FernUniversität in Hagen

Investments in supplier-specific economies of scope with two different services and different supplier characters: two specialists

Günter Fandel ${ }^{\mathrm{a}, *}$ and Jan Trockel ${ }^{\mathrm{a}}$

Discussion paper No. 494

March 2016

Diskussionsbeiträge der Fakultät für Wirtschaftswissenschaft der FernUniversität in Hagen

Herausgegeben vom Dekan der Fakultät
Alle Rechte liegen bei den Verfassern

[^0]
Abstract

Firms have to choose their market positions. Suppliers can offer a wide range of services as generalists or they act as specialists by offering a small range of services. In this paper based on Chatain/Zemsky (2007) and Chatain (2011) we analyse how supplier-specific economies of scope generated by investments can compensate the loss occurring by a non-optimal organisational structure (resource configuration) of production. These considerations are modelled by a non-cooperative game with one buyer and two suppliers. We show how the buyer can gain from supplier-specific economies of scope. In this case, the buyer will never split the orders to both suppliers. But, if the investment costs of the suppliers are very high and/or the gains of the buyer are rather low, the pure strategy combination "no investments" for the two suppliers will become the unique Nash equilibrium, whereby the buyer places the two orders each to the supplier who is the specialist for it. Additional Nash solutions are dependent on the specific economies of scope. If the buyer has to place two different services he should order one supplier, if the tasks have similar characteristics and the investment costs of a supplier result in higher specific economies of scope relevant to the choice of the buyer.

1. Introduction

Investments to generate economies of scope as well as to reduce information asymmetries improve supply chain structures and buyer-supplier relationships. Frequently, it has to be assessed, which supplier has to be chosen by a buyer for specific jobs. The following considerations focus on the choice of potential suppliers and an intensification in the buyersupplier relationship through investment possibilities of a supplier in order to enlarge his specialisation. These considerations raise the following question: under what conditions do economies of scope of a supplier motivate the buyer to place his different jobs to the same supplier, even so this supplier is only a specialist for one of the jobs and has to invest in his organisational structure (resource configuration) of production to produce also the other job with a little bit less, but still sufficiently high quality for the buyer? Thus, for example, the different company philosophies practiced by Oracle or IBM could serve as an example. On the one hand, a general product (service) is provided, while on the other hand a special product (service) is developed on demand.

It is demonstrated how the non-cooperative game theory resolves those conflicts between companies with respect to various aspects of economic production and demand. The concept of the non-cooperative Nash (1951) solution is employed in order to find all strategy combinations of the three parties (one buyer, two suppliers) which characterise an equilibrium for the game considered.

Possible economies of scope which are put into measurable terms in this essay for each supplier have been discussed by Chatain/Zemsky (2007) in a game. Panzar/Willig (1981) define these economies of scope as the cost savings for a company when it has two similar products manufactured by one supplier. This customer-specific value creation is taken up and
discussed in Chatain (2011). He considers companies that obtained information about customers which is advantageous for the production of services for the customer, but appears not to be of use in other buyer-supplier relationships. At this point our game theoretical analysis starts. In contrast to Chatain (2011), who examines the behaviour between supplier and buyer with respect to customer-specific economies of scope that should exist, we determine here exact solutions of those decision situations. Chatain (2011) does not explicitly examine how economies of scope are attained through the production of two services, but rather defines the additional advantage through the sum of potential, specific knowledge and a coordination; different features of the suppliers are not discussed in his paper. For this reason our research departs from Chatain's considerations in (2011). Here, a model is established that combines investments in cooperation (see therefore among others Jia (2013) and Fandel/Trockel (2016)) and supplier-specific economies of scope. Then, the conditions can be discussed under which an investment of a specialist and the related supplying of two services generate a better market situation than when the buyer commissions two specialists for the particular service.

The present study is organised as follows. After an explanation of a basic model supplierspecific economies of scope will be introduced and the given market situation is formulated. In the following analysis different specialists in a supplier-buyer relationship who can perform the different investments are considered. It will be shown that the buyer never makes use of the economies of scope of both suppliers. Additionally, it will be seen that precisely the same Nash solution, where no one of the supplier invests, exists in all market situations and is independent of the supplier's technology of production. Additional Nash equilibria are, depending on the attributes and the investment levels, feasible and modelled.

2. Model Design and Analysis

2.1 Basic Considerations

In the following model two suppliers are supposed to take on two tasks, respectively, to produce two services A and B for a customer (buyer). In opposition to Chatain/Zemsky (2007) a barrier of entry to the market is not considered.

Each supplier i, $i=1,2$, is characterised by his individual resource configuration (organisational structure of production) $D_{i} \in[0,1]$, by which ex-ante is determined how effectively he can perform the tasks A and B.

The value resulting from the adoption of one of the tasks is defined for the suppliers as $V^{\mathrm{A}}\left(D_{i}\right)$ for task A and $V^{\mathrm{B}}\left(D_{i}\right)$ for task B with

$$
V^{\mathrm{A}}\left(D_{i}\right)=1-T D_{i}^{2} \text { or } V^{\mathrm{B}}\left(D_{i}\right)=1-T\left(1-D_{i}\right)^{2} \text { with } 0<T<1 \text { and } 0 \leq D_{i} \leq 1 .
$$

The parameter T specifies the marginal rate of transformation of the production technology which is identical for both suppliers. In the case of large $T(T \rightarrow 1)$ the production value decreases all the more drastically when there is a divergence from the optimal production design to provide the service to be produced (see Chatain/Zemsky (2007, 556)). If one employs the extremes for D_{i}, it becomes clear that independent of the tradeoff T for $D_{i}=0$ task A and for $D_{i}=1$ task B is most effectively manufactured.

