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Abstract

This paper introduces a new method for pricing European style call op-
tions with GARCH models. The resulting pricing formula is an explicit
function of the model parameters, current spot asset price, exercise price
and time to maturity. The method under consideration is remarkably fast
because no numerical integration procedures are involved. Errors, result-
ing from approximation and series expansion, are surveyed by Monte-Carlo
methods and turn out to be negligible.

Keywords: GARCH model; Gram-Charlier type A series; Cumulant gen-
erating function.

JEL Class.: G13

1 Introduction

Since large-scale trading on derivatives started in the early 1970’s, valuation
of contingent claims is a subject to intense scientific research and discussion.
The seminal work of Black and Scholes (1973) and Merton (1973) and also of
Cox, Ross, and Rubinstein (1979) provided the first risk-neutral pricing models.
One shortcoming of these original models is the assumption of a fixed volatility
which has proven violated in real markets. Many modifications and innovations
have been suggested since then. Amongst the most prominent ones, the contin-
uous time bivariate diffusion model of Heston (1993), accounting for stochastic
volatility, and the extended Black-Scholes model of Dumas, Fleming, and Wha-
ley (1998), incorporating implied volatility. Still one problem remains in such
diffusion models, the volatility is not observable. Recent research activity is fo-
cused on that problem (see Aihara and Bagchi, 2000; Dragulescu and Yakovenko,
2002; Cvitanic, Liptser, and Rozovskii, 2006; Aït-Sahalia and Kimmel, 2007).

This problem is not inherent in the discrete time autoregressive conditional
heteroscedastic models introduced by Engle (1982) and Bollerslev (1986). These
models are extraordinary successful, and countless variants and generalizations
exist. Amongst the most important, the ARCH-M model of Engle, Lilien, and
Robbins (1987), the EGARCH model of Nelson (1991) and the GJR-GARCH

∗Thomas Mazzoni, Department for Applied Statistics, University of Hagen, Germany,
Tel.: 0049 2331 9872106, Email: Thomas.Mazzoni@FernUni-Hagen.de

1



model of Glosten, Jagannathan, and Runkle (1993). An excellent review of theo-
retical properties of ARCH models and their application in finance is Gouriéroux
(1997).

The first to unify both approaches was Duan (1995), who derived a lo-
cally risk-neutral measure (LRNVR), which enabled him to calculate option
prices as discounted expectations under the LRNVR measure within a GARCH
model context. These expectations cannot be expressed analytically, which
means they had to be evaluated by Monte-Carlo methods at first. Formidable
progress has been accomplished on that issue in short time. The cornerstones
are the empirical martingale simulation (EMS) by Duan and Simonato (1998),
a Markov -chain approximation method (Duan and Simonato, 2001), the neural
network approach of Hanke (1997), a lattice construction method by Ritchken
and Trevor (1999) and finally an analytical approximation formula by Duan,
Gauthier, and Simonato (1999). At about the same time Heston and Nandi
(1997, 2000) introduced a new GARCH model, and the associated risk-neutral
parameter transformations, whose characteristic function remains in a log-linear
form. They derived recursions for the involved terms and finally provided an
analytic expression in the Fourier -domain. The capabilities and limitations of
GARCH models regarding option pricing are discussed recently in some de-
tail (see Kallsen and Taqqu, 1998; Härdle and Hafner, 2000; Christoffersen and
Jacobs, 2004; Hsieh and Ritchken, 2005).

The papers of Duan et al. (1999) and Heston and Nandi (1997, 2000) are
the most important basis for the research conducted in this paper. Therefore,
the ideas behind their approaches should be reviewed briefly. Duan et al. (1999)
calculated the first four moments of the cumulative log-return distribution by
evaluating and approximating exceedingly complex moment equations. Gained
this moments, the log-return distribution is approximated by a Gram-Charlier
type A expansion around the normal distribution. They provided an option
pricing formula similar to the Black-Scholes-formula, including higher order
correction terms. The benefit of their method is the instantaneous access to
the option price, once the moments have been calculated. The drawback is the
complicated moment calculation procedure, involving extensive multiple sums.
Additionally, moments of non-integer order occur, which have to be approxi-
mated by Taylor -expansion.

