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Abstract: Importance sampling is a powerful instrument to reduce the standard
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common that the optimal importance sampling probability density is unknown. To
approximate this unknown density, in this article we will analyze approximations
of option price elasticities. The considered importance sampling approach involves
adding an additional drift term. For models with stochastic volatility and for path-
dependent options, we show that several approaches exist to achieve considerable

variance reduction.
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1 Introduction

Importance sampling allows to significantly decrease the standard error of a Monte-
Carlo estimator. For a given sample size N, unbiased estimators can be calcu-
lated with a reduced empirical variance compared to the naive estimator. Most
approaches to importance sampling have in common that an approximate know-
ledge of the distribution of the quantity of interest is required in order to efficiently
conduct the simulation [1} 2, 3} 14, 5]].

An intuitive interpretation of a formula presented by Singer [5, 6] is the following:
In a plain Monte-Carlo simulation of a European call, several simulated paths of
the underlying S terminate below the strike price K. These realizations with a
final value of the pay-off function of zero do not contribute to the Monte-Carlo
estimator. However, they do increase its variance. On the one hand, the additional
drift introduced by importance sampling helps to “push” an increased amount of
paths above the strike price /K. On the other hand, the additional drift term should
not be too high, because then the final values of the simulated paths would be too
widely dispersed, again yielding an increased empirical variance. The final value of
the trajectory is then adjusted for the likelihood of the modified path to occur under
the original measure of probability. Thus, one obtains an unbiased Monte-Carlo
estimator with reduced variance.

More specifically, to apply Singer’s formula [5], knowledge of the elasticity
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of the option price C' with respect to the underlying S' is required. Generally, in
option pricing one conducts Monte-Carlo simulations to estimate C'. Therefore, ex
anteriori € is an unknown quantity in many cases.

To conduct Monte-Carlo simulations improved by importance sampling apply-
ing the mentioned formula, approximations of the option price elasticity € are re-
quired. Option price elasticities, i.e. the ratio between the percentage change of
the option price and the related percentage change of an independent variable, are
not as broadly discussed in literature as the partial derivatives of option prices (the
so-called “Greeks” [[7,18]). This paper will systematically analyze several approx-
imation techniques for option price elasticities. The intention is to give a broad
overview of different possible approximations that can be employed in different
applications.

It has been previously shown that the approach discussed in this paper can be

very well combined with other variance reduction techniques generating synergies



[9]. Furthermore, other approaches, which have been previously discussed in litera-
ture, e.g., [2, 4], are outperformed for the pricing of European and arithmetic Asian
options [10].

The article is organized as follows: In section 2, we introduce the basic concepts
of importance sampling and explicitly derive the variance reduction formula applied
in this analysis. Then, we present several approaches to approximate option price
elasticities in section 3. Section 4 summarizes the central results of this study and

discusses the need for further research.

2 Importance sampling

Transformation of the probability measure Hammersley and Morton (1954)
[11] first applied importance sampling techniques to efficiently simulate chain re-
actions in nuclear reactors. They used a transformation of the probability measure
to shift the weight of the simulated sample paths to areas of high interest.

Let X be a random variable with probability density p. The expectation value of
a function h : R — R, X — h(X) is defined as

0 =B, [h(X) = [ 1) p(a) dr @
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for i.i.d. realizations X, ..., Xy of the random variable X.

It can be recast as

a= /h(x) p(z) do = /h(x) p,((‘”)) Y (x) dz = By, [h(X) P

P (x

using any other probability density p’. The ratio p/p’ is referred to as Radon-Niko-
dym derivative or likelihood ratio [3, [12].

The empirical variance of the unbiased Monte-Carlo estimator

N
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is calculated as

o 265] - o 2] v o0 28]

The aim of importance sampling is to minimize this variance term. For a non-

negative function h, the density

p'(x) oc h(z) p(z) @)

leads to a vanishing variance term in equation (6). By normalizing, the product
h(z) p(x) can be transformed into a probability density. To calculate the normaliza-
tion factor, the integral

a= /h(w) p(x) dz (8)

must be calculated. However, our initial goal in equation (2)) is exactly the calcula-
tion of this quantity. This means, that o generally is a unknown quantity. Notwith-
standing, significant reduction of the estimator’s empirical variance can already be

achieved by approximating this normalization factor [3]].

Determination of the additional drift term In this paper, we will further an-
alyze an importance sampling approach introduced by Singer in 2014 [5]ﬂ We
present this approach in this section. Our aim is to determine a variance reduced

estimator of the Feynman-Kac formul
C(X(t),t) = E [e— X @i ()] ‘X(t) - Xt} . )

A more common nomenclature would be to write the option price C' as a func-
tion of the underlying price S(¢) and time ¢, i.e. C' = C(S(t),t). Here however,
we consider the more general case C' = C'(X(t),t), where X () is a multivariate
stochastic process.

Apart from containing the underlying price S(t), this process X () could also
consist of a stochastic volatility element o(¢). We analyze this type of bivariate
stochastic process in a variance reduced importance sampling Monte-Carlo simula-
tion of European calls in the Scott model with stochastic volatility.

Also, the stochastic process X () can contain the integral of the underlying price

S(t) with respect to time as an additional component, i.e. the element Y (t) =

2A similar approach was presented by Melchior and Ottinger (1995) [13].
3For details on the Feynman-Kac representation see [14], chapter 5.7 and [13], chapter 5.H and
appendix E.



fot S(7)dr. The analysis of arithmetic Asian call options in the Black-Scholes
model examines this type of bivariate process ﬂ

Going forward, we will assume a constant interest rate r:

CIX(0),8) = " TOE R [X (@]IX (1) = X
(10)
=00 [ BX(@) D). TIX (0, 08X (T)

In the univariate case with X (¢) = S(¢) this is the solution of the Black-Scholes
differential equation [15}16]
oC oCc 1 0*C
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We suppose that the random process X (¢) follows an It differential equation of

the following type:
dX(t) = f[X(t)]dt + g[X(¢)|dW (). (12)

Here, f is the drift vector, ¢ the time, g the diffusion coefficient and W (¢) a multi-
variate Wiener process.

This stochastic differential equation can be discretize We select a grid 7, =
t + kAT with n steps, choosing 7,, = 7" and X,, = X (7') which involves 7y = ¢
and Xo = X(t). With A7 = 741 — 7% and AX = Xj 1 — X}, the following
Euler-Maruyama scheme results for equation

For small A7, the transition density between 7, and 7,1 can be approximated

by normally distributed Euler transition kernels. Its expectation value yields f; A7

“Note, that the differential equation of the component Y () does not include a diffusion term.
Therefore, for the bivariate process X (¢), a singular diffusion matrix {2 results. To circumvent
this problem in simulations, we treat the stochastic process as a univariate process with just one
component S(t). We then calculate the arithmetic average of the underlying values S(t). For
more details on arithmetic Asian options, see also [10].

