
Chapter 1

Function Types in Complete
Type Inference
Manfred Widera1 and Christoph Beierle2

Abstract: We study type checking that is complete in the sense that it accepts
every program whose subexpressions can all be executed without raising a type
error at runtime. In a complete type checker for every function call(f a) of
a function f with an argument expressiona of type ta it is checked whetherf is
applicable to one of the possible values ofa, i.e. whether〈[ta]〉∩dom(f) 6= /0 holds
where〈[t]〉 denotes the semantics of a typet. When approximatingdom(f) by a
typetin it turns out that the usual function type constructor is not appropriate for
complete type checking: for a function typet f = tin → tout of f the input typetin
is usually not guaranteed to contain all values ofdom(f) and the test for common
elements can erroneously fail. We therefore introduce an alternative notion of
function types, called I/O-representation, where the input types cover a superset
of the domain of the denoted functions. We show that this notion of function
types fits into the framework of complete type checking much better than the
usual function type constructor. Moreover, we argue that complete type checking
overcomes the disadvantages of soft-typing approaches by enabling therejection
of programs instead of just raising a warning.

1.1 INTRODUCTION TO COMPLETE TYPE CHECKING

Type checking with a very exact and powerful type language could be helpful in
detecting errors, but unfortunately too powerful type languages can cause prob-
lems for sound type systems. They tend to force the type checker of astatically
typed languageto reject too many programs that should indeed be accepted.

1Fachbereich Informatik, FernUniversit¨at Hagen, D-58084 Hagen, Germany. Email:
Manfred.Widera@Fernuni-Hagen.de

2Fachbereich Informatik, FernUniversit¨at Hagen, D-58084 Hagen, Germany. Email:
Christoph.Beierle@Fernuni-Hagen.de

1

Soft-typingfor dynamically typed languages (e.g. [CF91], [Fag92]), employs
static type checking in order to identify function calls that might be ill-typed.
Runtime type checks for calls that can be statically proven to be well-typed can be
dropped. Soft-typing does not rejectanyprograms. The type warnings, if ignored,
may result in runtime errors. Furthermore, for every warning the programmer has
to decide whether it results from a type error or from a weakness of the type
checker.

1.1.1 Disadvantages of Sound Type Checking

The usual type checkers aresoundand are used either in strongly typed languages
(e.g. Standard ML [Wik87] or Haskell [HPF97]) or as soft type checkers in dy-
namically typed languages. Soundness means to accept just programs that cannot
cause runtime type errors. I.e. sound type checkers follow Milner’s slogan [Mil78]
“Well-typed programs cannot go wrong”.

No matter in which way sound type checking is used the expressiveness of the
type language must be restricted in order not to reject too many correct programs:

Example 1.1.Consider the following function definition.3

(define (with-div x y)
(/ x (f y)))

Supposef is a function with result typenumand 0 is not part of the value set
of f . Suppose further that there is a sound type checker and that the type system
can express the type of all numbers excluding 0. We normally cannot prove thatf
does not yield zeros for all possible inputs fory (e.g. [Wan74]). Thus, we cannot
provewith-div free of type errors.4

The example shows a program that cannot go wrong, but is ill-typed with respect
to the sound type checker. This can cause the following consequences:

• In a strongly typed language programs that cannot go wrong, but are not well-
typed with respect to the type checker are rejected. By increasing the number
of different subtypes in the type language the number of correct but rejected
programs might increase.

• For a dynamically typed language the results of a sound type checker are avail-
able via soft-typing systems, i.e. type systems that can suppress runtime type
checks on provably well typed function calls and raise type warnings on other
calls. Because of unprecise results of the type checker such a soft-typing sys-
tem can raise a warning for a function call that is indeed well typed. When
the number of warnings on runtime correct calls increases the system provides
less help in finding real type errors quickly.

3All example programs in this paper are written in Scheme.
4Because of this problem, the division by zero normally lies out of the scope of a

sound type checker.

