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Abstract

This paper elaborates how the time update of the continuous-discrete ex-
tended Kalman-Filter (EKF) can be computed in the most efficient way.
The specific structure of the EKF-moment differential equations leads to
a new Taylor-Heun-approximation of the nonlinear vector field.

Furthermore, the order of consistency and stability behavior of the out-
lined procedure is investigated. The results are incorporated into an algo-
rithm with adaptive controlled step size, assuring a fixed numerical pre-
cision with minimal computational effort. Additionally, the upper bound
of the step size is monitored continuously in order to guarantee positive
semidefiniteness of the state error covariance matrix.

1. Introduction

Recently continuous-discrete state space models associated with nonlinear filter-
ing problems became a matter of interest not only in engineering, but in various
fields of scientific research. Particularly the calculation of transition densities of
nonlinear diffusion problems has become a major topic of scientific activity in
physics (Sitz et al. 2002), finance (Aït-Sahalia 2002, Jensen and Poulsen 2002),
sociology (Singer 2006b) and economics (Mazzoni 2007).

The most established nonlinear filter is the extended Kalman- or Kalman-
Schmidt-Filter (Kalman 1960, Schmidt 1966) which is known for more than
forty years. Recently, more sophisticated filters like the unscented Kalman-filter
(Julier et al. 2000, Julier and Uhlmann 2004), DD1- and DD2-filter (Nørgaard
et al. 2000) or Gauss-Hermite-filter (Ito and Xiong 2000) have been suggested for
nonlinear problems but nevertheless, the EKF is still popular which is reflected
in the numerous variants and modifications of this filter (see e.g. Tanizaki 1996,
chap 3, Johnston and Krishnamurthy 2001, Lefebvre et al. 2004). Furthermore,
the EKF is often used as benchmark to verify improvements of new designed
filters under certain conditions. Especially in this regard it is vital to gain exact
results with the EKF in order to avoid misjudgment of the new procedure.

Unlike discrete-discrete filtering problems, the continuous-discrete case re-
quires the solution of an ordinary differential equation (ODE) for the moments.
Even though there are many procedures for numerical integration, the specific
structure of the involved moment equations allows the derivation of a new and
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most efficient procedure for calculating prior densities. Stability features and
error control of the numerical solutions are most important, because in case of
maximum likelihood parameter estimation the likelihood function is calculated
from the prediction error decomposition (Schweppe 1965), which is roughly spo-
ken a kind of distance measure between prior and observation density.

In this paper it is shown step by step how the necessary elements of the
corresponding algorithm can be computed most efficiently. Additionally, the
related proofs concerning stability and error bounds are provided. Subsequently,
the method is demonstrated for a linear Ornstein-Uhlenbeck -process and a highly
nonlinear Van der Pol oscillator.

2. Moment Equations and State Vector

In the following discussion it is presumed that unique solutions of the involved
ordinary and stochastic differential equations and all necessary derivatives of
drift and diffusion functions exist. Sufficient conditions can be found in numer-
ous literature (e.g. Arnold 2001, Kloeden and Platen 1992).

Starting from the stochastic Itô-type differential equation

dx = f(x)dt + G(x)dW (t) (1)

with state vector x, nonlinear drift function f(x), diffusion matrix G(x) and the
appropriate dimensioned Wiener -process W (t), the coupled moment differen-
tial equations for the continuous-discrete EKF can be derived (Jazwinski 1970,
chap. 6.4)

µ̇ = f(µ) (2a)

Σ̇ = A(µ)Σ + ΣAT (µ) + Ω(µ) (2b)

with the Jacobian A = ∂f
∂x and Ω = GGT . The time dependency of the variables

is suppressed for notational simplicity. Equations (2a) and (2b) can be moti-
vated in several ways. One particular simple method is to calculate the Taylor -
linearized expectation and covariance of the Euler-Maruyama-approximation of
the stochastic differential equation (1) in the limit ∆t → 0 (see Singer 2006a).

Because the Jacobian A has to be computed anyway in equation (2b) it can
be used to enhance the approximation quality of the state expectation (2a).

