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1. INTRODUCTION 

In this paper, we discuss the models of continuous dynamics on the 2-simplex that arise 
when different qualitative restrictions are imposed on the (continuous) vector function x(t) ≡ 
(x1(t), x2(t), x3(t)) that generates the dynamics on the 2-simplex (where t represents time). In 
particular, there are three major types of qualitative conditions that can be imposed on this 
function:  

(1.) inequality conditions of the type ∀t ∈ A ∀i ∈ B xi(t) ≶ ai = const., which can be treated 
by using set-theoretical concepts (referring to the points or segments of the corresponding 
trajectory and the partitions of the 2-simplex); 

(2.) (strict) monotonicity conditions referring to all or some of the functions xi(t), which 
can be treated by (differential) geometrical concepts of tangential vector angles and 
curvature; and 

(3.) conditions regarding (transversal) trajectory non-(self-)inter-sections, which can be 
treated by using topological concepts (e.g., homeomorphisms). 

We discuss the implications of these restrictions for the transitional and limit dynamics on 
the 2-simplex (among others, fixed points, waves, or (limit) cycles may arise). The models 



 

2 
 

that result from this discussion are relatively simple from the mathematical point of view, yet 
they seem widely applicable in economic growth and development theory and, thus, may be 
regarded as powerful system-theoretical constructs. Moreover, although the 2-simplex can 
be regarded as a bounded subset of a plane (in ℝ3), the description of the dynamics on the 
2-simplex requires a greater variety of analytical concepts in comparison to the description 
of the dynamics in ℝ2 (see, e.g., the discussion of the monotonicity concepts in Sections 2.3 
and 3) and, thus, merits a detailed consideration. 

The rest of the paper is organized as follows. In Section 2, we discuss the characterization 
of trajectory families on the 2-simplex via geometrical and topological concepts. Sections 
3-5 discuss the implications of these concepts for transitional and limit dynamics on the 
2-simplex. This discussion yields system-theoretical models. The potential and existing 
applications of these models in economics and, in particular, in growth and development 
theory are discussed in Section 6. Concluding remarks are provided in Section 7. 

2. CHARACTERIZATION OF THE TRAJECTORIES ON THE 2-SIMPLEX 

In Section 2, we summarize the concepts that can be used to characterize continuous 
dynamics on the 2-simplex as applied by [13-15] in structural change modeling. While there 
are different mathematical notational conventions, we choose the following notation for 
reasons of simplicity: small letters (e.g., x), bold small letters (e.g., x), capital letters (e.g., X), 
and Greek letters (e.g., α) denote scalars, vectors/points, sets, and vector angles, 
respectively. A dot indicates a derivative with respect to time (e.g., ẋ is the derivative of x 
with respect to time). ℝ is the set of real numbers, and ℕ is the set of natural numbers 
(including zero). cl(A) denotes the closure of the set A. If I denotes an open interval (e.g., (a, 
b)), then [I], [I), and (I] denote the corresponding closed (e.g., [a, b]), left-closed (e.g., [a, 
b)), and right-closed (e.g., (a, b]) interval, respectively. 

2.1 Trajectories on the 2-Simplex 

The (standard) 2-simplex (S), which is defined by (1), is a triangle in ℝ3, as depicted by 
Fig. 1. The Cartesian coordinates of the simplex vertices v1, v2, and v3 are stated by (2). 

S := {(x1, x2, x3) ∈ ℝ3: x1 + x2 + x3 = 1 ∧ ∀i ∈ {1, 2, 3} 0 ≤ xi ≤ 1}   (1) 
v1 := (1, 0, 0)        (2a) 
v2 := (0, 1, 0)        (2b) 
v3 := (0, 0, 1)        (2c) 

We define the vector function x(t, j) as follows: 
x(t, j) ≡ (x1(t, j), x2(t, j), x3(t, j)): T × J → S     (3a) 

0 ∈ T ⊆ ℝ         (3b) 
  J ⊆ S          (3c) 

The trajectory X(T, j) and the trajectory segment X(T.+, j) are defined by (4). 
∀j ∈ J  X(T, j) := {x(t, j) ∈ S: t ∈ T}     (4a) 

      ∀j ∈ J  X(T +, j) := {t ∈ T: t ≥ 0}      (4b) 
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Fig. 1. The standard simplex S in ℝ3. 

 
In fact, (4a) defines a trajectory family indexed by the set J, where each trajectory X(T, j) 

describes a path on S that is traversed over the period T. X(T +, j) is the segment of this path 
that is traversed over t ≥ 0. 

2.2 Set-Theoretical Trajectory Classification 

(5) introduces a partitioning of S, which can be used for describing the location of relevant 
trajectory points or segments (e.g., initial segment/state, empirically observed segment, or 
segment representing the future dynamics), as we will see later. 

∀i ∈ {1, 2, 3} Svi := {(x1, x2, x3) ∈ S: xi > 1/2}    (5a) 
Sv0 := S \ (Sv1 ∪ Sv2 ∪ Sv3)       (5b) 

(5a) and (1) imply that the partition Svi contains all the points of S that are dominated by xi; 
i.e., if a point (x1, x2, x3) is located in partition Svi, then ∀j ∈ {1, 2, 3}\i xi > xj. The geometrical 
interpretation of the partitioning (5) is depicted in Fig. 2. As we can see, for i ∈ {1, 2, 3}, the 
partition Svi contains all the points of S that are closer to the vertex vi than to the other 
vertices (vj, j ≠ i).  

The following (set-theoretical) definitions allow us to assess the prediction range of 
monotonous models, as we will see later. Let a(K) denote the area function assigning the to a 
set K ⊆ S the (real number indicating the) area of K. B(T, F) := ⋃j∈F X(T, j) is the image of the 
family F of trajectories X(T, j), j ∈ F ⊆ J (cf. (4)). Among all the path-connected and closed 
subsets of S that cover B(T, F), let M(T, F) denote one of the sets that cover the smallest area 
of S. a*(T, F) := a(M(T, F)) is the family image size of the family F. 
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Fig. 2. The partitioning of S. 

 

2.3 Differential-Geometrical Trajectory Classification 

While the previous discussion can be used for a set-theoretical characterization of 
trajectories, we focus now on a differential-geometrical characterization of trajectories 
referring to the angles of the tangential vectors and expressing the monotonicity 
characteristics and the curvature of a trajectory. 

We say that the trajectory X(T, j) is continuous if for the given j, x(t, j) is continuous in t 
on the time interval T (cf. (4a)). Moreover, a trajectory family is continuous if all the 
trajectories belonging to this family are continuous. 

Let (a) d(t, j) be the directional (or tangential) vector associated with the point x(t, j), (b) 
ℓ be a line through the point x(t, j) that is parallel to the simplex edge v1-v2, and (c) δ(t, j) := 
∡(d(t, j), ℓ) ∈ [0°, 360°] be the angle between the directional vector d(t, j) and the line ℓ (cf. 
Fig. 3). 

 

X(T, j)

ℓ||
x(t, j)

d(t, j)

δ(t, j)

v2v1

v3

 

Fig. 3. The vector angle δ(t, j). 
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Moreover, we define the angles αi and the angle intervals Ii by relying on the ‘saw tooth’ 

function ϕ: ℝ → ℝ as follows (cf. Fig. 4): 
ϕ(z) = [(z – 1)/6 – floor((z – 1)/6)]360°      (6a) 
∀i ∈ ℕ  Ii ≡ (αi, αi+1) := (ϕ(i), ϕ(i + 1))      (6b) 

∀i ∈ ℕ ∀j ∈ {n ∈ ℕ: i < n} [Ii~j] := ⋃ j
k = i [Ik] ∧ [Ii~j) := ⋃ j

k = i [Ik] \ αj+1 ∧ (Ii~j]:= ⋃ j
k = i [Ik] \ αi 

∧ Ii~j := ⋃ j
k = i [Ik] \ αi \ αj+1       (6c) 

By using our definition of the vector angle δ(t, j) and the vector angles and intervals (6), 
we can formulate the Properties 1-3 reflecting the relation between the tangential vector 
angles and the dynamics of x(t, j) in the case that ẋ(t, j) ≠ 0 (cf. Fig. 1, 3, and 4). 

 
Property 1: 
If ẋ(t, j) ≠ 0, then (a) δ(t, j) ∈ I3~5 ⟺ ẋ1(t, j) > 0, (b) δ(t, j) ∈ I0~2 ⟺ ẋ1(t, j) < 0, and (c) δ(t, 

j) ∈ {α3, α6} ⟺ ẋ1(t, j) = 0. 
 
Property 2: 
If ẋ(t, j) ≠ 0, then (a) δ(t, j) ∈ I5~7 ⟺ ẋ2(t, j) > 0, (b) δ(t, j) ∈ I2~4 ⟺ ẋ2(t, j) < 0, and (c) δ(t, 

j) ∈ {α2, α5} ⟺ ẋ2(t, j) = 0. 
 
