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1. Introduction 

Cross-sector labor reallocation is one of the major characteristics of the development process. 

While the (macroeconomic) long-run structural change modeling literature extensively 

studies the positive effects of cross-sector labor reallocation (e.g., welfare and GDP growth), 

it neglects the costs of labor reallocation arising at the micro level and, in particular, the costs 

associated with unemployment, geographical relocation, retraining/adaptation, and human 

capital (job-specific skills) depreciation among others. In this paper, we focus on the labor-

reallocation costs in the three-sector framework relating to the agricultural, manufacturing, 

and services sector. 1  In particular, we assume that the aggregate reallocation costs 

(accumulated over a period) are indicated by the number of reallocated workers across 

sectors (over the period). This relatively general assumption seems meaningful, since each 

reallocated individual bears some of the aforementioned reallocation costs. In our paper, we 

derive two mathematical statements on monotonous labor-reallocation paths (Lemmas 1 and 

2) and demonstrate how these statements can be used in the discussion of aggregate 

reallocation cost.  

We start the analysis by showing that monotonous labor-reallocation paths minimize the 

aggregate reallocation costs in our framework (Lemma 1). This result is relatively 

robust/general, and we demonstrate that it can be directly used to study cross-country 

differences in aggregate reallocation costs (over very long periods of time) based on widely 

available labor-reallocation data. 

Then, we elaborate on two policy related aspects of Lemma 1. First, empirical evidence and 

economic theory imply that (a) labor-reallocation paths (and, thus, the aggregate reallocation 

costs) differ significantly across countries, (b) policy makers can affect labor-reallocation 

paths (to some extent) via industrial and trade policy, and (c) there are limits to the capability 

of policy to affect labor reallocation. In particular, there are theoretically supported empirical 

laws of labor reallocation, i.e., common features of labor reallocation in “all” countries 

(despite the policy differences across the countries). Thus, it makes sense to study aggregate 

reallocation costs under the assumption that these empirical laws are obeyed. Lemma 2 

proves the existence of monotonous labor-reallocation paths consistent with these laws. 

Second, as we show, Lemma 1 implies that the determination of the destination of a structural 
                                                           
1 For an overview of the (macroeconomic) structural change literature, see, e.g., Schettkat and Yocarini (2006), 
Krüger (2008), Silva and Teixeira (2008), Stijepic (2011, Chapter IV), Herrendorf et al. (2014), and Neuss 
(2018). Recent contributions in this field dealing with the three-sector framework include, e.g., Kongsamut et al. 
(2001), Ngai and Pissarides (2007), Foellmi and Zweimüller (2008), Uy et al. (2013), and Stijepic (2015). 
Examples of the (microeconomic) labor-reallocation costs literature are Jakobson et al. (1993), Lee and Wolpin 
(2006), Artuç et al. (2010, 2015), and Bakas et al. (2017). 
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path is a major challenge in cost-minimal reallocation policy design. In particular, a policy 

planer cannot determine exactly the optimal labor allocation at the end of the planning 

horizon due to uncertainty regarding the future global environment in which the economy 

acts (e.g., trade conditions, global political situation,…) and, thus, faces uncertainty 

regarding the path destination. We prove that the mathematical results (Lemmas 1 and 2) 

derived in our paper imply that if the empirical laws and the path-destination uncertainty are 

considered, a cost-minimizing reallocation policy is characterized by an increasing (a 

decreasing) services (agricultural) employment share and a constant manufacturing 

employment share over the initial phase of development. 

Finally, we discuss briefly how the rather theoretical results derived in our paper can be 

applied in the discussion of the aggregate reallocation costs associated with the standard 

development strategies (e.g., Washington Consensus and Kaldorian strategy) and observed 

labor-reallocation paths. 

The modeling approach in our paper reflects the fact that we seek to derive rather 

general/robust results. In particular, we choose the assumptions that are common to most 

theoretical and empirical studies (meta-modeling), instead of choosing particular theoretical 

models/doctrines. This results in qualitative restrictions and, thus, requires a qualitative (and 

geometrical) approach to the respective calculus of variations problems. 

The rest of the paper is set up as follows. In Section 2, we discuss briefly the relevant 

theoretical literature and evidence and derive the meta-theorems representing the consensus 

that can be derived from this literature and evidence. Section 3 is devoted to the derivation of 

Lemmas 1 and 2. Section 4 discusses the optimal labor-reallocation policy consistent with the 

previously derived meta-theorems and path-destination uncertainty, its duration, and its 

follow-up policies. Section 5 applies these results in the discussion of empirical data (in 

particular, it shows how structural change costs and the duration of optimal policy can be 

assessed on the basis of widely available labor-reallocation data) and standard development 

strategies. Concluding remarks are provided in Section 6. 

 

2. Theoretical lessons and empirical evidence on labor-reallocation laws 

The theoretical contributions on labor reallocation and, in particular, the models presented by 

Kongsamut et al. (1997, 2001), Ngai and Pissarides (2007), Foellmi and Zweimuller (2009), 

Uy et al. (2013), and Stijepic (2015) have the following characteristics: 
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(a) The shapes and the limit properties of the labor-reallocation trajectories generated by 

these models depend on the parameter settings (where the term ‘limit properties’ refers to the 

labor allocation to which the economy converges as time goes to infinity). 

(b) We have no clear evidence/theory regarding these models’ parameter values. 

(c) The parameter sets determining the shape and the limit properties of the trajectories differ 

significantly across models. For example, the Ngai and Pissarides (2007) model predicts a 

curved trajectory (cf. Stijepic [2015, 80]) while the Kongsamut et al. (2001) model generates 

a linear trajectory (cf. Stijepic [2016a]); the Kongsamut et al. (2001) model predicts that in 

the limit, the manufacturing share is the same as in the initial state, while the Ngai and 

Pissarides (2007) model predicts a set of different limit manufacturing shares depending on 

the parameterization of the model; the parameters deciding for the labor-reallocation patterns 

in the Kongsamut et al. (2001) model (Ngai and Pissarides [2007] model) are preference 

parameters (technology parameters). 

Despite these differences, we can formulate Meta-theorems 1 and 2, which represent the 

consensus statements of the theoretical literature, i.e., statements that are consistent with the 

predictions of all the models listed above under the parameter restrictions suggested by the 

authors of the corresponding papers. 

 

Meta-theorem 1. In a developing economy, the services employment share grows and the 

agricultural employment share decreases in the very long run. In other words, the models 

imply that in a more or less distant future (‘long run perspective’), a developing country’s 

services (agricultural) employment share will be greater (smaller) than it is today. 

 

Meta-theorem 2. A developing country’s manufacturing employment share may be growing, 

decreasing, or constant in the long run. Moreover, it may follow a non-monotonous pattern 

(‘hump-shaped development’) in the long run (as predicted by, e.g., Ngai and Pissarides 

[2007] and Uy et al. [2013]). 

 

For a discussion of the empirically observable shapes and limit properties of labor-

reallocation trajectories, we refer to Stijepic (2017b), who depicts the labor-reallocation data 

from different sources covering a large set of countries on standard 2-simplexes. The 

following facts become immediately apparent when studying the figures presented by Stijepic 

(2017b). First, the shapes and the endpoints of the trajectories differ significantly across 

countries. Second, many trajectories are strongly curved; thus, depending on the planning 
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horizon (h), the sector structure at the end of the planning horizon (x(h)) varies strongly even 

when considering the trajectory of only one country. Third, the empirical evidence presented 

by Stijepic (2017b) supports Meta-theorems 1 and 2. 

Overall, while economic theory and empirical evidence imply that there are significant 

differences in labor-reallocation paths across countries, Meta-theorems 1 and 2 seem to 

represent a theoretical-empirical consensus regarding labor-reallocation laws (of motion). 

 

3. Two lemmas on monotonous labor-reallocation paths 

In this section, we derive Lemmas 1 and 2, which seem quite useful in the study of labor-

reallocation costs, as discussed extensively in Sections 4 and 5. In the rest of the paper, the 

mathematical notation is as follows: small italic letters (e.g., x) denote scalars, small bold 

letters (e.g., x) denote vectors, capital italic letters (e.g., X) denote sets, and Greek small 

letters (e.g., δ) denote angles. R denotes the set of real numbers. 

 

3.1 Monotonous paths as reallocation costs-minimizing paths 

In this section, we show that aggregate reallocation costs-minimizing paths are monotonous. 