A further problem for soft-typing is shown by the following example Ex. 1.2:

Example 1.2.Consider the following erroneous implementation of reverse and its
use:

1 (define (reverse l)
2 (if (null? l)
3 ’() ; reversed empty list is empty
4 (append (reverse (cdr l))
5 ; reverse rest
6 (car l)))) ; should be (list (car l))
7 ; first element to the end.

8 (define (generate n)
9 (if (= 0 n) ()

10 (cons n (generate (- n 1)))))

11 (define (f n)
12 (reverse (generate n)))

There is an error in the second argument (line 6) of the call to the predefined
functionappend(lines 4-7) because from the call toreversein f (line 12) it can
be inferred that(car l) in line 6 is not a list in every case. But although there is a
call that must go wrong in the given context the soft-typing system does not reject
the program.

As this example shows soft-typing reacts “too soft” onprovabletype errors. Al-
together, the user would have to check a lot of warnings of a soft-typing system
with a powerful type language in order to detect a single type error.

1.1.2 The Goal of Complete Type Checking

Let f be a predefined function anddom(f) the set of input valuesf is applicable
to. A misapplicationof f is a call(f a) wherea 6∈ dom(f).

Let P be a functional program andean expression inP. e (always) goes wrong
if every evaluation ofe causes a misapplication of some predefined functionf .5

P goes wrongif it contains an expressione that goes wrong.
An expressione in a programP conditionally goes wrongif an execution path

in P starting ate leads to the misapplication of a predefined function.P condi-
tionally goes wrongif an expressione in P conditionally goes wrong.

Example 1.3.In the program of Ex. 1.2 the call toreversein f conditionally goes
wrong because of the execution path toappendin reverse.

An example for a call that (always) goes wrong (with respect to the program
in Ex. 1.2) is(f 3) (i.e. if this program is extended by a function containing the
call (f 3) then this call goes wrong); please note that the call(f 0) (when added
to the program) does not cause a misapplication because the else-case inreverse

5We assume the functional language to be strict and to use eager evaluation.

containing the ill-typedappend-call is never reached. Another example for a call
that goes wrong in every program is(∗ ′a 3) because the first argument of∗ is not
a number.

Note that sound type checking of course detects all function calls that go wrong
according to the definition above. However, as stated above, it also often detects
function calls that do not go wrong. Soft-typing has the additional problem of
not rejectingthe calls that go wrong; e.g. soft-typing will rise just a warning even
for (∗ ′a 3), but it will not reject it. Soft-typing therefore does not force the
programmer to react on the type checker’s messages.

By completeness of a type checker we mean that a programP that does not
go wrong is not rejected. A complete type checker circumvents the problem of a
strongly typed language to reject programs that cannot go wrong, but it is not as
weak as soft-typing because it can reject provably ill-typed programs. A definition
of a complete type checker can be found in [WB00] and [Wid01].

The combination of soft and complete typing yields botherrors that cause the
rejection of the program andwarningsthat mark calls which could not be proven
to be well-typed, but are notprovablywrong. This structure of messages has a
number of further advantages:

When testing a program for type errors one can start correcting the errors of the
program before taking care of the warnings (i.e., either proving correctness of the
calls or correcting them). By the structure of errors and warnings the programmer
is guided through the increased number of calls that are not provably well-typed
due to a more powerful type language. In no case the program has to be changed
just to satisfy the type checker.

1.1.3 Function Types and Complete Type Checking

The complete type checking process motivated so far is not easily implementable
using the usual function type constructor. This is because complete type checking
needs to knowall valid input values of each function used in a checked program.
This paper discusses the inappropriateness of the usual function type constructor
for complete type checking and provides a solution be defining a new notion of
function types.

So the aim of this paper is to clarify one part of the type language used for
complete type checking (namely the function types) and therefore to provide a
tool needed by complete type checkers with the desired properties.

The rest of the paper is organized as follows: in Sec. 1.2 the type language
is sketched. After discussing the inappropriateness of the usual function type
constructor in Sec. 1.3 the new notion of function types is introduced in Sec. 1.4
with the definition in Subsec. 1.4.1, a couple of examples in Subsec. 1.4.2, and a
discussion of its influence on complete type inference in Subsec. 1.4.3. Section
1.5 gives some conclusions.