Property 3: 
If ẋ(t, j) ≠ 0, then (a) δ(t, j) ∈ I1~3 ⟺ ẋ3(t, j) > 0 (b) δ(t, j) ∈ I4~6 ⟺ ẋ3(t, j) < 0, and (c) δ(t, 

j) ∈ {α1, α4} ⟺ ẋ3(t, j) = 0. 
 
We rely on the following definitions of monotonicity. First, xi(t, j) is monotonous (in t) if 

(∀t ∈ T ẋi(t, j) ≥ 0) or (∀t ∈ T ẋi(t, j) ≤ 0). Second, xi(t, j) is strictly monotonous (in t) if either 
(∀t ∈ T ẋi(t, j) > 0) or (∀t ∈ T ẋi(t, j) < 0) but not both. Third, the trajectory X(T, j) (associated 
with the function x(t, j)) is (strictly) monotonous in one dimension if (a) there exists an i ∈ 
{1, 2, 3} such that xi(t, j) is (strictly) monotonous and (b) for all k ∈ {1, 2, 3}\i xk(t, j) is not 
(strictly) monotonous. Fourth, the trajectory X(T, j) is (strictly) monotonous in two 
dimensions if (a) there exist an i ∈ {1, 2, 3} and a k ∈ {1, 2, 3}\i such that xi(t, j) and xk(t, j) 
are (strictly) monotonous and (b) xl(t, j) is not (strictly) monotonous with l ∈ {1, 2, 3}\{i, 
k}. Fifth, the trajectory X(T, j) is (strictly) monotonous (in three dimensions) if ∀i ∈ {1, 2, 3} 
xi(t, j) is (strictly) monotonous. 

Instead of using the curvature definition that is widespread in differential geometry (and 
which is difficult to apply in the proofs of our theorems), we use the following definition of 
curvature relying on vector angles: Let β(q, r, j) denote the angle between the two 
tangential vectors d(q, j) and d(r, j) associated with the (monotonous) trajectory X(T, j) on S 
(cf. (4)), where q, r ∈ T. Among all the tangential vector pairs (d(t, j), d(s, j)) associated 
with the (monotonous) trajectory X(T, j), where t, s ∈ T, let d(t*, j) and d(s*, j) be among the 
ones that are characterized by the largest angle β, i.e., β(t*, s*, j) =: κ(T, j) is maximal 
tangential vector angle range associated with the trajectory X(T, j). The grater κ(T, j), the 
greater the curvature of the trajectory X(T, j). Obviously, a linear trajectory has curvature of 
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0. We say that a strictly monotonous trajectory X(T, j) (or a trajectory segment) that 
describes a clockwise (counterclockwise) movement on S has a positive (negative) signed 
curvature and write κ(T, j) > 0 (κ(T, j) < 0). Let F be a family of trajectories X(T, j), j ∈ F ⊆ 
J (cf. (4)). Then, κ*(T, F) := max(cl({κ(T, j): j ∈ F})) is the maximum curvature of the family 
F on the time interval T. 
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Fig. 4. The function ϕ(z), the angle intervals Ii, the line segments Li(x0), and the sets Si(x0). 
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2.4 Topological Trajectory Classification 

Here, the topological characterization refers to the question whether a trajectory family is 
non-(self-)intersecting, which is a characteristic that can be expressed by homeomorphisms. 
Moreover, it is deciding for the applicability of the Poincaré-Bendixson theory (cf. Section 
5) that the 2-simplex is homeomorphic to a bounded (and closed) subset of a plane. 

Two trajectories X(T, j) and X(U, k) are non-intersecting if X(T, j) ∩ X(U, k) = ∅, where 
U ⊆ ℝ. Otherwise they are intersecting. A trajectory X(T, j) is self-intersecting if ∃(r, s, t) 
∈ T 3 r < s < t ∧ x(r, j) = x(t, j) ≠ x(s, j). Otherwise, the trajectory is non-self- intersecting. 
According to this definition, a closed trajectory is self-intersecting. A trajectory X(T, j) is 
transversally self-intersecting if ∃(t, s) ∈ T 2 t ≠ s ∧ x(t, j) = x(s, j) ∧ δ(t, j) ≠ δ(s, j). 
Otherwise, the trajectory is transversally non-self-intersecting. According to this definition, 
a closed trajectory corresponding to a Jordan curve is transversally non-self-intersecting. 

3. IMPLICATIONS OF MONOTONICITY 

In contrast to monotonous and bounded trajectories in ℝ2, monotonous trajectories on the 
2-simplex can have (a) a wide range of different shapes and (b) omega limit sets consisting 
of more than only one (fixed) point. In this section, we discuss the geometrical aspects of the 
transitional and limit dynamics associated with continuous trajectories that are monotonous 
in one, two, or three dimensions. As we will, see these geometrical properties have 
interesting applications in economic dynamics modeling. 

3.1 General Properties of Monotonous Trajectories on the 2-Simplex 

In this section, we show that continuous trajectories that are monotonous in three 
dimensions (two dimensions) are characterized by relatively low curvatures, allow for 
relatively weak waves, and are placed in relatively small subsets of the 2-simplex in 
comparison to the ‘related’ trajectories that are monotonous in two dimensions (one 
dimension). Propositions 1-3 and Corollary 1 summarize these results formally. The readers 
who are less interested in this formal discussion can also go directly to the discussion of 
Figure 4 (see the paragraphs below Proposition 3), which elaborates on the intuitive/gra- 
phical interpretation of these geometrical properties. 

Given a point x0 ≡ (x01, x02, x03) ∈ S, (7) defines different subsets of S. As we will see (in 
Proposition 3), each of the subsets S1-S6 defined by (7) corresponds to the closure of one of 
the vector angle intervals I1-I6 defined by (6) and each of the line segments L1-L6 defined by 
(7) corresponds to one of the angles α1-α6 defined by (6) (cf. Fig. 4). 

L1(x0) := {(x1, x2, x3) ∈ S: x1 ≤ x01 ∧ x3 = x03}     (7a) 
S1(x0) := {(x1, x2, x3) ∈ S: x2 ≥ x02 ∧ x3 ≥ x03}     (7b) 
L2(x0) := {(x1, x2, x3) ∈ S: x1 ≤ x01 ∧ x2 = x02}     (7c) 
S2(x0) := {(x1, x2, x3) ∈ S: x1 ≤ x01 ∧ x2 ≤ x02}     (7d) 
L3(x0) := {(x1, x2, x3) ∈ S: x1 = x01 ∧ x2 ≤ x02}     (7e) 
S3(x0) := {(x1, x2, x3) ∈ S: x1 ≥ x01 ∧ x3 ≥ x03}     (7f) 
L4(x0) := {(x1, x2, x3) ∈ S: x1 ≥ x01 ∧ x3 = x03}     (7g) 
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S4(x0) := {(x1, x2, x3) ∈ S: x2 ≤ x02 ∧ x3 ≤ x03}     (7h) 
L5(x0) := {(x1, x2, x3) ∈ S: x1 ≥ x01 ∧ x2 = x02}      (7i) 
S5(x0) := {(x1, x2, x3) ∈ S: x1 ≥ x01 ∧ x2 ≥ x02}      (7j) 
L6(x0) := {(x1, x2, x3) ∈ S: x1 = x01 ∧ x2 ≥ x02}     (7k) 
S6(x0) := {(x1, x2, x3) ∈ S: x1 ≤ x01 ∧ x3 ≤ x03}     (7l) 

S0(x0) := S6(x0) S7(x0) := S1(x0)        (7m) 
∀i ∈ ℕ ∀j ∈ {n ∈ ℕ: i < n} Si~j(x0) := ⋃jk = i Sk(x0)      (7n) 

 
Proposition 1: 
Assume that (a) the trajectory X(T, j) defined by (4a) is continuous and monotonous in 

one dimension on S, (b) x(0, j) = x0 ≡ (x01, x02, x03) ∈ S, and (c) ∀t ∈ T ẋ(t, j) ≠ 0. Then, X(T, 
j) and X(T +, j) (cf. (4b)) satisfy one and only one of the Condition Sets P11-P19, which are 
defined as follows (cf. (6) and (7)): 

a) for i ∈{1, 2, …, 6}, Condition Set P1i is: (∀t ∈ T δ(t, j) ∈ [I(i–1)~(i+1)]) ∧ (∃t ∈ T δ(t, j) 
∈ I(i–1)~(i+1)) ∧ (∃(r, s) ∈ T 2 δ(r, j) ∈ [Ii–1) ∧ δ(s, j) ∈ (Ii+1]) ∧ X(T +, j) ⊂ S(i–1)~(i+1)(x0); 

b) for i ∈ {7, 8, 9}, Condition Set P1i is: (∀t ∈ T δ(t, j) ∈ {αi–6, αi–3}) ∧ (∃(p, q) ∈ T 2 δ(p, 
j) ∈ {αi–6} ∧ δ(q, j) ∈ {αi–6}) ∧ X(T +, j) ⊆ Li–6(x0) ∪ Li–3(x0). 

