainty in infq on an absolute scale. If it is 0, nothing we know and maximum uncertainty 

reduction is still possible. If it is high, much we have learned and little uncertainty reduction is expected. (13) 

measures adapted knowledge in infq in [bit]. 

With these reflections we should be able to develope the concept of knowledge acquisition and inference under 

information fidelity. 

4.2 Knowledge Processing under Information Fidelity 

Resuming, we dispose of the language L|L on Ω and a set of information measures on L|L. To determine such an 

information measure, needs the specification of not less than  |Ω| real numbers which must satisfy the axioms 

A1-A4. This is inconvenient even for a modest cardinality of Ω. Besides this technical argument, totally fixing an 

infq on L|L does not meet our conceptual understanding of thinking and reasoning. The reader is asked to go back 

to be beginning of section 2 and repeat the there explanations about vague populations, for which only partial 

information is available. 

In the information theoretical context "partial information" means that for some conditionals Bi|Ai,i=1…I, we know 

their uncertainty in [bit], for others we don't. There is still a high degree of freedom to choose an appropriate 

uncertainty measure for the remaining conditionals. To do so we must extend infq from infq(Bi|Ai),i=1…I, to the 

whole L|L. And then we can answer any question inf(H|G)=? 

Even worse, very often the incomplete knowledge about the vague population must be reflected in the light of 

temporary situative assumptions, different from such knowledge. What can be answered to the question inf(H|G)=? 

in such a case. This is the subject of the present section. 

The knowledge processing concept we propose here consists of three steps: Knowledge Acquisition, Query and 

Response.  

 

Knowledge Acquisition 

The incomplete knowledge about the population is provided as a set of I conditionals Bi|Ai,i=1…I, and their respec-

tive uncertainty rki. More precisely, the rki represent an estimation of how much uncertainty reduction in [bit] we 

expect learning that an arbitrary object of the population with property Ai is also Bi. To require such estimations 
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perhaps is unusual. Keep in mind, however, that the estimation of a subjective probability is equivalent. The 

latter we believe to do better as a mere consequence of habit. 

To infer from these knowledge pieces solve the optimization problem 

( ) ( ) ( )( )
( ) ....1,..

infminarg* 0

IirkABqinfts

vqvpinfvinfqpinf

iii

v
==

−⋅= ∑
       (14) 

infp* is the information measure which adapts ignorance to the given knowledge pieces and does not create any 

additional knowledge. Respecting the provided facts, (14) seeks a minimal uncertainty change and hence adapts 

knowledge under information fidelity. infp* is a correct extension on L|L, it is the knowledge base. This is what 

knowledge acquisition is concerned with.  

 

Query 

The incomplete knowledge about the evident temporary situation consists of J conditionals Fj|Ej,j=1…J, and their 

respective uncertainty rsj. The rsj measure in [bit] the assumed temporary uncertainty reduction, different from 

the one acquired in infp*. As the assumption is temporary this information is not to be acquired but abandoned 

after the query is over! We reflect basic knowledge in view of evidence to answer a question. 

To temporarily adapt the knowledge base infp* to evidence, solve the optimization problem 

( ) ( ) ( )( )

( ) ....1,..

*minarg**

JjrsEFqinfts

vqinfvpinfvinfqpinf

jjj

v

==

−⋅= ∑
       (15) 

infp** is the information measure with minimum information theoretical divergence from infp*. (15) adapts infp* to 

the assumptions under information fidelity.  

 

Response 

Response to a question inf(H|G)=? is the answer 

 infp**(H|G)=ra.         (16) 

The answer expresses in [bit] the concluded uncertainty in H|G. How much do we learn if we come to know that 

an object with property G also is H. The conclusion was entailed from basic knowledge and from evidence. 
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In either case (14) and (15), the reason for minimizing the uncertainty change against infp0 and infp*, respectively, 

was intuitiv and reflected our resistance against not intended revision of former convictions. This intuition ex-

periences a deep justification when studying knowledge revision in more detail in section 4.4. 

The essential of this information processing (14), (15), (16), besides of its fidelity, is its measurability. Knowl-

edge, remaining uncertainty, inferential strength and even significance of the answer are measurable in [bit]. 