SDetails can be found in Appendix B in [3].

5For details see [12]], chapter 9.1.



and its variance |Q; A7| with Qi = gi g1,

D (Xkt1, T | X, te)
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Consequently, the transition density p (X (7'),T | X (¢),t) in equation is a

product of Gaussian Euler transition kernels:

n—1
p(X(T),T|X(t),t) ~ / . ./Hp(XkH,TkH\Xk,Tk)an1 .dXy o (5)
k=0
Therefore, equation (10) can be approximated as

C(X(t)7 ) C(X07TO = TO)/ / Xann’Xn 15 Tn— 1)

XP(Xl,Tleo,To)dX ..dXy (16)
= e*T(T"*TO)C’(XO,TO).

This representation allows for numerical calculations.
The density solves the Kolmogorov backward equatiorﬂ with the differential

operator Eﬂ‘
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"For details see [17]], sections 4.2-4.4.
8Note that in this expression the Einstein summation convention is used, e.g., fa% =

o)
ZO& fOé QXQYQ :



Going forward, we assume that / does not explicitly depend on 7y and X,. The
central element of the derivation of the additional drift term is the assumption, that
p°P* fulfills an alternative Kolmogorov backward equation with the differential op-

erator £, drift vector f°P* and an identical diffusion matrix as p, i.e. ¢°" = g¢:

poptTO — _£0ptp0pt (19)

Here, the abbreviation %p—:: ;= p°"_ has been introduced which will be used

going forward. Using p,, = —Lp and consequently é’TO = —LC, we obtain
Ry ipzé] = —hL (li) (20)
" C C? C
and after canceling out / and rearranging terms
1 1 ~ P
—~£ - = EC - LOpt <—~> . 21
ot &b G 21
Applying the quotient rule for Lﬂ yields
e (2Y = Loy P pomiiq  (—2p v LEnC (22)
é - é p éz af é2p,a B = a3

and by defining L% — £ := 6 f, 2— we obtain

8X0a
P.a C~’o¢ P.a éoa CN’ﬂ
g (p O) B( P c) g @)
The additional drift term
\Y/6; vC
/ G C VinC (24)

solves this equation.

A new stochastic differential equation with additional drift term similar to equa-

tion results:
FIX@)]Pdt + g[ X (1)]dW(2)

(f[X(t)] + Q%C) dt + g[ X (¢)]dW (¢)

dX (1)
(25)

For details see [3], Appendix C.



In the univariate case we obtain

dS(t) = (f[S(t)]+ [Sé)ng) dt + g[S(H)]dW (2). (26)

In the Black-Scholes model with f = S and g = ¢S and using the abbreviation
for the option price elasticity from equation (), this equation simplifies to

dS(t) = (r +ec®) S(t)dt + o S(t)dW (¢). 27

In the previous formulae, C' is the Feynman-Kac formula from equation (I0).
The problem from equation (8) materializes again: knowledge of C' is required to
describe the optimal stochastic differential equation. Approaches how to cope with

this problem are the focus of section 3]

Calculation of the Radon-Nikodym derivative In order to evaluate impor-
tance sampling estimators, the Radon-Nikodym derivative introduced in equation

() must be calculated. From equation (14]) we obtain

_ 1 _
_exp{fgmky 1AX—§f,Z\Qky 1kaT}

popt
X exp{ OptT|Qk|_ AX—i— = OptT\Q 7 PA T}
:exp{(fk — °P‘) Q7" [AX— —(fu+ 7)) A H (28)
1] e 1 N
= exp {—5f1? Q]! [ AT+ g AW, — = (fk + M) AT] }

1 _ _
— exp {—§5f;? 0l AT — 65T 1gkAWk}.

Importance sampling of European calls in the Scott model In section[3] we
will conduct a profound analysis of importance sampling applied to Monte-Carlo
simulations of European call options in a model with stochastic volatility.

The call considered has the pay-off function
Cr=(Sp — K)" = max (Sy — K,0). (29)

The dynamics of stock prices follow a model introduced by Scott in 1987 [18]].

Two stochastic differential equations describe not only the price of the underlying



itself but also its volatility:

dS = rSdt + o SdW;

(30)
do =\ (0 — o) dt +ndW;

The first of these two equations corresponds to the stochastic differential equation
of the underlying price in the Black-Scholes model. The second equation describes
the volatility itself as a stochastic processes. W, and W, are Wiener processes, A
and 7 are additional parameters that specify the dynamics of the stochastic volatility
process.

This bivariate stochastic process can be written as a vector process:

[dS] [ rS ] [05 0 [dW1]

= B dt + 3D
do Ao —o) 0 n

N~ Y—— ——

dW,
dX f g dw

Adding the additional drift term as given in equation yields

ds| rS 0258%Cs/C oS 0| |dW; 32)
do| | NG —0) n*C,/C 0 n| |dWy|
of

For the option price elasticity with respect to the underlying, we use the abbrevi-

ation

S oC
The abbreviation L 80
X' =G3, (33)

is not a price elasticity in the strict sense as there appears no ¢ in the numerator
of the first fraction. Therefore, going forward we will refer to y as a “pseudo-
elasticity”.

Using these two abbreviations, one obtains

2
[dS] _ [ rS+otes | [as o] [dW1] | )
0 n dWQ

do Ao —o0o)+n*x
For the purpose of Monte-Carlo simulations, this vector equation must be dis-




cretized. As before, we choose an Euler-Maruyama approximation and obtain

Skt1
Ok+1

Using equations (3)), (I5)) and (28), for the importance sampling Monte-Carlo

(35)

_ S rSk + U]%Eksk
AT = ox) + Xk

1 [akSk 0
U

O

simulation with sample size N and n discretization steps, we obtain the variance

reduced estimator with bivariate additional drift

European Can (X (t), 1)
n

N -1
1 1 1
= — E exp {— E |:0'€ikAW1ik + §U2€?kAT + Xk AWayy + §U2X?kAT} }
)

(36)
The following special cases can be considered:

e By setting ¢;; = 0 and x;z = 0 for all ¢, k, one recovers the plain Monte-
Carlo estimator corresponding to the original stochastic differential equation
of X (t) without additional drift term.

e By setting only x;; = 0 for all ¢, k, one obtains an importance sampling
Monte-Carlo estimator with univariate additional drift term. Only the first
component of the stochastic differential equation of X (¢), i.e. the equation of

the underlying S(t), is modified.

e One might also choose ¢;, = 0 for all 7, k, but allow y;; # 0. This would
imply adding a drift term to the volatility component only and keeping un-
changed the price component. However, this approach is not pursued further
in this article.