 
Proof. As defined in Section 2, X(T, j) is monotonous in one dimension if for one and only 

one i ∈ {1, 2, 3}, the function xi(t, j) is monotonous while for all other i, xi(t, j) is 
non-monotonous. Thus, for proving Proposition 1, we have to consider only three alternative 
scenarios of monotonicity in one dimension: (A) x1(t, j) is monotonous, (B) x2(t, j) is 
monotonous, and (C) x3(t, j) is monotonous. Moreover, since a monotonous function can be 
monotonously increasing or monotonously decreasing (or both), we have three alternative 
sub-scenarios for each of the three scenarios (A)-(C): (a) monotonously increasing, (b) 
monotonously decreasing, and (c) both, monotonously increasing and monotonously 
decreasing (which means constant). Thus, overall, we have nine sub-scenarios: (Aa)-(Ac), 
(Ba)-(Bc), and (Ca)-(Cc). According to Properties 1-3, each of the Condition Sets P11-P19, to 
which Proposition 1 refers, represents one of the nine sub-scenarios (Aa)-(Cc). For example, 
Condition Sets P12, P15, and P17 represent the sub-scenarios (Ca), (Cb), and (Cc), 
respectively. 

Consider first the sub-scenario (Ca), i.e., assume that x3(t, j) increases monotonously. 
Property 3 and (6b) imply that (8) is valid in sub-scenario (Ca). 

(∀t ∈ T δ(t, j) ∈ [I1~3]) ∧ (∃t ∈ T δ(t, j) ∈ I1~3)     (8) 
Moreover, according to the definition of ‘monotonicity in one dimension’, to which 

Proposition 1 refers, (9) is valid in sub-scenario (Ca). 
x1(t, j) and x2(t, j) are non-monotonous.     (9) 

The interval [I1~3], to which (8) refers, can be partitioned into three subintervals [I1), [I2], 
and (I3]. Properties 1 and 2 and (6b) imply (10). 

∀t ∈ T δ(t, j) ∈ (I3] ⇒ x1(t, j) is monotonous.    (10a) 
∀t ∈ T δ(t, j) ∈ [I1) ⇒ x2(t, j) is monotonous.    (10b) 

∀t ∈ T δ(t, j) ∈ [I2] ⇒ x1(t, j) and x2(t, j) are monotonous.  (10c) 
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The statements (10) imply statement (11). 
x1(t, j) or x2(t, j) is monotonous if for all t ∈ T, δ(t, j) is within one and only one of the sub- 

intervals [I1), [I2], and (I3].       (11) 
(9) and (11) imply that over the period T, the tangential vectors δ(t, j) cannot stay within 

one and the same subinterval, i.e., at least one subinterval switch must occur over the period 
T. Given the three subintervals [I1), [I2], and (I3], the set of all possible subinterval switches 
is: (i) switch from [I1) to [I2], (ii) switch from [I1) to (I3], (iii) switch from [I2] to [I1), (iv) 
switch from [I2] to (I3], (v) switch from (I3] to [I1), and (vi) switch from (I3] to [I2]. We 
analyze now these interval switches. In case (i), i.e., if 

(1.) initially, the tangential vector angles are within the interval [I1) and 
(2.) at some later time point, the tangential vector angles switch to the interval [I2], 
x1(t, j) is monotonous (cf. Property 1). This contradicts (9). Analogously, it can be shown 

that cases (iii), (iv), and (vi) contradict (9), since: in case (iii), x1(t, j) is monotonous; in case 
(iv), x2(t, j) is monotonous; in case (vi), x2(t, j) is monotonous. Only, in cases (ii) and (v), 
both, x2(t, j) and x1(t, j), are non-monotonous, which is consistent with (9). In each of the 
cases (ii) and (v), (12) is true.  

∃(r, s) ∈ T 2 δ(r, j) ∈ [I1) ∧ δ(s, j) ∈ (I3]      (12) 
The fact that x3(t, j) increases monotonously in sub-scenario (Ca) implies that ∀t ≥ 0 x3(t, 

j) ≥ x3(0, j), where x3(0, j) = x03 according to the assumptions made in Proposition 1. In other 
words, in sub-scenario (Ca), X(T +, j) ⊂ {(x1, x2, x3) ∈ S: x3 ≥ x03} =: SCa(x0) (cf. Pro- position 
1). If X(T +, j) ⊂ SCa(x0) ⇒ X(T +, j) ⊂ S1~3(x0), then (13) is valid in sub-scenario (Ca). 

X(T +, j) ⊂ S1~3(x0)        (13) 
We prove now that X(T +, j) ⊂ SCa(x0) ⇒ X(T +, j) ⊂ S1~3(x0). Given the point x0 ≡ (x01, x02, 

x03) ∈ S (cf. Proposition 1), the definition of SCa(x0) (and (1)) implies that (14)-(16) are true if 
x(t, j) ∈ SCa(x0). 

Either x3(t, j) > x03 or x3(t, j) = x03 but not both.     (14) 
x2(t, j) < x02 or x2(t, j) > x02 (or x2(t, j) = x02 ).     (15) 
x1(t, j) < x01 or x1(t, j) > x01 (or x1(t, j) = x01).     (16) 

The statement (16) can be divided into the two (disjunctive) cases (17a) and (17b). 
Either x1(t, j) > x01 or x1(t, j) = x01 but not both.     (17a) 

x1(t, j) < x01         (17b) 
If (14), (15), and (17a) are true and x(t, j) ∈ S, then x(t, j) ∈ {(x1, x2, x3) ∈ S: x1 ≥ x01 ∧ x3 ≥ 

x03} and, thus, x(t, j) ∈ S3(x0) (cf. (7f)). We consider now the cases in which (14), (15), and 
(17b) are true. These cases are:  

x1(t, j) < x01 ∧ x3(t, j) > x03 ∧ x2(t, j) > x02     (18a) 
x1(t, j) < x01 ∧ x3(t, j) > x03 ∧ x2(t, j) < x02     (18b) 
x1(t, j) < x01 ∧ x3(t, j) > x03 ∧ x2(t, j) = x02     (18c) 
x1(t, j) < x01 ∧ x3(t, j) = x03 ∧ x2(t, j) > x02     (18d) 
x1(t, j) < x01 ∧ x3(t, j) = x03 ∧ x2(t, j) < x02     (18e) 
x1(t, j) < x01 ∧ x3(t, j) = x03 ∧ x2(t, j) = x02     (18f) 

Obviously, the cases (18e) and (18f) violate (1). Thus, if (18e) or (18f) is true, then x(t, j) 
∉ S. If (18b) or (18c) is true and x(t, j) ∈ S, then x(t, j) ∈ {(x1, x2, x3) ∈ S: x1 < x01 ∧ x2 ≤ x02 ∧ 
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x3 > x03} =: Sbc(x0). If x(t, j) ∈ S2(x0), then x3(t, j) ≥ x03, since, otherwise, (1) is violated (cf. 
(7d)). In other words, S2(x0) = {(x1, x2, x3) ∈ S: x1 ≤ x01 ∧ x2 ≤ x02 ∧ x3 ≥ x03}. Obviously, 
Sbc(x0) ⊂ S2(x0). Thus, if (18b) or (18c) is true and x(t, j) ∈ S, then x(t, j) ∈ S2(x0). 
Analogously, if (18a), (18c), or (18d) is true and x(t, j) ∈ S, then x(t, j) ∈ {(x1, x2, x3) ∈ S: x1 
< x01 ∧ x2 ≥ x02 ∧ x3 ≥ x03} =: Sacd(x0). Moreover, if x(t, j) ∈ S1(x0), then x1(t, j) ≤ x01, since, 
otherwise, (1) is violated (cf. (7b)). In other words, S1(x0) = {(x1, x2, x3) ∈ S: x1 ≤ x01 ∧ x2 ≥ x02 
∧ x3 ≥ x03}. Obviously, Sacd(x0) ⊂ S1(x0). Thus, if (18a), (18c), or (18d) is true and x(t, j) ∈ S, 
then x(t, j) ∈ S1(x0). Overall, we have shown that if x(t, j) ∈ SCa(x0) ⊆ S, then the statements 
(14)-(17) are valid, which imply several feasible cases. In each of these cases, x(t, j) is in one 
of the sets S1(x0), S2(x0), and S3(x0), i.e., x(t, j) ∈ SCa(x0) ⇒ x(t, j) ∈ S1(x0) ∪ S2(x0) ∪ S3(x0). 
This implies that X(T +, j) ⊂ SCa(x0) ⇒ X(T +, j) ⊂ S1(x0) ∪ S2(x0) ∪ S3(x0), since X(T +, j) is the 
union of the points x(t, j) ∈ S for which the statements (14)-(17) (and (1)) hold (cf. 
Proposition 1). According to (7n), S1~3(x0) = S1(x0) ∪ S2(x0) ∪ S3(x0). This completes the 
proof that X(T +, j) ⊂ SCa(x0) ⇒ X(T +, j) ⊂ S1~3(x0). 

