Identifizierung von führenden Köpfen in terroristischen Netzwerken – ein entropiebasiertes Verfahren –

Andreas Dellnitz*, Sebastian Litzinger*, Wilhelm Rödder**

Diskussionsbeitrag Nr. 507 Juli 2017

Diskussionsbeiträge der Fakultät für Wirtschaftswissenschaft
der FernUniversität in Hagen
Herausgegeben vom Dekan der Fakultät
Alle Rechte liegen bei den Verfassern

^{*} Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik

^{**} Forschungsbereich OR

1 Einleitung

Unter dem Suchbegriff "Liste von Terroranschlägen" findet man in Wikipedia eine seitenlange Aufzählung von Horrormeldungen über Anschläge seit 1925. Im 21. Jahrhundert verbinden viele Menschen den furchtbaren Anschlag auf die beiden Türme des World Trade Centers am 11. September 2001 mit dem islamistischen Terror. Einschließlich dieses Terrorakts hat es seitdem über 200 Anschläge mit islamistischem Hintergrund in 44 Ländern gegeben. Die Gesamtzahl der Todesopfer ist größer als 9472. Die Opfer von separatistischen, nationalistischen, links- und rechtsradikalen Anschlägen kommen noch hinzu. Diese erschreckende Bilanz zeigt die Notwendigkeit internationaler Anstrengungen, eine Strategie gegen solche Verbrechen zu entwickeln. Wichtig dabei ist es zu ergründen, wer die Attentäter, Mittäter und Helfer waren, in welche Netze sie eingebunden waren, wie die Informationen in den Netzen flossen und letztlich wie die Führungsstruktur darin aussah. Wer waren die führenden Köpfe und wie hat die Beeinflussung anderer Akteure stattgefunden.

Verfügt man über dieses Wissen, kann – hoffentlich – ein System von präventiven Maßnahmen erarbeitet werden, um der Gefahr weiterer Angriffe zu begegnen. Unmittelbar nach 9/11 begannen Wissenschaftler, das Thema aufzuarbeiten und netzwerkanalytische Verfahren auf vorhandene Daten anzuwenden bzw. neue Verfahren zu entwickeln.

Als einer der ersten Autoren ist Krebs zu nennen; bereits 2002 schreibt er einen Aufsatz über die Schwierigkeit, verdeckte Netzwerkstrukturen zu erkennen [1], siehe auch die dort aufgeführte Literatur.

Die klassische Netzwerkanalyse hält einige Methoden vor, um die Zentralität von Akteuren im Netz zu bestimmen. U. A. sind das der in/out-Degree von Knoten $\hat{=}$ Akteuren im Netz, die Erreichbarkeit anderer Akteure über kürzeste Wege, die sogenannte Betweenness als Häufigkeit zwischen anderen Knotenpaaren zu liegen, die Katz-Zentralität als Maß des Ansehens bzw. Prestiges, das ein Akteur bei allen übrigen hat, etc. All dies ist Gegenstand jedes Lehrbuches zur Netzwerkanalyse [2, 3, 4]. Das "Prestige-Maß" ist stark parameterabhängig, da die Wahlen eines Akteurs von anderen mit deren in Grenzen frei wählbaren Abständen gewichtet sind. Es wird deshalb oft kritisiert [5, 6] und wird in diesem Beitrag nicht weiter betrachtet.

Bald nach 9/11 begannen Autoren auch, neuere Verfahren zur Identifizierung von Führungsstrukturen in kriminellen Netzwerken zu ersinnen. Hier sind zu nennen

- die Methode kritischer Komponenten von Latora und Marchiori [7]
- die Methode der Laplaceschen Energiedifferenzen von Xingquin et al. [5]

Beide Verfahren haben eine ähnliche Philosophie. In [7] wird für das Netz seine Effizienz definiert und mit der nach Eliminierung eines Akteurs verglichen. Fällt diese Netzeffizienz stark ab, ist der Akteur wichtig. Berechnet man die Differenzen für alle Akteure, erhält man eine Reihung ihrer Wichtigkeit. Kritisch anzumerken ist zu dieser Vorgehensweise, dass die Netzeffizienz über die

Mittlung der Closeness-Werte aller Akteure zu allen Akteuren berechnet wird. Der Schwachpunkt hierzu ist u.E. die Verwendung nur kürzester Wege zwischen Akteuren. Dass die Übermittlung von Informationen oder Anweisungen – Führungsstruktur – im Netz nur über kürzeste Wege erfolgt, ist natürlich zweifelhaft.

Die Methode der Laplaceschen Energiedifferenzen verwendet Differenzen nun nicht von Netzeffizienzen, sondern von sogenannten Laplace-Energien der Netze; wiederum vor und nach Eliminierung des zu bewertenden Akteurs. Der tiefere Grund für die Verwendung der Laplace-Energie als Qualitätsmaß von Netzen erschließt sich dem Leser nicht. Theorem 1 auf Seite 21 zeigt zudem, dass die Energiedifferenz aus den Knotengraden des zu bewertenden Akteurs und denen seiner Nachbarn berechenbar ist. Womit die Auswirkungen einer Knoteneliminierung in dieser Methode nur lokal berücksichtigt werden.

Die Netzwerkanalyse ist in jüngeren Arbeiten um probabilistisch-informationstheoretische Ideen angereichert worden. So ersetzen die Autoren in [8] gerichtete Kanten im Netz durch wenn-dann-Beziehungen und modellieren sie als probabilistische Konditionale: "Wenn Akteur i über ein Gut oder Wissen verfügt bzw. eine gewisse Einstellung hat, so auch seine Nachfolger". Und diese geben sie wiederum an ihre Nachfolger weiter etc. In solchen Modellen kann dann für einen Akteur sein Diffusionspotential oder in Umkehrung sein Rezeptionspotential ermittelt werden. Auch unsichere Weitergaben [9] oder sogar bipartite Strukturen [10] lassen sich behandeln.

Damit dies alles gelingt, geht man wie folgt vor:

- Die n Akteure des Netzes werden beliebig durchnummeriert: $A_1, \ldots, A_j, \ldots, A_n$.
- Jeder Akteur A_j wird als binäre Variable $V_j = 0/1$ modelliert, mit der Bedeutung: Er hat ein Gut oder hat Wissen oder eine gewisse Einstellung (1) oder nicht (0).
- Die gerichteten Verbindungen zwischen Akteuren werden zu Konditionalen $V_i = 1 \mid V_j = 1$ mit der Bedeutung: Wenn Akteur $V_j = 1$, dann auch $V_i = 1$.
- Auf dem gesamten Netz wird über der Menge aller Zustände $\{V_j = 0/1, j = 1, ..., n\}$ aller Akteure eine Wahrscheinlichkeitsverteilung maximaler Entropie MaxEnt erzeugt, die die Konditionale respektiert.
- Diese Verteilung gestattet dann die Berechnung des Diffusions-/ bzw. Rezeptionspotentials eines jeden Akteurs für das Gut im Netz [8].

In [6] wurde die Methode auf ein kleines Netz mit 18 Akteuren und ein mittleres Netz mit 650 Akteuren und 839 Konditionalen angewandt. Die erwähnten Potentiale Diffusion/Rezeption führen zu Erkenntnissen über die Netzstruktur, die mit den klassischen graphentheoretischen Indizes nicht oder nur ungenau eingefangen werden können.

Bei der in der aktuellen Arbeit zu bewältigenden Aufgabe müssen Akteure aktiviert und deaktiviert (occupied/disoccupied) werden können, um ihre Wichtigkeit im Netz zu messen.

Diese Aufgabe bedarf einer neuen Modellierung, die über die Modelle in [9, 6, 8] hinausgeht. Kapitel 2 liefert hierzu wahrscheinlichkeits- und informationstheoretische Präliminarien. In 2.1 wird die Syntax festgelegt und der Aufbau der MaxEnt-Verteilung gezeigt. In 2.2 folgt eine Aufzählung später benötigter informationstheoretischer Grundlagen, in 2.3 wird der Zentralitätsindex unter MaxEnt eingeführt und begründet. In Kapitel 3 zeigen wir für ein kleines Netz das Modell und interpretieren die Ergebnisse.

In Kapitel 4 schließlich werden für die in [5, 7] vorgestellten Terroristennetze "Bali" und "Hijackers" die Modelle entwickelt und die Ergebnisse analysiert. Die Unterschiede der Reihungen zentraler Figuren in den Netzen im Vergleich zu [5, 7] werden herausgestellt und diskutiert. Kapitel 5 ist eine Zusammenfassung und ein Ausblick auf weitere Arbeiten.

