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1 Introduction

Value at Risk (VaR) intends to represent the total risk of financial instruments.
Monte-Carlo simulations are one method to compute Value at Risk estimators.
These estimators naturally involve standard errors. These standard errors typically
decrease with an increasing sample size N.

Importance sampling is a variance reduction technique that is aimed at reducing
the empirical variance of Monte-Carlo estimators for a given sample size. In this
article we will apply importance sampling to the estimation of loss probabilities
that can be interpreted as quantiles of loss distributions, i.e. as Value at Risk esti-
mates. Our method reduces the empirical variance of these estimators significantly.
Therefore, it yields more accurate estimators with lower standard errors than a stan-
dard Monte-Carlo simulation for a given sample size N. The technique employed
has been introduced by Singer and has been applied to several other applications
already, e.g. to option pricing or the Ginzburg-Landau model of superconductiv-
ity [, 2]. Alternative methods for variance reduced VaR Monte-Carlo simulations
already exist [3} 4].

The article is organized as follows: First, we introduce the concept of VaR in sec-
tion 2] Section [3]introduces the basic concepts of importance sampling, derives a
variance reduced VaR Monte-Carlo estimator and introduces suitable elasticity ap-
proximations required for the variance reduced Monte-Carlo simulation. In section
we present a numerical example that demonstrates the functionality of the pre-

sented approach. We discuss results in section [5] The article concludes in section
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2 The risk measure VaR

VaR is a risk measure that aims to aggregate the entire risk of a portfolio with value
X (t) into one single indicator. It coincides with the loss a portfolio will not exceed
at a given confidence level a over a given period of time. Consequently, the VaR
corresponds to the (1-a))-quantile of the loss distribution of the portfolio value [3].
Usually, the VaR measure is used to indicate the risk of an entire portfolio. How-
ever, in some cases VaR figures are calculated for single financial instruments. For
example, regulatory authorities require financial institutions to provide individual
VaR estimates for PRIIPs (Packaged Retail and Insurance-based Investment Prod-

ucts Going forward, we will focus on portfolios. Of course, this involves the

2For details, see [6]]. Descriptions of typical PRIIPs can be found at [7, 18].



special case of portfolios that consist of one single financial instrument only.

Several methods exist to provide VaR estimates [5]. The most popular approach is
the non-parametric historical simulation. Historical data is employed to estimate the
future value development of the considered portfolio. Also parametric approaches
exist, e.g., the variance-covariance method. The focus of this article is a third — also
parametric — approach, the Monte-Carlo simulation. This approach yields VaR es-
timators involving standard errors. The size of these standard errors is proportional
to 1/v/N where N is the sample size.

3 Importance sampling of VaR estimators

Importance sampling is a powerful approach to reduce the standard error of Monte-
Carlo estimators. In this section, we first briefly introduce the general concept of im-
portance sampling. Subsequently, we derive a variance reduced VaR Monte-Carlo
estimator and provide suitable elasticity approximations required for the presented

importance sampling approach.

3.1 Basics of importance sampling

The expectation value of a function h : R — R, X — h(X) of a random variable
X with probability density p is defined as

@ =B, [h(X) = [ 1) p(a) dr M)

1 N
by = ;Zh()@) )

for i.i.d. realizations X1, ..., Xy of X.
Expanding the integrand of equation with any other probability density p’

leads to

a:/h(a:)p(as) dx:/h(a:) ;)/((Z))p’(as) dz = E, [h(X) P

It can be shown, that the empirical variance of the unbiased Monte-Carlo estima-

tor
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vanishes, if, for a non-negative function /, we choose

p'(x) o< h(z) p(). (5)

By normalizing, the product i(x) p(z) can be transformed into a probability density
[9].
An importance sampling approach introduced by Singer [, 2] aims to conduct

variance reduced Monte-Carlo simulations to calculate integrals of the form
PLX(0.0) = [ BIX(T) X (D). TIX(0),04X(T) ©

where the random process X (t) follows an Ito differential equation of the following

type:
dX () = fIX(1))dt + g[X (£)|dW (t) 9

In this equation, f is the drift vector, ¢ the time, ¢ the diffusion coefficient and W ()
a multivariate Wiener process.
In a lengthy calculation, it can be shown that variance reduction can be achieved

by adding an additional drift term to equation (7))
dX(t) = (fIX(t)] + 6f)dt + g[X(2)|dW (t) (8)
For the optimal additional drift term 0 f, one obtains
0f =QVInP 9)

with the diffusion matrix {2 = gg”. The task of the additional drift term is to “drag”
the stochastic process X (¢) to areas where the density p’ described in equation (5
takes on high values [1} 2].