With the notation ( ) ( ) ( ) ( )( vqvpvqpqR
v

infinfinfinf,inf −=∑ )  the following statements detail our proposition. 

• R(infp*,infp0) is information gain against ignorance and hence measures knowledge, cf. the end of section 4.1. It 

 measures in [bit]. 

• R(infp**,infp0) is information against ignorance in the evident situation. It is ad hoc knowledge. Ad hoc know

 ledge might be more or less than basic knowledge. If it is less, basic knowledge is inadequate for the actual 

 query. It measures in [bit]. 

• R(infp**,infp*) is the strength of inference. The more the evident situation departs from basic knowledge, the 

 higher the ("intellectual") effort to adapt it. It measures in [bit]. 

• Maximum knowledge R(infp∞,infp0) is reached for infp∞(v)=0, some v (and infinite for all remaining worlds). 

 Then (0⋅∞=0) we get R(infp∞,infp0)=ld|Ω|, c.f. section 4.1. Maximum knowledge is limited and so is the remaining 

 uncertainty ld|Ω|-R(infp*,infp0) in a knowledge base. It measures in [bit]. 

• ( ) ( )( ) ( ) ( )( )  is the directed divergence of the question's uncertainty under 

 infp** and under infp*. It is the significance which evidence puts upon the question and measures in [bit]. 

Of course, (14), (15), (16) are equivalent to respective optimization problems in probability space instead of 

information space. This fact is due to the one-to-one correspondence between pinf and infp, c.f. theorem 1 in sec-

tion 3.2. These probabilistic optimization problems were studied in earlier works like [RME, 1996], [ROD, 

2000], [ROD, 2001]. The there developed iterations to solve them, go back to [CSI, 1975]. Besides the equiva-

lence we write down the probabilistic versions here, too. This facilitates future considerations in the next section. 

So (14), (15), (16) correspond to (14'), (15'), (16'): 

GHpinfGHpinfGHpinfGHpinfR *,*,**,**

( ) ( ) ( )( )
( )

,...1,

,...1,..

minarg 0

Iirkxldand

IixABinfqts

vqinfvpinfvinfqinf

ii

iii

v

==−

==

−= ∑*p

       (14') 
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( ) ( ) ( )( )

( )
,...1,

,...1,..

*minarg**

Jjrsyldand

JjyEFinfqts

vqinfvpinfvinfqinfp

jj

jjj

v

==−

==

−= ∑

       (15') 

( ) .** razldandzGHinfp =−=         (16') 

SPIRIT is a shell which supports both, the probabilistic and the information theoretical version of knowledge 

processing. In the remainder of this section we emphasize the latter. To do so, we now study the famous infer-

ence problem Lea Sombé, called after a group of logicists which evaluated different concepts of non-

monotonous formalisms and published the results in [SOM, 1992].  

Example 3 (Lea Sombé) 

There are only four variables and their respective values characterising the society in which Lea Sombé lives: To 

be a student or not (S=y/n), to be young or not (Y=y/n), to have marital status single, married or corporate life 

M=s/m/c, to be parent or not (P=y/n). 

If we learn that a student is young, we come to know little: 0.15 [bit]. To hear that a young person is single pro-

vides 0.33 [bit], and to hear in turn a single to be young yields 0.5 [bit]. By far not all young people are students 

and so we learn 1.7 [bit], if this is true for a young person. Little we learn from hearing that students with chil-

dren are not single, 0.15 [bit]. And finally the information that members of the society living in corporate lifes, 

are young, counts 0.33 [bit]. That is all we know about the fictitious society, not more and not less. In terms of 

the present paper this knowledge reads: 

( ) ( )
( ) ( )
( ) ( ) .33.0

,70.1

,33.0

===

=

=

cMyYqinf,15.0

,50.0

,15.0

==∧==∨=

=====

=====

yPyScMmMqinf

yYsSqinfsMyYqinf

yYsMqinfySyYqinf

 