2 Präliminarien

2.1 Perkolationsnetze

Ein Perkolationsnetz besteht aus

- einer die Akteure repräsentierenden Menge binärer Variabler $\mathcal{V} = \{V_1, \ldots, V_n\}$ mit den Ausprägungen $V_j = 0/1$. $V_j = 1$ bedeutet im Kontext der Analyse terroristischer Netzwerke: Akteur V_j hat Wissen über den Terroranschlag, für $V_j = 0$ hat er es nicht.
- einer Menge $S = \{S_1, \dots, S_n\}$ von binären Schaltern. $S_j = \text{on/off}$ bedeutet Akteur V_j ist aktiviert/ist es nicht.
- einer Menge von ungerichteten Kanten $\mathcal{E} = \{e = (i, j), \text{ falls } i \text{ und } j \text{ adjazent}\}.$
- einer Zerlegung jeder ungerichteten Kante (i, j) in ein Paar gerichteter Kanten (Pfeile) $\langle i, j \rangle$ und $\langle j, i \rangle$ von i zu j bzw. von j zu i.
- einer Menge von Konditionalen

$$\mathcal{R} = \{ (V_i = 1 \mid V_j = 1) \mid S_i = \text{on } \land S_j = \text{on für } \langle j, i \rangle \text{ und } (V_i = 1 \mid V_i = 1) \mid S_j = \text{on } \land S_i = \text{on für } \langle i, j \rangle \text{ für alle } e = (i, j) \in \mathcal{E} \}.$$

Der letzte Spiegelstrich bedarf einer Erläuterung: Das Paar von Konditionalen

$$(V_i = 1 \mid V_j = 1) \mid S_i = \text{on } \land S_j = \text{on}$$

 $(V_j = 1 \mid V_i = 1) \mid S_j = \text{on } \land S_i = \text{on}$
(1)

liest sich: "Wenn die Schalter S_i und S_j eingeschaltet und somit V_i und V_j aktiviert sind, wenn ferner V_j über Wissen zum Terroranschlag verfügt $(V_j = 1)$,

so auch V_i und umgekehrt. Wenn S_i oder S_j nicht eingeschaltet ist, kann weder Akteur j dem i noch umgekehrt Wissen vermitteln.

Mehrfachkonditionierungen sind gewöhnungsbedürftig, im vorliegenden Fall lassen sich die Ausdrücke (1) zusammenfassen zu

$$(V_i = 1 \land V_j = 1) \lor (V_i = 0 \land V_j = 0) \mid S_i = \text{on } \land S_j = \text{on}.$$
 (2)

Nach dem Prinzip Maximaler Entropie – MaxEnt – berechnet man nun eine Wahrscheinlichkeitsverteilung Q, die diese Konditionale respektiert

$$Q((V_i = 1 \land V_j = 1) \lor (V_i = 0 \land V_j = 0) \mid S_i = \text{on } \land S_j = \text{on}) = 1$$
 (3)

und keine nicht intendierten Abhängigkeiten zwischen den Variablen erzeugt. Für eine axiomatische Rechtfertigung dieser Vorgehensweise siehe [11]. Nach dem MaxEnt-Prinzip löst man also

$$Q^* = \arg \max H(Q)$$
s. d. $Q((V_i = 1 \land V_j = 1) \lor (V_i = 0 \land V_j = 0) \mid S_i = \text{on } \land S_j = \text{on}) = 1$ (4) für alle $(i, j) \in \mathcal{E}$.

Die Q sind Wahrscheinlichkeitsverteilungen auf dem Raum aller 2^{2n} binären Zustände $\mathcal{V} \times \mathcal{S} = \{v = (v_1, v_2, \dots, v_n) \times s = (s_1, s_2, \dots, s_n) = (1/0, 1/0, \dots, 1/0) \times (\mathsf{on/off}, \mathsf{on/off}, \dots, \mathsf{on/off})\}.$ (3) ist mithin eine abgekürzte Schreibweise für

$$\frac{\sum_{(v,s)\subset((V_i=1\land V_j=1)\lor(V_i=0\land V_j=0))\land S_i=\mathrm{on}\land S_j=\mathrm{on}}\mathsf{Q}(v,s)}{\sum_{(v,s)\subset S_i=\mathrm{on}\land S_j=\mathrm{on}}\mathsf{Q}(v,s)}=1. \tag{5}$$

Mit Lösen der Aufgabe (4) berechnet man also ein ausgezeichnetes $Q=Q^*$, das über allen Zuständen die Entropie H maximiert – bei Respektierung der Weitergabestruktur. Zur Lösung dieser Aufgabe steht eine Expertensystemshell namens SPIRIT [12] zur Verfügung, die auch für große Netze einsetzbar ist [6]. Q^* heißt Netzwerkladung. Hat man Q^* ,

- kann man durch Aktivieren aller Schalter $S_j = \text{on}, j = 1, ..., n$ ein Netz erzeugen. Dieses Netz nennen wir on-Netz.
- kann man durch Deaktivieren aller Schalter $S_j = \mathsf{off}, j = 1, \ldots, n$ das Netz völlig "zerstören". Jeder Akteur V_j ist zwar noch vorhanden, aber eben deaktiviert. Dieses "Netz" nennen wir off-Netz.
- kann man die Schalter weder auf on noch auf off stellen. Dieses Netz nennen wir free-Netz. $Q^*(S_j = on)$ ergibt sich im free-Netz aus der Lösung von Aufgabe (4); $-\log_2 Q^*(S_j = on)$ erhält im Rahmen dieser Arbeit große Bedeutung.

Zur Untermauerung der letzten Aussage im folgenden Abschnitt einige informationstheoretische Grundlagen.

2.2 Eigenschaften von MaxEnt-Netzwerkladungen

 $H(Q) = -\sum_{(v,s)} Q(v,s) \log_2 Q(v,s)$ ist für jedes Q die Entropie in dieser Verteilung. H misst die mittlere Unabhängigkeit in Q. Q* ist also aufgrund der Maximierungsvorschrift in (4) im Umkehrschluss eine vorsichtige Einschätzung der gesamten Bedingungsstruktur auf $\mathcal{V} \times \mathcal{S}$. Siehe hierzu auch [13], Abschnitt 3.2.

 $-\log_2 Q^*(S_j = on)$ ist die Information, die das System erhält, falls $S_j = on$ wahr wird. Siehe hierzu jedes einführende Lehrbuch der Informationstheorie [14, 15]. Erweitert man also \mathcal{R} zu $\mathcal{R}^1 = \mathcal{R} \cup \{Q(S_j = on) = 1\}$ und löst Aufgabe (4) für \mathcal{R}^1 statt \mathcal{R} mit dem Ergebnis Q^{**} statt Q^* , so führt dieser Informationszuwachs zur Reduktion der Entropie von $H(Q^*)$ auf $H(Q^{**}) < H(Q^*)$.

 $Q^*(S_j = on)$ ist umso kleiner, bzw. $-\log_2 Q^*(S_j = on)$ ist umso größer, je mehr Struktur für Wissenstransfer Akteur V_j im Netz zur Verfügung stellt. Diese Struktur betrachtet nicht nur die inzidenten Kanten, sondern berücksichtigt auch alle indirekten möglichen Verbindungen zu anderen Akteuren über einen oder mehrere Intermediäre hinweg; siehe auch Kapitel 3.

$$-\log_2 \mathsf{Q}^*(S_j = \mathsf{on})$$

- ist die Information, die man dem System zuführt, falls man \mathcal{R} auf \mathcal{R}^1 erweitert.
- ist damit Unsicherheitsreduktion $H(Q^*) H(Q^{**})$.

Im folgenden Abschnitt wird diese Aussage vertieft und wird mit $-\log_2 \mathbb{Q}^*(S_j = \text{on})$ ein neuer Zentralitätsindex für Akteur V_i eingeführt.