Heston and Nandi (1997, 2000) designed a particular GARCH model with
a preserving log-linear characteristic function and they were able to provide it-
erative expressions for the terms involved. Remarkably, those recursions were
derived for an arbitrary GARCH(p, q) order model. Because the characteris-
tic function is the Fourier -transform of the cumulative log-return density, the
resulting expression has to be integrated. This has to be done numerically,
either by adaptive methods or by quadrature. In most cases these integrals
converge rapidly. Nevertheless, numerical integration is inconvenient because it
still requires a noticeable amount of computation time.

The method introduced in this paper in a sense merges both ideas. Depart-
ing from Heston and Nandi’s GARCH(1, 1) model it is shown that the cumulant
generating function of the log-return distribution has a preserving linear form.
Then some approximations are suggested, resulting in an explicit expression for

2



the cumulant generating function. By computing derivatives of this expression
approximations for the cumulants are obtained, which themselves are incorpo-
rated into a Gram-Charlier type A series expansion. Finally, the option price
is calculated from this series expansion. This method is very fast, roughly 1019

options can be valuated per second on an usual personal computer, and, as will
become evident, very accurate.

The paper is organized as follows. Section 2 introduces the model and pro-
vides the formal derivations of all building blocks involved in computation of
the option price. In section 3 the approximations conducted are analyzed in
different stress test scenarios with extended Monte-Carlo simulation studies.
Section 4 provides an empirical survey of the performance of the pricing for-
mula in different real markets. Section 5 draws conclusions and summarizes the
findings.

2 Formal Derivation of the Pricing Formula

In what follows, the generic term GARCH model is used for all extensions of
the original model, introduced by Bollerslev (1986).

2.1 The GARCH Model

The model used for pricing European call options is the GARCH(1,1) case of
the more general model proposed by Heston and Nandi (1997, 2000)

log
[

St

St−1

]
= r + λht +

√
htzt (1a)

ht = ω + α
(
zt−1 − γ

√
ht−1

)2 + βht−1, (1b)

with ω, α, β > 0 and zt ∼ N(0, 1). The variance equation (1b) is in fact a non-
linear asymmetric (NAGARCH) configuration (cf. Engle and Ng, 1993). The
process remains stationary with finite first and second moment, if β + αγ2 < 1.
Heston and Nandi proved that in the limit ∆t → 0 this model approaches
the continuous time bivariate diffusion model of Heston (1993) with covari-
ance E[dW 1

t dW 2
t ] = dt. Further, the variance process converges weakly to the

square-root process of Feller (1951), and also Cox, Ingersoll, and Ross (1985).
Therefore, it has a strong theoretical rationale. Furthermore, recent research
indicates that models beyond GARCH(1,1) with leverage are not superior re-
garding option valuation (Christoffersen and Jacobs, 2004).

The corresponding model under local risk neutralization reads

log
[

St

St−1

]
= r + λ∗ht +

√
htz

∗
t (2a)

ht = ω + α
(
z∗t−1 − γ∗

√
ht−1

)2 + βht−1, (2b)

with
λ∗ = −1

2
, γ∗ = γ + λ +

1
2

and z∗t = zt +
(

λ +
1
2

) √
ht.
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Under the risk neutral measure Q, z∗t is N(0, 1)-distributed. For a proof see
Heston and Nandi (2000) and also Duan (1995). The next step, according to
Heston and Nandi (1997, 2000), is deriving the conditional moment generating
function of the logarithm of the spot asset price.

2.2 Moment Generating Function

Let xt = log[St], then the conditional moment generating function of xT is

Mt(k) = Et

[
ekxT

]
, (3)

where Et[. . .] is a short form for the expectation value, conditioned on the in-
formation available at time t, E[. . . |Ft].