Importance sampling of arithmetic Asian calls in the Black-Scholes model

Analogously, we derive an importance sampling Monte-Carlo estimator for arith-

metic Asian calls in the Black-Scholes model.

10



The pay-off function| of the considered long call position is
_ _ 1 &
Cr = (Sr—K)" with Sp ==>"5,. (37)
n
I=1

Using the same abbreviation as for European calls in the Scott model, we obtain

the following stochastic differential equation for the underlying price:
dS = (r +o%¢) Sdt + 0. SdW (38)
Discretization yields
Si1 = Sk + (r + o”e) SKAT + 55 AW. (39)

‘We obtain the estimator

~Black-Scholes model
Arithmetic Asian Call (S(t) ) t)

N n—1
1

1
= Z exp — Z [JeikAVV,»k + 502(—:ka7 (40)
i=1 k=0

x e T=0 (5, — K"

Again, we can set ¢;; = 0 for all 7, £ and recover the plain Monte-Carlo estimator.
A distinction between a univariate and bivariate additional drift is not applicable in
this case, as a constant volatility is assumed.

In the next section, we examine different approximation approaches for the elas-

ticity € and the pseudo-elasticity .

3 Approximations of option price elasticities

3.1 General remarks

Ex anteriori, the option price and its elasticities are unknown quantities. The aim of
Monte-Carlo simulations is the actual determination of a specific option price. Gen-
erally, for the determination of the option price elasticity, knowledge of a relevant
part of the option price curve and its first partial derivative is required. However, in

order to conduct variance reduced Monte-Carlo simulations using equations (35)) or

19The pay-off function can also be written as a function of the underlying’s integral with respect
to time, i.e. Y (¢) = jot S(7)dr. A bivariate process X (t) with the components S(¢) and Y (¢)
results. For practical reasons, we just consider the univariate process S(t) and calculate its
arithmetic average over time. Compare footnoteEf}

11



(39) and to calculate estimators as given in equations (36) or (40), specific values
for € and x values are needed.

Therefore, we approximate the option price elasticity € and the pseudo-elasti-
city x. In this chapter, we present a range of such approximations suitable for
importance sampling. We present numerical results in terms of variance reduction
ratios, i.e. the ratios between empirical variances of plain Monte-Carlo estimators
and the empirical variances of variance reduced Monte-Carlo estimators. Also, we
analyze the € and x surfaces as a function of the two independent variables S and

the time until expiration 7" — ¢.

3.2 Approximation by constant values

The least sophisticated approach is to approximate both € and y by constant values
for all S values and all discretization steps [5 (19, 20]]. This approach satisfies the
first element of the intuitive interpretation discussed in the introduction of this ar-
ticle: By increasing the drift term using a constant elasticity approximation, more
sample paths are pushed above the strike price K. Thus, an increased amount of
sample paths contributes to the option price estimator. One might argue that the
higher the additional drift term, the more paths will terminate above the strike price
K. However, there are two arguments against very high additional drift terms: First,
the additional drift increases the exponential growth component of the stochastic
process. This increases the dispersion of simulation results counteracting the in-
tended effect of importance sampling. Second, for a given discretization with n
steps, an increasing additional drift term also increases the discretization bias inher-
ent to Monte-Carlo simulations of discretized Euler-Maruyama scheme

A numerical example (see figure [I)) reflects this line of thought: As shown in
subfigure (a), for a European call simulated in the Scott model, a constant additional
term with ¢ = 1.0 leads to only modest variance reduction. It is interesting to
observe that for high volatility environments the constant approximation delivers
higher variance reduction over a broad range of starting values of the underlying
S(0) than for low volatility environments.

For a higher additional drift term choosing ¢ = 10.0, the observations are dif-
ferent (see subfigure (b)). For low and intermediate volatilities, a strong variance
reduction is observed for out-of-the-money options. However, for higher starting
values of the underlying the variance is increased. This is plausible, as for small
S(0) values the high additional drift term helps to push more trajectories above the
strike price K. On the other hand, for high S(0) values this effect is not required

"For details see [3], chapter 6 or [12], chapter 8.

12



Variance reduction: approximation by constant values

(a) European call, Scott model, €=1.0 (b) European call, Scott model, €=10.0
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(c) Asian call, Black—Scholes model, e=1.0 (d) Asian call, Black—Scholes model, €=10.0
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Figure 1: (a) European call, Scott model, ¢ = 1.0: Variance reduction factor on a
logarithmic scale for a European call in the Scott model achieved by importance
sampling approximating a constant option price elasticity e = 1.0. r = 0.05,
T=1 K =10,n = 100, N = 10,000, A = 0.25 and n = 0.01. Red line: ¢ =
0.1. Blue line: 0 = 0.2. Green line: ¢ = 0.5. Solid line: univariate additional
drift, i.e. x = 0. Dashed line: bivariate additional drift with y = 0.1. Black line:
reference line where the variance reduction equals 1.0. (b) European call, Scott
model, ¢ = 10.0: As (a), but ¢ = 10.0. (¢) Asian call, Black-Scholes model,
e = 1.0: Variance reduction factor on a logarithmic scale for an arithmetic Asian
call in the Black-Scholes model achieved by importance sampling approximating
a constant option price elasticity e = 1.0. »r = 0.05, 7 = 1, K = 10, n = 100
and N = 10,000. Red line: o = 0.1. Blue line: ¢ = 0.2. Green line: ¢ = 0.5.
Black line: reference line where the variance reduction equals 1.0. (d) Asian
call, Black-Scholes model, ¢ = 10.0: As (c), but ¢ = 10.0.
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Elasticities approximated by constant values

(a) e-surface (b) x—surface

Figure 2: (a) e-surface: Surface of a constant option price elasticity e with respect to
the underlying price S as a function of S and the remaining time until expiration
T —t. (b) x-surface: Surface of a constant pseudo-elasticity y with respect to
the volatility o as a function of S and the remaining time until expiration 7" — ¢.

any more and the additional drift term only leads to more disperse contributions to
the Monte-Carlo estimator. In high volatility environments, this approach does not
seem to work at all. A very shaky variance reduction curve indicates numerical in-
stabilities, likely resulting from a discretization bias favored by the high increments
per discretization step due to the additional drift term.

In both cases (subfigures (a) and (b)), the addition of a bivariate drift term does
not appear to add any value. Both for low and for high starting values of the under-
lying no significant additional variance reduction is observed (dashed line) vis-a-vis
the univariate case (solid line). So, the additional computational effort introduced
by calculating a bivariate likelihood ratio from equation (28)) does not appear to be
justified.