2.3 Ein Zentralitätsmaß für Akteure in Perkolationsnetzen

Mit der Umformung (2) der mehrfach konditionierten Konditionale in (1), nach einer geeigneten Indizierung der Kanten $(i,j) = e \in \mathcal{E}$ zu $l = 1, \ldots, |\mathcal{E}|$ und nach einer vereinfachenden Bezeichnung von $(V_i = 1 \land V_j = 1) \lor (V_i = 0 \land V_j = 0) \mid S_i = \text{on } \land S_j = \text{on als } B_l \mid A_l \text{ wird } (4) \text{ zur Aufgabe}$

$$Q^* = \arg \max H(Q) \text{ s. d. } Q(B_l \mid A_l) = 1 \quad l = 1, \dots, |\mathcal{E}|.$$
 (6)

Zu (6) gibt es eine rekursive Lösungsvorschrift [16], die Q^* als Grenzverteilung von $Q^0, Q^1, \ldots, Q^l, \ldots, Q^{|\mathcal{E}|}$ berechnet (wobei Q^0 die Gleichverteilung ist):

$$Q^{l}(v,s) = Q^{l-1}(v,s) \cdot
\begin{cases}
Q^{l}(\overline{A_{l}})/Q^{l-1}(\overline{A_{l}}) & \text{für } (v,s) \subset \overline{A_{l}} \\
0 & \text{für } (v,s) \subset \overline{B_{l}}A_{l} \\
Q^{l}(A_{l})/Q^{l-1}(B_{l}A_{l}) & \text{für } (v,s) \subset B_{l}A_{l}
\end{cases}$$

$$\text{mit } Q^{l}(A_{l}) = Q^{l-1}(B_{l}A_{l})/Q^{l-1}(B_{l}A_{l}) + Q^{l-1}(\overline{A_{l}}).$$
(7)

Bemerkung 1. Führt man die l-te Iteration auf das Konditional $B_l \mid A_l \equiv (V_i = 1 \land V_j = 1) \lor (V_i = 0 \land V_j = 0) \mid S_i = \text{on } \land S_j = \text{on aus, so nimmt die Wahrscheinlichkeit der Prämisse ab, d. h.}$

$$Q^{l}(S_{i} = on \wedge S_{j} = on) < Q^{l-1}(S_{i} = on \wedge S_{j} = on).$$
(8)

Einen Beweis hierzu stellen wir in Anhang B. In einer konditionalen Welt und unter dem MaxEnt-Prinzip nimmt die Wahrscheinlichkeit einer Proposition ab, wenn bekannt wird, dass man eine andere Proposition aus ihr folgern kann. Eine Plausibilitätsbetrachtung hierzu findet man auch in [17].

Bemerkung 2. Ist $A_l \equiv S_i = \text{on } \wedge S_j = \text{on}$, so gibt es in (6) ein $A_{l'} \equiv S_{i'} = \text{on } \wedge S_j = \text{on genau dann}$, wenn Akteur V_j auch adjazent zu $V_{i'}$ ist. $S_j = \text{on taucht also in (6) in so vielen Nebenbedingungen auf, wie der degree<math>(V_j)$ ist.

Bemerkung 3. Wegen (8) hat man fallende Prämissenwahrscheinlichkeiten stets auf Konjunkten $S_i = \text{on} \wedge S_j = \text{on}$ bis hin zu $Q^*(S_i = \text{on} \wedge S_j = \text{on})$. Für beliebige Netze sind die einzelnen $Q^*(S_j = \text{on}), j = 1, \ldots, n$ nicht analytisch darstellbar; SPIRIT liefert jedoch alle diese Werte – siehe auch das nächste Kapitel.

Bemerkung 4. Die Vermutung, dass aufgrund von Bemerkung 2 $\mathbb{Q}^*(S_j = \mathsf{on})$ für ein j den kleinsten Wert annimmt, falls V_j den größten Knotengrad hat, bestätigt sich nicht. Vielmehr sind die wechselseitigen Beziehungen von V_j mit anderen Akteuren im Netz ausschlaggebend. Auch diese Aussage wird im folgenden Kapitel exemplifiziert.

Bemerkung 5. Aufgrund der Ausführungen in Abschnitt 2.2 ist $-\log_2 \mathbb{Q}^*(S_j = \mathsf{on})$ die Information, die das System erhält, falls $S_j = \mathsf{on}$ wahr wird. Jetzt erscheint diese Aussage in völlig neuem Licht. Aktiviert man im free-Netz den Akteur V_j durch den Schalter $S_j := \mathsf{on}$, so erfährt das Netz eine Unsicherheitsreduktion von $H(\mathbb{Q}^*) - H(\mathbb{Q}^{**})$. Die Bereitstellung der Struktur zum Wissenstransfer von Akteur j ist Unsicherheitsreduktion.

Bemerkung 6. $-\log_2 \mathbb{Q}^*(S_j = \mathsf{on})$ für Akteur V_j hängt nicht nur von seinen Nachbarn und deren Nachbarn ab, sondern von der gesamten Struktur des Netzes. Auch diese Aussage wird im Folgeabschnitt exemplifiziert.

Die bisherigen Ausführungen führen zu folgender

Definition 1. $-\log_2 Q^*(S_j = on)$ ist der Einfluss-Index des Akteurs V_j im Perkolationsnetz unter maximaler Entropie; er heißt MaxEnt-Index MEI.

Im folgenden Kapitel wird ein kleines Perkolationsnetz analysiert und werden einige der vorhergehenden Bemerkungen illustriert.

3 MaxEnt-Indizes in einem Perkolationsnetz mit 8 Akteuren

Die Struktur des hier betrachteten Perkolationsnetzes entnehmen wir der Abbildung 1. Zur besseren Übersicht sind nur die Akteure und nicht auch die

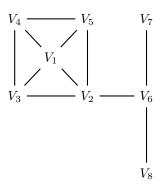


Abbildung 1: Das Rad-Stern-Netz

Tabelle 1: MEI-Werte und Reihung der Akteure im Rad-Stern-Netz

Akteur	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8
MEI	1.576	1.637	1.432	1.457	1.432	1.667	1.160	1.160
Rang	3	2	5	4	5	1	7	7

Schalter gezeigt. Abbildung A1 im Anhang zeigt Akteure und Schalter zu diesem Graphen; Tabelle A1 enthält die Regelmenge \mathcal{R} , an der man Bemerkung 2 nachprüft.

Das Netz besteht aus einem "Rad" mit Zentrum V_1 – links – und einem an V_2 angebundenen "Stern". Die höchste degree-Zentralität haben V_1 und V_2 mit je 4, V_3, V_2, V_5, V_6 mit je 3 und schließlich V_7, V_8 mit je einer Inzidenz. Während in Abbildung A1 alle Randwahrscheinlichkeiten $Q^*(V_j=1/0)$ und $Q^*(S_j=\text{on/off})$ für $j=1,\ldots,8$ zu sehen sind – Bemerkung 3 –, erlaubt die Shell auch das Aufzeigen aller Werte $-\log_2 Q^*(V_j=1/0)$ und $-\log_2 Q^*(S_j=\text{on/off})$, siehe Abbildung A2; womit die Wichtigkeit jedes Akteurs sofort erkennbar ist. Tabelle 1 reiht die Akteure nach Größe der MaxEnt-Indizes. Sie zeigt:

- V_6 ist wichtigster Akteur; deaktiviert man ihn im on-Netz, zerfällt es in die vier isolierten Teilnetze $\{V_7\}$, $\{V_6$ deaktiviert $\}$, $\{V_8\}$, $\{V_1, V_2, V_3, V_4, V_5\}$.
- V_2 ist der zweitwichtigste Akteur; deaktiviert man ihn im on-Netz, zerfällt es in die drei Teilnetze $\{V_7, V_6, V_8\}$, $\{V_2 \text{ deaktiviert}\}$, $\{V_1, V_3, V_4, V_5\}$.
- V_1 ist der nächstwichtige Akteur; deaktiviert man ihn, bleibt das on-Netz weitgehend stabil. Es zerfällt nur in $\{V_1$ deaktiviert $\}$, $\{V_2, V_3, V_4, V_5, V_6, V_7, V_8\}$.
- Die übrigen Deaktivierungen interpretiert man analog.

Die Reihung in Tabelle 1 stimmt mit keiner nach den klassischen Zentralitätsmaßen wie degree/closeness/betweenness berechneten Reihungen überein – womit insbesondere Bemerkung 4 belegt ist. Zur Bestätigung dieser Aussage be-

Tabelle 2: Klassische Zentralitätsmaße und Rankings vs. MEI

Akteur	1	2	3	4	5	6	7	8
C_D	4	4	3	3	3	3	1	1
Rang C_D	1	1	3	3	3	3	7	7
C_C	0.083	0.100	0.077	0.063	0.077	0.083	0.056	0.056
Rang C_C	2	1	4	6	4	2	6	6
C_B	3.33	24.67	2.67	0.67	2.67	22.00	0	0
C_B Rang C_B	3.33	24.67 1	2.67 4	0.67 6	2.67 4	22.00	0 7	0 7

Tabelle 3: Teilnetze mit MEI-Werten

	V_4	V_1	V_3	V_6	V_7	
MEI	1.1894	1.4380	1.3895	1.4380	1.1894	
	V_4	V_1	V_3	V_6	V_7	$\overline{V_8}$
MEI	1.1885	1.4442	1.3517	1.7133	1.1547	1.1547

trachte man Tabelle 2. Hier werden die Reihungen nach Degree-Zentralität C_D , Closeness-Zentralität C_C und der Betweenness-Zentralität C_B der nach MEI-Zentralität gegenübergestellt.