The concept of added values, according to Brandenburger/Stuart (1996, 2007), signifies every additional value generated by a specific player in the strategy combinations of the game. In the following study added values for the companies only occur when suppliers decide to invest in their economies of scope, i.e. to realise with additional costs a resource configuration which allows them to produce also the task for which they are not the most effective producer, and when the customer makes use of these economies of scope by placing his two orders A and B as a package $A B$ to the same supplier. If a supplier services the customer by taking on both tasks, customer-specific economies of scope may create an added value of $R_{i 3}>0$ for the customer through this specific supplier-buyer relationship. In the following it will be assumed that individual economies of scope can exist. By means of such an expansion of the model it can be analysed how different added values for the suppliers influence the result as well as of how far suppliers should invest in their own capability of attaining economies of scope.

Dyer/Singh (1998) show that the causes of competitive advantages that are generated through cross-company cooperation can originate in an extensive exchange of knowledge and information. A creation of this value is, however, only possible if both cooperating partners are open to disclosing this information and to making joint learning possible. To emphasise this mutual dependence the readiness of the client to provide reciprocity for the efforts of the supplier has some influence in the subsequent deliberations.

An existing market situation in which a buyer outsources two tasks is analysed. To simplify the analysis, an existing AB-buyer who has two different tasks A and B to allocate is assumed. Furthermore, the characters of the organisational structure of production of the firms
are here taken into consideration, so that the capability of a supplier to produce one of the two tasks depends upon its structural form.

In the given market situation only the maximum of two suppliers has to be considered, since in the case of two tasks awarded by the buyer, a third supplier cannot realise any (added) value. A third supplier would only make sense if he were fundamentally different from the other two, for example, if sustainability aspects make a difference in the case of the third supplier. Let the suppliers be characterised only by the quality 'specialist'. One can also analyse a market structure with 'generalists' being more effective in producing the package AB (for instance for $0<D_{i}<1$). Other types of organisational production structures are not possible for a supply chain with only one AB-buyer.

The question is now whether suppliers invest in their economies of scope and how these investments influence the stance of the buyer in making his decisions. To answer the question the decision situation is modelled by means of the use of a non-cooperative game in which simultaneously the optimal investment of the suppliers and the optimal allocation of the jobs to them by the buyer are determined in terms of the respective Nash solutions. For this purpose at first the possible added values for the players are calculated. In a second step the added values are transformed into payoffs so that the non-cooperative Nash solutions can be identified through comparisons of the payoff parameters. These comparisons are conducted by means of reaction correspondences.
2.2 An approach to the analysis of supplier-specific economies of scope in the case of two specialists

In order to describe and to analyse the non-cooperative game we assume without loss of generality that supplier 1 is a specialist for the task A and supplier 2 is a specialist for task B . So, with the resource configurations $D_{1}=0$ and $D_{2}=1$ the production values of the suppliers on the basis of their production technology are

- $V_{1}^{A}=1-T \cdot D_{1}^{2}=1$ if supplier 1 produces service A ,
- $V_{1}^{B}=1-T \cdot\left(1-D_{1}\right)^{2}=1-T \quad$ if supplier 1 produces service B,
- $V_{2}^{\mathrm{A}}=1-T \cdot D_{2}^{2}=1-T \quad$ if supplier 2 produces service A ,
- $V_{2}^{\mathrm{B}}=1-T \cdot\left(1-D_{2}\right)^{2}=1 \quad$ if supplier 2 produces service B.

Attainable added values $a v_{1}$ or $a v_{2}$ through economies of scope only accrue for supplier 1 or 2 if he invests in the appropriate resource configuration in order to be able to produce the job bundle AB or BA , respectively. The additional investment can also be used to produce only that job the supplier is not a specialist for. This means, supplier 1 or supplier 2 are also striving for to have a chance to get at least job B (A) instead of A (B). Whether these additional values essentially occur depends on how the buyer ($i=3$) allocates his jobs A and B to the suppliers. Four alternatives have to be considered in this respect.
(A/B): the buyer allocates the two jobs to the suppliers as they are the specialists for, i.e. job A is given to supplier 1 and job B is awarded to supplier 2,
$(\mathrm{AB} /-)$: the buyer gives both jobs to supplier 1 ; supplier 2 receives nothing,
$(-/ B A)$: the buyer gives both jobs to supplier 2; supplier 1 receives nothing,
(B/A): the buyer allocates the two jobs to the suppliers they are not exactly specialists for.

The buyer only realises an additional value $a v_{3}$ for himself if he makes use of the possible economies of scope of the suppliers in that way that he allocates both jobs to one supplier. In case that he places the two tasks to supplier $1((\mathrm{AB} /-))$ his benefit of making use of the economies of scope of supplier 1 may be R_{13} - in the opposite case $((-/ \mathrm{BA}))$ the benefit may be R_{23}.