Proposition 2.1
The conditional moment generating function of xT takes the log-linear form

Mt(k) = exp[kxt + At + ht+1Bt], (4a)

with

At = At+1 + kr + ωBt+1 −
1
2

log[1− 2αBt+1] (4b)

Bt = k(λ + γ)− γ2

2
+ βBt+1 +

1
2(k − γ)2

1− 2αBt+1
(4c)

and initial conditions

AT−1 = kr and BT−1 = λk +
k2

2
.

A proof of proposition 2.1 is given in appendix B.1. It follows the layout of the
more general proof for the GARCH(p, q) model in Heston and Nandi (1997).

2.3 Cumulant Generating Function of Total Log-Return

The total spot asset log-return is log[ST /St] = xT − xt. Because the cumulant
generating function is the logarithm of the moment generating function, one
obtains the conditional cumulant generating function of xT − xt by elementary
calculus

Ct(k) = At + ht+1Bt. (5)

Proposition 2.2
Under the risk neutral measure Q, the following approximation for the condi-
tional cumulant generating function of the total log-return xT − x0, given the
information set F0, holds

C0(k) = A0 + h1B0 (6a)

with

A0 = Tkr +
ω + α

1− b
(aT −B0) , B0 = a · 1− bT

1− b
(6b)

and
a =

1
2
(k2 − k) , b = β + α(k − γ∗)2. (6c)
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The proof of proposition 2.2 is provided in appendix B.2. In order to calculate
the cumulants, one has to compute the derivatives of the cumulant generating
function at k = 0. The n-th cumulant is given by

κn =
dnC0(k)

dkn

∣∣∣∣
k=0

. (7)

Define the persistence of volatility shocks as ρ = β +αγ∗2, then for example the
first cumulant is

κ1 = µ =
dC0(k)

dk

∣∣∣∣
k=0

= rT − h1(1− ρT )
2(1− ρ)

+

(
1−ρT

2(1−ρ) −
T
2

)
(ω + α)

1− ρ
.

For reference the first four cumulants are given in appendix A.1.

2.4 Series Expansion of the Log-Return Density

The purpose of all efforts conducted so far, was to gain analytical expressions
for the cumulants of the total log-return distribution. These expressions may
look intimidating but they are quite explicit and can be calculated very fast.
Now the log-return probability density can be expressed as series expansion.

It seems natural to expand the unknown density around the normal density
because one can expect a stronger influence of the central limit theorem with
increasing T . Two possible series expansions are available, the Gram-Charlier -
series of type A (cf. Cramér, 1957, chap. 17.6) and the Edgeworth-expansion
(cf. Petrov, 1987). Both expansions are asymptotically equivalent, however,
only the Edgeworth-expansion is an asymptotic expansion in the proper sense,
i.e. the error of the partial sum is controlled by the last included expansion
term. For an excellent treatment on this subject see Blinnikov and Moessner
(1998) and also the classical references Cramér (1957, chap. 17.6-7) and Feller
(1966, chap. 16).

Let φ(z) denote the standard normal probability density function. Further,
define the n-th Hermite-polynomial as

Hen(z) =
(−1)n

φ(z)
dnφ(z)

dzn
. (8)

For given cumulants κ1 = µ, κ2 = σ2, . . . , κN , the Gram-Charlier A expansion
around the normal distribution for the standardized random variable z = x−µ

σ
reads

p(z) ≈ φ(z)
(

1 +
N∑

n=3

κn

n! σn
Hen(z)

)
. (9)

While the Gram-Charlier -series is organized according to the degree of the Her-
mite-polynomials, the Edgeworth-expansion groups terms along the powers of σ.
An explicit formula for the Edgeworth-series is given in Blinnikov and Moessner
(1998)

p(z) ≈ φ(z)

1 +
N−2∑
n=1

σn
∑
{km}

Hen+2r(z)
n∏

m=1

1
km!

(
κm+2

(m + 2)!σ2m+2

)km

 ,

(10a)
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with the set {km} of all non-negative integer solutions of the Frobenius-
Diophantine-problem

k1 + 2k2 + . . . + NkN = N (10b)

and r = k1 + k2 + . . . + kN . In the following the option price will be calculated
using the Gram-Charlier type A expansion up to N = 4, to cover the first
four moments of the log-return distribution. At the same time the Hermite-
polynomials involved are only of order four also, protecting against artifacts
like excessive non-positivity of the density approximation, in case of divergence
of the series. The asymptotic Edgeworth-expansion will be used to survey the
order of the approximation error.