1.2 THE TYPE LANGUAGE

The type language that is used by our complete type checker is a quite power-
ful one that is generated as usual from base types, type variables, and free type
constructors. Furthermore, union types, type difference (usable for conditional
expressions), and recursive type definitions are considered.

In the following examples we will use the following notions of types:

• posint for positive integer numbers.

• int for integer numbers.

• num for arbitrary numbers.

• string for strings.

• error for type errors.

• nil for the type just denoting the empty list.

• > for the type of all values.

• t1× t2 or (× t1 . . . tn) for Cartesian products.

• (∪ t1 . . . tn) for union types.

• t1\ t2 for difference types denoting the values oft1 that are not denoted byt2.

• (t1 . t2) for cons pairs.

• (vector t) for a vector type with argument typet.

• µX.t for recursively defined types.

• (list t) for lists of argument typet. This is an abbreviation for the recursive
type definitionµX.(∪ nil (t . X)).

The usual function types do not occur in the type language and will be replaced
by I/O-representations in the following section.

The set of all types is denoted byT . For every typet ∈ T the semantics oft,
i.e. the set of values denoted by the typet, is denoted by〈[t]〉.

1.3 THE INAPPROPRIATENESS OF FUNCTION TYPES

1.3.1 Constraints used in Complete Type Checking

In a type language allowing subtyping the usual kind of constraints checked by a
sound type checker is a set inclusion constraint. For a function call(f a) and a
typeta inferred fora the system checks whether〈[ta]〉 ⊆ dom(f) holds.

In the type system the setdom(f) is approximated by the input type off . If f
has the typetin → tout then we can conclude〈[tin]〉 ⊆ dom(f) and the usual check
〈[ta]〉 ⊆ 〈[tin]〉 just succeeds if〈[ta]〉 ⊆ dom(f) also succeeds.

Informally, the set inclusion constraints of sound type checkers describe the
test whetherall values denoted by the typeta of the argumenta can be processed
by the functionf . For complete type checking we want to test whetheranyof the
values in the argument type can be processed. If this test fails then the considered
function call must fail and the program can be rejected safely.

The test whether there are values in the argument type that cause an error free
evaluation of the call can be expressed as follows: considering a call(f a) as
above the complete type checker performs the test〈[ta]〉∩dom(f) 6= /0 and rejects
the program if this test fail for any of the calls. Unfortunately, this test cannot
be safely approximated by a test usingtin instead ofdom(f). We will discuss the
problem and provide a solution in the rest of the paper.

1.3.2 Common Element Constraints and Function Types

The usual definition of function types (cf. e.g. [Mil78]) is done by a function type
constructor→ with the following semantics:
A type t1 → t2 represents all functionsf with

• 〈[t1]〉 ⊆ dom(f).

• f (〈[t1]〉)⊆ 〈[t2]〉 (where f (S) = { f (s) | s∈ S} for a setS).

This definition of function types is appropriate for sound type systems. For
an argument typet and an input typet1 those systems usually perform the test
〈[t]〉 ⊆ 〈[t1]〉 approximated by a subtype relationv with

t v t1 ⇒ 〈[t]〉 ⊆ 〈[t1]〉 ⊆ dom(f)

This implies that the testt v t1 is a sound approximation of the test for the appli-
cability of f to t.

In a complete type checker we rather want to approximate the test

〈[t]〉∩dom(f) 6= /0

i.e. instead of raising an error whensomeelements oft cause an error we raise an
error whenall elements oft are no valid arguments tof . Unfortunately, a function
type defined in the way above is of no use for a complete type checker because
there might be cases in which〈[t]〉∩dom(f) 6= /0, but〈[t]〉∩ 〈[t1]〉= /0 raises a type
error.

Example 1.4.According to the usual definition of function types the unary divi-
sion operator should have the typenum\zero → num. But because of the prob-
lem of deciding whether the argument is 0 one often states the division-by-zero
problem to be outside the scope of the type checker.

1.4 THE NEW FUNCTION TYPE CONSTRUCTOR

Putting the division-by-zero problem into the scope of the type checker is easily
possible for a complete type checker that can detect some of the division-by-zero

errors, but not all of them. To do this a complete type checker needs a function
type definition different from that given above.