2.1. Taylor-Heun-Approximation

We start with the trapezoidal approximation (Heun-scheme) of equation (2a)

µt+∆t ≈ µt +
1
2
(
f(µt) + f(µt+∆t)

)
∆t. (3)

The drift vector is assumed autonomous because a time dependency can always
be eliminated by extension of the state space. The vector field f at µt+∆t is
unknown, but it can be approximated by linear Taylor -expansion of the drift
function around µt. If this expansion is inserted into (3) one obtains

µt+∆t ≈ µt + f(µt)∆t +
1
2
A(µt)

(
µt+∆t − µt

)
∆t
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and after certain algebraic manipulations the Taylor-Heun-formula reads

µt+∆t ≈ µt +
(

I −A(µt)
∆t

2

)−1

f(µt)∆t (4)

with the identity matrix I. Unlike the original Heun-scheme, using an Euler -
predictor for the function value at the upper boundary, scheme (4) uses linear
Taylor -expansion of f .

For any practical purpose the matrix I − A(µt)∆t
2 can be assumed to be

nonsingular. Regarding computational efficiency, instead of matrix inversion,
the corresponding linear system can be solved. The Taylor-Heun-integration
is consistent and therefore convergent with order O(∆t2) (see appendix proof
A.1).

Furthermore, the suggested Taylor-Heun-scheme is A-stable, which can
be shown with the help of the scalar test equation ẏ = λy, introduced by
Dahlquist1, where λ is a complex number with negative real part, λ ∈ C−. For
κ = λ∆t, the discrete approximation step associated with (4) is

yt+∆t = yt + Φt(yt,∆t)∆t = yt +
λyt

1− λ∆t
2

∆t =
1 + κ

2

1− κ
2

yt = H(κ)yt, (5)

where Φ is called the increment function and H is the stability function. It
is easily seen that |H(κ)| < 1 for any finite κ ∈ C−, thus the approximation
scheme is A-stable. The stability function H(κ) in (5) is identical to the one of
the implicit Gauss-Legendre-formula with the increment function

Φt(yt,∆t) = f

(
t +

∆t

2
, yt + Φt(yt,∆t)

∆t

2

)
, (6)

which can be shown analogously. In fact, the Taylor-Heun-increment offers
characteristics of a Rosenbrock-Wanner -type approximation (Rosenbrock 1963).
These methods start with a linear implicit Runge-Kutta-scheme and calculate
the increment function using a Newton-step. Finally, an increment of the form

Φ(t, yt,∆t) =
(
I − γA(yt)∆t

)−1
f(yt)

is derived, where the parameter γ has to be determined by solving a linear
equation system.

The Taylor-Heun-method is motivated in a completely different way, but
results in a very similar increment, featuring A-stability and second order con-
sistency. The main advantage of this method is the low computational effort
in the EKF context, because the necessary Jacobian has to be calculated any-
way. Furthermore, unlike the Heun-scheme, the increment function requires no
nested calculations and unlike Rosenbrock-Wanner -schemes, there are no addi-
tional coefficients to be determined by solving a linear system.

1For a review of A-stability concept and Dahlquist’s theorems see Wanner (2003).
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3. State Error Covariance

The state error covariance equation (2a) is a non-autonomous, linear matrix
differential equation. To simplify the following algebraic operations, it can be
presented in the vectorial form σt = vec Σt. The vec-operator decomposes the
quadratic (n×n) matrix into their column vectors and attaches them to a single
(n2 × 1) vector (see Magnus and Neudecker 1988). For arbitrary appropriate
dimensioned matrices A,B, C the operation

vec ABC = (CT ⊗A) vec B,

with ⊗ denoting the right handed Kronecker -product, is true (Magnus and
Neudecker 1988, chap. 2.4). In the following, vectorized matrices are symbolized
by their small letter counterparts. Therefore the vectorial covariance equation
reads

σ̇t =
(
A(µt)⊗ I

)
σt +

(
I ⊗A(µt)

)
σt + ω(µt)

= L(At)σt + ωt,
(7)

with L(At) = A(µt)⊗ I + I ⊗A(µt).