For arithmetic Asian options (see subfigures (c) and (d) of figure[I), the same ob-
servations basically hold. A low € value leads to moderate variance reduction across
the whole range of S(0) values, while a comparably high ¢ value leads only to vari-
ance reduction for out-of-the-money options. In the latter case, the approach does
not work well for high volatility environments. As the simulation was conducted in
the Black-Scholes model, no bivariate additional drift is considered.

For subfigures (b) and (d), the e- and the x-surface resp. the e-surface are shown

14



Variance reduction factor

Variance reduction: approximation by step function

(a) European call, Scott model (b) Asian call, Black—Scholes model
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Figure 3: (a) European call, Scott model: Variance reduction factor on a logarith-

mic scale for a European call in the Scott model achieved by importance sam-
pling approximating € and x by step functions with €, = 1.0 and xjow = 0 for
S(t) < Ke """ and €nigh = 10.0 and xpigh = 10.0 otherwise. r = 0.05, T' = 1,
K =10, n = 100, N = 10,000, A = 0.25 and n = 0.01. Red line: & = 0.1.
Blue line: 6 = 0.2. Green line: ¢ = 0.5. Solid line: univariate additional drift,
i.e. x = 0. Dashed line: bivariate additional drift. Black line: reference line
where the variance reduction equals 1.0. (b) Asian call, Black-Scholes model:
Variance reduction factor on a logarithmic scale for an arithmetic Asian call in
the Black-Scholes model achieved by importance sampling approximating € by a
step function with €, = 1.0 for S(¢) < Ke™" "' and eygn = 10.0 otherwise.
r=20.05,7T=1, K =10,n = 100 and N = 10,000. Red line: ¢ = 0.1. Blue
line: 0 = 0.2. Green line: o = 0.5. Black line: reference line where the variance
reduction equals 1.0.

in figure

3.

3 Approximation by step function

A first extension compared to the approximation by a constant value is the applica-

tion of a step function: For a constant approximation, we observe that a comparably

high e value works well for out-of-the-money options, while for in-the-money op-

tions the variance is increased. In this regime, a comparably low e value turns

out to be more appropriate. A natural enhancement is therefore to approximate

the options price elasticity by a step function with two plateaus: a higher one for

15



Elasticities approximated by step function

(a) e-surface (b) x—surface

Figure 4: (a) e-surface: Surface of the option price elasticity ¢ with respect to the
underlying price S approximated by a step function as a function of S and the
remaining time until expiration 7' — ¢ as defined in equation (#1). (b) x-surface:
Surface of the constant pseudo-elasticity y with respect to the volatility o ap-
proximated by a step function as a function of S and the remaining time until
expiration 7' — ¢ as defined in equation 1|

S(t) < Ke "™ and a lower one for S(t) > Ke "™T~Y. We introduce a step

function approximation using the Heaviside function Q(m)ﬁ as indicated in figure

A

€ = €ow T+ 0 (K — SeiT(T*t)) : (Ehigh - 6low)

—r(T—1) (1)
X = Xiow T 0 (K — Se ) : (Xhigh - Xlow)

As shown in figure 3 subfigure (a), for European calls in the Scott model we
obtain a “best of” of the subfigures (a) and (c) in figure [I| For out-of-the-money
options, the higher € value leads to considerable variance reduction, while for in-the-
money-options the lower € value still achieves a modest variance reduction. Again,
for high volatility environments, the results of variance reduced Monte-Carlo simu-
lations become numerically unstable. As for the constant approximation, the choice
of a bivariate drift term does not justify the additional computational effort.

The same results hold true for the arithmetic Asian call simulated in the Black-

Oforx <0
12 _
G(x){ 1forz >0

16



Scholes model (see subfigure (b)). Interestingly, for these path-dependent options
for which no analytical formula is known, approximating e by a step function yields
the best results in terms of variance reduction. This method outperforms more com-
plex and numerically more demanding approaches discussed in the following sub-

sections
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Variance reduction factor

Variance reduction: approximation by lower bound

(a) European call, Scott model (b) Asian call, Black—Scholes model
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Figure 5: (a) European call, Scott model: Variance reduction factor on a logarith-

3.

mic scale for a European call in the Scott model achieved by importance sam-
pling approximating € by the option’s lower bound. » = 0.05, ' = 1, K = 10,
n = 100, N = 10,000, A = 0.25 and n = 0.01. For purposes of numerical
stability, we truncate ¢ to the interval [1;10]. Red line: & = 0.1. Blue line:
o = 0.2. Green line: & = 0.5. No bivariate simulation was conducted, as the
partial derivative of a European call option’s lower bound with respect to o is
zero and therefore xy = 0. Black line: reference line where the variance reduc-
tion equals 1.0. (b) Asian call, Black-Scholes model: Variance reduction factor
on a logarithmic scale for an arithmetic Asian call in the Black-Scholes model
achieved by importance sampling approximating ¢ by the option’s lower bound.
r=0.05,7T =1, K =10, n = 100 and N = 10,000. For purposes of numer-
ical stability, we truncate € to the interval [1; 10]. Red line: o = 0.1. Blue line:
o = 0.2. Green line: o = 0.5. Black line: reference line where the variance
reduction equals 1.0.

4 Approximation by lower bound

A further extension is the approximation of the option price elasticity ¢ using the

option’s lower bound [19]]

Cip = (5 — Ke " T0)" (42)

The inequality C' > (S — K e‘T(T‘t))+ was introduced by Merton in 1973 [7,

21]]. Especially for high volatilities o and long times to maturity 7" — ¢, for at-
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e-surface approximated by lower bound

In(e)

Figure 6: Surface of the logarithmized option price elasticity € with respect to the
underlying price S for European calls approximated by the option’s lower bound
as a function of S and the remaining time until expiration 7" — ¢.

the-money options the difference between to the true option value and the lower
bound C}, can become considerable. Furthermore, the lower bound and its the par-
tial derivative with respect to the underlying vanish for S(t) < Ke """, In this
sense, for out-of-the-money options and for at-the-money options, the approxima-
tion of € employing the lower bound C), is a very crude one. However, for deep-
in-the-money options the lower bound and its partial derivative with respect to .S
asymptotically approximate the option price curve.