By now, we have shown that in the sub-scenario (Ca), the statements (8), (12), and (13) 
must be true. These three statements reduce to Condition Set P12. It can be shown in the 
same way that  

(1.) the sub-scenarios (Cb) and (Cc) correspond to Condition Sets P15 and P17, 
respectively, and 

(2.) each of the sub-scenarios (Ba)-(Cc) corresponds to one and only one of the Condition 
Sets P11, P13, P14, P16, P18, and P19. 

This completes the proof that each of the alternative (sub-)scenarios of monotonicity in 
one dimension (i.e., each of the sub-scenarios (Aa)-(Cc)) corresponds to one and only one of 
the Condition Sets P11-P19. □ 

 
Proposition 2: 
Assume that (a) the trajectory X(T, j) defined by (4a) is continuous and monotonous in two 

dimensions on S, (b) x(0, j) = x0 ≡ (x01, x02, x03) ∈ S, and (c) ∀t ∈ T ẋ(t, j) ≠ 0. Then, X(T, j) 
and X(T +, j) (cf. (4b)) satisfy one and only one of the Condition Sets P21-P26, where for i ∈ 
{1, 2, …, 6}, Condition Set P2i is: (∀t ∈ T δ(t, j) ∈ [Ii~(i+1)]) ∧ (∃(r, s) ∈ T 2 δ(r, j) ∈ [Ii) ∧ δ(s, 
j) ∈ (I(i+1)]) ∧ X(T +, j) ⊂ Si~(i+1)(x0) (cf. (6)/(7)). 

 
Proof. According to the definition of monotonicity in two dimensions, two of the 

functions x1(t, j), x2(t, j), and x3(t, j) must be monotonous, while the remaining one must be 
non-monotonous. Thus, we have to consider only three cases: (A) x1(t, j) and x2(t, j) are 
monotonous (while x3(t, j) is non-monotonous), (B) x1(t, j) and x3(t, j) are monotonous 
(while x2(t, j) is non-monotonous), and (C) x2(t, j) and x3(t, j) are monotonous (while x1(t, j) 
is non-monotonous). For each of these cases, we must distinguish between four subcases. 
For example, in case (A), we can distinguish between the following subcases: (a) x1(t, j) and 
x2(t, j) are monotonously increasing, (b) x1(t, j) is monotonously increasing, while x2(t, j) is 
monotonously decreasing, (c) x1(t, j) and x2(t, j) are monotonously decreasing, and (d) x1(t, j) 
is monotonously decreasing, while x2(t, j) is monotonously increasing. Subcases (a) and (c) 
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are infeasible, since they violate (1): for example, if x1(t, j) and x2(t, j) are monotonously 
increasing, then x3(t, j) must be monotonously decreasing (instead of being 
non-monotonous), since x1(t, j) + x2(t, j) + x3(t, j) must be equal to 1 for all t. Thus, we must 
consider only the subcases (b) and (d) of case (A). Properties 1 and 2 imply that in subcase 
(b) of case (A), the statement (19) is valid (cf. (6)). 

∀t ∈ T δ(t, j) ∈ [I3~4]        (19) 
Moreover, since case (A) requires that x3(t, j) is non-monotonous, Property 3 implies that 

(20) is valid in case (A).  
∃(r, s) ∈ T 2 ẋ3(r, j) > 0 ∧ ẋ3(s, j) < 0     (20) 

According to (6), the interval [I3~4], to which (19) refers, can be partitioned into the 
following partitions: [I3), α4, and (I4]. Property 3 and (6) imply (21). 

∀t ∈ T δ(t, j) ∈ [I3) ∨ δ(t, j) ∈ [I3) ∪ α4 ⇒ ∀t ∈ T ẋ3(t, j) ≥ 0   (21a) 
∀t ∈ T δ(t, j) ∈ (I4] ∨ δ(t, j) ∈ α4 ∪ (I4] ⇒ ∀t ∈ T ẋ3(t, j) ≤ 0   (21b) 

∀t ∈ T δ(t, j) ∈ α4 ⇒ ∀t ∈ T ẋ3(t, j) = 0      (21c) 
The statements (21) imply that if (19) and (20) are true, the tangential vectors δ(t, j) cannot 

stay within one and only one of the subintervals [I3), [I3) ∪ α4, α4, α4 ∪ (I4], and (I4] for all t ∈ 
T. That is, there must occur a switch from subinterval [I3) to subinterval (I4] or from 
subinterval (I4] to subinterval [I3) over the period T. Thus, (22) is valid. 

∃(r, s) ∈ T 2 δ(r, j) ∈ [I3) ∧ δ(s, j) ∈ (I4]      (22) 
Since in subcase (b) of case (A), x1(t, j) increases monotonously and x2(t, j) decreases 

monotonously, the assumptions made in Proposition 2 and (4b) imply that X(T +, j) ⊂ {(x1, 
x2, x3) ∈ S: x1 ≥ x01 ∧ x2 ≤ x02} =: SAb(x0). SAb(x0) can be partitioned as follows: SAb(x0) = 
SAb1(x0) ∪ SAb2(x0), where SAb1(x0) ∩ SAb2(x0) = ∅ and SAb1(x0) := {(x1, x2, x3) ∈ S: x1 ≥ x01 ∧ 
x2 ≤ x02 ∧ x3 ≥ x03} and SAb2(x0) := {(x1, x2, x3) ∈ S: x1 ≥ x01 ∧ x2 ≤ x02 ∧ x3 < x03}. We can see 
immediately that SAb1(x0) ⊂ S3(x0) (cf. (7f)) and SAb2(x0) ⊂ S4(x0) (cf. (7h)). Thus, SAb(x0) ⊂ 
S3(x0) ∪ S4(x0). This result, (7n), and the previously shown fact that X(T +, j) ⊂ SAb(x0) imply 
(23). 

X(T +, j) ⊂ S3~4(x0)        (23) 
Overall, we have shown that in the subcase (b) of case (A), Condition Set P23 must be true 

(cf. (19), (22), and (23)). Analogously, it can be shown that in all the feasible subcases of 
cases (A)-(C), one and only one of the statements P21, P22, P24, P25, and P26 is true, which 
proves Proposition 2. □ 

 
Proposition 3: 
Assume that (a) the trajectory X(T, j) defined by (4a) is continuous and monotonous (in 

three dimensions) on S, (b) x(0, j) = x0 ≡ (x01, x02, x03) ∈ S, and (c) ∀t ∈ T ẋ(t, j) ≠ 0. Then, 
X(T, j) and X(T +, j) (cf. (4b)) satisfy one and only one of the Condition Sets P31-P312, where 
(cf. (6) and (7)): 

a) for i ∈ {1, 2, …, 6}, Condition Set P3i is: (∀t ∈ T δ(t, j) ∈ [Ii]) ∧ (∃s ∈ T δ(s, j) ∈ Ii) ∧ 
X(T +, j) ⊂ Si(x0); 

b) for i ∈ {7, 8, …, 12}, Condition Set P3i is: ∀t ∈ T δ(t, j) ∈ {αi–6} ∧ X(T +, j) ⊆ Li–6(x0). 
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Proof. According to our definition of monotonicity (in three dimensions), x1(t, j), x2(t, j), 
and x3(t, j) must be monotonous if X(T, j) is monotonous (in three dimensions) on S. Since a 
monotonous function can be (a) monotonously increasing, (b) monotonously decreasing, or 
(c) both (monotonously increasing and monotonously decreasing and, thus, constant), we 
have per function xi(t, j) three cases ((a)-(c)). Moreover, we have three functions x1(t, j), x2(t, 
j), and x3(t, j). Thus, overall, there are 33 possible combinations. This set of 27 combinations 
contains the combination (A) ∀i ẋi(t, j) ≤ 0, the combination (B) ∀i ẋi(t, j) ≥ 0, three times the 
combination (C) ẋi(t, j) ≥ 0 ∧ ẋk(t, j) ≥ 0 ∧ ẋl(t, j) = 0 ∧ i ≠ k ≠ l, three times the combination 
(D) ẋi(t, j) ≤ 0 ∧ ẋk(t, j) ≤ 0 ∧ ẋl(t, j) = 0 ∧ i ≠ k ≠ l, six times the combination (E) ẋi(t, j) = ẋk(t, 
j) = 0 ∧ ẋl(t, j) ≠ 0 ∧ i ≠ k ≠ l, and the combination (F) ∀i ẋi(t, j) = 0. The combinations 
(A)-(E) are infeasible, since they violate (1) unless they reduce to combination (F). The 
combination (F) represents a fixed point (ẋ(t, j) = 0) and is excluded by the assumptions 
made in Proposition 3. In the rest of the proof, we have to consider the remaining 12 
combinations.1 Each of these 12 combinations is covered by one of the Conditions Sets P31- 
P312. We leave it to the reader to prove the validity of Proposition 3 in all these 12 cases; we 
prove the validity in only two representative cases. Consider the case ∀t ∈ T ẋ1(t, j) ≤ 0 ∧ ẋ2(t, 
j) ≤ 0 ∧ ẋ3(t, j) ≥ 0, where ∃(r, s, p) ∈ T 3 ẋ1(r, j) < 0 ∧ ẋ2(s, j) < 0 ∧ ẋ3(p, j) > 0. Then,  
(a) Properties 1-3 imply almost directly that the tangential vector angles δ(t, j) satisfy the 