We start with a definition of structure and sectoral employment shares. 

 

Definition 1. The sector structure (indicated by the labor allocation) at time t ∈ [0, ∞) is 

given by the vector x(t) ≡  (x1(t), x2(t),…, xn(t)) ∈  Rn, where xi(t) denotes the share of 

employment devoted to sector i for i = 1, 2, …n, and Rn is the n-dimensional real space. 

 

Thus, for example, if l(t) is the aggregate employment (e.g., the number of employees in the 

economy) at time t and li(t) is the employment in sector i (e.g., the number of employees in 

sector i) at time t, then xi(t) ≡ li(t)/l(t). 

 

Definition 2. The development path over the time interval [0, h] is given by the curve x(t), 0 

≤ t ≤ h (cf. Definition 1), and the set P := {x(t) ∈ Rn: t ∈ [0, h]}. 

 

Thus, we can imagine a development path as a curve/path connecting the points x(0) and x(h) 

in the n-dimensional Euclidean space. The time point h may be regarded as the (end of the) 

planning horizon. 
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Definition 3. A development path (cf. Definition 2) is monotonous on the time interval [0, h] 

if  ∄i ∈ {1, 2,…n}: (∃ta ∈ [0, h]  ∃tb ∈ [0, h]: ta ≠ tb ∧ dxi(ta)/dt < 0 ∧ dxi(tb)/dt > 0). 

 

Definition 3 implies the following properties of a monotonous path. (1.) All xi are behaving 

monotonously. Thus, for any i ∈ {1, 2,…n}, the following is true: either ∀t ∈ [0, h] dxi(t)/dt ≥ 

0 or ∀t ∈ [0, h] dxi(t)/dt ≤ 0. (2.) Some xi may be monotonously decreasing, while at the same 

time some xi may be monotonously increasing or constant. That is, if the economy moves 

along a monotonous development path, the following scenario is possible among others: at 

the time point ta ∈ [0, h], dx1(ta)/dt > 0, dx2(ta)/dt < 0, and dx3(ta)/dt = 0. 

 

Assumption 1. (a) The initial sector structure (of the economy) is given, i.e., x(0) = x0  ≡ 

(x01, x02,…, x0n) ∈ Rn. (b) The planning horizon (h) and the path destination (xh) are given. In 

particular, at time h ∈ (0, ∞), x(h) = xh ≡ (xh1, xh2,…, xhn) ∈ Rn. (c) The economy moves along 

a continuous path, i.e., ∀t ∀i xi(t) is continuous in t. (d) The (cumulative) aggregate costs 

(c0h) of labor reallocation associated with the development path x(t), 0 ≤ t ≤ h, are given by  

(1) c0h := f (r0h),  r0h := ∫ ∑𝑖=1
𝑛ℎ

0 |dxi(t)/dt|dt,  f : R → R,  df /dr0h > 0. 

 

Several aspects of Assumption 1a-c are noteworthy. First, it is obvious that the initial (or 

today’s) labor allocation (x0) is given. Second, we assume here that the path destination (xh) 

is given only for purposes of presentation; later, we will discuss this restriction in detail and 

relax it. Third, the assumption of a continuous path is due to the long-run modeling horizon, 

i.e., we consider only the long-run dynamics and neglect shorter-run jumps and fluctuations. 

Again, this is a standard assumption in long-run growth modeling. For example, all the 

models listed in Section 2 are continuous-time models generating continuous paths. 

Moreover, allowing for discontinuous paths would imply that, in our optimization problem, 

the policymaker is able to reallocate (very) large numbers of workers (e.g., millions of 

workers) across sectors within very short periods of time (e.g., within seconds), which 

contradicts reality where cross-sector reallocation requires, in most cases, geographical 

reallocation and retraining among others. 

The reallocation costs index (1), i.e., Assumption 1d, requires some explanation. Assume that 

l is the aggregate labor force. Furthermore, assume that l is constant. In this case, ri(t) := 

ldxi(t)/dt is the change in employment in sector i at time t. If ri(t) > 0, then ri(t) is the (net) 

number of workers reallocated to sector i at time t. If ri(t) < 0, then ri(t) is the (net) number of 
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workers reallocated (or: withdrawn) from sector i at time t. Thus, r(t) := |r1(t)| + |r2(t)| +…+ 

|rn(t)| is an index of the number of reallocated workers at time t. We take here the absolute 

values of ri(t), since in most labor-reallocation models, r1(t) + r2(t) +…+ rn(t) is equal to zero, 

as explained in Section 3.2. For the same reason, we could multiply r(t) with 0.5, since in 

most models, ‘reallocation of workers across sectors’ means that a withdrawal of the workers 

from one sector is always associated with the hiring of these workers in another sector. 

However, since multiplying r(t) with 0.5 does not change any of our results, we omit it here. 

Overall, r(t) is the index of reallocation at time t. To obtain an index of reallocation over the 

time period [0, h], we must sum up all r(t) over this period, which in continuous time, 

corresponds to taking the integral over t. This integral is equal to r0h. In fact, r0h is an index of 

the magnitude of reallocation (or: an index of the number of reallocated workers). As noted in 

the introduction, we assume that the aggregate reallocation costs (c0h) are a (strictly) 

monotonously increasing function )( f  of this magnitude of reallocation (r0h). Analogous 

results could be obtained if we used a measure of the magnitude of the changes in the sectoral 

GDP shares. 

Overall, Assumption 1 can be used to define the following calculus-of-variations problem. 

Assume that Assumption 1 is satisfied and, thus, x(0) = x0 is given and the path destination 

(at time h) is determined, i.e., x(h) = xh is given. There exist different paths that connect x0 

and xh in Euclidean space (cf. Figure 1). A path is ‘admissible’ if it is continuous (cf. 

Assumption 1c) and if it connects x0 and xh. The functional (1) associates each of these 

admissible paths with a certain magnitude of aggregate reallocation costs c0h. We search for 

an answer to the following question: ‘Which of the admissible paths is associated with 

minimal aggregate reallocation costs (c0h)?’ That is, we want to find the (admissible) path 

that minimizes the aggregate reallocation costs c0h. Lemma 1 provides the solution of this 

problem. 

 

Figure 1. The calculus-of-variations problem solved by Lemma 1. 

- insert Figure 1 here - 

 

Lemma 1. Let Assumption 1 be satisfied. Then, any monotonous (and continuous) 

development path (cf. Definition 2) that connects x0 and xh (in Euclidean space) minimizes 

the aggregate reallocation costs c0h (cf. (1)). 
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For a proof of Lemma 1, we could apply the theorems of the calculus of variations (see, e.g., 

Gelfand and Fomin [1963, Chapter 15]). In APPENDIX A, we provide a more detailed 

(geometrical) proof, which uses the techniques familiar to the calculus of variations. This 

detailed proof provides us with lemmas and interpretations that are helpful for proving and 

understanding the properties of the minimal-costs paths that will be discussed later. 

Figuratively speaking, Lemma 1 states that if we seek to minimize the aggregate reallocation 

costs arising on the way from x0 to xh, it does not matter which path we take from x0 to xh as 

long as it is monotonous (and, per assumption, continuous). 

Since Lemma 1 is valid for any xh ∈ Rn, we could formulate it more generally, i.e., we can 

omit the reference to x0 and xh, as follows: any monotonous path (in Euclidean space) is a 

cost-minimal connection between its point of departure and its destination.  

Note that we assume throughout the paper that x(t) is C1 (see, e.g., Definition 3 and 

Assumption 1d), i.e., the development path has a certain degree of smoothness. This 

assumption can be justified by the fact that we study only long-run trend paths, i.e., the 

smoothness of x(t) is per definition (of the term ‘long run trend’). 

Obviously, if xh = x0, the aggregate reallocation costs-minimizing strategy (for ‘moving’ 

from x0 to xh) is: stay in x0 for all t ∈ [0, h], i.e., no labor reallocation at all! Such a ‘path’ is 

per Definition 3 monotonous. 

 

3.2 On the existence of monotonous labor-reallocation paths consistent with Meta-

theorems 1 and 2 

In this section, we prove Lemma 2, which postulates the existence of a path with certain 

characteristics, among others, monotonicity (cf. (4)) and consistency with Meta-theorems 1 

and 2 (cf. (7)). In Section 4, we show that Lemmas 1 and 2 imply almost directly the 

properties of a cost-minimal reallocation policy/path consistent with Meta-theorems 1 and 2. 