3.1. Gauss-Legendre-Approximation

The numerical integration procedure for the state error covariance ODE should
provide three key features. In first place, it should be consistent with the same
order as the Taylor-Heun-approximation of the state expectation. In second
place, it should be able to process nonautonomous differential equations and
finally, it should be A-stable as well.

These features are supported by the Gauss-Legendre-formula with the im-
plicit increment rule (6). In particular Gauss-Legendre has the same stability
function as Taylor-Heun. Because of the linear structure of (7), the increment
can be calculated explicitly

φ(t, σt,∆t) = L(Aτ )σt + L(Aτ )φ(t, σt,∆t)
∆t

2
+ ωτ

=
(

I − L(Aτ )
∆t

2

)−1 (
L(Aτ )σt + ωτ

)
,

(8)

with τ = t + ∆t
2 . Again, φ denotes the vectorized increment function. Unfor-

tunately, (8) does not allow to invert the initial vec-operation explicitly, thus
the appropriate matrix partition has to be compelled by vec−1 φ. This reparti-
tion may not be computationally demanding, but the calculation of φ involves
operations containing the matrix L with dimension (n2 × n2).

Hence the small term Aτ ⊗ Aτ
∆t2

4 is added into the inverse matrix in (8),
which allows the algebraic inversion of the vec-operation. One obtains the mod-
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ified increment matrix

Φ̃(t,Σt,∆t) = vec−1

[(
I − L(Aτ )

∆t

2
+ Aτ ⊗Aτ

∆t2

4

)−1 (
L(Aτ )σt + ωτ

)]

= vec−1

[(
I −Aτ

∆t

2

)−1

⊗
(

I −Aτ
∆t

2

)−1

vec
[
. . .
]]

=
(

I −Aτ
∆t

2

)−1 (
AτΣt + ΣtA

T
τ + Ωτ

)(
I −AT

τ

∆t

2

)−1

.

(9)

In (9) the special property of Kronecker -products (A ⊗ B)−1 = A−1 ⊗ B−1

for arbitrary nonsingular matrices A and B was used. The asymptotic error,
caused by the correction term, is of the same order as the approximation error
and therefore does not compromise the order of convergence (see appendix proof
A.2). The approximation rule for the covariance equation (2b) therefore reads

Σt+∆t ≈ Σt + Mτ

(
AτΣt + ΣtA

T
τ + Ωτ

)
MT

τ ∆t (10a)

with

Mτ =
(

I −Aτ
∆t

2

)−1

and τ = t +
∆t

2
. (10b)

The modified approximation formula is also A-stable, which can be shown by
adding a small correction term |ε| < 1 into the denominator of the Gauss-
Legendre-increment function for the linear test equation ẏ = λy

yt+∆t = yt +
λyt

1− λ∆t
2 + ε

∆t.

The resulting stability function

H(κ) =
1 + κ

2 + ε

1− κ
2 + ε

shows that |H(κ)| < 1 for any finite κ ∈ C− still holds. Thus the modification
of the integration formula does not affect stability.

3.2. Interpolation of µτ

The predictor µτ at τ = t+ ∆t
2 , used in the Jacobian A and diffusion matrix Ω of

(10a) and (10b) can be computed from the Taylor-Heun-formula (4). However,
this calculation requires the solution of a linear system. Thus, it seems more
convenient to interpolate µτ from µt and µt+∆t with a precision of at least
O(∆t2).

By means of the series expansion used in proof A.2, one is able to calculate
the difference between a simple polygon interpolation and the correct predictor

µt + µt+∆t

2
− µτ = A(µt)f(µt)

∆t2

8
+O(∆t3).
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Hence, the half-step predictor can be approximated by

µτ ≈
1
2

(
µt + µt+∆t −A(µt)f(µt)

∆t2

4

)
. (11)

4. Adaptive Step Size

The step size can be monitored to maintain a given tolerance level e > 0 during
every integration step. Therefore a scalar estimate ê for the maximum error,
considering all components of the approximation error vector ε, is needed. In
order to get useful estimates even for small errors, the maximum total-relative
error

ê = max
i=1,...,n

|εi|
|µi

t+∆t|+ 1
(12)

is deployed, where the upper index i denotes the i-th component of the vector.
To guarantee this upper bound for the approximation error the new step is
calculated by multiplication with an adjustment factor ∆tnew = %∆t. Because
the integration procedure is of order O(∆t2),