1.4.1 Definition of I/O-Representations

The complete type inference system/type checker we have in mind here uses the
directed data flow properties of abstract interpretations to infer abstract predefined
functions or abstract lambda closures for predefined and user defined functions,
respectively, instead of function types. Since it seems quite difficult to find a short
and understandable representation for the output of such function abstractions we
will define I/O-representations for functions. The I/O-representations expressing
the main properties of a function can be used for printing types of functions.

Definition 1.5 (I/O-representations). An I/O-representation of a function is
given by a set of I/O-representation pairs INi 9 9 KOUTi with INi ,OUTi ∈ T such
that:

• dom(f)⊆Si 〈[INi]〉
• ∀i f (〈[INi]〉)⊆ 〈[OUTi]〉∪{error }

The set of all I/O-representations is denoted byio .

By the first part of the definition every value that can be processed by a func-
tion must be member of at least oneINi . A (complete) type checker making use
of I/O-representations cannot raise an error because of calling a functionf with
an input argumentv∈ dom(f) that is not member of any off ’s input typesINi .
Though I/O-representations look similar to refinement types [FP91] or types of
functions constructed by using intersection types [Pie96] these notions of function
types just guarantee to cover a subset of the domains of the denoted functions. In
this property they differ from I/O-representations.
By the second part of the definition applying the function to an argumentv : INi

cannot yield a result that is not of typeOUTi (except of error). Thus, uniting all
thoseOUTi with the correspondingINi having common elements with the argu-
ment type yields a type that covers all values possible for a function application.

Example 1.6 (I/O-representations of functions).Consider the following I/O-rep-
resention of the functionadd where every line represents one I/O-represention
pair, e.g. one element of the I/O-representation set:

posint ×posint 9 9 Kposint

int × int 9 9 Kint

num×num9 9 Knum

string ×string 9 9 Kstring

One could imagine thatadd is the usual addition on the three mentioned number
types and the concatenation function on strings.

This example can furthermore illustrate the difference between I/O-repres-
entations and intersection types: by dropping the last line describing the transfor-
mation of strings byadd the set of functions denoted by the I/O-representation
gets smaller: functions processing strings are no longer denoted by this I/O-rep-
resentation. However, the corresponding intersection type without information
about strings not only still allows all functions transforming two strings into a
string but also those functions not applicable to strings or returning output values
of a different type. The set of denoted functions hence gets larger.

The setT of all types used for complete type inference is extended to contain
I/O-representations. The notion of I/O-representations replaces the function type
constructor used in usual type systems.

When a functionf expects a functionf ′ as input the inferred input type of
f ′ is known just from inspecting the arguments of the calls tof ′. Each argument
type must have a non-empty intersection with the domain off ′. Thus, the valid
input values off ′ are not completely known, but we know typesPINi each of
which has common elements with the domain off ′. Furthermore, when an output
type POUTi is inferred for a given inputPINi we can just expect the property
f (〈[PINi]〉)∪〈[POUTi]〉 6= /0 to hold. Therefore, I/O-representations as defined be-
fore are to restrictive to express the information that can be inferred about higher
order functions.

We solve this problem by defining the notion of a PI/PO-representation off ′
for expressing the type of a function argumentf ′ of a higher order functionf .
PI/PO-representations differ from I/O-representation especially in the meaning of
the input types. While the input types of I/O-representations must be exhaustive
in the sense that their union has to coverall values a denoted function is applicable
to, the input types of PI/PO-representations only need to coversomeof the values
the denoted functions are applicable to.

Definition 1.7. (PI/PO-representations)A PI/PO-representation of a function f
is given by a set of PI/PO-representation pairs PINi 9 9 K

≈ POUTi with types PINi

and POUTi such that:

• ∀i .dom(f)∩〈[PINi]〉 6= /0

• ∀i . f (〈[PINi]〉)∩〈[POUTi]〉 6= /0

The set of all PI/PO-representations is denoted bypipo .