Most contributions on structural change assume that employment shares satisfy the 

conditions ∀i ∈ {1, 2,…, n} xi(t) ≥ 0 and x1(t) + x2(t) +…+ xn(t) = 1. That is, the sectoral 

employment shares are non-negative and add-up to one. Since the proof of Lemma 2 is more 

difficult when these requirements are satisfied, we construct the proof of Lemma 2 by 

assuming that they are satisfied (cf. (2)). The proof is analogous without these assumptions. 

Moreover, we study the three-sector framework and assume that initial sectoral shares (x01, 

x02, x03) are in the interior of their domains (cf. (8)), i.e., in the initial state (e.g., today), the 

country under consideration employs labor in all three sectors (agriculture, manufacturing, 
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and services). This assumption seems to make sense even for the most underdeveloped 

countries. 

 

Lemma 2. Consider the three-sector economy (n = 3) over the period [0, ∞) and let 

Assumption 1 be valid. (a) There exists a path x*(t) ≡ (x1
*(t), x2

*(t), x3
*(t)), t ∈ [0, h], that has 

the following characteristics: 

(2) ∀t ∈ [0, h]  x*(t) ∈ D := {(x1, x2, x3) ∈ R3: ∀i ∈ {1, 2, 3} xi ≥ 0 ∧ x1 + x2 + x3 = 1} 

(3) ∀t ∈ [0, h]  x*(t) is continuous in t 

(4) ∀t ∈ [0, h]  x*(t) is monotonous in t (cf. Definition 3) 

(5) x*(0) = x0 ≡ (x01, x02, x03) ∈ D 

(6) x*(h) = xh ≡ (xh1, xh2, xh3) ∈ D 

(7) xh1 < x01  ∧  xh3 > x03 (cf. Meta-theorems 1 and 2) 

(8) ∀i ∈ {1, 2, 3} x0i > 0. 

(9) ∃t* ∈ (0, h): ∀t ∈ [0, t*)  x2
*(t) = x02. 

(b) For some xh ∈ D, there does not exist a path x*(t) ≡ (x1
*(t), x2

*(t), x3
*(t)), t ∈ [0, h], 

satisfying the conditions (2)-(8) and (9’), where 

(9’) ∃t* ∈ (0, h): ∀t ∈ [0, t*)  dx2
*(t)/dt < 0. 

(c) For some xh ∈ D, there does not exist a path x*(t) ≡ (x1
*(t), x2

*(t), x3
*(t)), t ∈ [0, h], 

satisfying the conditions (2)-(8) and (9’’), where 

(9’’) ∃t* ∈ (0, h): ∀t ∈ [0, t*)  dx2
*(t)/dt > 0. 

 

Proof. We start with a proof of Lemma 2a. Define the path P* := {x*(t) ∈ R3: t ∈ [0, h]} (cf. 

Definition 2) to which Lemma 2 refers. If (2) is satisfied, P* ⊂ D, i.e., the optimal path is 

located on a standard 2-simplex D in R3. If (3), (4), and (7) are satisfied, ∀t ∈ [0, h]  x1
*(t) ≤ 

x01 ˄ x3
*(t) ≥ x03. Thus, if (2)-(4) and (7) are satisfied, P* ⊂ Dh := {(x1, x2, x3) ∈ D: x1 ≤ x01 ∧ 

x3 ≥ x03} ⊂ D, i.e., P* is located in Dh, which is a subset of the standard 2-simplex D. In 

particular, P* connects x0 and xh on Dh (cf. (5) and (6)), where x0 is in the interior of D (cf. 

(2), (5), and (8)). Assumption 1 and the wording of Lemma 2 do not impose any restrictions 

on the relation between x02 and xh2. Thus, we can distinguish between three (alternative) 

cases:  

(10) x02 > xh2 

(11) x02 = xh2 

(12) x02 < xh2 



10 
 

According to these cases, we can partition Dh into three partitions (Dha, Dhb, Dhc) as follows: 

(13) Dha := {(x1, x2, x3) ∈ D: x1 ≤ x01 ∧ x3 ≥ x03 ∧ x2 < x02} = {(x1, x2, x3) ∈ Dh: x2 < x02} 

(14) Dhb := {(x1, x2, x3) ∈ D: x1 ≤ x01 ∧ x3 ≥ x03 ∧ x2 = x02} = {(x1, x2, x3) ∈ Dh: x2 = x02} 

(15) Dhc := {(x1, x2, x3) ∈ D: x1 ≤ x01 ∧ x3 ≥ x03 ∧ x2 > x02} = {(x1, x2, x3) ∈ Dh: x2 > x02} 

By now, we have shown that the path P* connects x0 , which is in the interior of D, and xh on 

Dh if conditions (2)-(8) are satisfied. Moreover, we know that the path destination xh is 

located in one and only one of the partitions Dha, Dhb, Dhc (cf. (6) and (7)). The remaining 

question is whether condition (9) can be satisfied in addition to these facts, which represent 

the conditions (2)-(8). We can divide this question into the following three sub-questions, by 

using our partitioning (10)-(12) (which is represented by (13)-(15)): First, does a continuous 

path that (a) is in Dh, (b) has a path destination in Dha, and (c) satisfies (9) exist (case 

(10)/(13))? Second, does a continuous path that (a) is in Dh, (b) has a path destination in Dhb, 

and (c) satisfies (9) exist (case (11)/(14))? Third, does a continuous path that (a) is in Dh, (b) 

has a path destination in Dhc, and (c) satisfies (9) exist (case (12)/(15))?  

To construct the corresponding existence proofs, we refer to the geometrical properties of 

paths and sets on the standard 2-simplex D. In particular, we assume in the following proof 

that the reader has knowledge of (a) the interpretation of tangential vector angles of 

trajectories on the standard 2-simplex in terms of the monotonicity characteristics of x1
*(t), 

x2
*(t), and x3

*(t) and (b) the implications of equality and inequality constraints (with respect 

to x1, x2, and x3) for the geometrical properties of sets and, in particular, line-segments on the 

standard 2-simplex. For a detailed discussion of these properties (in the context of labor-

reallocation modeling), see Stijepic (2015, 2017). In APPENDIX B, we provide a brief 

summary of them. Henceforth, the vectors v1, v2, and v3 denote the vertices of the standard 2-

simplex D and, in particular, their Cartesian coordinates (v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := 

(0, 0, 1)). Moreover, we define the vector angle δ(.) as follows: Let x be a (regular) point (of 

a trajectory/curve) on D and r(x) be a (tangential) vector indicating the direction of 

movement at the point x. The vector angle δ(x) is the angle between r(x) and the simplex-

edge v1v2, i.e., δ(x) := ∠(r(x), v1v2������) (see Figure 2). 

Condition (9) states that there exists an initial period [0, t*) ⊂ [0, h] during which x2
*(t) is 

constant. For showing that condition (9) is consistent with conditions (2)-(8), we return to the 

cases (10)-(12). We start with the simplest case (11). In case (11), i.e., if x02 = xh2, the path 

satisfying (2)-(8) must be characterized by x2
*(t) = constant over the period [0, h] and, thus, 

over the period [0, t*) ⊂ [0, h], i.e., (16) is true. 
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(16) ∀t ∈ [0, h]  x2
*(t) = constant 

In particular, if x2
*(0) = x02 = xh2 = x2

*(h) (cf. (5), (6), and (11)) and x2
*(t) is monotonous over 

[0, h] (cf. (4)), then (16) must be true. To prove that a path exists that is consistent with (2), 

(3), (5)-(8), and (16), we can simply show that it is always possible to construct it: Assume 

that the curve x*(t), t ∈ [0, h], satisfies (2), (3), (5)-(8) and (16). Then, (2) implies that the 

corresponding path P* is located on D, and (16) implies that all the regular points x*(t) on this 

path satisfy the vector angle condition δ(x*(t)) = 60° (cf. APPENDIX B). This angle 

condition, (3), and the geometrical properties of the standard 2-simplex D (cf. APPENDIX B) 

imply that P* is a line-segment (on D). (2) and (5)-(7) ensure that that the line-segment P* 

exists and is of non-trivial length: (2), (5), and (6) ensure that x0 and xh are on D; (5)-(7) 

ensure that x0 and xh are two distinct points (on D); (2), (5), and (6) ensure that P* connects x0 

and xh on D; D is a convex subset of a plane (in R3) and, thus, two distinct points (x0 and xh) 

on D can always be connected by a line segment (P*) of non-trivial length. If P* is of non-

trivial length (and continuous according to (3)), then the period [0, h] over which P* is 

traversed is non-trivial (if the velocity is finite). This completes the proof that there exists a 

path that is consistent with (2), (3), (5)-(8) and (16). Since (a) (16) implies that (4) and (9) are 

satisfied and (b) we have derived (16) under the assumption that (11) is true, we can also say 

that we have proven that there exists a path consistent with (2)-(9) under the assumption that 

(11) is true. That is, we have proven Lemma 2a for the case (11)/(14). The proof of Lemma 

2a for the cases (10)/(13) and (12)/(15) is analogous yet a little bit more difficult as shown in 

the following. 