ê = c∆t2 +O(∆t3) (13)

holds asymptotically with constant c > 0. At the same time the next step has
to stay inside the error bound too, therefore

e = c∆t2new +O(∆t3new) = c%2∆t2 +O(∆t3) (14)

holds. Dividing (14) by (13) shows

e

ê
= %2

(
1 +O(∆t)

)
,

which leads to a simple rule for the adjustment factor

% = β

√
e

ê
(15)

if the term O(∆t) is neglected. The parameter β is inserted into (15) for prac-
tical purposes, in order to avoid frequent recalculations of the step size due to
operations at maximum range. Reasonably it may be set to β = 0.8.

4.1. Approximation Error

The approximation error ε can be calculated from the series expansion derived
in proof A.1. For the coefficient c2 in (23b) one obtains

c2(t) =
f̈(µt)

3
− A2(µt)f(µt)

2

=
Ȧ(µt)f(µt)

3
+

A2(µt)f(µt)
3

− A2(µt)f(µt)
2

.

(16)
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Replacing the time derivative of the Jacobian in (16) by the appropriate finite
difference for small ∆t, the error can be approximated by

ε ≈ ∆t2

2

(
A(µt+∆t)−A(µt)

3∆t
− A2(µt)

6

)
f(µt). (17)

Now the scalar error prediction used in equation (15) can be computed as max-
imum total-relative error (12).

4.2. Positive Semidefiniteness of State Error Covariance

Providing positive semidefiniteness of the state error covariance is difficult be-
cause usually the eigenvalues of Σ have to be monitored. In doing so, the
spectral decomposition has to be calculated or the Rayleigh-quotient has to be
minimized, which is very expensive.

An alternative approach is to monitor the decay of the determinant of the
state error covariance, if the initial matrix Σ0 is positive definit. This property
can always be provided in practical applications by incorporating a small mea-
surement error, e.g. 10−8I, which should be done generally to enhance numerical
stability.

If B is an arbitrary positive definite matrix with determinant |B|, the deriva-
tive of the determinant is given by

d|Bt| = |Bt|Tr
[
B−1

t dBt

]
,

where Tr[. . .] denotes the trace of the matrix (a proof is given in Magnus and
Neudecker 1988, p. 150). The differential can be approximated by a finite dif-
ference if the increment is sufficiently small

|Bt + Φt∆t| − |Bt| ≈ |Bt|Tr
[
B−1

t Φt

]
∆t. (18)

Taking the approximative character of (18) into account, it seems reasonable to
restrict the step size to a radius around |Bt| where the approximation can be
trusted. This trust region should be scaled down as |Bt| becomes smaller in order
to prevent the determinant from passing through zero because of approximation
errors. One possible choice, providing these features is

|Bt + Φt∆t| = |Bt|
a

for 1 < a < ∞, (19)

where for example a = 2 corresponds to the approximated half-life of the deter-
minant. This trust region has proven useful in practical applications. A smaller
value of a may enhance the certainty of maintaining a positive determinant, but
may also increase the number of calculation steps dramatically. A relaxation of
the boundary, which means a greater value of a, may save additional integration
steps but also increases the risk of loosing the positive definiteness of B.

Inserting (19) into (18) and dividing by its right hand side results in an
adjustment factor, delivering the maximum range of the following step, if it is
multiplied with the current step size. Obviously, restrictions of the step size are
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necessary only if the right hand side of (18) is negative. Assigning these results
to the state error covariance formula (10a) and (10b) leads to the following
condition

∆tmax =

−
1

2 Tr[Σ−1
t Ψt] for Tr [. . .] < 0

∞ else
(20a)

with
Ψt = Mτ (AτΣt + ΣtA

T
τ + Ωτ )MT

τ . (20b)

Now all necessary components (boxed equations) for algorithmic construc-
tion are available. Figure 1 shows a flowchart of the complete time update
algorithm. Notice that the step size is tuned regarding the system state only.
This is done for various reasons. First of all, the state ODE is nonlinear and
therefore expected to show more rapid fluctuations than the linear state error
covariance differential equation. Furthermore, the Jacobian of the nonlinear
drift vector acts as coefficient matrix in the linear state error covariance ODE.
The temporal change and the squared value of this coefficient matrix are key el-
ements in calculating the asymptotic error (17), which rules the integration step
size. Thus major elements of the state error covariance equation are included
indirectly in the step size calculation. Therefore, it is convenient to spare extra
computational time needed for calculating asymptotical errors of the covariance
equation.