Das gegen Ende des Abschnitts 2.2 erwähnte Erweitern der Regelmenge \mathcal{R} zu $\mathcal{R}^1 \cup \{\mathsf{Q}(S_j = \mathsf{on}) = 1\}$ kann in SPIRIT durch sogenanntes Evidenziieren erfolgen. Klickt man im in Abbildung A1 (siehe Anhang) dargestellten GUI auf den Balken $S_j = \mathsf{on}$, ist das eine benutzerfreundliche Form der Erweiterung der Regelmenge. In Abbildung A3 zeigen wir das Netz nach Anklicken von $S_6 = \mathsf{on}$. Gegenüber $H(\mathsf{Q}^*) = 14.47$ fällt die Entropie auf $H(\mathsf{Q}^*) = 12.80$. Was Bemerkung 5 bestätigt.

Man betrachte das free-Netz V_4, V_1, V_2, V_6, V_7 (durch $S_j = \text{off für } j = 3, 5, 8$ erhält man es aus dem free-Netz aus Abbildung A1). Lösen des Schalters $S_8 = \text{off ergibt das erweiterte free-Netz } V_4, V_1, V_2, V_6, V_7, V_8$. Zu beiden Netzen liefern wir in Tabelle 3 die MEI-Werte.

Bei Erweiterung des Netzes um V_8 verliert V_4 an Wichtigkeit zugunsten von V_1 und V_6 . MEI "spürt" die Veränderung auch über 3 Intermediäre hinweg, was Bemerkung 6 bestätigt.

Die bisherigen Ausführungen dieses Abschnitts lassen sich wie folgt zusammenfassen. Der neue MaxEnt-Index wird für beliebige ungerichtete und ungewichtete Netze in der Expertensystemshell SPIRIT zur Verfügung gestellt. Je größer der Strukturbeitrag zur Verbreitung und zum Empfang von Wissen eines Akteurs ist, umso größer sein Index; er ist unmittelbar in der Shell ablesbar.

Der Index deckt sich nicht

- mit dem Knotengrad degree (V_j) eines Akteurs. degree (V_j) ist lediglich eine lokale Betrachtung; der MaxEnt-Index ist es nicht.
- mit der Closeness. Die Closeness betrachtet Verbindungen eines Akteurs nur über kürzeste Wege; der MaxEnt-Index demgegenüber bewertet alle

Tabelle 4: Zentralitätsmaße KK und LA mit Rankings vs. MEI

Akteur	1	2	3	4	5	6	7	8
KK	0.053	0.402	0.016	-0.009	0.016	0.327	-0.090	-0.090
Rang	3	1	4	6	4	2	7	7
LA	1.000	1.000	0.739	0.696	0.739	0.522	0.174	0.174
Rang LA	1	1	3	5	3	6	7	7
Rang MEI	3	2	5	4	5	1	7	7

möglichen Einflussnahmen auch über nicht kürzeste Wege.

 mit der Betweenness. Auch dieser Index betrachtet die Häufigkeit, mit der ein Akteur auf kürzesten Wegen zwischen Paaren anderer Akteure liegt. Zur Schwäche dieses Indexes vgl. z. B. [18].

Auch die im Rahmen der Analyse von Terroristen-Netzwerken vorgestellten Verfahren erbringen nicht die gleichen Leistungen wie der MaxEnt-Index:

- Nach den Ausführungen von [5], Theorem 1, basiert die Laplace-Zentralität eines Akteurs auf dem eigenen Degree und denen der Nachbarn. Eine Bewertung seiner Wichtigkeit ist zwar allgemeiner als der einfache Inzidenzgrad, aber betrachtet nicht das gesamte Netz. Man vergleiche nochmals die Ausführungen in der Einleitung.
- Die Methode der kritischen Komponenten nach [7] berechnet die Effizienz eines Netzes über kürzeste Wege von jedem zu jedem Akteur. Die Wichtigkeit eines bestimmten Akteurs ist die Differenz zwischen der Netzeffizienz und der Netzeffizienz nach Eliminierung des Akteurs; siehe auch hier nochmals die Einleitung. Wie bereits ausgeführt, bilden kürzeste Wege die Basis des Verfahrens, im Gegensatz zum MaxEnt-Index.

Die Zahlen in Tabelle 4 zeigen die Indizes und Reihungen nach der Laplace-Zentralität LA und nach der der kritischen Komponenten KK. Nochmals ist das MEI-Ranking beigefügt.

4 Anwendungen und vergleichende Analyse

4.1 Auswahl der Netze

In diesem Kapitel unterziehen wir die Methode MEI einer vergleichenden Analyse mit den klassischen Standardzentralitäten sowie den Methoden LA und KK, nun bezogen auf zwei in der Literatur vorgestellte Netze zum Anschlag auf Bali im Dezember 2002 und zum Anschlag 9/11. Die Daten zum ersteren Netz entnehmen wir aus [5], die zum letzteren aus [7] bzw. [1]. Das Bali-Netz wird in der Literatur als ungerichtet und ungewichtet präsentiert, das 9/11 erscheint in mehreren Formen und Größen. Wir haben entschieden, die Variante mit 34 Terroristen auf den Flügen AA #11, AA #77, UA #93, UA #175 plus

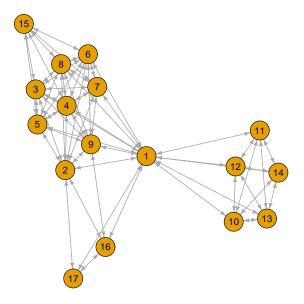


Abbildung 2: Bali-Netz nach [5]

Tabelle 5: Zuordnung von Namen zu Knoten im Bali-Netz

		0			
V_1	V_2	V_3	V_4	V_5	V_6
Samudra	Idris	Imron	Sarijo	Dulmatin	Azahari
V_7	V_8	V_9	V_{10}	V_{11}	V_{12}
Patek	Ghoni	Muklas	Junaedi	Hidayat	Octavia
V_{13}	V_{14}	V_{15}	V_{16}	V_{17}	
Rauf	Arnasan	Feri	Amrozi	Mubarok	

Mittäter zu wählen, so wie sie in [7], Abbildung 3 dargestellt ist. Da in der einschlägigen Literatur die in dieser Abbildung erkennbaren Kantenstärken nicht zugänglich sind, werden wir auch hier von ungerichteten und ungewichteten Kanten ausgehen. Die graphische Darstellung der Netze sowie die Berechnung von Degree-Zenralität, Closeness-Zentralität und Betweenness erfolgte mit [19].

4.2 Das Bali-Netz

Das Bali-Netz besteht aus 17 – in zwei Gruppen zerfallende – Akteuren, verbunden durch den Akteur Samura, siehe Abbildung 2. Die Zuordnung von Namen zu Knoten kann Tabelle 5 entnommen werden.

Tabelle 6 liefert Indizes und Reihungen der angekündigten Methoden; bereits in [5] gelieferte Ergebnisse werden wiederholt.

Die Reihungen aller Methoden unterscheiden sich nur unwesentlich, wohl bedingt durch die spezielle Struktur des Bali-Netzes. Lediglich an Akteur Muklas scheiden sich die Geister. Während die Reihungen nach C_D , C_C , KK ihn gleich-

Tabelle 6: Vergleich von Indizes und Reihungen Terrornetzwerk Bali

Nr.	C_D	Rg	C_C	Rg	C_B	Rg	KK	$\bar{\mathrm{Rg}}$	LA	Rg	MEI	Rg
1	15	1	0.059	1	122.33	1	0.353	1	1.000	1	2.5102	1
2	10	2	0.045	2	12.33	2	0.016	2	0.622	2	1.8513	2
3	9	3	0.043	3	3.33	4	0.011	3	0.578	3	1.5898	4
4	9	3	0.043	3	3.33	4	0.011	3	0.578	3	1.5898	4
5	9	3	0.043	3	3.33	4	0.011	3	0.578	3	1.5898	4
6	9	3	0.043	3	3.33	4	0.011	3	0.578	3	1.5898	4
7	9	3	0.043	3	3.33	4	0.011	3	0.578	3	1.5898	4
8	9	3	0.043	3	3.33	4	0.011	3	0.578	3	1.5898	4
9	9	3	0.043	3	4.67	3	0.011	3	0.569	9	1.6918	3
10	5	11	0.036	10	0.00	11	-0.014	10	0.222	10	1.5035	11
11	5	11	0.036	10	0.00	11	-0.014	10	0.222	10	1.5035	11
12	5	11	0.036	10	0.00	11	-0.014	10	0.222	10	1.5035	11
13	5	11	0.036	10	0.00	11	-0.014	10	0.222	10	1.5035	11
14	5	11	0.036	10	0.00	11	-0.014	10	0.222	10	1.5035	11
15	6	10	0.030	17	0.00	11	-0.020	15	0.333	15	1.5209	10
16	4	16	0.034	15	0.67	10	-0.020	15	0.209	16	1.4609	16
17	3	17	0.033	16	0.00	11	-0.026	17	0.156	17	1.3377	17

auf mit den Vorgängern sehen, erhält er unter LA einen signifikant niedrigeren Wichtigkeitsindex und bei MEI sowie C_B einen signifikant höheren. Nur MEI und C_B erkennen die nach den Akteuren Samura und Idris zentrale Rolle von Muklas. Seine Bereitstellung von Verbindungen ist ein wesentliches Strukturmerkmal des Netzes, war er doch der Einsatzleiter für Singapur und Malaysia. Idris als Chef der Logistik erhält von allen Methoden den zweithöchsten Rang. Die Mitglieder des Teams Bombenbau wie Sarijo, Imron, Dulmatin werden durchgehend hoch eingestuft, wohingegen die Selbstmörder Feri und Arnasan gleichermaßen als peripher gesehen werden. Nur MEI sieht sie nahezu gleich, unterscheidet sie aber. Und unterscheidet sich damit von allen übrigen Methoden.