To be more formal let us denote by
$S_{1}=\{\mathrm{I}, \mathrm{NI}\}$ the strategy set of supplier 1 with I expressing that he invests and NI that he does not,
$S_{2} \quad\{\mathrm{I}, \mathrm{NI}\}$ the strategy set of supplier 2 with analogous interpretations of I and NI,
$S_{3}=\{(\mathrm{A} / \mathrm{B}),(\mathrm{AB} /-),(-/ \mathrm{BA}),(\mathrm{B} / \mathrm{A})\}$ the strategy set of the buyer.

The following game tree results:

Figure 1: Extensive game tree of the supplier-buyer relationship
With $s_{1} \in S_{1}, s_{2} \in S_{2}, s_{3} \in S_{3}$ the added values $a v_{i}\left(s_{1}, s_{2}, s_{3}\right), i=1,2,3$, as described by the former explanations may be specified for the three players of the non-cooperative game by the polymatrix (see for the definition of a polymatrix Quintas (1989)) in figure 2. For the column vectors in the boxes of the polymatrix it holds

$$
a v=\left(a v_{1}\left(s_{1}, s_{2}, s_{3}\right), a v_{2}\left(s_{1}, s_{2}, s_{3}\right), a v_{3}\left(s_{1}, s_{2}, s_{3}\right)\right)
$$

$s_{3}=(\mathrm{A} / \mathrm{B})$		
s_{2}		
s_{1}		

$s_{3}=(\mathrm{AB} /-)$		
s_{2}		
s_{1}	(NI)	(I)
	0	0
(NI)	0	0
	0	0
	$1-T$	$1-T$
(I)	0	0
	R_{13}	R_{13}

$s_{3}=(-/ \mathrm{BA})$		
s_{2}	(NI)	(I)
s_{1}		
	0	0
(NI)	0	$1-T$
	0	R_{23}
	0	0
(I)	0	$1-T$
	0	R_{23}

$s_{3}=(\mathrm{B} / \mathrm{A})$		
s_{2}	(NI)	(I)
s_{1}		
	0	0
(NI)	0	$1-T$
	0	0
	$1-T$	$1-T$
	0	$1-T$
	0	0

Figure 2: Added value polymatrix of the two suppliers and the buyer
This added value polymatrix leads directly to the individual payoff polymatrix of the three strategic players based on the assumption that the investments of the suppliers entail costs R_{1} and R_{2} and the values for the executed tasks are one money unit each. The payoff columns in figure 3 can be read accordingly, i.e. $\pi(a v)=\left(\pi_{1}(a v), \pi_{2}(a v), \pi_{3}(a v)\right)^{\prime}$ with $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ as mapping function.

$s_{3}=(\mathrm{A} / \mathrm{B})$		
s_{2}	(NI)	(I)
s_{1}		
	1	1
(NI)	1	$1-R_{2}$
	2	2
	$1-R_{1}$	$1-R_{1}$
(I)	1	$1-R_{2}$
	2	2

$s_{3}=(\mathrm{AB} /-)$		
s_{2}	(NI)	(I)
s_{1}		
	1	1
(NI)	0	$-R_{2}$
	1	1
(I)	$2-T-R_{1}$	$2-T-R_{1}$
	0	$-R_{2}$
	$2-T+R_{13}$	$2-T+R_{13}$

$s_{3}=(-/ \mathrm{BA})$		
s_{2}	(NI)	(I)
s_{1}		
	0	0
(NI)	1	$2-T-R_{2}$
	1	$2-T+R_{23}$
	$-R_{1}$	$-R_{1}$
(I)	1	$2-T-R_{2}$
	1	$2-T+R_{23}$

$s_{3}=(\mathrm{B} / \mathrm{A})$		
s_{2}	(NI)	(I)
s_{1}		
	0	0
(NI)	0	$1-T-R_{2}$
	0	$1-T$
	$1-T-R_{1}$	$1-T-R_{1}$
(I)	0	$1-T-R_{2}$
	$1-T$	$2-2 T$

Figure 3: Payoff polymatrix of the two suppliers and the buyer
The non-cooperative game is now described in details. Based on the assumption of pure strategies in the next step the best suppliers' responses are calculated given the buyer's action. In the case of the suppliers' (non-)identical investment costs three Nash equilibria in pure strategies result in dependence on the amounts of $R_{i}, i=1,2$. So, the Theorem 1 can be formulated.

Theorem 1:

For (non-)identical benefits of the economies of scope $R_{13}, R_{23}>T, R_{13} \neq R_{23}$, three Nash equilibria exist in pure strategies which depend upon the level of the investment costs. Furthermore, the buyer never simultaneously places orders to both suppliers. The Nash equilibria are in dependence on the costs $R_{i}, i=1,2$, and economies of scope $R_{i 3}$:

$$
\begin{aligned}
& s^{* 1}=(\mathrm{NI}, \mathrm{NI},(\mathrm{~A} / \mathrm{B})) . \\
& s^{* 2}=(\mathrm{I}, \mathrm{NI},(\mathrm{AB} /-)) \text { for } 1>T+R_{1} \text { and } R_{13}>R_{23}, T . \\
& s^{* 3}=(\mathrm{NI}, \mathrm{I},(-/ \mathrm{AB})) \text { for } 1>T+R_{2} \text { and } R_{23}>R_{13}, T .
\end{aligned}
$$

Proof:

To simplify the analysis, in a first step the reaction correspondences for the suppliers are determined in order to generate subsequently the buyer's best response to the previously determined reaction correspondences. As a finding of the first step the represented reaction correspondences $r_{1}\left(s_{-1}\right)$ and $r_{2}\left(s_{-2}\right)$ result in Proposition 1.