In case (10)/(13), (4)-(7), and (10) imply that x1
*(t) decreases monotonously, x2

*(t) decreases 

monotonously, and x3
*(t) increases monotonously. In particular, (17) is true. 

(17) ∀t ∈ [0, h]  dx1
*(t)/dt ≤ 0 ˄ dx2

*(t)/dt ≤ 0 ˄ dx3
*(t)/dt ≥ 0 

Assume that the curve x*(t), t ∈ [0, h], and, thus, the corresponding path P* are characterized 

by (2)-(8) and (17). Then, particularly (17) implies that all the regular points x*(t) belonging 

to the path P* ⊂ D (cf. (2)) satisfy the vector angle condition (18) (cf. APPENDIX B). 

(18) 60° ≤ δ(x*(t)) ≤ 120°. 

Moreover, (5), (6), (13), (14), and (17) imply that P* connects x0 and xh on Dha ∪ Dhb. (8) 

ensures that x0 is in the interior of D. Thus, the geometrical properties of the simplex D (cf. 

APPENDIX B) and the definition of Dha and Dhb (cf. (5), (13), and (14)) imply that Dha ∪ Dhb 

is always a parallelogram and, thus, its boundary consists of four line-segments (L1, L2, L3, 

L4), where L1 := {(x1, x2, x3) ∈ D: x1 = x01 ∧ x3 ≥ x03 ∧ x2 ≤ x02} = {(x1, x2, x3) ∈ Dha ∪ Dhb: x1 = 
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x01}, L2 := {(x1, x2, x3) ∈ D: x1 ≤ x01 ∧ x3 ≥ x03 ∧ x2 = 0} = {(x1, x2, x3) ∈ Dha: x2 = 0}, L3 := Dhb 

(cf. (14), and L4 := {(x1, x2, x3) ∈ D: x1 = 0 ∧ x3 ≥ x03 ∧ x2 ≤ x02} = {(x1, x2, x3) ∈ Dha ∪ Dhb: x1 

= 0} (see Figure 3). This implies that x0 = L1 ∩ L3 (cf. (5)) is a vertex of Dha ∪ Dhb, and xh ∈ 

Dha/L1 (cf. (7) and (10)). Furthermore, note that condition (9) can be substituted by (19) in the 

case that we consider now (cf. APPENDIX B). 

(19) ∃t* ∈ (0, h) ∀t ∈ [0, t*)  δ(x*(t)) = 60° 

Note that (19) is consistent with (18). Moreover, if (19) is true, then the system moves along 

Dhb over the period [0, t*), as implied by (9) and (13) (see also APPENDIX B and Figure 3). 

Overall, in case (10), we have to show that there exists a path that has the following 

characteristics: The dynamics start in x0 = L1 ∩ L3 (at t = 0) and, initially, the system moves 

along L3 = Dhb (away from x0) over some period [0, t*) of non-trivial length. Afterwards, the 

system moves according to the law (18) and reaches xh ∈ Dha/L1 (cf. Figure 3). As we can see 

in Figure 3, the fact that such a path always exist (except in the limit case xh → L1, which 

corresponds to xh1
 → x01 and is, thus, not of interest due to Meta-theorem 1) is obvious, and 

we can always construct such a path (within the parallelogram Dha ∪ Dhb) as follows: First 

draw a line on D that goes through xh and is parallel to L1. Denote the intersection of this line 

with L3 by z. Then construct a path (P*) that describes the movement along the line-segment 

from x0 to z and then along the line-segment from z to xh. The first segment (connecting x0 

and z) of this path is characterized by δ(x*(t)) = 60° and is, thus, consistent with (18) and 

(19). The second segment (connecting z and xh) is characterized by δ(x*(t)) = 120° and is, 

thus, consistent with (18). Since the first segment is of non-trivial length (except in the limit-

case xh → L1, i.e., xh1
 → x01, which is not of interest, as already noted), and the path is 

continuous (cf. (3)), the period [0, t*) is of non-trivial length. Overall, we have shown that it 

is always possible to construct a path that (a) is continuous (thus, (3) is satisfied), (b) 

connects x0 satisfying (8) and xh ∈ Dha/L1 (thus, (5)-(8) and (10) are satisfied), (c) is located 

in Dha ∪ Dhb ⊂ D (thus, (2) is satisfied), (d) is consistent with (18) and (19) (thus, (4) and (9) 

are satisfied). In other words, we have shown that in case (10), there exists a path consistent 

with (2)-(9). This completes the proof of Lemma 2a in the case (10)/(14). Note that, in this 

proof, we have used the notion of derivative for describing the monotonicity characteristics 

(see, e.g., (17)), while the path used for proving Lemma 2a in case (10)/(14) is non-

differentiable at the point z where the first and second path-segment meet (see Figure 3). This 

is, however, not problematic, since we could smoothen the path (i.e., making it differentiable) 

at the point z without restricting the validity of our proof. Moreover, we could choose a rule 
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for assigning derivatives to the singularities of the type observed at the point z or avoid using 

the concept of derivative, which would make the proofs and the paper significantly longer 

without adding additional economic intuition. 

The proof of Lemma 2a in the case (12)/(15) is analogous. In particular, in this case, the path 

satisfying (2)-(9) and (12) lies always within the triangle Dhb ∪ Dhc, and a path can be 

constructed along which the system moves, first, along Dhb away from x0 and, then, along a 

line-segment parallel to the simplex edge v1-v2 towards xh ∈ Dhc/L5, where L5 is the edge of 

the triangle Dhb ∪ Dhc parallel to the simplex edge v1-v2. Moreover, in case (12)/(15), the 

length of the period [0, t*) does not depend on the difference xh1 – x01 as in the previous case, 

but on the difference xh3
 – x03. This concludes the proof of Lemma 2a. 

We turn now to the proof of Lemma 2b, which is relatively simple: Assume that (9’) is 

satisfied, i.e., x2
*(t) decreases monotonously for all t ∈ [0, t*) ⊂ [0, h]. Thus, due to (3) and 

(4), x2
*(t) decreases continuously and monotonously for all t ∈ [0, h]. Moreover, assume that 

xh is such that xh2 > x02 (which is not excluded by the wording of Lemma 2b) and, thus, x2
*(h) 

> x2
*(0) (cf. (5) and (6)). Obviously, we have a contradiction here: if the function x2

*(t) is 

continuous and monotonously decreasing for all t ∈  [0, h], then x2
*(h) cannot be greater than 

x2
*(0). This proves Lemma 2b. The proof of Lemma 2c is analogous: A function x2

*(t) that is 

continuous and monotonously increasing for all t ∈ [0, h] due to (3), (4), and (9’’) cannot 

reach a final state xh that is characterized by x2
*(h) = xh2 < x02 = x2

*(0) (cf. (5) and (6)). ∎ 

 

Figure 2. The vector angle δ associated with a point x(t) on a path P on the simplex D. 

- insert Figure 2 here - 

 

Figure 3. Examples of the set Dh, its partitioning, and a path representing case (10)/(13). 

- insert Figure 3 here - 
Note. L1 = 𝐱0𝐚�����; L2 = 𝐚𝐚3�����; L3 = Dhb = 𝐱0𝐛�����; L4 = 𝐚3𝐛�����; L5 = 𝐱0𝐜�����; Dha = A\L3 and Dhc = B\L3, where A (B) is the 

closed parallelogram (triangle) with the vertices x0, b, v3, and a (x0, c, and b). 