4.3 Das Hijacker-Netz

Das Hijacker-Netz beschreibt die Akteure des Terroranschlags 9/11 und ihre Verbindungen, siehe Abbildung 3.

Auch zu diesem Netz stellen wir wieder die Indizes und Reihungen – wie schon im Bali-Netz – zusammen, siehe Tabelle 9. Die Zuordnung von Namen zu Knoten findet sich in Tabelle 7.

Die verschiedenen Methoden reihen einige Akteure ähnlich nach ihrer Wichtigkeit. So ist Mohammad Atta einheitlich als der wichtigste erkannt, bald gefolgt von seinem Vertrauten Marwan Al-Shehhi. Hani Hanjour und Hamza Alghamdi – beide attackierten auf verschiedenen Flügen – erfahren ebenfalls relativ hohe Einstufungen. Auch bzgl. der im Netz eher peripher verankerten Akteure

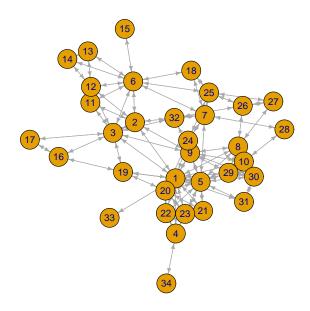


Abbildung 3: Hijacker-Netz nach [7]

kommen die Methoden zu ähnlichen Urteilen. Insgesamt ist das Bild jedoch uneinheitlich. Welches Verfahren die besseren Ergebnisse liefert, ist natürlich nicht feststellbar. Allerdings hilft die Berechnung des Kendall-Taus bei einer vergleichenden Analyse der Reihungen. Tabelle 8 zeigt die Werte τ für alle Paare von Rangreihen.

Alle Methoden erzeugen Rangreihen, die positiv miteinander korrelieren, jedoch keineswegs gleich sind. Die τ -Werte variieren von 0.914 bis 0.591; also von einer recht großen Ähnlichkeit zweier Reihungen bis zu einer eher mäßigen. Wir greifen einige ins Auge fallende Ergebnisse heraus:

- \bullet C_D und LA ergeben sehr ähnliche Rankings. Das bestätigt unsere bereits in der Einleitung gemachte Beobachtung, dass sich LA bei der Einschätzung der Wichtigkeit eines Akteurs im Wesentlichen an Knotengraden orientiert. Ansonsten korrelieren die Reihungen nach LA nur mäßig mit denen der übrigen Verfahren.
- Die Ergebnisse nach C_D sind trotz Schlichtheit der Methode bis auf C_B in großer Übereinstimmung mit denen der übrigen Verfahren.
- $\bullet\,$ Die C_B -Rangreihe weicht stark von denen anderer Methoden ab.
- MEI reiht ähnlich wie C_D und kommt zu signifikant anderen Ergebnissen als C_C .

Unserer Erachtens muss sich die Güte einer Methode zur Identifizierung von führenden Köpfen in Terroristennetzen an der Praxis ausrichten. Schätzen forensische und gerichtliche Untersuchungen zu einem Terroranschlag die gleichen

Tabelle 7: Zuordnung von Namen zu Knoten im Hijacker-Netz

V_1	V_2	V_3
Mohamed Atta	Salem Alhazmi	Hani Hanjour
$\overline{V_4}$	V_5	V_6
Mamoun Darkazanli	Marwan Al-Shehhi	Nawaf Alhazmi
$\overline{V_7}$	V_8	$\overline{V_9}$
Hamza Alghamdi	Satam Suqami	Abdul Aziz Al-Omari
$\overline{V_{10}}$	V_{11}	$\overline{V_{12}}$
Fayez Banihammad	Majed Moqed	Khalid Almihdhar
$\overline{V_{13}}$	V_{14}	V_{15}
Abdussattar Shaikh	Osama Awadallah	Mohamed Abd
V_{16}	V_{17}	V_{18}
Rayed Mohammed Abdullah	Faisal Al Salmi	Ahmed Alnami
$\overline{V_{19}}$	V_{20}	V_{21}
Lotfi Raissi	Ziad Jarrah	Ramzi Omar
V_{22}	V_{23}	V_{24}
Said Bahaji	Zakariya Essabar	Ahmed Al Haznawi
$\overline{V_{25}}$	V_{26}	V_{27}
Saeed Alghamdi	Nabil al-Marabh	Raed Hijazi
V_{28}	V_{29}	V_{30}
Mohand Alshehri	Wail Alshehri	Waleed Alshehri
$\overline{V_{31}}$	V_{32}	V_{33}
Shaykh Saiid	Ahmed Alghamdi	Habib Zacarias Moussaoui
V_{24}	·	

Mamduh Mahmud Salim

Akteure als führende Köpfe ein, wie das mathematische Netzwerkanalysen tun? Falls ja, besteht eine gewisse Hoffnung, durch gezielte Fahndungsmaßnahmen diese Köpfe vor Ausführung eines Terroranschlags als solche zu erkennen und zu neutralisieren.

Wir hoffen, mit unserem Beitrag dieses Bemühen zu unterstützen.

Tabelle 8: Kendalls τ für die verschiedenen Verfahren im Hijacker-Netz

Kendalls τ	C_D	C_C	C_B	KK	LA	MEI
C_D		0.801	0.677	0.801	0.914	0.861
C_C	0.801		0.708	0.854	0.791	0.690
C_B	0.677	0.708		0.777	0.591	0.729
KK	0.801	0.854	0.777		0.759	0.750
LA	0.914	0.791	0.591	0.759		0.725
MEI	0.861	0.690	0.729	0.750	0.725	

Tal	oelle :	9: V∈	ergleich	von	Indizes	und I	Reihung	en T	errorne	tzwei	rk Hijacl	kers
Nr.	C_D	Rg	C_C	Rg	C_B	Rg	KK	Rg	LA	Rg	MEI	Rg
1	16	1	0.019	1	319.96	1	0.047	1	1.000	1	3.1134	1
2	7	7	0.016	4	84.43	6	0.005	9	0.371	8	1.7045	12
3	10	3	0.017	3	203.92	2	0.021	3	0.515	4	2.2917	4
4	4	20	0.013	19	64.00	9	0.017	4	0.198	20	1.5027	17
5	14	2	0.017	2	170.13	4	0.017	4	0.840	2	2.6282	2
6	10	3	0.014	7	194.92	3	0.037	2	0.443	5	2.5208	3
7	7	7	0.016	5	116.35	5	0.012	6	0.304	11	2.0172	5
8	8	6	0.014	9	67.55	7	0.010	7	0.426	6	1.8514	8
9	9	5	0.016	5	65.22	8	0.008	8	0.523	3	1.8546	7
10	7	7	0.014	11	30.23	12	0.004	11	0.376	7	1.7272	11
11	4	20	0.013	22	0.00	25	-0.002	22	0.181	22	1.3802	25
12	6	11	0.013	18	36.97	11	0.000	19	0.245	17	1.7562	10
13	3	24	0.010	31	0.00	25	-0.007	31	0.105	26	1.3610	26
14	3	24	0.010	31	0.00	25	-0.007	31	0.105	26	1.3610	26
15	1	32	0.010	33	0.00	25	-0.009	33	0.046	33	1.0863	33
16	3	24	0.011	28	2.17	22	-0.005	27	0.097	29	1.4609	20
17	2	30	0.011	30	0.00	25	-0.006	30	0.068	32	1.2627	30
18	3	24	0.012	25	0.00	25	-0.003	24	0.122	25	1.2975	28
19	5	16	0.014	8	29.87	13	0.002	12	0.274	14	1.4980	18
20	7	7	0.013	14	11.58	16	0.002	12	0.350	9	1.8357	9
21	5	16	0.013	19	0.00	25	-0.001	20	0.266	15	1.4410	21
22	6	11	0.013	17	4.00	20	0.001	15	0.304	11	1.6256	14
23	5	16	0.013	19	0.00	25	-0.001	20	0.266	15	1.4410	21
24	4	20	0.014	9	25.42	14	0.001	15	0.194	21	1.4170	23
25	6	11	0.013	14	48.95	10	0.005	9	0.219	18	1.8899	6
26	4	20	0.013	22	10.50	17	-0.002	22	0.135	24	1.5718	16
27	3	24	0.012	26	4.42	19	-0.004	26	0.101	28	1.3921	24
28	2	30	0.011	28	3.47	21	-0.005	27	0.072	30	1.2732	29
29	6	11	0.014	13	0.92	23	0.001	15	0.342	10	1.4762	19
30	6	11	0.013	16	4.83	18	0.001	15	0.287	13	1.6773	13
31	3	24	0.012	24	0.92	23	-0.003	24	0.177	23	1.2514	31
32	5	16	0.014	11	23.29	15	0.002	12	0.219	18	1.6148	15
33	1	32	0.012	27	0.00	25	-0.005	27	0.072	30	1.0567	34
34	1	32	0.009	34	0.00	25	-0.011	34	0.021	34	1.1806	32