Proposition 1:

The suppliers' best responses are provided by:

$$
\begin{aligned}
& r_{1}\left(s_{-1}\right): \\
& r_{1}(\mathrm{NI},(\mathrm{~A} / \mathrm{B}))=r_{1}(\mathrm{I},(\mathrm{~A} / \mathrm{B})) \\
& =r_{1}(\mathrm{NI},(-/ \mathrm{BA}))=r_{1}(\mathrm{I},(-/ \mathrm{BA})) \\
& =\mathrm{NI} \\
& r_{1}(\mathrm{NI},(\mathrm{AB} /-))=r_{1}(\mathrm{I},(\mathrm{AB} /-)) \\
& =r_{1}(\mathrm{NI},(\mathrm{~B} / \mathrm{A}))=r_{1}(\mathrm{I},(\mathrm{~B} / \mathrm{A})) \\
& =\left\{\begin{array}{ccc}
\mathrm{NI} & \text { for } & 1<T+R_{1} \\
\mathrm{I} & \text { for } & 1>T+R_{1}
\end{array}\right. \\
& r_{2}\left(s_{-2}\right): \\
& r_{2}(\mathrm{NI},(\mathrm{~A} / \mathrm{B}))=r_{2}(\mathrm{I},(\mathrm{~A} / \mathrm{B})) \\
& =r_{2}(\mathrm{NI},(\mathrm{AB} /-))=r_{2}(\mathrm{I},(\mathrm{AB} /-)) \\
& =\mathrm{NI} \\
& r_{2}(\mathrm{NI},(-/ \mathrm{BA}))=r_{2}(\mathrm{I},(-/ \mathrm{BA})) \\
& =r_{2}(\mathrm{NI},(\mathrm{~B} / \mathrm{A}))=r_{2}(\mathrm{I},(\mathrm{~B} / \mathrm{A})) \\
& =\left\{\begin{array}{ccc}
\mathrm{NI} & \text { for } & 1<T+R_{2} \\
\mathrm{I} & \text { for } & 1>T+R_{2}
\end{array}\right.
\end{aligned}
$$

Proof:

Given the response of the buyer by splitting the two tasks to two suppliers (A/B) independently of the action choice of supplier 2 supplier 1 always plays NI:
$\pi_{1}(\mathrm{NI}, \mathrm{I},(\mathrm{A} / \mathrm{B}))=\pi_{1}(\mathrm{NI}, \mathrm{NI},(\mathrm{A} / \mathrm{B}))>\pi_{1}(\mathrm{I}, \mathrm{I},(\mathrm{A} / \mathrm{B}))=\pi_{1}(\mathrm{I}, \mathrm{NI},(\mathrm{A} / \mathrm{B}))$.
This also holds for supplier 2:
$\pi_{2}(\mathrm{I}, \mathrm{NI},(\mathrm{A} / \mathrm{B}))=\pi_{2}(\mathrm{NI}, \mathrm{NI},(\mathrm{A} / \mathrm{B}))>\pi_{2}(\mathrm{I}, \mathrm{I},(\mathrm{A} / \mathrm{B}))=\pi_{2}(\mathrm{NI}, \mathrm{I},(\mathrm{A} / \mathrm{B}))$.

This results in the statement that for $s_{3}=(\mathrm{A} / \mathrm{B})$ the suppliers' best responses coincide in the strategy combination $s_{-3}=(\mathrm{NI}, \mathrm{NI})$.

Given the response of the buyer assigning tasks only to supplier $1, s_{3}=(\mathrm{AB} /-)$, the supplier 1 invests in economies of scope if and only if the inequality $R_{1}<1-T$ holds, otherwise he always plays NI independently of the supplier 2's behavior:

For $R_{1}<1-T$:
$\pi_{1}(\mathrm{I}, \mathrm{NI},(\mathrm{AB} /-))=\pi_{1}(\mathrm{I}, \mathrm{I},(\mathrm{AB} /-))>\pi_{1}(\mathrm{NI}, \mathrm{NI},(\mathrm{AB} /-))=\pi_{1}(\mathrm{NI}, \mathrm{I},(\mathrm{AB} /-))$.
For $R_{1}>1-T$:
$\pi_{1}(\mathrm{NI}, \mathrm{I},(\mathrm{AB} /-))=\pi_{1}(\mathrm{NI}, \mathrm{NI},(\mathrm{AB} /-))>\pi_{1}(\mathrm{I}, \mathrm{NI},(\mathrm{AB} /-))=\pi_{1}(\mathrm{I}, \mathrm{I},(\mathrm{AB} /-))$.
Analogously the situation is presented by $s_{3}=(-/ B A)$ with the focus on supplier 2 :
For $R_{2}<1-T$:
$\pi_{2}(\mathrm{NI}, \mathrm{I},(-/ \mathrm{BA}))=\pi_{2}(\mathrm{I}, \mathrm{I},(-/ \mathrm{BA}))>\pi_{2}(\mathrm{I}, \mathrm{NI},(-/ \mathrm{BA}))=\pi_{2}(\mathrm{NI}, \mathrm{NI},(-/ \mathrm{BA}))$.
For $R_{2}>1-T$:
$\pi_{2}(\mathrm{I}, \mathrm{NI},(-/ \mathrm{BA}))=\pi_{2}(\mathrm{NI}, \mathrm{NI},(-/ \mathrm{BA}))>\pi_{2}(\mathrm{NI}, \mathrm{I},(-/ \mathrm{BA}))=\pi_{2}(\mathrm{I}, \mathrm{I},(-/ \mathrm{BA}))$.
These considerations lead to the statement that for defined thresholds R_{1} respectively R_{2} the suppliers' best responses coincide in such strategy combinations that the given buyer's action to assign tasks only to one supplier leads to ($\mathrm{I}, \mathrm{NI},(\mathrm{AB} /-)$) and (NI, I, ($-/ \mathrm{BA}$)). The same considerations hold for the case $s_{3}=(\mathrm{B} / \mathrm{A})$. If and only if the inequalities $R_{i}<1-T$, $i=1,2$, hold, the best response of supplier i is to invest in his organisational structure of production because of the relation:

$$
\pi_{1}(\mathrm{I}, \mathrm{NI},(\mathrm{~B} / \mathrm{A}))=\pi_{1}(\mathrm{I}, \mathrm{I},(\mathrm{~B} / \mathrm{A}))>\pi_{1}(\mathrm{NI}, \mathrm{NI},(\mathrm{~B} / \mathrm{A}))=\pi_{1}(\mathrm{NI}, \mathrm{I},(\mathrm{~B} / \mathrm{A}))
$$

and/or

$$
\pi_{2}(\mathrm{NI}, \mathrm{I},(\mathrm{~B} / \mathrm{A}))=\pi_{2}(\mathrm{I}, \mathrm{I},(\mathrm{~B} / \mathrm{A}))>\pi_{2}(\mathrm{I}, \mathrm{NI},(\mathrm{~B} / \mathrm{A}))=\pi_{2}(\mathrm{NI}, \mathrm{NI},(\mathrm{~B} / \mathrm{A})) .
$$

Otherwise the best responses of the strategic player(s) is (are) not to invest (NI). q.e.d. Hence the following Lemma 1 can be formulated, which economically summarises the above contents of the best responses.

Lemma 1:

- For each value $R_{i} \geq 0, i=1,2$, and $s_{3}=(\mathrm{A} / \mathrm{B})$ the best responses of the suppliers coincide in ($\mathrm{NI}, \mathrm{NI},(\mathrm{A} / \mathrm{B})$).
- For $R_{1}>1-T$ and $R_{2}>1-T$ the suppliers' best responses coincide in (NI, NI, (AB/-)), (NI, NI, (-/BA)) and (NI, NI, (B/A)).
- For $R_{1}<1-T$ and/or $R_{2}<1-T$ the strategy combination (I, NI, (AB/-)), for $R_{2}<1-T$ and/or $R_{1}<1-T$ the strategy combination (NI, I, ($-/ \mathrm{BA}$)) also mutually represent the suppliers' best responses.
- Additionally for $s_{3}=(\mathrm{B} / \mathrm{A})$ four cases exist.
(I, I): \quad for $1>T+R_{1}$ and $1>T+R_{2}$.
(I, NI): for $1>T+R_{1}$ and $1<T+R_{2}$.
(NI, I): \quad for $1<T+R_{1}$ and $1>T+R_{2}$.
(NI, NI): for $1<T+R_{1}$ and $1<T+R_{2}$; this case is also described in the second statement.

The reaction behaviour of the two suppliers is now completely determined. On the basis of these deliberations the optimal behaviour of the buyer can be derived. Proposition 2 is then formulated.

Proposition 2:

$$
\begin{aligned}
& r_{3}(\mathrm{NI}, \mathrm{NI})=(\mathrm{A} / \mathrm{B}) \\
& r_{3}(\mathrm{I}, \mathrm{NI})=\left\{\begin{array}{cl}
(\mathrm{A} / \mathrm{B}) & \text { for } R_{13}<T \\
(\mathrm{AB} /-) & \text { for } R_{13}>T
\end{array}\right. \\
& r_{3}(\mathrm{NI}, \mathrm{I})=\left\{\begin{array}{cc}
(\mathrm{A} / \mathrm{B}) & \text { for } R_{23}<T \\
(-/ \mathrm{BA}) & \text { for } R_{23}>T
\end{array}\right.
\end{aligned}
$$

represent the buyer's mutually best response function based upon the suppliers' mutually best responses.

Proof:

If the non-complete strategy combination (NI, NI) is given, the best response of the buyer is (A/B), that dominates the other three possible actions:

$$
\begin{gathered}
(\mathrm{A} / \mathrm{B}) \succ(\mathrm{AB} /-) \sim(-/ \mathrm{BA}) \succ(\mathrm{B} / \mathrm{A}) \text {, respectively } \\
\pi_{3}(\mathrm{NI}, \mathrm{NI},(\mathrm{~A} / \mathrm{B}))>\pi_{3}(\mathrm{NI}, \mathrm{NI},(\mathrm{AB} /-))=\pi_{3}(\mathrm{NI}, \mathrm{NI},(-/ \mathrm{BA}))>\pi_{3}(\mathrm{NI}, \mathrm{NI},(\mathrm{~B} / \mathrm{A}))
\end{gathered}
$$