For the option price elasticity of European calls ¢ we obtain

1
S oCh (1 — —Ket;(g*t)) for S(t) > Ke "1
for S(t) < Ke (=1

==k 4
Cp 0S (43)

€

olo

This expression is not defined for S(t) < K e~ "(T=1)_ For this regime, we make
the ad hoc assumption that the elasticity e should at least push the trajectories to the
level S(T') = K [19]. We obtain

! 1

(r+026)(T—t) - _
S(t)e K & e ST 1) In

K —r(T—t)
‘ } (44)

S(t)

19



Combining equations (43)) and (44)) we obtain

-1

Ke r(T-1) o

e(S(t),t) = (1 a T) for S(t) > Ke "1

v 1 1 Ke—r(T—t) for S(t) < Ke—r(T-1)
21— S() <

(45)

The surface of this function is shown in figure [f] Close to the discontinuity at
S(t) = Ke™"T=Y) we get comparably low ¢ values for long times to maturity and
comparably high e values for short times to maturity. In subsection numerical
results illustrate that e = 1.0 achieves variance reduction across the whole range
of S(0) values. Other empirical studies come to the conclusion that ¢ = 1.0 is
a lower bound for option price elasticities for effective importance sampling [19].
Additionally, as discussed in subsection too high e values lead to numerical
instabilities and to a strong discretization bias. Therefore, in the numerical exam-
ple presented in figure 5| we truncate € to the interval [1.0; 10.0]. For instance, in
the same simulation we can alternatively allow € to take on values in the interval
[1; 10,000]. However, in this case we observe a strong variation of the variance re-
duction curves and a significant variance increase for several S(0) values. To avoid
these numerical instabilities, a smaller upper bound is required.

The formula of the lower bound Cj, = S — Ke "T=% does not depend on the
volatility o. Put in another way, ¢ only influences the difference between C' and
Cp. Therefore, we obtain the partial derivative (C,), = 0. Thus, a meaningful
additional bivariate drift term can’t be calculated. As a consequence, in this subsec-
tion, we limit our analysis to the case of a univariate additional drift term.

For European calls in the Scott model, we observe that for low and intermediate
volatility environments significant variance reduction is achieved. Especially for
in-the-money options, compared to the constant approximation or the step-function
approximation the performance can be significantly improved. In high volatility
environments, the additional drift term again introduces numerical instabilities that
over a broad range lead to an increased empirical variance of the Monte-Carlo esti-
mator.

For arithmetic Asian calls, we obtain a slightly different formula for the option
price elasticity [20]. Due to the dependency of the pay-off function on discrete
values Sy, of the underlying’s trajectory, we can give only a discrete formula for e.
However, this does not effect the Monte-Carlo simulation, as it is carried out on a

discretized time-grid as well.
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We define the lower bound of the arithmetic Asian call as follows:
1k
C]b (Sk, Tk ]{?) = (Sk — Ke_T(T"_Tk))Jr with Sk = % Z Sl (46)
=1

For S;, > Ke "(™~"%) we obtain

- Sk; 86’1b B 1 Sk/gk:
€p = C_lb 95, k1 Ke a5, @7

For Sy, < Ke "™~ as for European calls we require|

B 1 K —7(Tn—Tk)
Ske(rJraQe)(Tnka) L K== In € — . (48)
o?(Ty — Tk) Sk
In total, for arithmetic Asian options we obtain
Sk/S _
% l_KefT]?‘l/'nETk)/Sk fOI' Sk > Keir(TniTk)
€ = 1 1 Ke—r(mtn—71) f S, < K —r(Tn—Tk) (49)
o2 (1) Sk Ofop = e

As for European options, we truncate the elasticity values € to a predefined inter-
val [1.0;10.0].

From figure [5] subfigure (b) we observe similar variance reduction for in-the-
money calls as in the previous subsection. For out-of-the-money options, the step
function approximation (e.g., € = 10.0) led to superior results than the lower bound
approximation. Therefore, the additional computational effort introduced does not
appear to add Value{ﬂ

3Note that this expression will not manage to push all trajectories at the level of K as € only has
an effect on contributions to S,, resulting from the interval [7j 1, 7,]. Contributions from prior
instances, i.e. ones that result from the interval [rg, 7%], are not affected. Therefore, the approxi-
mation is biased downwards. Further refinement could lead to additional variance reduction.

141t should be noted that € has to be calculated for every discretization step, i.e. in total N - n
calculations of € are required.
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Variance reduction factor

Variance reduction: approximation by Black—Scholes formula

(a) European call, Scott model (b) Asian call, Black—Scholes model
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Figure 7: (a) European call, Scott model: Variance reduction factor on a logarith-

3.

mic scale for a European call in the Scott model achieved by importance sampling
approximating € and y by the Black-Scholes formula for European call options.
r=005T=1 K =10, n = 100, N = 10,000, A = 0.25 and n = 0.01.
For purposes of numerical stability, we truncate ¢ to the interval [1; 10,000] and
the absolute value of y to the interval [0;10,000]. Red line: ¢ = 0.1. Blue
line: & = 0.2. Green line: & = 0.5. Solid line: univariate additional drift,
1.e. x = 0. Dashed line: bivariate additional drift. Black line: reference line
where the variance reduction equals 1.0. (b) Asian call, Black-Scholes model:
Variance reduction factor on a logarithmic scale for an arithmetic Asian call in
the Black-Scholes model achieved by importance sampling approximating € by
the Black-Scholes formula for European call options. » = 0.05, " =1, K = 10,
n = 100 and N = 10,000. We truncate € to the interval [1;2.5]. Red line:
o = 0.1. Blue line: o = 0.2. Green line: ¢ = 0.5. Black line: reference line
where the variance reduction equals 1.0.

5 Approximation by Black-Scholes formula

The previously discussed approximation approaches either neglected the actual shape

of the option price curve (which is the case for the constant and the step function

approximation) or considered only its asymptotic behavior (which is the case for

the lower bound approximation). In this subsection, we employ an explicit option

price formula which is related to the European call in the Scott model and the arith-

metic Asian call in the Black-Scholes model: We use the Black-Scholes formula for
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Elasticities approximated by Black—Scholes formula

(a) e-surface (b) x—surface

156
1006

50

Figure 8: (a) e-surface: Surface of the logarithmized option price elasticity ¢ with
respect to the underlying S calculated by the Black-Scholes formula for European
call options as a function of the underlying price S and the remaining time until
expiration 7" —t. (b) x-surface: Surface of the pseudo-elasticity y with respect to
the volatility o calculated by the Black-Scholes formula for European call options
as a function of the underlying price S and the remaining time until expiration
T —1.

European call options [7,, 22]]

C(S(t),t) = S(t)®(dy) — Ke "I Dd(dy)

1n¥+<r+§)(T—t)
dy =
! oVT —1 (50)
1n&+<r—”—2>(T—t)
K 2
dy = =dy—oVvT —t
? ovT —1t e

to approximate the option price elasticity [J5, (19} 20].

To calculate the bivariate additional drift term, knowledge of the partial deriva-
tives of C' with respect to the underlying and the volatility, i.e. the “Greeks” A
(“Delta”) and v (“Vega”) is required. Derivation yields [8]

oC
A =—=00 d1

w
vi= 5= = SO (AT — 1 = SO(d)VT 1.
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Using the definitions (I]) and (33)), we obtain

1

€= | _ Ke "0 0(dy) (52)
S@t)  @(di)
and
d )T —1
X = ut Qequﬁ) ‘ (53)
O(dy) — S5 P(d2)

Figure [§ shows a plot of these two functions. The asymptotic behavior of € is of

interest:

e cis obviously strictly positive for call options, as it is the product of the strictly
positive elements S/C and 9C'/0S.