5 Zusammenfassung und Ausblick

Bei der Suche nach führenden Köpfen in terroristischen Netzwerken ist man sofort geneigt, auf die klassischen Charakterisierungen von Akteuren wie Anzahl von direkten Verbindungen zu anderen Akteuren, kürzesten Wegen zu diesen, ihre Brückenfunktion zwischen Paaren etc. zurückzugreifen. Im Nachgang zum Angriff auf das World Trade Center 9/11 wurden weitere Verfahren zur Identifizierung solcher zentralen Figuren ersonnen und mit den klassischen Verfahren verglichen, mit unterschiedlichen Ergebnissen.

Die hier vorgeschlagene entropiebasierte Analyse geht grundsätzlich einen anderen Weg als die eben genannten graphentheoretisch orientierten. Kontaktmöglichkeiten zwischen Akteuren werden als Konditionale – wenn Akteur i Kenntnisse über den Anschlag hat, dann auch Akteur j – formuliert. Mit diesem Ansatz gelingt es dann, eine Kennzahl für den Strukturbeitrag im Netz für jeden Akteur zu berechnen und mithin für seine Wichtigkeit. Die neue Methode wird mathematisch entwickelt, an einem fiktiven Beispiel plausibilisiert und schließlich auf zwei bekannte Netzwerke angewandt: das Bali-Netz und das 9/11-Netz. Die Ergebnisse stimmen teils mit denen früherer Verfahren überein, lassen aber auch signifikante Unterschiede in der Wichtigkeit von Akteuren erkennen.

Alle bisher vorgeschlagenen Wege zur Identifizierung von führenden Köpfen in Terrornetzwerken – den neuen Weg eingeschlossen – haben noch erhebliche Schwächen. Schon in [1] und in Beiträgen, auf die der Autor Bezug nimmt, werden diese Schwächen benannt und bewertet:

- Die Verschiedenartigkeit von Beziehungen zwischen Akteuren wie gemeinsame Kindheit, (Seelen-)Verwandtschaft oder Wohngemeinschaften wird nicht erkennbar berücksichtigt.
- Gemeinsam erworbene Fähigkeiten wie Flugscheine oder gemeinsame Ausbildungsgänge finden keinen Eingang in die Analysen.
- Abgestimmte Handlungen wie Ticketkauf bei 9/11 werden verbal beschrieben, aber nicht zur (mathematischen) Analyse herangezogen.

Gerichtete oder gewichtete Graphen, Multigraphen oder Graphen mit Knotenfärbung können verschiedenartigste Beziehungen bzw. Knotenqualitäten abbilden und zu einer aussagekräftigeren Analyse des Terrornetzes führen, als es bisher geschehen ist.

Wir sehen hier viel Raum für zukünftige Arbeiten. Über das notwendige kriminalistische Wissen verfügen wir nicht. Eine intensive Zusammenarbeit mit Sicherheitsdiensten könnte Abhilfe schaffen; nur das Zusammenspiel von kriminalistischer Erfahrung und Erfahrung in mathematischer Modellierung verspricht eine zukunftsweisende Maßnahmenplanung gegen terroristische Netzwerke.

Anhang A

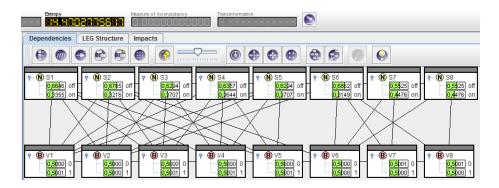


Abbildung A1: Akteure und Schalter zum Rad-Stern-Netz mit Randwahrscheinlichkeiten

```
\begin{array}{c} \text{Tabelle A1: Regelmenge zum Rad-Stern-Netz} \\ (V_1 = 1 \wedge V_2 = 1) \vee (V_1 = 0 \wedge V_2 = 0) \mid S_1 = \text{on} \wedge S_2 = \text{on} \\ (V_1 = 1 \wedge V_3 = 1) \vee (V_1 = 0 \wedge V_3 = 0) \mid S_1 = \text{on} \wedge S_3 = \text{on} \\ (V_1 = 1 \wedge V_4 = 1) \vee (V_1 = 0 \wedge V_4 = 0) \mid S_1 = \text{on} \wedge S_4 = \text{on} \\ (V_1 = 1 \wedge V_5 = 1) \vee (V_1 = 0 \wedge V_5 = 0) \mid S_1 = \text{on} \wedge S_5 = \text{on} \\ (V_2 = 1 \wedge V_3 = 1) \vee (V_2 = 0 \wedge V_3 = 0) \mid S_2 = \text{on} \wedge S_3 = \text{on} \\ (V_2 = 1 \wedge V_5 = 1) \vee (V_2 = 0 \wedge V_5 = 0) \mid S_2 = \text{on} \wedge S_5 = \text{on} \\ (V_2 = 1 \wedge V_6 = 1) \vee (V_2 = 0 \wedge V_6 = 0) \mid S_2 = \text{on} \wedge S_6 = \text{on} \\ (V_3 = 1 \wedge V_6 = 1) \vee (V_3 = 0 \wedge V_6 = 0) \mid S_3 = \text{on} \wedge S_4 = \text{on} \\ (V_3 = 1 \wedge V_4 = 1) \vee (V_4 = 0 \wedge V_5 = 0) \mid S_4 = \text{on} \wedge S_5 = \text{on} \\ (V_4 = 1 \wedge V_5 = 1) \vee (V_6 = 0 \wedge V_7 = 0) \mid S_6 = \text{on} \wedge S_7 = \text{on} \\ (V_6 = 1 \wedge V_8 = 1) \vee (V_6 = 0 \wedge V_8 = 0) \mid S_6 = \text{on} \wedge S_8 = \text{on} \\ \end{array}
```

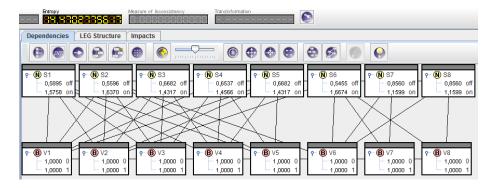


Abbildung A2: Akteure und Schalter zum Rad-Stern-Netz mit MaxEnt-Indizes

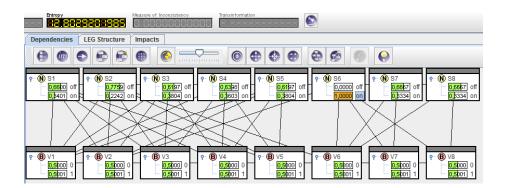


Abbildung A3: Rad-Stern-Netz mit $S_6=\mathtt{on}$

Anhang B

Behauptung: Nach der l-ten Iteration, $l=1,\ldots,|\mathcal{E}|$ in (7) gilt $\mathsf{Q}^l(A_l)=f\cdot\mathsf{Q}^{l-1}(A_l)$ und f<1. Wegen $A_l\equiv S_i=\mathsf{on}\wedge S_j=\mathsf{on}$ hat man damit $\mathsf{Q}^l(S_i=\mathsf{on}\wedge S_j=\mathsf{on})<\mathsf{Q}^{l-1}(S_i=\mathsf{on}\wedge S_j=\mathsf{on}).$

Beweis: Laut (7) gilt:

$$\begin{split} \mathsf{Q}^l(A_l) &= \mathsf{Q}^{l-1}(B_lA_l)/\mathsf{Q}^{l-1}(B_lA_l) + \mathsf{Q}^{l-1}(\overline{A_l}) \\ \mathsf{Q}^l(A_l) &= \mathsf{Q}^{l-1}(A_l) \cdot f \text{ und } f < 1 \quad \Leftrightarrow \\ \mathsf{Q}^l(A_l)/\mathsf{Q}^{l-1}(A_l) &= f < 1 \quad \Leftrightarrow \\ \mathsf{Q}^{l-1}(B_lA_l)/[\mathsf{Q}^{l-1}(B_lA_l) + \mathsf{Q}^{l-1}(\overline{A_l})] \cdot \mathsf{Q}^{l-1}(A_l) &\leq 1 \quad \Leftrightarrow \\ \mathsf{Q}^{l-1}(B_lA_l) &< \mathsf{Q}^{l-1}(B_lA_l) \mathsf{Q}^{l-1}(A_l) + \mathsf{Q}^{l-1}(A_l) - (\mathsf{Q}^{l-1}(A_l))^2 \quad \Leftrightarrow \\ \mathsf{Q}^{l-1}(B_lA_l)(1 - \mathsf{Q}^{l-1}(A_l)) &< \mathsf{Q}^{l-1}(A_l)(1 - \mathsf{Q}^{l-1}(A_l)). \end{split}$$

Nun ist vor der l-ten Iteration $\mathsf{Q}^{l-1}(B_lA_l) < \mathsf{Q}^{l-1}(A_l)$ und $\mathsf{Q}^{l-1}(A_l) < 1$.