 

Meta-theorems 1 and 2 impose some (qualitative) restrictions on the employment shares of 

the agricultural and services sector (x1 and x3) but not on the employment share of the 

manufacturing sector (x2). Thus, the set of all feasible path destinations (Dh) is relatively 

great. In other words, xh is not determined uniquely but is an element of the set Dh, where the 

latter is determined by Meta-theorems 1 and 2 (cf. (7)) and the continuity and monotonicity 
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constrains (3) and (4). In fact, Lemma 2a states that for an arbitrary path destination (xh ∈ 

Dh), we can always find a continuous and monotonous path that is characterized by a constant 

manufacturing employment share over some initial period [0, t*) (and consistent with Meta-

theorems 1 and 2). If, in contrast, we choose a path with an initially decreasing (cf. (9’)) or an 

initially increasing (cf. (9’’)) manufacturing share, then Lemmas 2b and 2c state that it is not 

possible to reach all feasible path destinations xh, while obeying the other restrictions listed in 

Lemma 2 and, in particular, the monotonicity requirement (4), which will be later of 

importance when discussing the cost-minimal paths. 

Several further aspects of the proof of Lemma 2 are noteworthy:  

First, there is a case (i.e., case (11)), where a path consistent with (2)-(9) is characterized by a 

constant manufacturing share over the whole period of consideration [0, h]. However, this is 

a knife-edge case where the manufacturing share at the path destination is equal to the initial 

manufacturing share (cf. (11)). In general, an optimal path (i.e., a path being consistent with 

(2)-(9)) consists of two path-segments, an initial one, where the manufacturing share x2
* is 

constant, and a final one, where the manufacturing share is increasing or decreasing (while 

the agricultural share is decreasing or constant and the services share is increasing or constant 

according to Meta-theorems 1 and 2). In particular, while the first/initial path-segment is 

linear, the second/final path-segment need not being linear. 

Second, the part of the proof of Lemma 2 that assumes that (10) is valid focuses on a linear 

final path-segment and, thus, represents a special case among the cases covered by (10). In 

particular, the movement along the final path-segment considered in the proof is 

characterized by a decreasing manufacturing share x2, a growing services share x3, and a 

constant agricultural share (cf. Figure 3 and APPENDIX B), while, in general, the 

agricultural share may be increasing along the (linear or non-linear) final path-segment in the 

cases covered by (10). 

Third, analogous is true for the part of the proof of Lemma 2 that assumes that (12) is valid: 

The proof focuses on an extreme case of a linear final path-segment that is characterized by 

an increasing manufacturing share, a decreasing agricultural share, and a constant services 

share. Yet, in general, the services share may be increasing along a final path-segment in the 

cases covered by (12).  

Fourth, in general, the length of the period [0, t*), over which the system is on the initial path-

segment (characterized by a constant manufacturing share), depends on the difference 

between the initial and destined employment shares. In case (10) (case (12)), the length of [0, 
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t*) increases with the difference xh1 – x01 (xh3
 – x03) ceteris paribus. In case (11), the length of 

[0, t*) is equal to the length of the overall period of consideration [0, h]. 

Fifth, Lemma 2 and its proof refer to a finite planning horizon (h). The results and their proof 

are essentially the same if an infinite planning horizon is chosen, i.e., the period [0, ∞) is 

considered. 

In the following sections, we discuss the implications and applications of Lemmas 1 and 2. 

 

4. Cost-minimal policy consistent with Meta-theorems 1 and 2 under path-destination 

uncertainty 

While Lemma 1 proves useful for the estimation of historical aggregate reallocation costs (cf. 

Section 5.1), it cannot be used without further ado for the discussion of the cost-minimal 

labor-reallocation policy in a nowadays developing country, since we face uncertainty 

regarding the path destination (xh) of such a country, as explained in Section 4.1. However, 

we show in Section 4.2 that a cost-minimal policy can be derived for a nowadays developing 

country, if we reduce the degree of path-destination uncertainty by assuming that Meta-

theorems 1 and 2 are valid in future. In Sections 4.3 and 4.4, we briefly discuss the optimal 

duration of this cost-minimal policy and potential follow-up policies. 

 

4.1 Path-destination uncertainty 

As shown in Section 3.1, it is not difficult to determine the cost-minimizing labor-

reallocation path if we know the path destination (xh), i.e., the labor allocation that is or 

should be realized at the end of the planning horizon (h). In particular, in this case, Lemma 1 

and Definition 3 allow us to determine the qualitative restrictions that have to be imposed on 

the dynamics of the sectoral employment shares (see also Section 3.2). The path destination 

can be regarded as “known” in analyses of historical aggregate reallocation costs; in these 

analyses, the path destination is set to be the nowadays labor allocation, as demonstrated in 

Section 5.1. 

Unfortunately, if we seek to derive the cost-minimal path/policy for a nowadays developing 

economy, we cannot regard the path destination as known. We do neither know the planning 

horizon (h) of the social planer nor the destination of a developing economy (xh); in 

particular, we do not know what the (optimal) labor allocation in a developed economy will 

be in, e.g., 20 years given all the thinkable and unthinkable exogenous determinants of the 

(optimal) labor allocation (in 20 years). Even Meta-theorems 1 and 2 do not allow us to 

precisely determine the path destination (xh); as shown in Section 3.2, Meta-theorems 1 and 2 
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allow for a set of potential path destinations (Dh). That is, in the derivation of the cost-

minimal policy for a nowadays developing country, we face uncertainty regarding the path 

destination of the economy (even if we consider Meta-theorems 1 and 2). In Section 4.2, we 

show that a cost-minimal reallocation policy can be elaborated when there is path-destination 

uncertainty. For doing so, we use Lemmas 1 and 2. 

 

4.2 Implications of Lemmas 1 and 2: Cost-minimizing development strategy (policy (a)-(c)) 

under path-destination uncertainty 

For interpreting Lemmas 1 and 2, we assume that t = 0 denotes the present and, thus, h 

denotes a future time point and, in particular, the planning horizon (cf. Assumption 1b). 

We can use Lemmas 1 and 2 to derive the optimal labor-reallocation policy consistent with 

Meta-theorems 1 and 2 as follows. Lemma 1 states that monotonous development paths 

minimize the aggregate reallocation costs. Lemma 2a states that for any path destination xh 

(cf. (6)) satisfying Meta-theorems 1 and 2 (cf. (7)), there exists a monotonous path (cf. (4)) 

that is characterized by a constant manufacturing employment share over some initial phase 

[0, t*) (cf. (9)); moreover, Lemma 2a implies that this path is characterized by a 

monotonously growing (decreasing) services (agricultural) share (cf. (4), (7), and Definition 

3). Lemmas 2b and 2c state that if the social planer does not choose a policy that ensures a 

constant manufacturing share over the initial development phase (cf. (9’) and (9’’)), then the 

economy may not be able to reach its destination along a monotonous path (cf. (4)). 

Jointly, Lemmas 1 and 2 imply that an underdeveloped country not knowing the exact 

destination of its labor-reallocation path should choose the following policy: (a) decreasing 

agricultural share, (b) constant manufacturing share, and (c) increasing services share. 

This policy, i.e., policy (a)-(c), is consistent with the theoretical and empirical literature 

consensus on the path destination of a developing economy (cf. Meta-theorems 1 and 2) and 

minimizes the country’s future aggregate reallocation costs (1). 

 

4.3 On the optimal duration of policy (a)-(c) 

Lemma 2 states that the reallocation policy (a)-(c) derived in Section 4.2 is only optimal over 

the initial phase of development, which is in our model denoted by the time interval [0, t*). 

As discussed at the end of Section 3.2, the length of this depends on the differences between 

the initial and the destined agricultural, manufacturing, and services employment shares (xh1
 – 

x01, xh2
 – x02, and xh3

 – x03). Since, in general, these differences are relatively large in an 

underdeveloped yet developing country, it seems that policy (a)-(c) is optimal over a 
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relatively long phase. For example, we demonstrate in Section 5.1 that policy (a)-(c) would 

have been optimal, i.e., reallocation costs-minimizing, over a period of ca. 170 years in the 

USA. 