Ke—r(T—t) &(da)
® AS S5m B

consist of only positive elements, we obtain

Ke_T(T_t) D (dg)

TS0 o)

< 1. (54)

Therefore, we get
€(S(t),t) > 1 forall S(t),t. (55)

!
The previously introduced lower bound for the option price elasticity (¢ >

1.0) receives a theoretical justification.

2(d2)
@(dy)

values the Black-Scholes approximation and the lower bound approximation

e In the limit S(¢) — oo we obtain — 1. Consequently, for high S(?)

become asymptotically equivalent.

In figure [/} subfigure (a), we show that for European calls in the Scott model,
the Black-Scholes approximation achieves strong variance reduction. In contrast
to the previously presented approaches, the employment of a bivariate additional
drift appears to add value: At least for out-of-the-money options, and mainly in low
volatility environments, a significantly higher variance reduction is achieved than
by adding a univariate drift term. For in-the-money options, the achieved variance
reductions are similar as the reductions achieved by the lower bound approximation.
This is not surprising, as the corresponding e approximations are asymptotically
equivalent for S > Ke (1),

For arithmetic Asian options, we use the same approximation formula for € as for
the European call, i.e. we also insert the actual underlying value Sj and not S, as
one might assume. However, as shown in subfigure (b), less variance reduction is

achieved than by employing the step function approximation. This is not an intuitive

24



result, as the shape of the price curve of an arithmetic Asian option comes close to
the shape of a European option (for details see subsection [3.6). Therefore, one
could assume that the optimal ¢ might be well approximated by the Black-Scholes
formula — or at least better than by a step function.

Attempts to improve the variance reduction by slightly modifying the approxi-
mation approach (e.g., the choice of S instead of S to calculate € from the Black-
Scholes formula, or the truncation to other intervals than [1.0;2.5]) do not lead to

improved results.

3.6 Approximation by regression

Approximation by simulation of the entire option price curve Several op-
tions have some features in common with European call options in the Black-
Scholes model. The two options treated in this article, i.e. European calls in the
Scott model and arithmetic Asian calls in the Black-Scholes model are examples. It
is unlikely that their option price curves have exactly the same shape and position,
while it is also unlikely that their curves’ shapes look completely different, although
the specific position may vary of course.

An alternative approach to approximate the option price elasticity is therefore to
use a relatively small sample (with size /) to simulate a couple of points of the
option price curve to get a rough understanding of its position and shape. Then, the
idea is to conduct a non-linear least square regression to fit the curve of a known op-
tion price function (e.g., the function of a European call in the Black-Scholes model)
to the simulated data. Thus, one obtains a curve from which one can calculate an
estimate of the option price elasticity for an importance sampling Monte-Carlo sim-
ulation (with sample size Ng In this paper, we use the Black-Scholes formula
from equation (50) for non-linear regressions.

We do not present additional plots of the e- and y-surface for this approach as
they have essentially the same shape as the surfaces presented in figure The
specific numerical values may vary of course.

Figure [9] shows a visual representation of the approach: Option price estima-
tors (points) are simulated with a reduced sample size /N; and the regression curve
(solid line) is estimated according to least square regression. The curve of the
Black-Scholes formula (dashed line) is plotted for comparison. It turns out that
for European calls in the Scott model, the Black-Scholes formula is a good approxi-
mation. Visually, it is not possible to distinguish between the regression line and the

Black-Scholes formula’s curve. For arithmetic Asian calls the situation is different.

SThis approach has been suggested in [5, 20] but not yet analyzed.
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Curve regression

(a) European call, Scott model (b) Asian call, Black—Scholes model
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Figure 9: (a) European call, Scott model: Non-linear regression curve of the
Black-Scholes formula fitted to 17 estimated points along the option price curve
of a European call in the Scott model. For each point, a simulation was con-
ducted with N; =10%-N = 1,000, = 0.2, = 0.05,7 = 1, K = 10, n = 100,
A = 0.25 and n = 0.01. Solid line: regression curve. Dashed line: curve of
Black-Scholes formula using parameters employed in simulation. (b) Asian call,
Black-Scholes model: as (a), but for arithmetic Asian call in the Black-Scholes
model, o = 0.2. Here, a significant deviation between the two lines results.

For instance, in the intermediate volatility environment with 0 = 0.2, downward
adjustments in the strike price, risk-free interest rate and volatility (K = 9.20,
7 = —0.0703 and 6 = 0.130 instead of K = 10, r = 0.05 and ¢ = 0.2) lead to an
regression curve (solid line) below the Black-Scholes formula curve (dashed line).

In the curve regression approach, these estimated parameters are used to calcu-
late € from equation using d, and ds as defined in equation , but inserting
estimated parameters K, 7 and ¢ instead of the original parameter set. However, for
the actual simulation of sample paths and the calculation of the pay-off function,
we use the original parameters K, r and o.

From figure[I0} subfigure (a), we see that for the European call in the Scott model,
in the low volatility environment the variance reduction results are approximately
the same as for the Black-Scholes formula approximation, using the original set
of parameters when calculating ¢ (compare to figure [7). Especially for the inter-
mediate volatility environment, results appear numerically unstable while for the

high volatility environments results are poorer than for the Black-Scholes formula
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Variance reduction: approximation by curve regression

(a) European call, Scott model (b) Asian call, Black—Scholes model
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Figure 10: (a) European call, Scott model: Variance reduction factor on a loga-
rithmic scale for a European call in the Scott model achieved by univariate im-
portance sampling approximating € by the curve regression approach. r» = 0.05,
T =1, K =10,n = 100, N = 10,000, N; = 1,000, N, = N — N; = 9,000,
A = 0.25 and n = 0.01. For purposes of numerical stability, we truncate € to
the interval [1;10,000]. Red line: ¢ = 0.1. Blue line: ¢ = 0.2. Green line:
o = 0.5. No bivariate simulation was conducted. Black line: reference line
where the variance reduction equals 1.0. (b) Asian call, Black-Scholes model:
Variance reduction factor on a logarithmic scale for an arithmetic Asian call in
the Black-Scholes model achieved by importance sampling approximating € by
the curve regression approach. » = 0.05, 7" =1, K = 10, n = 100, N = 10,000.
For purposes of numerical stability, we truncate ¢ to the interval [1; 2.5]. Red line:
o = 0.1. Blue line: o = 0.2. Green line: ¢ = 0.5. Black line: reference line
where the variance reduction equals 1.0.

approach. For European calls in the Scott model, the approach does not appear to
justify the additional complexity resulting from the non-linear regression.