If the non-complete strategy combination (I, NI) is given, the buyer's best response is ($\mathrm{AB} /-$) if and only if $R_{13}>T$, otherwise the buyer selects both specialists separately:
$R_{13}>T:$
$\pi_{3}(\mathrm{I}, \mathrm{NI},(\mathrm{AB} /-))>\pi_{3}(\mathrm{I}, \mathrm{NI},(\mathrm{A} / \mathrm{B}))>\pi_{3}(\mathrm{I}, \mathrm{NI},(-/ \mathrm{BA}))>\pi_{3}(\mathrm{I}, \mathrm{NI},(\mathrm{B} / \mathrm{A}))$.
$R_{13}<T:$
$\pi_{3}(\mathrm{I}, \mathrm{NI},(\mathrm{A} / \mathrm{B}))>\pi_{3}(\mathrm{I}, \mathrm{NI},(\mathrm{AB} /-))>\pi_{3}(\mathrm{I}, \mathrm{NI},(-/ \mathrm{BA}))>\pi_{3}(\mathrm{I}, \mathrm{NI},(\mathrm{B} / \mathrm{A}))$.
These considerations result in the following dominance relationships:
$(\mathrm{A} / \mathrm{B})>(\mathrm{AB} /-)$ for $R_{13}<T$ and $(\mathrm{AB} /-)>(\mathrm{A} / \mathrm{B})$ for $R_{13}>T$ and inefficient strategy combinations ($-/ \mathrm{BA}$) and (B/A) given (I, NI).

The same considerations hold for (NI, I) and lead to the following results:
$(\mathrm{A} / \mathrm{B}) \succ(-/ \mathrm{BA})$ for $R_{23}<T$ and $(-/ \mathrm{BA})>(\mathrm{A} / \mathrm{B})$ for $R_{23}>T$ and inefficient strategy combinations (AB/-) and (B/A) given (IN, I).

If the non-complete strategy combination (I, I) is given, the buyer's best response is (AB/-) if $R_{13}>R_{23}, T$, (-/BA) if $R_{23}>R_{13}, T$ otherwise, given $R_{13}<T$ and $R_{23}<T$, the buyer selects both specialists separately using their special characteristics: $(A / B)>(B / A)$. These calculations lead to the result that the buyer's strategy (B / A) given the non-complete strategy combinations of the suppliers is dominated in every case. These considerations result in proposition 2.
q.e.d.

From this follows that (NI, NI, (A/B)), (I, NI, (AB/-)) and (NI, I, ($-/ \mathrm{AB}$)) are the Nash equilibria for different R_{1}, R_{2} in identical terms of investment values and Theorem 1 is proved. (I, NI, (AB/-)) is realised if $R_{13}>R_{23}, T$ holds. (NI, I, ($-/ \mathrm{AB}$)) is instead the Nash solution if $R_{23}>R_{13}, T$ is given.
q.e.d.

3. Concluding remarks

The above analysis disclosed the conditions under which investments in supplier-specific economies of scope would be profitable for suppliers and buyers. We followed an idea of Chatain/Zemsky (2007) and modelled the decision situation as a non-cooperative game. Thus we could analyse how a buyer can choose just the right suppliers for the production of two different services and possibly gain a competitive benefit by making use of the suppliers' economies of scope. Here, a three-person game with two different specialists and one ABbuyer was examined. For this game all Nash equilibria in pure strategies were determined. It turned out that the buyer, if he can make profitable use of economies of scope of suppliers, never distributes his jobs to the individual partners, but places them to only one (the most
profitable) supplier - either ($\mathrm{I}, \mathrm{NI},(\mathrm{AB} /-)$) or (NI, I, ($-/ \mathrm{BA}$)) are then the Nash equilibria. If the buyer cannot profit and/or the suppliers do not invest in their economies of scope, because the investment costs are not covered by the value of the additional job they could receive, then ($\mathrm{NI}, \mathrm{NI},(\mathrm{A} / \mathrm{B})$) is the only Nash equilibrium. For certain values of the investment costs the Chatain/Zemsky's (2007) model is a special case of our model.

Bibliography
Brandenburger, A., Stuart Jr., H. W., 2007. Biform Games. In: Management Science, 53, 537549.

Brandenburger, A., Stuart Jr., H. W., 1996. Value-based business strategy. In: Journal of Economics \& Management Strategy, 5, 5-24.

Chatain, O., 2011. Value creation, competition, and performance in distributor-supplier relationships. In: Strategic Management Journal, 32, 76-102.

Chatain, O., Zemsky, P., 2007. The Horizontal Scope of the Firm: Organizational Tradeoffs vs. Distributor-Supplier Relationships. In: Management Science, 53, 550-565.

Dyer, J. H., Singh, H., 1998. The Relational View: Cooperative Strategy and Sources of Interorganizational Competitive Advantage. In: Academy of Management Review, 24, 660679.

Fandel, G., Trockel, J., 2016. Investment and Lot Size Planning in a Supply Chain Coordinating a Just-in-Time-Delivery with a Harris- or a Wagner/Whitin-solution. In: Journal of Business Economics, 86, 173-195.

Jia. N., 2013. Competition, governance, and relationship-specific investments: Theory and implications for strategy. In: Strategic Management Journal, 34, 1551-1567.

Nash, J., 1951. Non-Cooperative Games. In: Annals of Mathematics, 54, 286-295.
Panzar, J. C., Willig, R. D., 1981. Economies of scope. In: American Economic Review, 71, 268-272.