The information measure infp* derived from this partial information about the society by solving (14), is shown 

for all configurations 

82.6

82.6

53.3

53.3

34.3

34.3

*

60.5

60.5

42.6

42.6

51.2

51.2

*

91.10

37.10

62.7

08.7

43.7

24.12

*

15.6

62.5

97.6

44.6

06.3

88.7

*

nnsn

nnsy

nnmn

nnmy

nnsn

nnsy

pinfSYMP

nycn

nycy

nymn

nymy

nysn

nysy

pinfSSYMP

yncn

yncy

ynmn

ynmy

ynsn

ynsy

pinfSYMP

yycn

yycy

yymn

yymy

yysn

yysy

pinfSYMP

 

This was what knowledge acquisition is concerned with. 
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We now use the knowledge base for a query and ask the system: What if Lea Sombé is a student and has a child, 

is she young? The query is performed by evidencing S=y∧P=y and asking Y=y? More precisely, the evident situa-

tion is characterised by infq(S=y∧P=y)=0. If S=y∧P=y by assumption is true, no information we get from learning that 

this in fact realises. Calculating infp** according to (15) provides the following table for all configurations: 

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

nncn

nncy

nnmn

nnmy

nnsn

nnsy

pinfSYMP

nycn

nycy

nymn

nymy

nysn

nysy

pinfSYMP

yncn

yncy

ynmn

ynmy

ynsn

ynsy

pinfSYMP

yycn

yycy

yymn

yymy

yysn

yysy

pinfSYMP ****

88.5

59.2

75.7

**

13.1

95.1

39.3

**

 

Calculating infp** (Y=y) yields 0.30 [bit]. Remind that inf obeys axiom 4 of section 3.1 and verify the result. Re-

flecting all disposable knowledge about the fictitious society and assuming a person undoubtedly to be student 

and parent, leaves a considerable uncertainty about its youth, namely 0.30 [bit]. 

Things change significantly for Lea Sombé, if she is evidently a single student. Is she young? Here the answer is 

inf**(Y=y)=0.07. In other words: Almost nothing we learn if we come to know that Lea Sombé, besides of being a 

single student, is also young. We expected it! 

Note that in example 3, different from many logical con-cepts, there is no instantiation of Lea Sombé, but just an 

evidentiation of her temporary properties. Lea Sombé as well might be represented by the variable LS=yes/no in 

the knowledge base and in this case LS must be connected to her properties by conditionals, to make a query. 

Instantiation of LS=yes then permits a correct conclusion. Instantiation and evidentiation are equivalent. 

This was what knowledge acquisition, query and response in an information theoretical environment is con-

cerned. In the next section we study the iterative solution procedure of (14), (15), (16). Each iteration will be 

shown to be a con-sequent adaptation process of the information measure to one of the corresponding restrictions 

in (14) or (15). 

4.3 Knowledge Adaptation in the Light of Infor-mation Theory 

The mathematical optimization problems (14), (15) of the last section are equivalent to (14'), (15'). To verify this 

again, take the restrictions in (14'), (15') to the dual logarithm and multiply by – 1. 

The solution of the probabilistic versions (14'), (15') is performed by a generalized Iterative Proportional Fitting 

(IPF) procedure, whose convergence was first shown by Csiszàr [CSI, 1975] in a very abstract measure theoreti-
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cal form. We briefly repeat the IPF as we need it here, and put the essentials as theorem 3. The information theo-

retic version is attached as a lemma. Each single adaptation step (iteration step) is a mere application of Kuhn 

Tucker theory; so we leave a proof to the reader or refer to [MEY, 1998], theorem 3.7 or [ROD, 2000].  

 

Theorem 3 (Iterative Proportional Fitting) 

The solution of the optimization problem (14') 

( ) ( )
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for i=k mod I. Provided that there exists a feasible solution! 

The αk are normalizing factors; IPF runs through all conditionals repetitively and actualizes the probability of 

BiAi and ii AB , respectively. After each actualization of conditional i the distribution obeys qinf(Bi|Ai)=xi, but does 

not yet fulfil the others, in general. In the long run the limit distribution contains all knowledge at once and all 

what can be concluded from the given information. 

There are fast implementations even for "large" distributions. How such distributions can be broken down to 

marginals and iterated efficiently, is beyond the scope of this contribution, see e.g. [MEY, 1998]. 

Note that to iterate (15') instead of (14') it suffices to replace pinf0 by pinf* and q(Bi|Ai)=xi,i=1…I, by q(Fj|Ej)=yj,j=1…J. 