Example 1.8.(PI/PO-representation)Consider the following functionmap1im-
plementing the usual map operation for just unary functions and one list and its
use:

(define (map1 f l)
(if (null? l) ()

(cons (f (car l)) (map1 f (cdr l)))))

(define (usemap1 f l)

(let ((l-new (map1 f l)))
(+ (car l-new) (car (cdr l-new)))))

An I/O-representation forusemap1is

{A 9 9 K
≈ num}× (list A) 9 9 K(list num)

From the use ofl-new in usemap1we know that the output type of the first argu-
ment ofusemap1must contain numbers. But as long as the input function is not
known further output values might be possible. Analogously, from applyingf to
(car l) we know thatf must be applicable to some values of the element type of
l . But again,f may be applicable to other values, too.

The definitions of I/O-representations and PI/PO-representations on the one
hand provide a notion for printing function types. On the other hand they contain
all necessary information used for type checking and type inference. For example,
the needed properties of the abstractions of predefined function are completely
given by their I/O-representations.

1.4.2 Examples

Since the use of PI/PO-representations is restricted to the input types of higher
order functions, we will focus on I/O-representations in the following. In this sub-
section we will compare the usual function types and the I/O-representations of
several functions that are predefined in many functional programming languages.

For those functions whose domains can be expressed exactly by the type lan-
guage in use there is not much difference between usual function types and I/O-
representations.

Example 1.9.Consider the functionscar andcdr for selecting the first or second
element of a pair, respectively. Their function types can be given as:

car : (A . >)→ A

cdr : (> . A)→ A

whereA denotes a (implicitly universally quantified) type variable. Analogously,
the I/O-representations ofcar andcdr are given as

car : {(A . >) 9 9 KA}
cdr : {(> . A) 9 9 KA}

Using both notions of function types we can express the types ofcar andcdr
in a similar manner, because the types(A . >) and(> . A) of pairs with the first
or second element of typeA, respectively, can be expressed exactly in our type
language.

One could imagine that the difference between usual function types and I/O-
representations would become more obvious for functions whose domains must
beapproximatedby the input types:

Example 1.10.Consider the division function/ and the functionvector-ref for
selecting a vector element with a given number. Using the usual function type
constructor these functions have the following types:

/ : num×num→ num

vector-ref: (vector A)× int → A

Since usual function types and I/O-representations approximate the input types of
the denoted functions from different sides (usual function types from below and
I/O-representations from above) it is surprising that the I/O-representations of/
andvector-ref look similar to the usual function types, i.e.:

/ : {num×num9 9 Knum}
vector-ref: {(vector A)× int 9 9 KA}

The reason for this similar appearance in contrast to different meanings of the
constructors lies in the use of the usual function type constructor:

• Thoughx×0 6∈ dom(/) for every numberx we havex×0∈ 〈[num×num]〉.
• For a vectorv of type(vector A) with an arbitrary argument typeA not all

integer numbers are valid inputs tovector-ref in the second argument position.
Though integersi that are negative or exceed the number of elements inv
are invalid and yield argument tuplesv× i 6∈ dom(vector-ref) these tuples are
covered by the input type, i.e.v× i ∈ 〈[(vector A)× int]〉.

In both cases usual type systems use function types for the considered functions
that cover values not contained in the domain of the respective function. The
function type constructor→ is used in a manner not respecting its semantics. To
be precise, the function types given above are not function types for/ andvector-
ref, respectively. This use of the function type constructor→ makes it difficult
to present the existing differences to the corresponding I/O-representations9 9 K

(which are indeed correct I/O-representations of/ andvector-ref) in examples.

1.4.3 I/O-Representations and Complete Type Inference

As already stated, the motivation for defining the notion of I/O-representations
is the inappropriateness of the usual function type constructor for complete type
checking.

The use of I/O-representations is therefore given by the benefits of complete
type checking, which can be illustrated by revisiting the motivating examples from
Sec. 1.1:

Compared to the static type checker of a strictly typed language a complete
type checker can work on a refined type language without raising errors for run-
time correct calls:

Example 1.11.Reconsider the program of Ex. 1.1. By using complete type check-
ing we can understand division by zero errors as type errors. In cases where the

second argument of the division operator can be proven to be zero, a type error is
risen.