Quintas, L. G., 1989. A Note on Polymatrix Games. In: International Journal of Game Theory, 18, 261-272.

Die Diskussionspapiere ab Nr. 183 (1992) bis heute, können Sie im Internet unter http://www.fernuni-hagen.de/wirtschaftswissenschaft/forschung/beitraege.shtml einsehen und zum Teil downloaden.
Ältere Diskussionspapiere selber erhalten Sie nur in den Bibliotheken.

Nr	Jahr	Titel	Autor/en
420	2008	Stockkeeping and controlling under game theoretic aspects	Fandel, Günter Trockel, Jan
421	2008	On Overdissipation of Rents in Contests with Endogenous Intrinsic Motivation	Schlepütz, Volker
422	2008	Maximum Entropy Inference for Mixed Continuous-Discrete Variables	Singer, Hermann
423	2008	Eine Heuristik für das mehrdimensionale Bin Packing Problem	Mack, Daniel Bortfeldt, Andreas
424	2008	Expected A Posteriori Estimation in Financial Applications	Mazzoni, Thomas
425	2008	A Genetic Algorithm for the Two-Dimensional Knapsack Problem with Rectangular Pieces	Bortfeldt, Andreas Winter, Tobias
426	2008	A Tree Search Algorithm for Solving the Container Loading Problem	Fanslau, Tobias Bortfeldt, Andreas
427	2008	Dynamic Effects of Offshoring	Stijepic, Denis Wagner, Helmut
428	2008	Der Einfluss von Kostenabweichungen auf das NashGleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel	Fandel, Günter Trockel, Jan
429	2008	Fast Analytic Option Valuation with GARCH	Mazzoni, Thomas
430	2008	Conditional Gauss-Hermite Filtering with Application to Volatility Estimation	Singer, Hermann
431	2008	Web 2.0 auf dem Prüfstand: Zur Bewertung von InternetUnternehmen	Christian Maaß Gotthard Pietsch
432	2008	Zentralbank-Kommunikation und Finanzstabilität - Eine Bestandsaufnahme	Knütter, Rolf Mohr, Benjamin
433	2008	Globalization and Asset Prices: Which Trade-Offs Do Central Banks Face in Small Open Economies?	Knütter, Rolf Wagner, Helmut
434	2008	International Policy Coordination and Simple Monetary Policy Rules	Berger, Wolfram Wagner, Helmut
435	2009	Matchingprozesse auf beruflichen Teilarbeitsmärkten	Stops, Michael Mazzoni, Thomas
436	2009	Wayfindingprozesse in Parksituationen - eine empirische Analyse	Fließ, Sabine Tetzner, Stefan
437	2009	ENTROPY-DRIVEN PORTFOLIO SELECTION a downside and upside risk framework	Rödder, Wilhelm Gartner, Ivan Ricardo Rudolph, Sandra
438	2009	Consulting Incentives in Contests	Schlepütz, Volker

439	2009	A Genetic Algorithm for a Bi-Objective Winner- Determination Problem in a Transportation-Procurement Auction"	Buer, Tobias Pankratz, Giselher
440	2009	Parallel greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid	Kubach, Timo Bortfeldt, Andreas Tilli, Thomas Gehring, Hermann
441	2009	SEM modeling with singular moment matrices Part I: ML- Estimation of time series	Singer, Hermann
442	2009	SEM modeling with singular moment matrices Part II: ML- Estimation of sampled stochastic differential equations	Singer, Hermann
443	2009	Konsensuale Effizienzbewertung und -verbesserung - Untersuchungen mittels der Data Envelopment Analysis (DEA)	Rödder, Wilhelm Reucher, Elmar
444	2009	Legal Uncertainty - Is Hamonization of Law the Right Answer? A Short Overview	Wagner, Helmut
445	2009	Fast Continuous-Discrete DAF-Filters	Mazzoni, Thomas
446	2010	Quantitative Evaluierung von Multi-Level Marketingsystemen	Lorenz, Marina Mazzoni, Thomas
447	2010	Quasi-Continuous Maximum Entropy Distribution Approximation with Kernel Density	Mazzoni, Thomas Reucher, Elmar
455	2010	Consistent Modeling of Risk Averse Behavior with Spectral Risk Measures	SEA - Output- vs. Inputorientierung -
448	2010	Solving a Bi-Objective Winner Determination Problem in a Transportation Procurement Auction Mazzoni, Thomas	
454	2010	Buer, Tobias Pankratz, Giselher	
450	2010	Are Short Term Stock Asset Returns Predictable? An Extended Empirical Analysis Effizäienzmessungen von Akutkrankenhäusern mit DEA -	Mazzoni, Thomas Patterns in Object-Oriented Analysis Sartorius, Frank
452	2010	The Kuznets-Kaldor-Puzzle and Neutral Cross-Capital-Intensity Structural Change	
Communication			