To conduct a Monte-Carlo simulation with the purpose of estimating the quantity
P, a discretization of equation (8)) using a Euler-Maruyama approximation [10] is
required:

X1 = Xp + (fx + 0fr) AT + g AW, (10)

The following estimator for the integral in equation (6) with sample size N and

n discretization steps results:

N n—1
L1 1 _ _
pP= Zexp{—z (§5f{yﬂk| Yo AT + 0 FE | lgkAWk>}h[Xi ]
] k=0
(11)



The exponential function corresponds to the term p/p’ in equation (4).

A detailed derivation of these formulae can be found in [2]] and [[11].

3.2 A variance reduced VaR Monte-Carlo estimator

The next step is to derive a variance reduced VaR Monte-Carlo estimator. We as-
sume that the considered portfolio at time ¢ has the value X (¢). The total loss L of

the portfolio’s value in the interval [0, T'] is defined as
L:=—-AX = —[X(T) — X(0)]. (12)

Our aim is to estimate the probability P, that in this interval the loss L exceeds
a given level b, i.e. to estimate P(L > b). Using the indicator function / and the
transition densityf| p[X (T") | X (0)], this quantity can be expressed as

PIL>b]|X(0)] = /OOO I(L > b) p[X(T) | X(0)]dX(T). (13)

For simplicity, we assume that the stochastic process X (t) follows a Geometric
Brownian motion with drift rate f = rX and diffusion rate ¢ = o X. This justifies
0 as the lower integration limit instead of —oo. We also assume that X () follows
a univariate stochastic process. However, also more complex, multivariate models,
e.g., models with stochastic volatility, are compatible with the presented importance
sampling approaclﬂ Consequently, using equations @) and , we obtain the
discretized stochastic differential equation

X1 = Xi + (r + 0”e,) XpAT 4+ 0 X, AW, (14)

with the elasticity

P(L>b| Xy 0Xx

€k = . (15)
Using equations and to simulate the portfolio value’s trajectories, the
following formula results from equation (I1)) yielding a variance reduced Monte-

Carlo estimator of the probability that the total loss L exceeds the given level b:

3Note that the transition probability also explicitly depends on the time. Therefore, we should
write p = p[X(T), T | X(t),t]. However, for the purpose of compactness, we suppress the time
argument.

4For details, see [L1}[12].



N n—1
A 1
P(L>0b]| Xy) = N Z { ( WAL JemAWk> I(L; > b)
i=1 k=0
(16)

3.3 Elasticity approximations for variance reduced VaR
estimates

The elasticity €, is unknown ex anteriori, as the probability P(L > b | Xj) is
generally an unknown quantity. Therefore, we conduct approximations of the elas-
ticity. The quality of the achieved variance reduction highly depends on the specific
approximation employecﬂ This article focuses on the approximation by constant

values and on the approximation by numerical integratiorﬂ

Approximation by constant values The least complex approach is to approxi-
mate the elasticity € by a constant value. Equation indicates that e should take
on only negative values as obviously M < 0. (The higher the portfolio
value, the lower the probability that the loss w111 exceed a given threshold.)
Increasing the absolute value of the constant elasticity approximation has two
counteracting effects: On the one hand, more trajectories of X (¢) will result in a
loss L exceeding b and therefore contribute to the Monte-Carlo estimator. On the
other hand, the higher the absolute value of e, the higher the discretization bias

resulting from the discretized stochastic differential equation (14)) will be.

Approximation by numerical integration A more sophisticated approach is
the approximation of € by numerical integration. For each trajectory 7 and each
discretization step k we calculate P(L > b | X) and its partial derivative with
respect to X by numerical integration employing Gauss-Legendre quadrature.