5. Applications

This section presents two applications of the derived time update procedure for
the extended Kalman-Filter. The system state and state error covariance of two
commonly known models are calculated and compared to the exact solutions.
The results are pooled graphically.

5.1. Ornstein-Uhlenbeck-Process

The Ornstein-Uhlenbeck -process is a linear second order ODE, which is some-
times used as interest rate or bond pricing model2. The vector autoregressive
form reads

d

(
y
ẏ

)
=
(

0 1
−ω2

0 −γ

)(
y
ẏ

)
dt +

(
0
b

)
dt +

(
0
g

)
dW (t)

with the Wiener -process W (t). Because of the linear structure of the state
equation this problem can be solved analytically. Figure 2 shows the exact and
approximated time evolution of the system state estimate (upper row) and the
state error covariance matrix for the parameter set (ω2

0, γ, b, g) = (16, 2, 8, 2)
and the initial conditions µ0 = (0, 0)T and Σ0 = diag [0, 3]. The individual

2In finance such models are known as Vasicek -models or mean reversion processes (Vasicek
1977, Jensen and Poulsen 2002, Mamon 2004).
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√
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6
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compute: Aκ, Ωκ, Σk+1

∆tmax =
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[
∆tmin,− 1

2 Tr[Σ−1
t Ψt]

]
for Tr [. . .] < 0

∞ else
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HHHH

�
����tk = T?� yes

?
no

�� �end

∆t = min
[
∆tnew, ∆tmax, T − tk

]

�

Figure 1: Flowchart of EKF time update

approximation steps are indicated by dots connected by a gray line, which is
calculated via cubic spline interpolation. The exact solution is displayed as red
line. The blue boundaries give the absolute-relative error band around the exact
solution. In this example, the maximum error bound was chosen 10−2, which
means a relative error of one percent in the unit interval.

Obviously, the approximated solutions stay clearly inside the error bounds.
A total of 59 integration steps were calculated, which accords to an average
amount of 11.8 steps per unit interval.
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Figure 2: Ornstein-Uhlenbeck-trajectory – state estimate and covariance matrix

5.2. Van der Pol Oscillator

The Van der Pol oscillator is a simple model describing a stable limit cycle and
therefore often used as benchmark or example for numerical computations (e.g.
Sitz et al. 2002). Its vector autoregressive representation is

d

(
y
ẏ

)
=
(

ẏ
ε
(
1− y2

)
ẏ − y

)
dt +

(
0(

1 + y2)g

)
dW (t),

where the stochastic influence is modeled state dependent, in order to provide
full nonlinearity of the process. Because of the nonlinearity of the Van der Pol
oscillator, solutions cannot be calculated analytically. Thus for reference, an
implicit Runge-Kutta-scheme is used, providing numerical precision of 10−8.

The process is started with parameters (ε, g) = (1.5, 0.1) and initial condi-
tions µ0 = (0.5, 0.5)T and Σ0 = diag [0, 0.1]. The approximation again stays
clearly inside the preliminary fixed error bound of 10−2. Figure 3 is organized in
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Figure 3: Van der Pol-trajectory – state estimate and covariance matrix

the same way as figure 2. A total of 221 integration steps were calculated, which
is equivalent to an average of 11.05 steps per unit interval. This step count is a
strong evidence for the efficiency of the step size calculating algorithm, because
despite of significant nonlinearities the quantity of integration steps needed to
provide a given precision is not larger than in the linear case.