Subfigure (b) indicates that for arithmetic Asian options in the Black-Scholes
model results are roughly the same for the curve regression approach and for the
Black-Scholes formula approach. Despite the significant downward shift of the
price curve employed in the calculation of € (compare figure [9), results have not
improved. The approach again performs poorer than the step function approach
presented in subsection
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Variance reduction: approximation by single starting point regression
European call, Scott model
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Figure 11: European call, Scott model: Variance reduction factor on a logarithmic
scale for a European call in the Scott model achieved by importance sampling
approximating € by the single starting point regression approach. » = 0.05, T' =
1, K =10, n = 100, N = 100,000, N; = 10,000, Ny = N — N; = 90,000,
A = 0.25 and = 0.01. For purposes of numerical stability, we truncate e to the
interval [1; 10,000]. Red line: & = 0.1. Blue line: = 0.2. Green line: & = 0.5.

Approximation by simulation of a single point of the option price curve
A disadvantage of the the presented curve regression method is that to estimate
the regression curve several points across the curve have to be estimated. In the
previous example, 17 points of the option price curve were estimated — each one
with a sample size of N; = 1,000. Thus, high numerical effort is already required
just for the parameter estimation required to calculate the e values. For instance,
the quantity of interest may be an option price for one specific initial value S(0)
and not the entire option price curve. Then, it may not appear appropriate to first
simulate estimators covering the whole range of the option price curve. Therefore,
we present an alternative regression approach which does not require to simulate
points across the whole curve. Only trajectories starting with one single S(0) value
are required.

In detail, the approach for European calls works as follows:

1. We simulate NV, trajectories with n discretization step of the underlying with
the same starting value S(0). We obtain a N; X (n + 1) matrix, with Sy

being the value for the &™ discretization step of the i simulated trajectory
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Single starting point regression
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Figure 12: Illustrative representation of the starting point regression approach. A
multidimensional non-linear least square regression is conducted fitting a Black-
Scholes formula surface (blue grid) to Ny - (n + 1) option price estimator data
points (black points). In this figure, the sample size is selected artificially low for
the purpose of visualization purposes (N = 100). With N = 100 the non-linear
regression does not converge. Therefore, no parameter estimation is possible.
Consequently, we plot the Black-Scholes option price surface using the original
parameters. In this sense, this figure does not show actual data but is rather
illustrative.

with k € (0,...,n)andi € (1,...,N).

2. We use all the points of the simulated N; x (n + 1) matrix to calculate NV -
(n + 1) option price estimators. E.g., for the k™ discretization step of the i
simulated trajectory we calculate

~

Cop = e ") (8, — K)* (56)

It is important to note that in the bracket term we use .S;, and not S;;. Thus,
we obtain a single option price estimator for each step of the time-grid for

each trajectory. The resulting ensemble of (S;x, 7, CA*Zk) is plotted in fi gure
(black points).

3. In the next step, we conduct a multidimensional non-linear least square re-
gression using the Black-Scholes formula with C'(S(t),t) as dependent vari-

able, S(t) and t as independent variable and K, r and o as parameters. An
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option price surface results (blue grid in figure [12]).

4. The resulting parameters are then used to calculate € in an importance sam-

pling Monte-Carlo simulation with sample size N,.

The variance reduction results presented in figure[I T|are below the results achieved
by the approximation employing the Black-Scholes formula with the original set
of parameters (compare figure [7). For purposes of convergence of the multidimen-
sional non-linear regression, compared to other simulations we choose a larger sam-
ple size N = N; + Ny, = 100,000 with N; = 0.1 - V.

For arithmetic Asian options, this approach does not work due to the path depen-

dency of its pay-off function.

3.7 Approximation by integration

The last approximation approach for option price elasticities presented in this article
is based on the idea of calculating an estimator for the elasticities by numerical
integration.

Integration yields approximations for C™, Cii* and C" at the time ¢ for a given
S(t) value. With this information, we can calculate e. To obtain C'™, we have to

solve the integral
CS(0.6) =T [ (S() - K) pIS(D)| SOIST). 5T
Using Leibniz’ rule for parameter integrals [23]], we obtain

<808<§22,t)) _ 0 |:er(Tt) /_OO (S(T) _ K)+p[S(T) ‘ S(t)] dS(T)

—erro [ " 50) - K =2 pIs(T) | S(1)]dS(T).
(58)

Generally, the transition density p [S(7) | S(t)] is unknown. One approach would
be to conduct an approximation using the Markov property and building a product
of Euler transition kernels for small At. However, this would leave us with the
problem of numerically solving a high-dimensional integral. An alternative is to
approximate the unknown density p [S(T) | S(¢)] by an explicitly known density.
For instance, for the Scott model, we can approximate the transition density by the
density of the log-normal distribution resulting from a Geometric Brownian Motion,
1.e. the Black-Scholes model.
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This approximation does not lead to a bias of the option price estimator as we can
use any ¢ to conduct the Monte-Carlo simulations (see section [2). We should just
take into account that reasonable e values should be chosen that lead to an actual
variance reduction and not to an increase.

Therefore, we approximate the transition density by

1 <1nS’(T)71nS(t)f(r7%>(T7t))2
p[S(T) | S(t) 207 (T 1) . (59)

\/27‘(‘0‘2 —t) S(T

To numerically calculate the integrals, the integration limits must be transformed

to the interval (—1, 1) employing an affine transformation [24]:

STy =K + Y [ f1s(r)as(r) /1 2y <K+ L y) d
= _— = —_— —_— y
1 (1—y)? -y
(60)
This integral can be evaluated by means of Gauss-Legendre quadrature [25]. We

approximate
nGL
/ x)dx ~ Z g (x;) w; (61)

where z; are the roots (“abscissae”) of the ng. ™ Legendre polynomial P, (). The
weight are defined by

(62)

For the option price we obtain

e~ [ (s(r)— k) pIS(T) | S as()

[e.9]

_ / (S(T) = K)p[S(T) | S(t)]dS(T)

o0 1
_ /K (S(T) — W 5T .

W S(T) ~mS(t) — (r—2) (T —1)
_< 202(T<—t) ) ) as(T)

X exp

_ /K " FS(T)AS(T).