Condition Set P32, and 
(b) the assumptions made in Proposition 3 and (4b) imply that X(T +, j) ⊂ {(x1, x2, x3) ∈ S: x1 

≤ x01 ∧ x2 ≤ x02 ∧ x3 ≥ x03} =: Sz(x0), and, thus, (7d) implies that Sz(x0) ⊂ S2(x0); thus, X(T +, j) 
⊂ S2(x0) as stated by the Condition Set P32. 
Alternatively, consider the case ∀t ∈ T ẋ1(t, j) ≤ 0 ∧ ẋ2(t, j) ≥ 0 ∧ ẋ3(t, j) = 0, where ∃r ∈ T  

ẋ1(r, j) < 0 ∧ ẋ2(r, j) > 0.2 Properties 1-3 imply almost directly that in this case, the tangential 
vector angles δ(t, j) satisfy the Condition Set P37. Moreover, the assumptions made in 
Proposition 3, (4b), and (7a) imply that X(T +, j) ⊆ {(x1, x2, x3) ∈ S: x1 ≤ x01 ∧ x2 ≥ x02 ∧ x3 = 
x03} ⊆ L1(x0). Thus, X(T +, j) ⊆ L1(x0) as stated by Condition Set P37. □ 

 
We discuss now the geometrical interpretation of Properties 1-3 as depicted by Fig. 4. To 

construct Fig. 4, we choose an arbitrary point (x0) in the interior of S. Then, we draw three 
line segments going through x0 and each being parallel to one of the simplex edges v1-v2, 
v2-v3, and v3-v1. The intersections of the line segments with the simplex edges are denoted by 
the points a-f. We can see that the line segments that connect x0 with one of the points a-f are 
the line segments L1(x0)-L6(x0), which are defined by (7) and which localize the six (closed) 
subsets S1(x0)-S6(x0) defined by (7). The angles between the line segments L1(x0)-L6(x0) and 

                                                           
1 These feasible combinations are: (1.) ẋ1 ≤ 0 ∧ ẋ2 ≤ 0 ∧ ẋ3 ≥ 0, (2.) ẋ1 ≤ 0 ∧ ẋ2 ≥ 0 ∧ ẋ3 ≤ 0, (3.) ẋ1 ≤ 0 ∧ ẋ2 ≥ 
0 ∧ ẋ3 ≥ 0, (4.) ẋ1 ≤ 0 ∧ ẋ2 ≥ 0 ∧ ẋ3 = 0, (5.) ẋ1 ≤ 0 ∧ ẋ2 = 0 ∧ ẋ3 ≥ 0, (6.) ẋ1 ≥ 0 ∧ ẋ2 ≤ 0 ∧ ẋ3 ≤ 0, (7.) ẋ1 ≥ 0 ∧ 
ẋ2 ≤ 0 ∧ ẋ3 ≥ 0, (8.) ẋ1 ≥ 0 ∧ ẋ2 ≤ 0 ∧ ẋ3 = 0, (9.) ẋ1 ≥ 0 ∧ ẋ2 ≥ 0 ∧ ẋ3 ≤ 0, (10.) ẋ1 ≥ 0 ∧ ẋ2 = 0 ∧ ẋ3 ≤ 0, (11.) ẋ1 
= 0 ∧ ẋ2 ≤ 0 ∧ ẋ3 ≥ 0, and (12.) ẋ1 = 0 ∧ ẋ2 ≥ 0 ∧ ẋ3 ≤ 0, where ∃t ∈ T ẋi(t) < 0 if it is stated that ẋi ≤ 0, and, 
analogously, ∃t ∈ T ẋi(t) > 0 if it is stated that ẋi ≥ 0. 
2 Note that the cases ẋ1(r, j) < 0 ∧ ẋ2(r, j) = ẋ3(r, j) = 0 and ẋ2(r, j) > 0 ∧ ẋ1(r, j) = ẋ3(r, j) = 0 are infeasible 
(see the discussion of combinations (A)-(E)). 



 

13 
 

the simplex edge v1-v2 (according to the definition of tangential vector angles and intervals 
(6)) are depicted in the middle panel of Fig. 4. (7n) and Fig. 4 imply almost directly that 

(1.) each of the six sets Si~(i+1)(x0), to which Proposition 2 refers, is simply the union of two 
neighboring sets Sj(x0) and Sk(x0), 

(2.) each of the six sets S(i–1)~(i+1)(x0), to which Proposition 1 refers, is simply the union of 
three neighboring sets Sj(x0), Sk(x0), and Sm(x0). 

In particular, Propositions 1-3 can be interpreted easily by using Fig. 4: 
1.) Proposition 3 implies three geometrical proper- ties of a trajectory segment X(T +, j) 

that is monotonous in three dimensions. First, X(T +, j) is located in one of the line segments 
L1(x0)-L6(x0) or in one of the sets S1(x0)-S6(x0). Second, if X(T +, j) is in Li(x0), then for all t ≥ 
0, the tangential vector angles δ(t, j) associated with X(T +, j) are equal to the angle that is 
associated to the line segment Li(x0) in Fig. 4 +/–180°. For example, if X(T +, j) is in L3(x0), 
then δ(t, j) ∈ {120°, 300°} for t ≥ 0. Third, if X(T +, j) is located in one of the sets Si(x0), then 
for t ≥ 0, the tangential vector angles δ(t, j) associated with X(T +, j) are within the angle 
range indicated by the angles associated to the line segments Li(x0) and Li+1(x0) that bound 
the set Si(x0) in Fig. 4. For example, if the trajectory segment X(T +, j) that is monotonous in 
three dimensions is in S3(x0), then δ(t, j) is within the angle range [120°, 180°] for t ≥ 0 (cf. 
Proposition 3 and Condition Set P33). 

2.) The geometrical interpretation of Proposition 2 is analogous. In particular, the 
trajectory segment X(T +, j) that is monotonous in two dimensions is located in two 
neighboring sets Sj(x0) and Sk(x0), and for all t ≥ 0, the tangential vector angles δ(t, j) of X(T+, 
j) are within the angle range indicated by the angles associated to the two line segments 
Lj(x0) and Lk+1(x0) that bound the union of the sets Sj(x0) and Sk(x0) in Fig. 4. For example, if 
the trajectory segment X(T +, j) that is monotonous in two dimensions is in S3~4(x0) = S3(x0) ∪ 
S4(x0), then δ(t, j) is within the angle range [120°, 240°] for t ≥ 0 (cf. Proposition 2 and 
Condition Set P23). 

3.) Analogously, Proposition 1 implies that the trajectory segment X(T +, j) that is 
monotonous in one dimension is located in three neighboring sets Sj(x0), Sk(x0), and Sm(x0). 
Moreover, for all t ≥ 0, the tangential vector angles δ(t, j) associated with this trajectory 
segment are within the angle range indicated by the angles associated to the two line 
segments Lj(x0) and Lm+1(x0) that bound the union of the sets Sj(x0), Sk(x0), and Sm(x0) in Fig. 
4. For example, if the trajectory segment X(T +, j) that is monotonous in one dimensions is in 
S3~5(x0) = S3(x0) ∪ S4(x0) ∪ S4(x0), then δ(t, j) is within the angle range [120°, 300°] for t ≥ 0 
(cf. Proposition 1 and Condition Set P14). 