Compared to soft-typing a complete type checker can indeed reject a program
in case of aprovabletype error.

Example 1.12.Reconsider the program defined in Ex. 1.2. For a complete type
checker it is possible to infer the type{num 9 9 Klist num } for the function
generate. (list A is an abbreviation for a recursive definition of lists of typeA.)
Therefore,f expects a number as input and calls reverse with an argument of type
list num . From this the system can infer the typenum for the result of the call
(car l) in line 6.

For the predefined functionappendwe can assume the I/O-representation
{list A× list B 9 9 Klist A∪B} to be provided.

Since the inferred typenum of line 6 and the expected typelist B of the
second argument ofappenddo not have common elements under any instantiation
of B the type checker can detect a type error in the call toappend.

Note that the type error in Ex. 1.12 leads to the detection of a piece of program
code that under no circumstances can be executed without rising a runtime type
error. Thus, a complete type checker can safely reject the program given in Ex.
1.2. The type checker developed in [Wid01] yields a rejection of this program by
performing precisely the type inference steps indicated in the example above.

Unfortunately, it is impossible to give a detailed definition of complete type
checking using I/O-representations in this paper due to lack of space. For such a
definition see [Wid01].

1.5 CONCLUSION

Motivated by the requirements of complete type checking we have described the
inappropriateness of the usual function type constructor. An alternative notion
of function types called I/O-representation is introduced that fits better into the
framework of complete type checking.

The new function types differ from the usual ones in the fact that they are
not antimonotonic in the first argument and that their input types cover the whole
domains of the denoted functions. For describing functions in an input argument
of a higher order function PI/PO-representations yield an appropriate variant of
I/O-representations with the input and output types not completely known.

Several examples showed the differences between usual and new function
types. These differences are not obvious in many cases. As we have shown,
the reason for this is an inappropriate use of the usual function type constructor
by pushing certain misapplications of functions (e.g. division by zero or range
errors of arrays/vectors) out of the scope of the type checker.

The new notion of I/O-representations can serve for several purposes includ-
ing the external representation of types and storing the main properties of ab-
stract predefined functions efficiently. A detailed discussion of the use of I/O-
representations can be found in [Wid01].

Acknowledgments

We would like to thank the anonymous referees for their helpful comments.

REFERENCES

[CF91] Robert Cartwright and Mike Fagan. Soft-typing. InProc. SIGPLAN ’91 Confer-
ence on Programming Language Design and Implementation, pages 278–292,
June 1991.

[Fag92] Mike Fagan.Soft Typing: An Approach to Type Checking for Dynamically Typed
Languages. PhD thesis, Rice University, Houston, Texas, August 1992.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. InProceedings
of the ACM SIGPLAN’91 Conference on Programming Language Design and
Implementation (PLDI), pages 268–277, Toronto, Ontario Canada, 26–28 June
1991.SIGPLAN Notices26(6), June 1991.

[HPF97] Paul Hudak, John Peterson, and Joseph H. Fasel.A Gentle Introduction to
Haskell – Version 1.4 –, March 1997.

[Mil78] Robin Milner. A theory of type polymorphism in programming.Journal of
Computer and System Sciences, 17(3):348–375, December 1978.

[Pie96] Benjamin C. Pierce. Intersection types and bounded polymorphism.Mathemat-
ical Structures in Computer Science, 11, 1996.

[Wan74] Paul S. Wang. The undecidability of the existence of zeros of real elementary
functions.Journal of the ACM, 21(4):586–589, October 1974.

[WB00] Manfred Widera and Christoph Beierle. How to combine the benefits of strict
and soft typing. In Greg Michaelson, Phil Trinder, and Hans-Wolfgang Loidl,
editors,Trends in Functional Programming. Intellect, 2000.

[Wid01] Manfred Widera.Complete Type Inference in Functional Programming. Men-
sch & Buch Verlag, Berlin, 2001. (PhD thesis, Dept. of Computer Science,
FernUniversität Hagen).

[Wik87] Åke Wikström. Functional Programming using Standard ML. Prentice Hall,
1987.