 

4.4 Optimal policies succeeding policy (a)-(c) 

As discussed in Section 4.3, policy (a)-(c) may be optimal over a relatively long period, i.e., 

[0, t*) may be relatively long. The question arises, what the optimal policy after t* is. The 

discussion at the end of Section 3.2 has shown that, in general, policy (a)-(c) must be 

followed by a de-industrialization (dx2
*(t)/dt < 0) accompanied by a tertiarization (dx3

*(t)/dt > 

0) or an industrialization (dx2
*(t)/dt > 0) accompanied by an agricultural decline (dx1

*(t)/dt < 

0) if we seek to minimize the aggregate reallocation costs. Thus, policy (a)-(c) does not only 

minimize the aggregate reallocation costs but also allows for a postponing of the 

industrialization/de-industrialization decision to a later phase of development, where 

additional information on the global environment may be available. 

 

5. Applications of Lemmas 1 and 2 and policy (a)-(c) 

5.1 Empirical application of Lemma 1 and policy (a)-(c) 

Discussing and comparing the labor-reallocation paths and their costs across countries is a 

relatively extensive task and an interesting topic for further research. To demonstrate the 

direct and simple applicability of the cost index (1), Lemma 1, and their geometrical 

interpretation, we briefly discuss here the long-run data on labor reallocation in nowadays 

most developed countries (and Russia and China), which is depicted in Figure 4 (cf. Stijepic 

[2017b]). For an explanation of the construction of the empirical trajectories depicted in 

Figure 4, see Stijepic (2017b). We assume here that the reader is familiar with the 

interpretation of the trajectories on the standard 2-simplex, which has already been used in 

the proof of Lemma 2. For a detailed discussion of this interpretation (in the context of 

structural change modeling), see Stijepic (2015, 2017), and, for a brief summary, see 

APPENDIX B. 

Figure 4 implies that (a) the countries’ agricultural (services) shares decreased (increased) 

monotonously in the long run and (b) the dynamics of the manufacturing sector employment 

share are non-monotonous in all countries. The latter fact can be recognized immediately, 

since we can see that the initial segments of the trajectories point away from the simplex edge 

v3-v1, while the final trajectory segments point towards the simplex edge v3-v1. (China and 

Russia are exceptions, since only two data points are depicted in Figure 4 for each of them. 
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Thus, the monotonicity characteristics of the development paths of these countries cannot be 

studied by referring to Figure 4.) According to Definition 3, these facts imply that all the 

countries depicted in Figure 4 (except China and Russia) developed along non-monotonous 

labor-reallocation paths and, thus, their aggregate reallocation costs are not minimal 

according to Lemma 1.  

Moreover, Figure 4 shows the following facts: 

a) Germany, UK, and Netherlands have increased their manufacturing employment shares 

strongly in their early development phases and, thus, have developed the highest 

manufacturing shares in our country sample (cf. APPENDIX B).2 

b) Between 1950 and 1992, China has followed the same strategy, i.e., it increased the 

manufacturing employment share strongly (while keeping the services share relatively low). 

c) UK and Netherlands have significantly reduced their manufacturing employment shares 

again; thus, their labor-reallocation paths are strongly curved. 

Our measure c0h implies that, therefore, the aggregate reallocation costs in UK and 

Netherlands are relatively high in comparison to the other countries depicted in Figure 4. (See 

also the Proof of Lemma 1 in APPENDIX A, which implies that c0h is relatively high if a 

strong increase in an employment share is followed by a strong decrease in it.) Whether 

Germany and China will face high overall reallocation costs depends on their future 

development (i.e., their future degrees of de-industrialization). 

 

Figure 4. Labor-reallocation trajectories for the USA, France, Germany, Netherlands, UK, 

Japan, China, and Russia. 

- insert Figure 4 here - 

Notes. Data source: Maddison (1995). The black dot represents the barycenter of the simplex. Abbreviations: C 

– China, F – France, G – Germany, J – Japan, N – Netherlands, R – Russia, US – United States, UK – United 

Kingdom. Data points (years in parentheses): USA (1820, 1870, 1913, 1950, 1992), France (1870, 1913, 1950, 

1992), Germany (1870, 1913, 1950, 1992), Netherlands (1870, 1913, 1950, 1992), UK (1820, 1870, 1913, 1950, 

1992), Japan (1913, 1950, 1992), China (1950, 1992), Russia (1950, 1992). 
 

Figure 4 can also be used to assess the optimal duration of policy (a)-(c) derived in Section 

4.2. We choose the USA as an example. The USA accomplished their structural 

transformation from an agricultural to a services economy over a period of ca. 170 years, as 
                                                           
2 The magnitude of the manufacturing employment share in Figure 4 is indicated by the closeness to vertex v2 
(cf. APPENDIX B). As we can see, the trajectories of Germany and UK come very close to vertex v2. 
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illustrated by Figure 4, which depicts among others the US labor reallocation over the period 

1820-1992. We can see there that it is possible to construct a linear line-segment (dashed 

line) that (a) is approximately parallel to the v1v3 edge of the simplex and (b) connects the 

initial point (representing 1820) and the last point (representing 1992) of the US trajectory.3 

According to our framework, this line-segment represents policy (a)-(c) (in the analysis of US 

structural change since 1820), i.e., a labor-reallocation path that is characterized by a constant 

manufacturing share (over the period 1820-1992). Thus, our results imply that in the case of 

the USA, policy (a)-(c) would have been optimal, i.e., reallocation costs-minimizing, over a 

period of ca. 170 years. 

 

5.2 Application of Lemmas 1 and 2: Implications of policy (a)-(c) for the standard 

development strategies 

Structural policy within the three-sector framework means fostering policies (e.g., choosing 

taxes, tariffs, subsidies, education system structure, infrastructure, research funding schemes, 

and legal entry barriers) that favor one sector over the others. The development literature 

provides different arguments for structural policy favoring one sector over the others. For an 

overview of such arguments see the manifold contributions (e.g., Harrison and Rodríguez-

Clare [2010]) collected by Robinson (2009), Rodrik and Rosenzweig (2010), and Di 

Tommaso (2017). We will explain some of these arguments and the implications of our 

results in this context. We start with the arguments for agriculture. 

The policy implications of the neoclassical growth and development literature, which are 

often summarized under the term ‘Washington Consensus’, favor a trade liberalization (see, 

e.g., Rodrik [2006]). In the context of north-south trade, where a (highly) underdeveloped 

country trades with more developed countries, trade liberalization implies that the 

underdeveloped country specializes in production and export of agricultural goods while 

importing manufactured goods because of comparative advantage (Ricardian argument) and 

resource constraints regarding, e.g., education required for manufacturing (Heckscher-Ohlin 

argument). Thus, according to these arguments (and the evidence on the trade structures of 

underdeveloped economies), an uncontrolled trade liberalization in (highly) underdeveloped 

countries is, de facto, a structural policy favoring the agricultural sector. Our results imply 

that the emphasis of the agricultural sector in the early stages of development is associated 

                                                           
3 Note that Figure 4 depicts the development of the USA until 1992. Since 1992, the USA have come even 
closer to the simplex-edge v1v3 such that the line-segment connecting their nowadays location and their initial 
(i.e., 1820) location on the simplex is approximately parallel to the simplex-edge v1v3. 
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with high aggregate reallocation costs. It contradicts the policy aspect (a) derived in Section 

4.2 (‘decreasing agricultural share’). In particular, Meta-theorem 1 and Figure 4 imply that 

the agricultural share decreases over the development process (cf. Figure 4). That is, a policy 

favoring the agricultural share (e.g., the Washington Consensus strategy) contradicts the 

dynamic laws of structural change (Meta-theorem 1) and, thus, causes ‘unnecessary’ 

reallocation costs. 

In the literature, we can identify two major lines of argument for protection/subsidizing of the 

manufacturing sector. The first line (‘Prebisch-Singer thesis’) argues that the terms-of-trade 

development is such that the agricultural goods exporting countries (the South) have 

disadvantages in comparison to the manufacturing goods exporting countries (the North) (see, 

e.g., Hadass and Williamson [2003]). The second line of argument (‘Kaldorian strategy’) 

emphasizes the importance of the manufacturing sector for the long-run growth of a country, 

since the manufacturing sector is a source of technological progress (see, e.g., Greenwald and 

Stiglitz [2006] and Stiglitz et al. [2013]). The emphasis of the manufacturing sector (in early 

stages of development) contradicts the policy aspect (b) derived in Section 4.2 (‘constant 

manufacturing share’). Many nowadays highly developed countries experienced high costs of 

industrialization in their early phases of development (e.g., the costs associated with hasted 

urbanization as documented in the case of the USA in the 19th century and later) and went 

through severe phases of de-industrialization in later stages of development, which were 

characterized by unemployment, urban decline, and political/social instabilities (as in the case 

of UK). These crises can be avoided if an overshooting of the manufacturing sector is 

avoided and, in particular, the manufacturing share is kept approximately constant (over the 

early phases of development) as suggested by policy (a)-(c). However, our results do not 

prohibit a restructuring of the manufacturing sector towards more modern products and 

technologies, while keeping the employment share of the manufacturing sector constant. 