6. Conclusions

A numerical integration scheme was developed specific to the structure of the
continuous time moment equations of the extended Kalman-filter. This pro-
cedure features single step approximations of order O(∆t2) for both, system
state expectation and state error covariance. Additionally adaptive step size
calculation is provided, assuring a preliminary fixed numerical precision with a
minimum of integration steps. The derived algorithm is easy to implement, and
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may serve as basis for more sophisticated integration procedures.
Two examples were presented, which confirm the stable and efficient impres-

sion of the suggested procedure. It was shown that both, linear and nonlinear
problems can be treated without limitations. Further, all necessary proofs con-
cerning stability and consistency were provided.

A. Proofs

A.1. Consistency of the Taylor-Heun-approximation

The general single step solution for an arbitrary integration problem reads

yt+∆t = yt + Φ(t, yt,∆t)∆t + ε∆t (21)

with the increment function Φ and the prediction error ε. In case of the Taylor-
Heun-formula the increment function is

Φ(t, µt,∆t) =
(

I −A(µt)
∆t

2

)−1

f(µt). (22)

By algebraic manipulation and Taylor -expansion of (21) one obtains an explicit
equation for the approximation error

ε =
1

∆t

(
yt+∆t − yt

)
− Φ(t, yt,∆t)

=
1

∆t

( ∞∑
k=0

∆tk

k!
y

(k)
t − yt

)
−
∞∑

k=0

∆tk

k!
∂k

∂∆tk
Φ(t, yt, 0)

=
∞∑

k=0

∆tk

k!

(
1

k + 1
y

(k+1)
t − ∂k

∂∆tk
Φ(t, yt, 0)

)

=
q−1∑
k=0

∆tk

k!
ck(t) +O(∆tq)

(23a)

with the coefficient functions

ck(t) =
1

k + 1
y

(k+1)
t − ∂k

∂∆tk
Φ(t, yt, 0) for k = 0, . . . , q − 1. (23b)

Obviously, the approximation is consistent with order O(∆tq), if the coefficients
ck(t) vanish for k = 0, . . . , q − 1. For the Taylor-Heun-increment function (22)
one obtains

c0(t) = µ̇t − f(µt) = 0

c1(t) =
µ̈t

2
− A(µt)f(µt)

2
=

ḟ(µt)
2

− A(µt)µ̇t

2
= 0

c2(t) =
f̈(µt)

3
− A2(µt)f(µt)

2
6= 0.

Thus the Taylor-Heun-scheme is consistent with order O(∆t2). �
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A.2. Asymptotic Error of the Increment Correction

In this proof the series expansion

(I −B)−1 =
∞∑

k=0

Bk

for an arbitrary quadratic matrix B with ‖B‖ < 1 is used. The Jacobian A of
the vector field f , given in equation (1) is bounded because of the Lipschitz -
condition if the existence of a unique solution is presumed. Therefore, it is
sufficient to assume ∆t small enough to guarantee ‖L(Aτ

∆t
2 )‖ < 1, which com-

plies with the requirements of the series expansion. Thus, the inverse matrix of
the original increment function can be expanded to(

I − L
(
Aτ

∆t

2

))−1

=
∞∑

k=0

(
Aτ

∆t

2
⊗ I + I ⊗Aτ

∆t

2

)k

=
∞∑

k=0

k∑
j=0

(
k

j

)
(Aτ ⊗ I)k−j(I ⊗Aτ )j

(
∆t

2

)k

=
∞∑

k=0

k∑
j=0

(
k

j

)
Ak−j

τ ⊗Aj
τ

(
∆t

2

)k

.

(24)

On the other hand, the modified inverse can also be expanded into(
I −Aτ

∆t

2

)−1

⊗
(

I −Aτ
∆t

2

)−1

=
∞∑

k=0

(
Aτ

∆t

2

)k

⊗
∞∑

j=0

(
Aτ

∆t

2

)j

=
∞∑

k=0

∞∑
j=0

Ak
τ ⊗Aj

τ

(
∆t

2

)k+j

.

(25)

Inserting (24) and (25) into the appropriate vectorized increment function and
calculating the difference shows

φ− φ̃ = (Aτ ⊗Aτ )
(
L(Aτ )σt + ωτ

)∆t2

4
+O(∆t3). (26)

Result (26) proves that the asymptotic error, caused by the correction term,
is the same order as the approximation error of the Gauss-Legendre-formula.
Therefore the consistence of the procedure is not downgraded. �
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