Hinweis: Der Faktor f ist aus Werten ausschließlich vor der Iteration berechenbar!

Literatur

- [1] V. Krebs. Mapping Networks of Terrorist Cells. *Connections*, 24(3):43–52, 2002.
- [2] M.E.J. Newman. Networks: An introduction. Oxford University Press, Oxford, 2012.
- [3] J. Scott. Social Network Analysis. Sage Publications, London, 2000.
- [4] D. Jansen. Einführung in die Netzwerkanalyse. VS Verlag, Berlin, 2006.
- [5] X. Qi, R. Duval, K. Christensen, E. Fuller, A. Spahiu, Q. Wu, Y. Wu, W. Tang, and C. Zhang. Terrorist Networks, Network Energy and Node Removal: A New Measure of Centrality based on Laplacian Energy. Social Networking, 2(1):19–31, 2013.
- [6] D. Brenner, A. Dellnitz, F. Kulmann, and W. Rödder. Compressing strongly connected subgroups in social networks: An entropy-based approach. The Journal of Mathematical Sociology, 41(2):84–103, 2017.
- [7] V. Latora and M. Marchiori. How the science of complex networks can help developing strategies against terrorism. *Chaos, Solitons and Fractals*, 20(1):69–75, 2002.
- [8] W. Rödder, D. Brenner, and F. Kulmann. Entropy based evaluation of net structures deployed in Social Network Analysis. *Expert Systems with Applications*, 41(17):7968–7979, 2014.
- [9] W. Rödder, F. Kulmann, and A. Dellnitz. A new rationality in network analysis – status of actors in a conditional-logical framework –. In C. Beierle, G. Brewka, and M. Thimm, editors, *Computational Models of Rationality*, volume 20, pages 348–364. College Publications, 2016.
- [10] W. Rödder, A. Dellnitz, F. Kulmann, S. Litzinger, and E. Reucher. Bipartite Strukturen in Sozialen Netzen – klassische versus MaxEnt-Analysen –. Diskussionsbeiträge der Fakultät Wirtschaftswissenschaft, 503, 2017.
- [11] G. Kern-Isberner. Characterizing the principle of minimum cross-entropy within a conditional-logical framework. *Artificial Intelligence*, 98(1–2):169–208, 1998.
- [12] SPIRIT. http://www.xspirit.de, 2011. Last accessed on 2017-07-04.
- [13] W. Rödder. Knowledge Processing under Information Fidelity. In IJCAI-01: Proceedings of the Seventeenth International Joint Conference on Artificial intelligence, volume 1, pages 749–754, 2001.
- [14] S. Roman. Introduction to Coding and Information Theory. Springer, New York, 1997.

- [15] F. Topsøe. Informationstheorie. Teubner, Stuttgart, 1974.
- [16] W. Rödder. Conditional logic and the Principle of Entropy. *Artificial Intelligence*, 117(1):83–106, 2000.
- [17] W. Rödder. On the measurability of knowledge acquisition and query processing. *International Journal of Approximate Reasoning*, 33(2):203–218, 2003.
- [18] T. Opsahl, F. Agneessens, and J. Skvoretz. Node centrality in weighted networks: Generalizing degree and shortest paths. *Social Networks*, 32(3):245–251, 2010.
- [19] D. McFarland, S. Messing, M. Nowak, and S. Westwood. Social Network Analysis Labs in R. https://sna.stanford.edu/rlabs.php, 2010. Stanford University. Last accessed on 2017-07-07.

Die Diskussionspapiere ab Nr. 183 (1992) bis heute, können Sie im Internet unter http://www.fernuni-hagen.de/wirtschaftswissenschaft/forschung/beitraege.shtml einsehen und zum Teil downloaden.

Ältere Diskussionspapiere selber erhalten Sie nur in den Bibliotheken.

Nr	Jahr	Titel	Autor/en
420	2008	Stockkeeping and controlling under game theoretic aspects	Fandel, Günter
			Trockel, Jan
421	2008	On Overdissipation of Rents in Contests with Endogenous Intrinsic Motivation	Schlepütz, Volker
422	2008	Maximum Entropy Inference for Mixed Continuous-Discrete Variables	Singer, Hermann
423	2008	Eine Heuristik für das mehrdimensionale Bin Packing Problem	Mack, Daniel Bortfeldt, Andreas
424	2008	Expected A Posteriori Estimation in Financial Applications	Mazzoni, Thomas
425	2008	A Genetic Algorithm for the Two-Dimensional Knapsack Problem with Rectangular Pieces	Bortfeldt, Andreas Winter, Tobias
426	2008	A Tree Search Algorithm for Solving the Container Loading Problem	Fanslau, Tobias Bortfeldt, Andreas
427	2008	Dynamic Effects of Offshoring	Stijepic, Denis Wagner, Helmut
428	2008	Der Einfluss von Kostenabweichungen auf das Nash- Gleichgewicht in einem nicht-kooperativen Disponenten- Controller-Spiel	Fandel, Günter Trockel, Jan
429	2008	Fast Analytic Option Valuation with GARCH	Mazzoni, Thomas
430	2008	Conditional Gauss-Hermite Filtering with Application to Volatility Estimation	Singer, Hermann
431	2008	Web 2.0 auf dem Prüfstand: Zur Bewertung von Internet- Unternehmen	Christian Maaß Gotthard Pietsch
432	2008	Zentralbank-Kommunikation und Finanzstabilität – Eine Bestandsaufnahme	Knütter, Rolf Mohr, Benjamin
433	2008	Globalization and Asset Prices: Which Trade-Offs Do Central Banks Face in Small Open Economies?	Knütter, Rolf Wagner, Helmut
434	2008	International Policy Coordination and Simple Monetary Policy Rules	Berger, Wolfram Wagner, Helmut
435	2009	Matchingprozesse auf beruflichen Teilarbeitsmärkten	Stops, Michael Mazzoni, Thomas
436	2009	Wayfindingprozesse in Parksituationen - eine empirische Analyse	Fließ, Sabine Tetzner, Stefan
437	2009	ENTROPY-DRIVEN PORTFOLIO SELECTION a downside and upside risk framework	Rödder, Wilhelm Gartner, Ivan Ricardo Rudolph, Sandra
438	2009	Consulting Incentives in Contests	Schlepütz, Volker