Thus, policy (a)-(c) is rather a policy of restructuring the manufacturing sector than a policy 

of increasing its share/size disproportionately. 

Finally, we can find several arguments in favor of the services sector in the development 

literature. First, in the less developed countries that have some specific structural 

characteristics, a policy favoring the (modern) services sector may be effectively 

implementable and growth-enhancing while avoiding the negative effects of industrialization 

mentioned above. The major example for this argument is India, which is characterized by a 

relatively high share of highly educated English-speaking population that can be employed in 

IT branches (exporting IT services to the USA and UK). Second, the development of the 



21 
 

financial (services) sector seems to be essential for generating economic growth (see, e.g., 

Demirgüç-Kunt and Levine [2004]). Third, the services sector seems to be less volatile in 

comparison to the manufacturing sector; thus, a greater services share implies lower volatility 

of the economy (see, e.g., Moro [2012]). The favoring of the services sector at the early 

stages of development, which implies a transformation from an agricultural to a services 

economy, is consistent with policy (a)-(c) derived in Section 4.2. Note, however, that there is 

one major argument against undifferentiated services sector emphasis, which has been 

pioneered by Baumol (1967) and Baumol et al. (1985): It seems that it is relatively difficult to 

generate innovation and productivity growth in the (personal) services sector (due to the 

personal nature of services, among others). Thus, economies dominated by services may face 

difficulties in generating significant growth (in the long run). 

 

6. Concluding remarks 

The growth and development process is characterized by massive labor reallocation, which 

does not only generate positive effects (e.g., income growth) but also high costs at the 

individual level (e.g., costs of geographical relocation, retraining, unemployment, and sunk 

human capital). In this paper, we focused on the reallocation costs in the three-sector 

framework, where we assumed that the aggregate reallocation costs depend on the strength of 

labor reallocation. We have elaborated on three aspects. First, we have shown that 

monotonous labor-reallocation paths minimize the aggregate reallocation costs in our 

framework and demonstrated the application of this result in the assessment of historical 

aggregate reallocation costs in nowadays highly developed countries. Second, we discussed 

the application of this result in structural policy (in less developed countries). In particular, 

we have shown that, when considering path-destination uncertainty and the standard labor-

reallocation laws, our results imply that the cost-minimizing reallocation policy is 

characterized by a decreasing agricultural employment share, a constant manufacturing 

employment share, and a growing services employment share. Third, we have applied this 

theoretical result for evaluating the standard development strategies regarding the aggregate 

reallocation costs they generate. This application shows among others that the standard 

development strategies (in particular, the ‘Washington Consensus strategy’ and the 

‘Kaldorian strategy’) generate relatively high aggregate reallocation costs and that, e.g., UK, 

Germany, and China have chosen labor-reallocation paths that are (potentially) associated 

with high aggregate reallocation costs. In contrast, India’s recent development strategy of 

emphasizing the role of the services sector seems to minimize the aggregate reallocation 
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costs. Overall, our results imply that the strategy of manufacturing sector restructuring 

(towards more modern industries/branches) is preferable to the strategy of increasing the 

manufacturing’s share in employment over the initial phases of development. 

While we have focused on the mathematical derivations of the theorems and a brief 

demonstration of their applicability, future research could focus on more elaborate empirical 

studies of the topics raised in our paper. For example, countries could be grouped into groups 

with relatively high and relatively low aggregate reallocation costs and the properties of these 

groups (e.g., prevalence of crises, political regime, etc.) could be analyzed. Moreover, the 

importance of the aggregate reallocation costs in relation to the other (rather positive) effects 

of structural policies and labor reallocation for welfare and growth could be estimated. 
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APPENDIX A (Proof of Lemma 1) 

Lemma 1 refers to the solution of the following problem: min c0h, where c0h is given by (1) 

and x(0) = x0 and x(h) = xh! Since, among others, c0h is monotonous in r0h, we can rewrite 

this problem as follows: 

(A1) Min r0h, where r0h := ∑𝑖=1𝑛 ri
0h, ri

0h := ∫ |ℎ
0 dxi(t)/dt|dt, and x(0) = x0 and x(h) = xh! 

First, we solve the following problem, which is simpler: 

(A2) Min ri
0h, where ri

0h := ∫ |ℎ
0 dxi(t)/dt|dt and xi(0) = x0i and xi(h) = xhi are given. 

Note that ∀t ∀i, xi(t) must be continuous in t (see Assumption 1c and Lemma 1). First, 

assume that xhi > x0i. Problem (A2) is about finding the path xi
*(t), 0 ≤ t ≤ h, that minimizes 

ri
0h, where we must search among all the (continuous) paths that connect x0i and xhi on the 

real line (R), as depicted in Figure A1. Obviously, if xhi > x0i, a monotonously decreasing 

path (∀t dxi(t)/dt ≤ 0) cannot connect x0i and xhi (see Figure A2). Thus, we can formulate 

Property A1. 
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Property A1. If xhi > x0i, only two classes of paths are admissible in the solution of problem 

(A2): (A) monotonously increasing paths (∀t dxi(t)/dt ≥ 0) and (B) non-monotonous paths. 

 

Figure A1. 

- insert Figure A1 here - 

 

Figure A2. 

- insert Figure A2 here - 

 

First, consider class A. The geometrical interpretation of a monotonously increasing path 

(connecting x0i and xhi) on R is relatively straight forward: it is a path on the real line along 

which the economy moves from x0i to xhi monotonously, i.e., the movement (from x0i to xhi) is 

unidirectional (see Figure A3). The length of this path is equal to the length (|xhi – x0i|) of the 

real line-segment x0i-xhi.4 

 

Figure A3. 

- insert Figure A3 here - 

 

In contrast, a non-monotonous path (class B) is characterized by at least one change in 

direction. A non-monotonous path (on R) is associated with at least one point in time t1 ∈ [0, 

h] at which the economy does not move towards xhi but away from xhi, i.e., there is a 

‘backward step’ or an ‘overshooting step’ (see Figures A4 and A5 for illustrative examples). 

Furthermore, we know that the economy must turn towards xhi again at some later point in 

time t2 ∈ (t1, h), since the economy must arrive at xhi at time h. Obviously, such a path (i.e., a 

path with at least one change in direction) is longer than a monotonous path: the length of the 

path with a ‘backward/overshooting step’ is equal to the length of the monotonous path (|xhi – 

x0i|) plus two times the length of the ‘backward/overshooting step’ (cf. Figures A4 and A5). 

Overall, these facts imply the following statement: 

 

                                                           
4 Recall that the (Euclidean) length of an interval (or line-segment) on the real line is given by the absolute value 
of the difference between its endpoints. Most introductory books on analysis discuss this fact. For a discussion 
of the length of paths in two-dimensional space, where the (Euclidean) length of the path is measured by a 
quadratic formula, see, e.g., Gelfand and Fomin (1963). In one-dimensional space this quadratic formula 
becomes the absolute value function that we use. 
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Property A2. If xhi > x0i, the length of a non-monotonous path connecting x0i and xhi on the 

real line is greater than the length of a monotonous path connecting x0i and xhi on the real 

line. 

 

Figure A4. 

- insert Figure A4 here - 

 

Figure A5. 

- insert Figure A5 here - 

 

The proof of the following two properties is analogous to the proof of Properties A1 and A2. 

Thus, we omit it here. 

 

Property A3. If xhi < x0i, only two classes of paths are admissible in the solution of problem 

(A2): (I) monotonously decreasing paths (∀t dxi(t)/dt ≤ 0) and (II) non-monotonous paths. 

 

Property A4. If xhi < x0i, the length of a non-monotonous path connecting x0i and xhi on the 

real line is greater than the length of a monotonous path connecting x0i and xhi on the real 

line. 