This graphical interpretation highlights important implications of Propositions 1-3: First, 
a trajectory that is monotonous (in three dimensions) is captured in a smaller subset of S than 
a related trajectory that is monotonous in two dimensions. Second, a trajectory that is 
monotonous in two dimensions is captured in a smaller subset of S than a related trajectory 
that is monotonous in one dimension. Moreover, the maximum curvature κ* of trajectories 
that are monotonous in three dimensions (two dimensions) is greater than the maximum 
curvature of related trajectories that are monotonous in two dimensions (one dimension). 
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This intuitive discussion does not explicitly define the meaning of the term ‘related’. 
Thus, we define the meaning of this term and then formulate Corollary 1 (which is implied 
by Propositions 1-3) on the basis of this definition such that the discussion becomes more 
precise. Let F(x0) ⊆ J be a family of continuous trajectory segments X(T +, j) ⊂ S, j ∈ F(x0), 
satisfying ∀j ∈ F(x0) x(0, j) = x0 ∈ S and ∀t ∈ T + ∀j ∈ F(x0) ẋ(t, j) ≠ 0 (cf. (4)). Moreover, let 
P11(x0), P12(x0), …, P16(x0), P21(x0), P22(x0), …, P26(x0), P31(x0), P32(x0), …, and P36(x0) 
denote the subfamilies of F(x0) satisfying the Conditions Sets P11, P12, …, P16, P21, P22, …, 
P26, P31, P32, …, and P36, respectively. That is, j ∈ Pcd(x0) ⊂ F(x0) implies that X(T +, j) 
satisfies the Condition Set Pcd, where c ∈ {1, 2, 3} and d ∈ {1, 2, …, 6}. For (h, k) ∈ {1, 2, 
…, 6}2, we say that the families P1h(x0) and P2k(x0) are related if ∃i ∈ {1, 2, 3} ∀j ∈ P1h(x0) 
∪ P2k(x0) (∀t ∈ T + ẋi(t, j) ≥ 0) ∨ (∀t ∈ T + ẋi(t, j) ≤ 0) ∧ (∃tj ∈ T + ẋi(tj, j) ≠ 0). That is, a family 
defined by Proposition 1 is related to a family defined by Proposition 2 if there exists an i for 
which the monotonicity characteristics of xi(t, j) are identical in both families. For example, 
the families P12(x0) and P21(x0) are characterized by a monotonously increasing x3(t, j), i.e., 
∀j ∈ P12(x0) ∪ P21(x0) (∀t ∈ T + ẋ3(t, j) ≥ 0) ∧ (∃tj ∈ T + ẋ3(tj, j) > 0); thus, P12(x0) and P21(x0) 
are related. We define the relations between the families defined by Propositions 2 and 3 
analogously: For (p, q) ∈ {1, 2, …, 6}2, we say that the families P2p(x0) and P3q(x0) are 
related if ∃(v, w) ∈ {1, 2, 3}2 ∀j ∈ P2p(x0) ∪ P3q(x0) (∀t ∈ T + ẋv(t, j) ≥ 0) ∨ (∀t ∈ T + ẋv(t, j) 
≤ 0) ∧ (∀t ∈ T + ẋw(t, j) ≥ 0) ∨ (∀t ∈ T + ẋw(t, j) ≤ 0) ∧ (∃tj ∈ T + ẋv(tj, j) ≠ 0) ∧ (∃sj ∈ T + ẋi(sj, 
j) ≠ 0) ∧ v ≠ w. That is, a family defined by Proposition 2 is related to a family defined by 
Proposition 3 if (a) there exists a v for which the monotonicity characteristics of xv(t, j) are 
identical in both families and (b) there exists a w ≠ v for which the monotonicity 
characteristics of xw(t, j) are identical in both families. For example, as implied by (6), 
Properties 1 and 3, and Propositions 2 and 3, the families P21(x0) and P31(x0) are 
characterized by (a) a monotonously decreasing x1(t, j), i.e., ∀j ∈ P21(x0) ∪ P31(x0) (∀t ∈ T + 
ẋ1(t, j) ≤ 0) ∧ (∃tj ∈ T + ẋ1(tj, j) < 0), and (b) a monotonously increasing x3(t, j), i.e., ∀j ∈ 
P21(x0) ∪ P31(x0) (∀t ∈ T + ẋ3(t, j) ≥ 0) ∧ (∃sj ∈ T + ẋ3(sj, j) > 0). Thus, P21(x0) and P31(x0) are 
related. 

 
Corollary 1: 
a) Consider the trajectory family P1h(x0), where h ∈ {1, 2, …, 6} and x0 ≡ (x01, x02, x03) ∈ 

int(S). There exist two trajectory families P2k(x0) and P2m(x0), (k, m) ∈ {1, 2, …, 6}2, k ≠ m, 
that are related to P1h(x0) and satisfy the following condition: ∀n ∈ {k, m} a*(T +, P1h(x0)) > 
a*(T +, P2n(x0)) ∧ κ*(T +, P1h(x0)) > κ*(T +, P2n(x0)) (cf. Sections 2.2. and 2.3). 

b) Consider the trajectory family P2p(x0), where p ∈ {1, 2, …, 6} and x0 ≡ (x01, x02, x03) ∈ 
int(S). There exist two trajectory families P3q(x0) and P3r(x0), (q, r) ∈ {1, 2, …, 6}2, q ≠ r, 
that are related to P2p(x0) and satisfy the following condition: ∀u ∈ {q, r} a*(T +, P2p(x0)) > 
a*(T +, P3u(x0)) ∧ κ*(T +, P2p(x0)) > κ*(T +, P3u(x0)). 

 
Proof. We only sketch here the proof. Starting with Corollary 1a, assume that h = 2, i.e., 

consider the family P12(x0). According to our definition of relatedness, P12(x0) is related to 
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P21(x0) and P22(x0), since (6), Property 3, and Propositions 1 and 2 imply that P12(x0), 
P21(x0), and P22(x0) are characterized by a monotonously increasing x3(t, j). 

According to Proposition 1, (7b), (7d), (7f), (7n), and the definitions of a and M given in 
Section 2.2, the following statements are true: 

M(T +, P12(x0)) ⊆ S1~3(x0) = S1(x0) ∪ S2(x0) ∪ S3(x0) = {(x1, x2, x3) ∈ S: x3 ≥ x03} (24) 
M(T +, P21(x0)) ⊆ S1~2(x0) = S1(x0) ∪ S2(x0) ⊂ S1~3(x0)    (25) 
M(T +, P22(x0)) ⊆ S2~3(x0) = S2(x0) ∪ S3(x0) ⊂ S1~3(x0)    (26) 

As implied by (24), all the trajectories belonging to the family P12(x0) are located in 
S1~3(x0), where the latter is a triangle obtained by constructing a line on S going through x0 
and being parallel to the simplex edge v1-v2 (cf. Property 3a, (6), and Fig. 3 and 5). 
According to Proposition 1 and (6), all the trajectories belonging to the family P12(x0) satisfy 
the following vector angle condition: 
∀j ∈ P12(x0) (∀t ∈ T + δ(t, j) ∈ [0°, 180°]) ∧ (∃(r, s) ∈ T + × T + δ(r, j) ∈ [0°, 60°) ∧ δ(s, j) ∈ 

(120°, 180°])         (27) 
If we allow for non-smooth trajectories and, in particular, trajectories that are unions of 

line segments, it is easy to show geometrically by referring to Fig. 5 that such trajectories can 
be constructed to any point on S1~3(x0) while satisfying the condition (27).3 Thus, M(T +, 
P12(x0)) = S1~3(x0) and, thus, a*(T +, P12(x0)) = a(S1~3(x0)) (cf. Section 2.2). Moreover, (25) 
and (26) imply that a*(T +, P21(x0)) ≤ a(S1~2(x0)) < a(S1~3(x0)) and a*(T +, P22(x0))) ≤ 
a(S2~3(x0)) < a(S1~3(x0)). Thus, (28) is true. 

a*(T +, P12(x0)) > a*(T +, P21(x0)) ∧ a*(T +, P12(x0)) > a*(T +, P22(x0))   (28) 
If we require that the trajectories belonging to the family P12(x0) are smooth (i.e., ∀j ∈ 

P12(x0) ∀t ∈ T + x(t, j) is differentiable with respect to t), then it is not possible to construct a 
trajectory that obeys (27) and goes through the points/vertices (x01, 0, x03) ∈ S1~3(x0) and (0, 
x02, x03) ∈ S1~3(x0), which can be easily proven by referring to Fig. 4 and 5. That is, the 
smooth trajectories belonging to the family P12(x0) cannot cover two infinitesimally small 
areas of S1~3(x0). However, even in this case, it is still ensured that a*(T +, P12(x0)) > a*(T +, 
P21(x0)), since 

(a) S1~3(x0) = S1~2(x0) ∪ S3(x0) (cf. (24) and (25)),  
(b) S3(x0) (cf. (24)) is not infinitesimally small (in generic cases), and  
(c) a*(T +, P21(x0)) ≤ a(S1~2(x0)). 
The definition of κ* (cf. Section 2.3) and (27) imply that κ*(T +, P12(x0)) = 180°. 

Analogously, Proposition 2, definition of κ*, and (6) imply that κ*(T +, P21(x0)) = 120°. 
Thus, κ*(T +, P12(x0)) > κ*(T +, P21(x0)). 