439	2009	A Genetic Algorithm for a Bi-Objective Winner-	Buer, Tobias
		Determination Problem in a Transportation-Procurement Auction"	Pankratz, Giselher
440	2009	Parallel greedy algorithms for packing unequal spheres into a	Kubach, Timo
		cuboidal strip or a cuboid	Bortfeldt, Andreas
			Tilli, Thomas
	• • • •	OFM 11' 'd ' 1 O O O O	Gehring, Hermann
441	2009	SEM modeling with singular moment matrices Part I: ML- Estimation of time series	Singer, Hermann
442	2009	SEM modeling with singular moment matrices Part II: ML- Estimation of sampled stochastic differential equations	Singer, Hermann
443	2009	Konsensuale Effizienzbewertung und -verbesserung –	Rödder, Wilhelm
		Untersuchungen mittels der Data Envelopment Analysis (DEA)	Reucher, Elmar
444	2009	Legal Uncertainty – Is Hamonization of Law the Right Answer? A Short Overview	Wagner, Helmut
445	2009	Fast Continuous-Discrete DAF-Filters	Mazzoni, Thomas
446	2010	Quantitative Evaluierung von Multi-Level	Lorenz, Marina
	2010	Marketingsystemen	Mazzoni, Thomas
447	2010	Quasi-Continuous Maximum Entropy Distribution	Mazzoni, Thomas
		Approximation with Kernel Density	Reucher, Elmar
448	2010	Solving a Bi-Objective Winner Determination Problem in a	Buer, Tobias
		Transportation Procurement Auction	Pankratz, Giselher
449	2010	Are Short Term Stock Asset Returns Predictable? An Extended Empirical Analysis	Mazzoni, Thomas
450	2010	Europäische Gesundheitssysteme im Vergleich –	Reucher, Elmar
430	2010	Effizienzmessungen von Akutkrankenhäusern mit DEA –	Sartorius, Frank
451	2010	Patterns in Object-Oriented Analysis	Blaimer, Nicolas
			Bortfeldt, Andreas
			Pankratz, Giselher
452	2010	The Kuznets-Kaldor-Puzzle and	Stijepic, Denis
		Neutral Cross-Capital-Intensity Structural Change	Wagner, Helmut
453	2010	Monetary Policy and Boom-Bust Cycles: The Role of	Knütter, Rolf
		Communication	Wagner, Helmut
454	2010	Konsensuale Effizienzbewertung und –verbesserung mittels DEA – Output- vs. Inputorientierung –	Reucher, Elmar Rödder, Wilhelm
455	2010	Consistent Modeling of Risk Averse Behavior with Spectral Risk Measures	Wächter, Hans Peter Mazzoni, Thomas

456	2010	Der virtuelle Peer – Eine Anwendung der DEA zur konsensualen Effizienzbewertung –	Reucher, Elmar
457	2010	A two-stage packing procedure for a Portuguese trading company	Moura, Ana Bortfeldt, Andreas
458	2010	A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint	Bortfeldt, Andreas Jungmann, Sabine
459	2010	Equity and Efficiency in Regional Public Good Supply with Imperfect Labour Mobility – Horizontal versus Vertical Equalization	Arnold, Volker
460	2010	A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional loading constraints	Bortfeldt, Andreas
461	2010	A tree search procedure for the container relocation problem	Forster, Florian Bortfeldt, Andreas
462	2011	Advanced X-Efficiencies for CCR- and BCC-Modell – Towards Peer-based DEA Controlling	Rödder, Wilhelm Reucher, Elmar
463	2011	The Effects of Central Bank Communication on Financial Stability: A Systematization of the Empirical Evidence	Knütter, Rolf Mohr, Benjamin Wagner, Helmut
464	2011	Lösungskonzepte zur Allokation von Kooperationsvorteilen in der kooperativen Transportdisposition	Strangmeier, Reinhard Fiedler, Matthias
465	2011	Grenzen einer Legitimation staatlicher Maßnahmen gegenüber Kreditinstituten zur Verhinderung von Banken- und Wirtschaftskrisen	Merbecks, Ute
466	2011	Controlling im Stadtmarketing – Eine Analyse des Hagener Schaufensterwettbewerbs 2010	Fließ, Sabine Bauer, Katharina
467	2011	A Structural Approach to Financial Stability: On the Beneficial Role of Regulatory Governance	Mohr, Benjamin Wagner, Helmut
468	2011	Data Envelopment Analysis - Skalenerträge und Kreuzskalenerträge	Wilhelm Rödder Andreas Dellnitz
469	2011	Controlling organisatorischer Entscheidungen: Konzeptionelle Überlegungen	Lindner, Florian Scherm, Ewald
470	2011	Orientierung in Dienstleistungsumgebungen – eine explorative Studie am Beispiel des Flughafen Frankfurt am Main	Fließ, Sabine Colaci, Antje Nesper, Jens

471	2011	Inequality aversion, income skewness and the theory of the welfare state	Weinreich, Daniel
472	2011	A tree search procedure for the container retrieval problem	Forster, Florian Bortfeldt, Andreas
473	2011	A Functional Approach to Pricing Complex Barrier Options	Mazzoni, Thomas
474	2011	Bologna-Prozess und neues Steuerungsmodell – auf Konfrontationskurs mit universitären Identitäten	Jost, Tobias Scherm, Ewald
475	2011	A reduction approach for solving the rectangle packing area minimization problem	Bortfeldt, Andreas
476	2011	Trade and Unemployment with Heterogeneous Firms: How Good Jobs Are Lost	Altenburg, Lutz
477	2012	Structural Change Patterns and Development: China in Comparison	Wagner, Helmut
478	2012	Demografische Risiken – Herausforderungen für das finanzwirtschaftliche Risikomanagement im Rahmen der betrieblichen Altersversorgung	Merbecks, Ute
479	2012	"It's all in the Mix!" – Internalizing Externalities with R&D Subsidies and Environmental Liability	Endres, Alfred Friehe, Tim Rundshagen, Bianca
480	2012	Ökonomische Interpretationen der Skalenvariablen u in der DEA	Dellnitz, Andreas Kleine, Andreas Rödder, Wilhelm
481	2012	Entropiebasierte Analyse von Interaktionen in Sozialen Netzwerken	Rödder, Wilhelm Brenner, Dominic Kulmann, Friedhelm
482	2013	Central Bank Independence and Financial Stability: A Tale of Perfect Harmony?	Berger, Wolfram Kißmer, Friedrich
483	2013	Energy generation with Directed Technical Change	Kollenbach, Gilbert
484	2013	Monetary Policy and Asset Prices: When Cleaning Up Hits the Zero Lower Bound	Berger, Wolfram Kißmer, Friedrich
485	2013	Superknoten in Sozialen Netzwerken – eine entropieoptimale Analyse	Brenner, Dominic, Rödder, Wilhelm, Kulmann, Friedhelm
486	2013	Stimmigkeit von Situation, Organisation und Person: Gestaltungsüberlegungen auf Basis des Informationsverarbeitungsansatzes	Julmi, Christian Lindner, Florian Scherm, Ewald
487	2014	Incentives for Advanced Abatement Technology Under National and International Permit Trading	Endres, Alfred Rundshagen, Bianca

488	2014	Dynamische Effizienzbewertung öffentlicher	Kleine, Andreas
		Dreispartentheater mit der Data Envelopment Analysis	Hoffmann, Steffen
489	2015	Konsensuale Peer-Wahl in der DEA Effizienz vs.	Dellnitz, Andreas
		Skalenertrag	Reucher, Elmar
490	2015	Makroprudenzielle Regulierung – eine kurze Einführung und	Velauthapillai,
		ein Überblick	Jeyakrishna
491	2015	SEM modeling with singular moment matrices	Singer, Hermann
		Part III: GLS estimation	
492	2015	Die steuerliche Berücksichtigung von Aufwendungen für ein	Meyering, Stephan
		Studium – Eine Darstellung unter besonderer	Portheine, Kea
		Berücksichtigung des Hörerstatus	
493	2016	Ungewissheit versus Unsicherheit in Sozialen Netzwerken	Rödder, Wilhelm
			Dellnitz, Andreas
			Gartner, Ivan
494	2016	Investments in supplier-specific economies of scope with two	Fandel, Günter
		different services and different supplier characters: two	Trockel, Jan
		specialists	
495	2016	An application of the put-call-parity to variance reduced	Müller, Armin
		Monte-Carlo option pricing	
496	2016	A joint application of the put-call-parity and importance	Müller, Armin
		sampling to variance reduced option pricing	
497	2016	Simulated Maximum Likelihood for Continuous-Discrete	Singer, Hermann
		State Space Models using Langevin Importance Sampling	
498	2016	A Theory of Affective Communication	Julmi, Christian
499	2016	Approximations of option price elasticities for importance	Müller, Armin
		sampling	
500	2016	Variance reduced Value at Risk Monte-Carlo simulations	Müller, Armin
501	2016	Maximum Likelihood Estimation of Continuous-Discrete	Singer, Hermann
		State-Space Models: Langevin Path Sampling vs. Numerical	
		Integration	
502	2016	Measuring the domain-specificity of creativity	Julmi, Christian
700	2017		Scherm, Ewald
503	2017	Bipartite Strukturen in Sozialen Netzen – klassische versus	Rödder, Wilhelm
		MaxEnt-Analysen	Dellnitz, Andreas
			Kulmann, Friedhelm
			Litzinger, Sebastian
504	2017		Reucher, Elmar
504	2017	Langevin and Kalman Importance Sampling for Nonlinear	Singer, Hermann
	2015	Continuous-Discrete State Space Models	
505	2017	Horizontal versus vertical fiscal Equalization	Anetsberger, Georg
505	2017		Arnold, Volker
506	2017	Formative and Reflective Measurement Models	Singer, Hermann
507	2017	Identifizierung von führenden Köpfen in terroristischen	Dellnitz, Andreas
		Netzwerken – ein entropiebasiertes Verfahren –	Litzinger, Sebastian
			Rödder, Wilhelm