Based on equation and using discrete time, with definition the loss prob-

3 An analysis of several possible approximations can be found in [11]].

®It is important to note, that equation yields an unbiased estimator, independently of the spe-
cific choice of €. The choice only influences the estimator’s standard error, not its mean value.
Of course, for very high absolute € values, a discretization bias is introduced.



ability can be recast as follows:

o0

P(L>b|Xy)= [ I(L>b)p[X,|XsdX

/OXb
L

p[Xn | Xi]dX 17)

- /X plX, | X, dX

We assume that p[X,, | X}] is the density of the log-normal distribution [3]. As
mentioned above, in this article we only consider Geometric Brownian motions.
In this special case, the assumption is accurate. However, also for more complex
models of the stochastic process X (t) for the purpose of calculating € this approach

is permissible (compare footnote [6). Thus, we obtain

1 1
V2mo2(n — k‘)AtX_n

X, X — (r= %) (n - k)At]2 (18)

plXn | Xi] =

2

X exp

20%(n — k)At
The affine transformation [13]]
1
X, = Xg—b+ lﬂ
~ (19)
1
- F(X,)dX,, / ( 0—b+ﬂ>dy
Xo—b I-y
yields
P(L>b| X)) =1— ! /1 2 !
‘ V2mo? (n — k) At ,1(1—y)2X0—b+}%§
2
(1n (X0 b+ E8) X — (r = 5) (n— K)At) 20)
e exp 20%(n — k)At .

For the purpose of compactness, we abbreviate

2
¢:=1In (Xo—b—l—%) —lnXk—(r—%) (n —k)At 21



and obtain

1 e 1
P(L>b| X)) =1- /
52
<exp {5

This term can be evaluated by means of Gauss-Legendre quadrature [[14} [15]].

(22)

Abbreviating

, 2
& :=1In (Xo—b+1+$l>—1nXk—(T—%) (n —k)At (23)

1—1’1'

with ngp abscissae x; and weights w;, we obtain

1 = 2 1
P(L>b|X,)~1—
( | %) NOLEE (n—k)AtZ(l—xi)zXo—b‘i‘i—fj (24)

=1

X exp N w.
202(n — k)At [

Analogously, for the partial derivative, by applying Leibniz’ rule for parameter

integrals [16] the following expression results:

OP(L>b|Xy) 1 /1 2 1
00X, \/27r02 (n—Fk)At J -1 (1_9)2X0_b+}j—z

x 2 ex {—5—2}d
0Xk P 20%(n — k)At Y 25)

- 1 /1 2 1
V2mo?(n—k) At J 1 (1—3/)2X0—b+}f—z

& £ 1y
P {_202(n - kJ)At}U2(n — k)AL X, Y

Note that for £ = 0 additional terms appear, as

~1
d1n <X03;(§ v %) » ) (XO —az;:o }j_g>

do not vanish. For reasons of simplicity, we suppress these terms and use the same

expression for the first discretization step as for all the other discretization steps.



Again, we conduct a Gauss-Legendre quadrature and obtain

OP(L >b| X}) 1 o= 2 1
2D

X T Vet RA T (-nP Kb E 0
X € 512 éz ! w
Xp 4 — —W;.
P\ 2020 — )AL [ o2(n — k)AL X,

i=1

With these quadrature results we can calculate ¢;; for each trajectory ¢ and each
discretization step & from equation ((15).

Before presenting numerical results, two comments should be made:

e The calculation of N X n different ¢;; values involving the Gauss-Legendre
quadrature of at least two integrals each is very demanding with regards to
computational power. An approach that can significantly reduce the required
amount of arithmetical operations is to first calculate an e-grid as a function of
the current portfolio value X, and the remaining discretized time (n — k)At.
The required ¢;;, for each trajectory ¢ and each discretization step k£ can then
be obtained by linear intrapolation or by cubic spline intrapolation from this
grid.

e In the Black-Scholes model involving a Geometric Brownian motion for the
portfolio value X (¢), Monte-Carlo simulations are of course not required to
calculate quantiles of the log-normal distribution. However, the importance
sampling approach presented in this article also works well for more complex
models, e.g., models with stochastic volatility. In this case, for the calcula-
tion of €, the assumption of a log-normal transition density is a well-working

approximatiorﬂ

4 Numerical results

We now present a numerical example that demonstrates the ability of the introduced
approach to significantly reduce the empirical variance of VaR Monte-Carlo estima-

tors. We consider the following setting:
e The considered portfolio X (¢) has an initial value of X (0) = 50.

e The portfolio’s value follows a Geometric Brownian motion with interest rate
r = 0.05 and volatility o = 0.2.