Overall, by now we have (heuristically) proven Corollary 1a for h = 2. The proof is 
analogous for h ∈ {1, 3, 4, 5, 6}. The proof of Corollary 1b is very similar to the proof of 
Corollary 1a. Thus, we omit it here. □ 

 

                                                           
3 Exactly speaking, (a) each of the line segments constituting such a trajectory is characterized by an angle to 
the v1-v2-edge of S in the range of [0°, 180°], (b) each trajectory contains a line segment that has an angle in 
the range of [0°, 60°), and (c) each trajectory contains a line segment that has an angle in the range (120°, 
180°] (cf. (27)). 
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Overall, among related trajectories and trajectory families the following is true: the higher 
the dimension of monotonicity, the smaller is (a) the family image (and, thus, the set of 
predicted states) and (b) the maximal curvature and (and, thus, the potential strength of 
waves). If two families are unrelated, then a higher degree of monotonicity does not 
necessarily imply a smaller family image and a smaller maximum curvature. 

We can see that Corollary 1 does not categorize all the Condition Sets postulated by 
Propositions 1 and 3 and, in particular, not the Condition Sets P17-P9 and P37-P312. These 
Condition Sets imply that one of the xi(t, j) is constant for all t ∈ T + and, thus, the trajectory 
segments X(T +, j) are located on line segments. Obviously, the constancy requirement is 
much stronger than a monotonicity requirement, thus, in the cases represented by the 
Condition Sets P17-P9 and P37-P312, the size of the family image M(.) is relatively small and 
the curvature is zero. 

.

S1~3(x0)

v1 v2

v3

x0 ≡ (x01, x02, x03). .(x01, 0, x03) (0, x02, x03)

 
Fig. 5. The set S1~3(x0). 

 

3.2 Implications for Prediction of Transitional Dynamics 

If we regard t = 0 as now and t > 0 as the future (and, thus, T + as the predicted trajectory 
segment), Corollary 1 implies that the trajectories that are monotonous in one dimension 
(two dimensions) are harder to predict than the trajectories that are monotonous in two 
dimensions (three dimensions), ceteris paribus, since (a) the set of all possible future states is 
relatively great and (b) relatively stronger curvatures/waves may arise in the former case (in 
comparison to the latter case). 

However, besides the monotonicity characteristics, the location of the initial state x0 is 
decisive for the predictability of the future dynamics. In particular, the family image M and 
its size a* depend on x0 (cf. Corollary 1 and its proof). In general, monotonicity implies that 
the system moves from x0 along the trajectory segment T + towards a vertex or an edge of the 
2-simplex. Thus, if the initial state x0 is relatively close to this vertex/edge, T + is captured in 
a relatively small set, i.e., the set of potential future states of the system is relatively small. 
This is almost a direct implication of the boundedness of the 2-simplex. 
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As implied by Propositions 1-3, (6), and Section 2.3 (cf. Proof of Corollary 1), the 
maximum curvature κ* of trajectories that are monotonous in three dimensions, two 
dimensions, and one dimension is 60°, 120°, and 180°, respectively. Thus, the cyclical 
behavior corresponding to a (transversally) self-intersecting or closed trajectory (Jordan 
curve) is prohibited in all cases of monotonicity, since this type of cyclical behavior 
requires a curvature greater than 180°. Yet, monotonous trajectories allow for cyclical 
behavior corresponding to waves on the simplex (see Fig. 6). 

 

.S3(x0)

S2(x0)

S1(x0)

v1 v2

v3

x0
d

c

b

L1(x0) = ||
L2(x0) = ||
L3(x0) = ||
L4(x0) = ||

a

X(T +, j)

monotonous in one dimension
(Condition Set P12)

 

.

S2(x0)
S1(x0)

v1 v2

v3

x0

c

b

a

X(T +, j)

monotonous in two dimensions
(Condition Set P21)

 

.
S1(x0)

v1 v2

v3

x0

b

monotonous in three dimensions
(Condition Set P31)

a

X(T +, j)

 
Fig. 6. Examples of monotonous waves. 



 

18 
 

The angle range of 180° associated with monotonicity in one dimension allows for waves 
of high amplitude and short wavelength on the 2-simplex. In contrast, monotonicity in 
three dimensions allows only for relatively low-amplitude/long-wavelength waves (cf. Fig. 
6). 

Obviously, all three types of monotonicity allow for curved trajectories on the 2-simplex. 
However, only monotonicity in three dimensions allows for unidirectional linear 
trajectories, while monotonicity in one dimension allows for linear trajectories yet requires 
at least one direction change. 

3.3 Limit Dynamics 

In all three cases of monotonicity (monotonicity in one, two, and three dimensions), the 
following two facts are true for continuous dynamics. First, the cyclical limit dynamics 
where the omega limit set is a Jordan curve are excluded, since such cycles require that x1(t), 
x2(t), and x3(t) are non-monotonous in the limit. Second, the system may converge to a fixed 
point or reach the fixed point in finite time (and stay there). The proof of these facts is 
obvious. 

In the case of monotonicity in three dimensions, only the fixed point outcome is possible, 
as implied by the monotone convergence theorem: since each of the functions x1(t), x2(t), and 
x3(t) is monotonous and restricted by an upper/lower limit of 0 and 1, each of the x1(t), x2(t), 
and x3(t) converges to its fixed point (x1

*, x2
*, and x3

*, respectively) or reaches it in finite time 
(and stays there). Thus, x(t) converges to a fixed point x* ≡ (x1

*, x2
*, x3

*) ∈ S or reaches it in 
finite time. 

Additionally, in the case of monotonicity in one dimension, the system may converge to a 
line segment if the trajectory is a wave. In this case, the wavelength decreases and the 
vector-angle range converges to the range of 180° as the system converges to the line 
segment (see the first part of Fig. 6). 

Note that in the case of monotonicity in two dimensions, the convergence to a line 
segment is not possible, as explained in the following. If the trajectory converges to a line 
segment, the tangential vector angle range must increase to a range of 180° which is 
prohibited by the definition of monotonicity in two dimensions, which allows only for a 
vector angle range of 120°. The former fact follows from the definition of the omega limit 
set, where for each of the points on the line segment (constituting the omega limit set), a 
sequence of points on the wave must be found that converges to it. 

4. IMPLICATIONS OF NON-SELF-INTERSECTION FOR TRANSITIONAL 
DYNAMICS 

While non-intersecting trajectories and limit dynamics are treated in Section 5, we focus, 
now, on the implications of (transversal) non-self-intersection for transitional dynamics. 
The class of transversally non-self-intersecting continuous trajectories on the 2-simplex is a 
subclass of the class of continuous trajectories on the 2-simplex. Moreover, the class of 
non-self-intersecting continuous trajectories on the 2-simplex is a subclass of the class of 
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transversally non-self-intersecting trajectories on the 2-simplex, since the former does not 
allow for Jordan-curves in contrast to the latter. Thus, by imposing the condition of 
(transversal) non-self-intersection, we can reduce the set of feasible trajectories on the 
2-simplex, which can be exploited in prediction of dynamics, as explained in the following. 

Obviously, the non-self-intersection is an important constraint in systems of continuous 
trajectories on two-dimensional domains. In the case of discontinuous trajectories, 
non-self-intersection still may reduce the class of feasible trajectories significantly 
depending on the type of discontinuity and the physical/ social system being analyzed. 
However, in extreme cases and, in particular, in the case of point sequences on the 
2-simplex (e.g., discrete-time paths) non-self- intersection becomes obsolete as a restraint 
(in natural and social sciences where the exact position of a system on the simplex is not 
measurable). For the same reasons, non-self-intersection is an obsolete restraint in three- or 
higher-dimensional dynamic system domains (see, e.g., [13]). 

4.1 Qualitative Simulation 

The (transversal) non-self-intersection constraint on continuous trajectories on the 
2-simplex can be understood as a dynamic constraint: at each point of time t ∈ T +, we have 
a restriction on system dynamics x(t, j) preventing certain type of dynamics (namely, the 
dynamics that correspond to a self-intersection of the trajectory). The constraint is dynamic 
in the sense that it changes over time. In particular, it depends on the current position of the 
system on the 2-simplex and the form of the trajectory segment X(T –, j) representing the 
dynamics over the past time period T – (e.g., the longer the latter segment, the stronger is 
the constraint on the current dynamics), i.e., the constraint is updated continuously. This 
fact can be used in qualitative simulation, as discussed in detail by [7-8]. 

4.2 Non-Self-Intersection in Combination with a Determined Trajectory-Segment 

The concept of (transversal) non-self-intersection can be very useful even if we do not 
assume the dynamic constraint view discussed in Section 4.1. In particular, assume that the 
trajectory segment (X(T –, j)) representing past dynamics is given by empirical data on past 
dynamics or by empirical laws. Then, in general, X(T –, j) can be used as a basis for a 
partitioning of the 2-simplex. For example, since the lines that are parallel to the 2-simplex 
edges have a clear intuitive interpretation, X(T –, j) and such lines can constitute an 
intuitively meaningful partitioning of the simplex (see [13]). Then, paths on the 2-simplex 
can be understood as sequences of partition switches, and the non-self-intersection 
constraint as an exclusion of certain switches, as demonstrated in Fig. 7, where (immediate) 
switches between the partitions A and C are prohibited by the non-self-inter- section 
constraint. If we interpret t = 0 as present, T – as past, and T + as future, this prohibition 
corresponds to infeasible future scenarios, i.e., non-self-inter- section can be used in 
prediction of future dynamics (cf. [13]). 