By carrying out the substitution from equation with S(T) = K+ %z we get

16Numerical values of weights and abscissae can be found at [26]].
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, b9 1+y
T
-1 (1_1/) I—y
_/1 2 (1+y> 1 1
L (1=y) V2ro? (T —t) K + (64)

(ln <K+ %Z) —InS(t) — (r . %2> (T—t))2
! 202(T — ) dy

X exp

and by conducting a Gauss-Legendre quadrature as described in equation (61]) with

the abbreviation

) 2
gi:m(K+iZ)—1n5(t)—(r—%) (T — 1) (65)

we approximate

Oim ~ i : (1 - mz) 11+z~
— (1 —2)* \1 -z \/2W02 —t) K+t

< ox {_f—} w,
P\ 202 — 0y 1"

Analogously, we obtain

(66)

(8(]) N% 2 (1+xz> 1
05(t) = (I—2i)? \1 - \/27TU2 _tK+}f—§j (67)

" Oxp { 20—2(5; ) }0 (zél— O

and

() £ (2) ot
do — (1 —x)?2 \1—u; \/m[(_i_ﬁ )
& 1 e
<on{ gt g )7 |6 g

From these approximations, we can calculate € and y for each discretization step
of each trajectory using the definitions (T]) and (33).

If we employ the presented method to conduct an importance sampling Monte-
Carlo simulation, for in-the-money options we observe very low variance reductions

for medium and high volatility environments or even variance increases for low
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Variance reduction: approximation by integration
European call, Scott model
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Figure 13: European call, Scott model: Variance reduction factor on a logarithmic
scale for a European call in the Scott model achieved by importance sampling
approximating € and x by integration. » = 0.05, 7 = 1, K = 10, n = 10,
N = 10,000, A = 0.25 and n = 0.01. For purposes of numerical stability, we
truncate ¢ to the interval [1;10,000] and the absolute value of y to the interval
[0;10,000]. Furthermore, for S > Ke """ during the last 6 discretization
steps, we choose the e-value corresponding to the (n — 7)™ discretization step.
Red line: 0 = 0.1. Blue line: ¢ = 0.2. Green line: & = 0.5. Solid line: univariate
additional drift, i.e. Y = 0. Dashed line: bivariate additional drift. Black line:
reference line where the variance reduction equals 1.0.

volatility environments. An analysis of the e-surface shown in subfigure (a) of figure
yields an explanation for this unexpected result. For high S values and short
times to maturity 7' — ¢, the integration method leads to numerical instabilities. The
observed e-peak are not expected and not in accordance with the result calculated
directly from the Black-Scholes formula (compare subfigure (a) of [§).

Increasing ngp. could help to mitigate this problem, but this would also further in-
crease the required computational power. A less numerically demanding approach
is to introduce an ad hoc modification of € values as soon as the underlying exceeds
the discounted strike price for low times to maturity 7' — . Therefore, in the numer-
ical example presented in figure |13 we modify the e-surface. For S > Ke (T~
during the last 6 discretization steps, we choose the e-value corresponding to the
(n — 7)™ discretization step. Le., we “fix” the time during the last few discretiza-

tion steps for the purpose of calculating e. We thus avoid the described numerical
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Elasticities approximated by integration

(a) e-surface (b) x—surface

10004

In(e)

5008

NN
t{\\§\‘\‘\‘\\\
\\\\\\\\\\

Figure 14: (a) e-surface: Surface of the logarithmized option price elasticity € with
respect to the underlying price S calculated by integration as a function of .S and
the remaining time until expiration 7' — ¢ for 0 = 0.1. For in-the-money options,
we observe numerically instabilities for low 7" — ¢ values. (b) y-surface: Surface
of the pseudo-elasticity x with respect to the volatility o calculated by integration
as a function of S and the remaining time until expiration 7" — ¢ for 6 = 0.1.

instabilities which introduce strong variance increases. Of course, this involves a
deliberate deviation from the optimal additional drift term. However, this devia-
tion has a far lower impact on the results than the numerical instabilities involved
otherwise.

The numerical results in figure [13|show that the significant computational effort
required to calculate the elasticities by integration also leads to significant variance
reduction, especially for out-of-the-money options.

For out-of-the-money options, the bivariate additional drift yields a slightly higher
variance reduction than the univariate case. For European options, especially com-
pared to the Black-Scholes formula approach, this approach appears not to add
value, as it is numerically for more demanding.

However, the advantage of the integration approach is, that no knowledge of the
options price curve is required to approximate the elasticities. For more complex
options, no analytical formula may exist that closely resembles the option price
curve. In these cases, the integration approach may be a suitable solution that can

yield dramatic variance reduction.
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For path-dependent options as an arithmetic Asian call, this approach does not
appear advantageous. In our example with n = 100 discretization steps, two 100-
dimensional integrals would have to be evaluated for each calculation of ¢, involving

a significant additional computational effort.

4 Conclusion

From this analysis, we draw the conclusion that several well-working approaches
exist for the approximation of option price elasticities. This a necessary require-
ment for the presented importance sampling technique. The consideration of sev-
eral approaches (approximation by constant values, step functions, lower bounds,
the Black-Scholes formula, regression, and integration) demonstrates that the ap-
proaches vary both in efficacy and in the involved computational effort. For Eu-
ropean calls in the Scott model, the achieved variance reduction ranges from less
than one order of magnitude for low constant approximations to several orders of
magnitude for the Black-Scholes formula approach. Also for Asian calls in the
Black-Scholes model, we observe a significant deviation between the efficacy of
the different analyzed approaches. We see that the degree of variance reduction de-
pends on several influencing factors: both the volatility and the initial value of the
underlying heavily influence the results.

Interestingly, the numerically more demanding approximation procedures are not
necessarily the most efficacious ones. For European options we observe, that ap-
proximation approaches that closely resemble the results of the Black-Scholes for-
mula for European calls work best. Contrastingly, for arithmetic Asian options, the
very simple step function approach which involves only very limited calculations
for the approximation of € delivers the best results. More sophisticated approaches
as the regression approach yield a smaller variance reduction. So, there are cases,
where additional complexity and numerical effort to approximate elasticities are not
justified.

In this article, we introduce several approaches that can be applied even if no or
low knowledge of the shape and position of the curve of interest exists ex anteriori,
e.g., the constant approach, the step function approach or the integration approach.
These approaches may well be used for other applications of Monte-Carlo simula-
tions such as Value at Risk estimations or Portfolio Credit Risk models.

We emphasize that in this article, we consider solely the application of the pre-
sented importance sampling approach. The combination with other variance re-

duction techniques is not considered. The suitability of the presented approach in

35



conjunction with antithetic variates, control variates, stratified sampling etc. should
be further analyzed. For instance, it has been shown that significant variance reduc-
tion can be obtained by combining importance sampling with an application of the
put-call-parity [9, 10, 27].

One possible criticism regarding some of the presented approximations is the
involved considerable numerical effort. However, one can considerably reduce the
computing power required for estimating option price elasticities by first calculating
the elasticity surface as a function of the underlying S and remaining time 7" — ¢.
When carrying out the variance reduced Monte-Carlo simulation it is then possible
to approximate € (and ) from the previously calculated grid, e.g., by linear intra-

polation or by cubic spline intrapolation.
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