"Compare [[I1]], section 3.7 for details.



b=10 Benchmark Constant approximation Integration
e=—5 €=—-75 e=—-15 e=-20

A

(L>0) 9.30% 1036%  10.79% 10.77% 13.02% 10.33%
Op 092%  0.45% 0.42% 0.85% 3.35% 0.13%
57]25 85E-05 2.1E-05 1.7E-05 7.3E-05 1.1E-03 1.7E-06
VarRatio 1.0 4.1 4.8 1.2 0.1 49.5

Table 1: Variance reduced Monte-Carlo simulation of the probability that the port-
folio loss exceeds b = 10.

b=20 Benchmark Constant approximation Integration
e=—-5 €=-75 e=—-15 e=-20

i (L>0) 0.30%  0.37% 0.37% 0.31% 0.38% 0.34%

Op 0.17%  0.05% 0.03% 0.02% 0.03% 0.01%

(3125 3.0E-06 29E-07 1.2E-07 29E-08 8.9E-08 4.0E-09

VarRatio 1.0 10.5 24.9 102.4 335 740.7

Table 2: Variance reduced Monte-Carlo simulation of the probability that the port-
folio loss exceeds b = 20.

e The aim is to estimate the probability that the portfolio loss as defined in
equation exceeds a given level b for 7" = 1. First we consider a moderate
loss (b = 10) in table 1 and then a high loss (b = 20) in table 2.

e The Monte-Carlo simulation involves N = 1,000 trajectories and n = 100

discretization steps per trajectory.

e For the purpose of Gauss-Legendre quadrature, we choose ng. = 64 abscis-
sae and weightﬂ

e For each example (moderate and high loss), we first conduct a benchmark
simulation without variance reduction. Then, we conduct a variance reduced
simulation employing several constant approximations of the elasticity e. Fi-
nally, the approximation of ¢ by Gauss-Legendre quadrature (integration) is

considered.

~

e As results, we present the estimated probability P(L > b | Xj), its stan-

}25 and the variance ratio (‘“VarRatio”),

i.e. the ratio between the benchmark’s empirical variance and the empirical

dard error 0, the empirical variance &

variance of the approach considered.

8 Abscissae and weight values are available on [15].
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5 Discussion of results

The results indicate that the presented approach is mainly suitable for settings in
which the aim is to estimate probabilities of high losses. In a standard Monte-Carlo
simulation, only few trajectories yield very high losses. Thus, for the simulation
of probabilities of high losses, only few trajectories contribute to the Monte-Carlo
estimator but increase its empirical variance. The presented importance sampling
approach achieves to drag an increased amount of trajectories into the area of in-
terest, i.e. the area of high losses. This result is in accordance with the finding that
the same importance sampling approach in the Monte-Carlo simulation of options
delivers the best results for deep-out-of-the-money options [[11].

The integration method yields better results than the constant approximation ap-
proach. Also this finding is intuitive: the integration method accurately resembles
the shape of the e-surface. Contrastingly, the constant approach delivers only a very
crude approximation of the true elasticity. Also this result is in line with the variance
reduced Monte-Carlo simulation of options [11]].

Finally, the optimal constant € value depends on the specific parameters of a

Monte-Carlo simulation. While for the moderate loss environment (b = 10) a value

of ¢ = —7.5 delivers best results, for the high loss environment (b = 20) a value of
e = —15 performs best. For too high € values the variance is increased compared to
the benchmark.

6 Conclusion

The purpose of this article is to introduce an approach that allows to significantly
reduce the empirical variance of VaR Monte-Carlo estimators. After laying the the-
oretical foundation, we derive variance reduced VaR estimators and introduce suit-
able elasticity approximations as requirement for importance sampling. Numerical
results show that this method actually serves to reduce standard errors of estimators,
mainly in situations where probabilities of high losses are estimated. The compu-
tationally more demanding integration method delivers better results, but also the

comparably simple constant approximation method strongly decreases variance.
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