Obviously, depending on the (natural/social sciences) topic analyzed by these concepts, 
a certain length and positioning of X(T –, j) may be necessary to derive significant 
predictions. In particular, if X(T –, j) is relatively short or located in a relatively small or 
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peripheral subset of the 2-simplex, it may not be possible to establish a relevant 
partitioning inducing a prohibition of paths that is of significant relevance for the 
topic/theory being analyzed (cf. [13]). These requirements are well known in statistics, 
where the length of the past time series and avoidance of outliers is important for the 
(statistical) significance of the predictions based on empirical (time-series) data. 

 

X(T –, j)

x(0, j)

X(T +, j)
v2v1

v3

D

C

A

B

 
Fig. 7. Paths as partition switches. 

5. POINCARÉ-BENDIXSON THEORY 

The Poincaré-Bendixson theory, which is one of the fundaments of the dynamic systems 
theory, can be used to predict the qualitative properties of the limit dynamics of a smooth 
dynamic system in the plane. It applies to continuous systems, yet requires additional 
restrictions on the system (to ensure a sufficient degree of smoothness). We discuss here 
these requirements from a rather topological point of view applying the concepts discussed 
in Section 2.4. For a general, discussion of the requirements and predictions/statements of 
the Poincaré-Bendixson theory, see, e.g., [1, pp.362f.], [2], [3, p.45], [4, p.55], and [20, 
Chapter 7.3]. 

Assume that the dynamics on the 2-simplex are representable by a (relatively) smooth 
autonomous differential equation system in terms of the coordinates (y1, y2) of a 
two-dimensional coordinate system that is parallel to the 2-simplex (see Fig. 8). Then, the 
Poincaré-Bendixson theory states that the limit dynamics of this system are either cyclical 
or transitory. In particular, the omega limit set of a trajectory generated by such a system 
consists of a fixed point, a Jordan curve, or a homo-/heteroclinic union (of curves and fixed 
points). 

The geometrical interpretation of the requirement of the representability by a smooth 
differential equation system in y1-y2-coordinates is that the trajectories of the dynamic 
system on 2-simplex constitute a simple covering (of a connected subset) of the 2-simplex. 
In particular, such a simple covering consists of non- intersecting and transversally 
non-self-intersecting trajectories, where the union of these trajectories is a connected subset 
of the 2-simplex (see [16] for a detailed discussion and literature references). 
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6. APPLICATIONS IN ECONOMICS 

The mathematical theories of continuous dynamics on the standard 2-simplex developed 
in the previous sections have almost direct applications in the analysis of economic 
dynamics. In particular, they can be used in prediction of economic structural change, 
discussion of sectoral production functions, assessment of structural change costs, and 
design of cost-minimal structural change policies, as discussed in the following sections. 

 

v3

v2v1

y2

y1

ẏ(t) = φ(y(t))
y(t) ≡ (y1(t), y2(t))
φ: U → U'
U, U' ⊂ ℝ2

 
Fig. 8. Representation of a dynamic system on S by a two-dimensional differential equation system. 

 

6.1 Economic Topics Covered by the Models of Continuous Dynamics on the 2-Simplex 

A major pillar of economics is the study of long-run economic dynamics, where 
short-run fluctuations are neglected and the dynamic patterns that persist over long periods 
of time (e.g., 100 years) are studied. In this context, the concept of structural change is 
essential, where not only aggregate economic indices (e.g., gross domestic product, trade 
volume, and economy-wide employment) are studied but also their structure. In particular, 
the aggregate indices are subdivided into components and the significance of these 
components for the aggregate index is indicated by the components’ shares in the 
aggregate index. Many of these ‘shares’, such as savings rate, investment rate, and sectoral 
employment shares, are well known even in public debates. In general, structural change 
refers to the dynamics of these ‘shares’, where the shares satisfy the conditions stated by 
(1). In other words, economic structural change, i.e., the long-run dynamics of the ‘shares’ 
can be depicted by trajectories on standard simplexes. Moreover, the assumption of 
continuous-time frame- works and continuous functional forms is a general convention in 
long-run economic dynamics modeling (although there are exceptions from this 
convention), which, in general, yields continuous dynamics of the shares on standard 
simplexes. For an overview of the topics that are covered by the system-theoretical models 
of continuous trajectories on standard simplexes and for corresponding references from the 
economics literature, see [15]. 
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To provide some details and references on the economic applications of the 
system-theoretical models derived in the previous sections, we focus on a specific sort of 
economic structural change, namely, long-run labor allocation dynamics in the three-sector 
framework, in Section 6.2. 

6.2 Example: Long-run Labor Allocation Dynamics 

The three-sector framework is one of the major concepts for studying economic 
structural change (for an overview of the literature, see, e.g., [5-6,9-12]. It is based on the 
assumption that economic activities can be divided into three categories or ‘sectors’: 
agriculture, manufacturing, and services. One of the major indices for studying the 
importance of these sectors are the shares of each of the sectors in aggregate employment 
(abbr. ‘employment shares’). These shares and their dynamics can be depicted by 
continuous trajectories on the 2-simplex (cf. [13,14]). Thus, we can use the concepts 
discussed in Sections 2-5 in the analysis of labor allocation dynamics as discussed in the 
following. 

While it is difficult to derive any consensus statements on the quantitative characteristics 
of labor allocation dynamics, the literature implies that there seem to be some empirically 
observable qualitative laws of labor allocation dynamics, which can be expressed by using 
the geometrical concepts discussed in our paper. In particular, [19] shows that the typical 
long-run labor allocation dynamics of a nowadays highly developed country over the last 
two centuries can be described by a trajectory that has the following characteristics: (1.) it 
is monotonous in two dimensions (cf. Sections 2.3 and 3) and (thus) non-self-intersecting 
(cf. Sections 2.4 and 4); (2.) it has a negative signed curvature κ (cf. Section 2.3); (3.) its 
initial segment is located in the simplex partition Sv1 (cf. (5) and Fig. 2); and (4.) its final 
segment is located in partition Sv3 (cf. (5) and Fig. 2). As discussed by [14], these empirical 
observations can be interpreted as “natural” laws of structural change (since, among others, 
they are supported by the theoretical literature consensus) and, thus, can be exploited for 
predictions of structural change. For example, Proposition 2 and Corollary 1 (cf. [14]) and 
the approach discussed in Section 4.2 (cf. [13]) can be used to predict the future 
(transitional) dynamics of labor allocation in developing and developed economies. 
Moreover, [16] uses the empirical findings of [19] and the topological approach discussed 
in Section 5 for a discussion of the applicability of the Poincaré-Bendixson theory in the 
prediction of limit dynamics of labor allocation. 

Beside these applications, which focus on prediction of structural change, the models of 
continuous dynamics discussed in our paper have further applications in in structural 
change modeling: [17] shows that labor allocation trajectories that are monotonous in three 
dimensions minimize the structural change costs (e.g., unemployment, geographical 
relocation costs, and environmental pollution) and uses this result to elaborate a 
development policy minimizing the labor reallocation costs in a developing economy. [18] 
uses the model of monotonous and continuous trajectories and the concept of curvature (cf. 
Section 2.3) to discuss a widespread assumption in theoretical structural change modeling 
(namely, the assumption of Cobb-Douglas production functions) by applying an 
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axiomatic-geometrical approach. Finally, [15] discusses how the topological concepts 
discussed in Section 2.4 can be interpreted and applied in the context of labor allocation 
dynamics modeling. 

7. CONCLUSIONS 

In this paper, we have studied models of continuous dynamics on the 2-simplex that arise 
when set-theoretical, differential-geometrical, or topological restrictions are imposed on the 
trajectories of the model. We focused on the qualitative properties of transitional and limit 
dynamics of these models and discussed their applications in long-run economic dynamics 
modeling. 

Many of our results (in general, the results of Section 3 and their applications in 
economics) can be extended to discrete or discontinuous systems or higher- dimensional 
simplexes. Yet the rather topological concepts discussed in Sections 4 and 5 (e.g., the 
Poincaré-Bendixson theory) are, in general, not applicable or not useful in discrete or higher- 
dimensional systems and their applications (cf. [13,15-16]). In the latter systems, the concept 
of chaos as well as existence theorems on fixed points are of interest. Thus, further research 
could focus on them and, in particular, their system-theoretical significance for long-run 
economic dynamics. 

Empirical evidence implies that there are fluctuations of the labor allocation shares that 
correspond to the waves on the 2-simplex discussed in Sections 3.2 and 3.3. Further research 
could focus on a detailed discussion of waves on the 2-simplex and the application of the 
resulting system-theoretical models in the explanation of the empirically observed waves 
arising in labor-allocation dynamics. 
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