 

Now, we show that the length of a path is equal to the ri
0h associated with this path. Let t1, t2, 

…, tz denote the points of time at which the economy changes its direction on the real line 

(see Figure A6). A direction change at time tB ∈ (0, h) is given if there exists a tA ∈ (0, h) and 

a tC ∈ (0, h) such that either (∀t ∈ (tA, tB] dxi(t)/dt ≥ 0) ∧ (∃t ∈ (tA, tB] dxi(t)/dt > 0) ∧ (∀t ∈ (tB, 

tC] dxi(t)/dt < 0) or (∀t ∈ (tA, tB] dxi(t)/dt ≤ 0) ∧ (∃t ∈ (tA, tB] dxi(t)/dt < 0) ∧ (∀t ∈ (tB, tC] 

dxi(t)/dt > 0). These facts imply (A3). 

(A3) ri
0h := ∫ |ℎ

0 dxi(t)/dt|dt = ∫ |𝑡1
0 dxi(t)/dt|dt + ∫ |𝑡2

𝑡1
dxi(t)/dt|dt + … + ∫ |ℎ

𝑡𝑧
dxi(t)/dt|dt. 

Since there are no changes in direction within the intervals [0, t1], (t1, t2], (t2, t3], …, (tz, h] per 

definition of the t1, t2, …, tz, xi(t) is monotonous within these intervals and we can rewrite 

(A3) as follows: 

(A4) ri
0h = |∫ 𝑑𝑡1

0 xi(t)/dtdt| + |∫ 𝑑𝑡2
𝑡1

xi(t)/dtdt| + … + |∫ 𝑑ℎ𝑡𝑧 xi(t)/dtdt| = |xi(t1) – xi(0)| + |xi(t2) – 

xi(t1)| + … + |xi(h) – xi(tz)| 
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In fact, our definition of the points t1, t2, …, tz implies a partitioning of the path (connecting 

x0i and xhi) into sections/partitions of monotonous dynamics (see Figure A6). (A4) implies 

that ri
0h is equal to the sum of the lengths of the partitions of monotonous dynamics on R (see 

Figure A6 for an example). This is consistent with the natural/standard definition of path 

length (in R) used in Properties A2 and A4. Thus, we can state the following property: 

 

Property A5. ri
0h is equal to the length of the path connecting x0i and xhi on the real line (R). 

 

Figure A6. 

- insert Figure A6 here - 

 

Obviously, if xhi = x0i, ri
0h is minimized if the economy stays in x0i for all t, i.e., ∀t dxi(t)/dt = 

0, which corresponds per Definition 3 to a monotonous path. Thus:  

 

Property A6. If xhi = x0i, the solution of the problem (A2) is given by a monotonous path (∀t 

dxi(t)/dt = 0) on R. In this case, the minimal ri
0h is equal to 0. 

 

Furthermore, if xhi ≠ x0i, all monotonous paths connecting x0i and xhi on R have the same 

length and, thus, the same value of ri
0h, since if the path is monotonous we can write 

(A5) ri
0h := ∫ |ℎ

0 dxi(t)/dt|dt = |∫ 𝑑ℎ0 xi(t)/dtdt| = |xhi – x0i| > 0. 

 

Property A7. Any monotonous path connecting x0i and xhi on R is characterized by ri
0h = |xhi – 

x0i|. 

 

Properties A1-A7 imply the following lemma: 

 

Lemma A1. The solution of problem (A2) is given by a monotonous path. In particular, any 

monotonous path connecting x0i and xhi on R is associated with minimal ri
0h. If xhi ≠ x0i, the 

minimal ri
0h is equal to |xhi – x0i| > 0. If xhi = x0i, the minimal ri

0h is equal to 0. Here, the path 

connecting x0i and xhi on R is monotonous if either ∀t ∈ [0, h] dxi(t)/dt ≥ 0 or ∀t ∈ [0, h] 

xi(t)/dt ≤ 0. 
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Now, we can turn to the solution of problem (A1). Since the functions xi(t) are independent of 

each other (cf. Definition 1), ri
0h are independent of each other (cf. (A1)). Furthermore, as 

implied by (A1), ∀i ri
0h ≥ 0. Thus, the cost-index r0h = r1

0h + r2
0h + … + rn

0h is separable. That 

is, minimizing r0h is equivalent to minimizing ri
0h ∀i. The minimum of r0h is attained if and 

only if all ri
0h are minimal. This fact and Lemma A1 imply that r0h is minimal if and only if 

all the functions xi(t) are monotonous. In other words, r0h is minimal if and only if there does 

not exist any xi(t) that is non-monotonous. Exactly speaking, r0h is minimal if and only if 

(A6) ∄i ∈ {1, 2, …, n}: (∃ta ∈ [0, h] ∃tb ∈ [0, h]: ta ≠ tb ∧ dxi(ta)/dt < 0 ∧ dxi(tb)/dt > 0). 

(A6) corresponds to the definition of a monotonous development path (see Definition 3). 

Finally, note that c0h is monotonously increasing in r0h. These facts prove Lemma 1. 

 

APPENDIX B (Geometrical properties of the standard 2-simplex) 

It is a well-known fact (see, e.g., Stijepic (2015, 2017)) that the standard 2-simplex D ≡ {(x1, 

x2, x3) ∈ R3: ∀i ∈ {1, 2, 3} xi ≥ 0 ∧ x1 + x2 + x3 = 1} is a subset of a plane in R3 and, in 

particular, a triangle with the following Cartesian coordinates of its vertices: (1, 0, 0) =: v1, 

(0, 1, 0) =: v2, and (0, 0, 1) =: v3 (see Figure B1). In general, we depict D without the 

coordinate system (cf. Figures 2-4). 

 

Figure B1. The standard 2-simplex (D) in the Cartesian coordinate system. 

- insert Figure B1 here - 

 

Labor-reallocation paths, e.g., the path P* discussed in the Proof of Lemma 2, are simply 

directed curves on D (cf. Figures 2-4). As stated in the Proof of Lemma 2. It makes sense to 

define the tangential vector angles of such curves as follows: Let x be a (regular) point (of a 

path/curve) on D and r(x) be a (tangential) vector indicating the direction of movement at the 

point x. The vector angle δ(x) is the angle between r(x) and the simplex-edge v1v2, i.e., δ(x) 

:= ∠ (r(x), v1v2������ ). The positioning of D in R3 (see Figure B1) implies the following 

interpretation of tangential vectors associated with regular points (x) of a trajectory/path on D 

(cf. Figure B2): 

 

Property B1. a) If and only if δ(x) = 0°, the movement indicated by vector r(x) is 

characterized by a decrease in x1, an increase in x2, and a constant x3. 
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b) If and only if 0 < δ(x) < 60°, the movement indicated by vector r(x) is characterized by a 

decrease in x1, an increase in x2, and an increase in x3. 

c) If and only if δ(x) = 60°, the movement indicated by vector r(x) is characterized by a 

decrease in x1, a constant x2, and an increase in x3. 

d) If and only if 60° < δ(x) < 120°, the movement indicated by vector r(x) is characterized by 

a decrease in x1, a decrease in x2, and an increase in x3. 

e) If and only if δ(x) = 120°, the movement indicated by vector r(x) is characterized by a 

constant x1, a decrease in x2, and an increase in x3. 

f) If and only if δ(x) > 120°, the movement indicated by vector r(x) is characterized by an 

increase in x1 or a decrease in x3. 

 

Figure B2. Examples of vectors characterized by Property B1. 

- insert Figure B2 here - 

 

In our paper, we use Property B1 to characterize paths as follows. The path P assigns to each 

t ∈ [0, h] an x(t) (cf. Definition 2). We can assign to each x(t) a directional vector r(x(t)) 

indicating the direction of movement along the path P at the point x(t). (In case of 

differentiable functions, i.e., if x(t) is differentiable with respect to t, r(x(t)) can be interpreted 

as the tangential (or directional) vector at point x(t) of the curve x(t), t ∈ [0, h], associated 

with the path P.) Moreover, we can measure the vector angle δ(x(t)) and identify the changes 

in x1, x2, and x3 at the point x(t) by using Property B1, i.e., we can identify the signs of 

dx1(t)/dt, dx2(t)/dt, and dx3(t)/dt at each point of P (if x(t) is differentiable). This approach for 

interpreting paths on D is the same, irrespective of whether we refer to P (as in this example), 

or to P* (as in the Proof of Lemma 2), or to the empirical trajectories discussed in Section 5.1. 

For a detailed discussion and numerous examples, see Stijepic (2015, 2017). 
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