The IPF procedure of theorem 3 is equivalent to an iterative transformation of information measures, which we 

now put as a lemma.  
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Lemma 2 (Iterative Additive Fitting) 

The solution of the optimization problem (14') 
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Proof: Taking the iteration of theorem 3 to the dual logarithm and multiplying by –1 we get 
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Calculating the logarithm further, using the equation 

( )
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( )
( )ii
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iik
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ABinfp

ABinfp

BiAiinfp

iAiBinfp
1

1

1

1
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−
=  and reordering terms we conclude the proposition. ßk=-ldαk is the summand which 

makes inf(Ω)=0. 

 

The iteration of lemma 2 is of purely information theoretical nature. It transforms infpk-1 into infpk  on the whole Ω 

and respects the conditional structure according to iiiii ABABA ,, . ( ) iii
k rkABinf −−1  is the divergence of ii AB 's 

information measure and the desired value  ,irk ( ) iiik rkABinf −−1  is the respective divergence for the comple-

mentary conditional event. Remind the fact that there should be a penalty for divergence from above and from 
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below, as we demand equality. ( )( ) ( )( )[ ]iii
k

iii
k rkABinfrkABinf −−− −− 11  balances them both. Now multiplying this 

expression by xi and xi-1, respectively, updates information for both, ABi  and ii AB . Note that for a positive 

, the value ]"[ −− ( ) iik ABvvinf ⊂− ,1 , needs to be augmented as the difference ( ) iii
k rkABinf −−1  exceeds 

( ) iii rkAB −1kinf − . And likewise , should be diminished. That is exactly what the factors' x( ) ii
k ABvvpinf ⊂− ,1 i and 

xi-1 sign does, and the factors perform a proportional contraction. 

In the present section, to each iteration of the algorithmic solution of (14) and (15) an information theoretical 

interpretation was given. In the next section we study the limit measure infp*. 

( ) , irkA iii ==Bqinf

( ) , irkA iii ==Bqinf

) ( ))
( ) ....1, 2Iirk

vqinf

ii ==

*2pinf

 

4.4 Adaptation of Future Knowledge 

Once the optimization problem (14) has been solved and thus the information measure infp* has been derived, we 

are ready for queries. But what if at a later occasion more information about the domain is available, how to 

adapt infp* to that? Was infp* constructed with the necessary care to make it ready for further adaptation proc-

esses? We ask the reader to repeat section 2.1. Information acquisition about a domain was characterized as an 

ongoing process, never finished since the vague population can not be described in terms of an ultimate probabil-

ity distribution. 

The following adaptation occurs when after having learned 

,...1 1I  

we come to know the next package of knowledge pieces 

,2I,...,11I +  

compatible with the first one. (Any third, fourth or fifth adaptation proceeds in the same way). 

Instead of (14) we now have to solve the problem ( )**1 pinfpinf = : 

( ) ((
..

minarg

ts

vinfq
v

= ∑ *1

qinf

pinf

AB

v

i

−
       (17) 

Note that (17) does not process ad hoc knowledge as does (15) inasmuch as further knowledge adaptation is 
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different from answering a query in a temporary evident situation. In (17) we iterate all knowledge pieces, the 

old and the new ones. In (15) the new information does not meet the old one, in general. It can be shown that 

(17) is equivalent to 

( ) ( ) ( )( )
( ) ....1,..

minarg

2

0*2

IirkABqinfts

vqinfvpinfvinfqpinf

iii

v
==

−= ∑
       (18) 

Either starting from ignorance infp
0 or from infp* does not make any difference. The result of iterating all restric-

tions i=1…I2 is always infp2*. The proof of this fact is implicitly given in [CSI, 1975] and in a less abstract from in 

[MEY, 1998], lemma 2.4. We therefore do not repeat it here. 

The equivalence of (17) and (18) is an important property of our knowledge acquisition concept. There is no 

"time-dependence" or order-dependence of acquisition. All knowledge so far, even after many acquisition steps 

is a unique condensation of all packages. 

In section 4.2 we charactized the choice of infp* and infp** by solving (14) and (15) as the intuitive resistance 

against not intended revision of former convictions. Now, in the light of a deeper insight of consecutive adapta-

tion steps we prove infp* and infp** to be the only rational choice. We restrict our attention to infp*, as the reflec-

tions for infp** are identical. 