456	2010	Der virtuelle Peer - Eine Anwendung der DEA zur konsensualen Effizienzbewertung -	Reucher, Elmar
457	2010	A two-stage packing procedure for a Portuguese trading company	Moura, Ana Bortfeldt, Andreas
458	2010	A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint	Bortfeldt, Andreas Jungmann, Sabine
459	2010	Equity and Efficiency in Regional Public Good Supply with Imperfect Labour Mobility - Horizontal versus Vertical Equalization	Arnold, Volker
460	2010	A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional loading constraints	Bortfeldt, Andreas
461	2010	A tree search procedure for the container relocation problem	Forster, Florian Bortfeldt, Andreas
462	2011	Advanced X-Efficiencies for CCR- and BCC-Modell - Towards Peer-based DEA Controlling	Rödder, Wilhelm Reucher, Elmar
463	2011	The Effects of Central Bank Communication on Financial Stability: A Systematization of the Empirical Evidence	Knütter, Rolf Mohr, Benjamin Wagner, Helmut
464	2011	Lösungskonzepte zur Allokation von Kooperationsvorteilen in der kooperativen Transportdisposition	Strangmeier, Reinhard Fiedler, Matthias
465	2011	Grenzen einer Legitimation staatlicher Maßnahmen gegenüber Kreditinstituten zur Verhinderung von Bankenund Wirtschaftskrisen	Merbecks, Ute
466	2011	Controlling im Stadtmarketing - Eine Analyse des Hagener Schaufensterwettbewerbs 2010	Fließ, Sabine Bauer, Katharina
467	2011	A Structural Approach to Financial Stability: On the Beneficial Role of Regulatory Governance	Mohr, Benjamin Wagner, Helmut
468	2011	Data Envelopment Analysis - Skalenerträge und Kreuzskalenerträge	Wilhelm Rödder Andreas Dellnitz
469	2011	Controlling organisatorischer Entscheidungen: Konzeptionelle Überlegungen	Lindner, Florian Scherm, Ewald
470	2011	Orientierung in Dienstleistungsumgebungen - eine explorative Studie am Beispiel des Flughafen Frankfurt am Main	Fließ, Sabine Colaci, Antje Nesper, Jens

471	2011	Inequality aversion, income skewness and the theory of the welfare state	Weinreich, Daniel
472	2011	A tree search procedure for the container retrieval problem	Forster, Florian Bortfeldt, Andreas
473	2011	A Functional Approach to Pricing Complex Barrier Options	Mazzoni, Thomas
474	2011	Bologna-Prozess und neues Steuerungsmodell - auf Konfrontationskurs mit universitären Identitäten	Jost, Tobias Scherm, Ewald
475	2011	A reduction approach for solving the rectangle packing area minimization problem	Bortfeldt, Andreas
476	2011	Trade and Unemployment with Heterogeneous Firms: How Good Jobs Are Lost	Altenburg, Lutz
477	2012	Structural Change Patterns and Development: China in Comparison	Wagner, Helmut
478	2012	Demografische Risiken - Herausforderungen für das finanzwirtschaftliche Risikomanagement im Rahmen der betrieblichen Altersversorgung	Merbecks, Ute
479	2012	"It’s all in the Mix!" - Internalizing Externalities with R\&D Subsidies and Environmental Liability	Endres, Alfred Friehe, Tim Rundshagen, Bianca
480	2012	Ökonomische Interpretationen der Skalenvariablen u in der DEA	Dellnitz, Andreas Kleine, Andreas Rödder, Wilhelm
481	2012	Entropiebasierte Analyse von Interaktionen in Sozialen Netzwerken	Rödder, Wilhelm Brenner, Dominic Kulmann, Friedhelm
482	2013	Central Bank Independence and Financial Stability: A Tale of Perfect Harmony?	Berger, Wolfram Kißmer, Friedrich
483	2013	Energy generation with Directed Technical Change	Kollenbach, Gilbert
484	2013	Monetary Policy and Asset Prices: When Cleaning Up Hits the Zero Lower Bound	Berger, Wolfram Kißmer, Friedrich
485	2013	Superknoten in Sozialen Netzwerken - eine entropieoptimale Analyse	Brenner, Dominic, Rödder, Wilhelm, Kulmann, Friedhelm
486	2013	Stimmigkeit von Situation, Organisation und Person: Gestaltungsüberlegungen auf Basis des Informationsverarbeitungsansatzes	Julmi, Christian Lindner, Florian Scherm, Ewald
487	2014	Incentives for Advanced Abatement Technology Under National and International Permit Trading	Endres, Alfred Rundshagen, Bianca

488	2014	Dynamische Effizienzbewertung öffentlicher Dreispartentheater mit der Data Envelopment Analysis	Kleine, Andreas Hoffmann, Steffen
489	2015	Konsensuale Peer-Wahl in der DEA -- Effizienz vs. Skalenertrag	Dellnitz, Andreas Reucher, Elmar
490	2015	Makroprudenzielle Regulierung - eine kurze Einführung und ein Überblick	Velauthapillai, Jeyakrishna
491	2015	SEM modeling with singular moment matrices Part III: GLS estimation	Singer, Hermann
492	2015	Die steuerliche Berücksichtigung von Aufwendungen für ein Studium - Eine Darstellung unter besonderer Berücksichtigung des Hörerstatus	Meyering, Stephan Portheine, Kea
493	2016	Ungewissheit versus Unsicherheit in Sozialen Netzwerken	Rödder, Wilhelm Dellnitz, Andreas Gartner, Ivan
494	2016	Investments in supplier-specific economies of scope with two different services and different supplier characters: two specialists	Fandel, Günter Trockel, Jan

[^0]: ${ }^{\text {a }}$ Center for Production Economics and Decision Support, FernUniversität in Hagen, 58084 Hagen, Germany

 * Corresponding Author: +49 2331987 2625; E-mail: Guenter.Fandel@FernUni-Hagen.de