Given the restrictions in (14), the facts infq(Bi|Ai)=rki, i=1…I, provided to build the knowledge base, are the impera-

tive to choose a feasible infq in an adequate manner. Keeping in mind that the provided facts are information 

against ignorance infp0, knowledge should grow with a growing number of facts. Roughly speaking, there should 

be a certain kind of monotony.  

 

More formally:     Let R1={infq(Bi|Ai)=rki, i=1…I1} 

                             and R 2={infq(Bi|Ai)=rki, i=I1+1, … ,I2} 

be two subsequently provided sets of conditionals and let R=R 1∪R2. A choice function CH is function which 

chooses a unique element out of the set of all R1(or R=R1∪R2) - feasible inf-measures. To be a rational choice 

function, CH should have the above mentioned monotony property which we now put as a definition.  
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Definition 5 (Rational Choice Function) 

A choice function CH is rational if for no R1 there exists a R2 in such a way that (R= R1∪ R2) for all R - feasible 

infq the inequality ( ) ( ) ( )( ) ( ) ( ) ( )( )vpinfvpinfvinfpvqinfvpinfvinfq −<− ∑ 00∑  holds. Here =pinf CH(R1). 

In other words: A rational choice =pinf CH (R1) should not be such that for all infq, compatible with a richer set 

of facts R=R1∪R2, the uncertainty change against infp0 is less than that of pinf  against infp0. This reflects our un-

derstanding of knowledge growth. Now the only rational choice is the one which selects the inf-measure with 

minimum relative entropy. We put this as a lemma.  

 

Lemma 3 (MINREL is Rational) 

The only rational choice CH(R1) for any R1 is  

( ) ( ) ( )

feasible-  is infqts

vqinfvpinfvinfq
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0minarg1
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       (19) 

To prove the above lemma assume infp′≠infp* to be a rational choice and construct a set R2 of facts which, to-

gether with R1, makes infp* unique. For this unique inf-measure in R - which is richer than R1 - we have  

( ) ( ) ( )( ) ( ) ( ) ( )( )vinfp'vpinfvinfp'vpinfvpinfvp −<− ∑∑ 00 *inf* . 

This constradicts the rationality of infp′. Note that for the construction of R2 you might choose the facts infq(v)= 

rk(v)=infp*(v), all v. 

Adaptation of subsequent information packages implies in ongoing knowledge revision steps, as developed here. 

Such adaptation turns out to be much more sophisticated if newer is not compatible with older information. A 

full treatment of knowledge revision under information fidelity will be given in a separate paper. 
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5. The Shell XSPIRIT 

The shell XSPIRIT 3.0, a Java-version, is a professional tool for information and knowledge processing as de-

veloped here. It processes probabilities rather than information measures, but an additional module allows to 

handle both. After the user defined variables as boolean, nominal and ordinal, he might construct conjunctions, 

disjunctions and negations of literals and form composed conditionals, in an arbitrary hierarchy. The variables' 

attributes might be associated with real number (utilities). The shell at any time calculates expected utilities and 

so supports modelling decision problems. 

Once the composed conditionals and their corresponding inf-values are supplied by the user, XSPIRIT automati-

cally generates a hyper-tree on the set of all variables in such a way that variables "contained" in the conditional 

lie in the same hyper-edge. The shell then calculates iteratively the knowledge base making use of the Mark-

ovian property of the global distribution with respect the hyper-edges. 

Any conditional can be put active or inactive, thus allowing to use it for knowledge acquisition, query or re-

sponse. 

Bayes Nets are importable and XSPIRIT also provides frenquentistic learning rather than the acquisition of sub-

jective probabilities or estimated information values. 

The biggest example calculated with XSPIRIT until now was a business-to-business model for advertisement 

evaluation of a leading German steel-company. It counts appr. 1300 conditionals and more than 80 variables, not 

all of which are binary. The CPU-time for knowledge acquisition or query is below 5 seconds on a PC. 

The reader interested in the shell SPIRIT might visit the homepage www.fernuni-hagen.de/BWLOR. 
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