Proposition 2.3
The fair price of an European style call option with exercise price K and time
to maturity T is given by

C(S0, T ) = S0Φ(d1)− e−rT KΦ(d2) + S0φ(d1)eµ+σ2

2
−rT (c3 + c4), (11a)

with
d1 = d2 + σ , d2 =

log[S0/K] + µ

σ
(11b)

and

c3 =
κ3

3!
· σ − d2

σ2
, c4 =

κ4

4!
· d2

1 − 1− 3σd2

σ3
, (11c)

with φ and Φ denoting the standard normal probability density and cumulative
distribution function, respectively, and the cumulants κn according to (7).

The proof is provided in appendix B.3. It is similar to that referenced in Duan
et al. (1999) but corrects a calculation error in their proof, which is also inherent
in Duan, Gauthier, Sasseville, and Simonato (2004).

3 Monte-Carlo Analysis

The ability to calculate a correct option price is primarily determined by the
quality of the approximated log-return distribution. Therefore, this feature is
analyzed in a Monte-Carlo simulation study. Two Scenarios are of particular
interest. First, a parameter setup is chosen that deliberately generates bad
conditions for the proposed approximations. Second, a setup with high volatility
persistence is created in order to investigate the series approximation under
significant deviation from the normal distribution. An analysis similar to that
of Duan et al. (1999) is conducted to survey the effects.

3.1 Alpha Stress Test Scenario

In conducting a stress test for the analytical approximation method, the follow-
ing parameter values are chosen

ω = 2.5× 10−4 , α = 10−3 , β = 0.4 , γ∗ = 10 and r = 2× 10−4.

6



This is an extreme setting in two respects. First, the parameter α is much
greater than one would expect in practical applications. Because the approxi-
mations in proposition 2.2 involve a small constant α, this configuration should
create structural stress on the suggested method. Second, the steady state daily
volatility under the proposed set of parameters is

√
h∞ = 5%. This is also a

rather extreme value. In most cases the long term volatility will be considerably
smaller.

Figure 1 shows the total log return distribution for different times T . Initial
values were chosen to make h1 = 2h∞ hold. The histogram density is generated
by a Monte-Carlo simulation of 100.000 paths. The solid line is the Gram-
Charlier A expansion of the unknown density, which virtually coincides with
the Edgeworth-expansion in this particular case. Therefore, the Edgeworth-
expansion terms are used to roughly estimate the error of the partial sum.
According to (10a) and (10b), the Edgeworth-expansion up to terms of order
O(σ−4) is

p(z) ≈ φ(z)
(

1 +
1

3!σ3
κ3He3(z) +

1
4!σ4

(
κ4He4(z) +

κ2
3

3
He6(z)

))
. (12)

Figure 2 left shows The absolute value of the particular expansion terms for
the total log-return at T = 100. Notice that not the exact error is estimated,
but only its order. Thus, by including forth moment terms the approximation
error at T = 100 is roughly of order O(10−2). In figure 2 right, the maximum
absolute value of the expansion terms is plotted as function of time. It is clearly
seen that for small T the error induced by including the forth order term is

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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Skew. -0.622
Kurt. 4.526
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Kurt. 3.207

-3 -2 -1 0 1 2

T = 250

Skew. -0.168
Kurt. 3.097

Figure 1: Total Log-Return Distribution – Gram-Charlier A Expansion (Solid) and
Monte-Carlo Simulation with 100.000 Replications
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Figure 2: Errors Induced by Including Edgeworth Expansion Terms – First Term
Dashed, Second Term Solid

greater than that induced by the third order expansion term. This is due to
the divergence of the Edgeworth-series because of strong deviation from the
normal distribution. As T increases, influences of the central limit theorem
grow stronger and convergence takes place.

The Edgeworth expansion allows for error control, so that theoretically ex-
pansion terms should be included as long as the error is reduced. Practically,
it is often sufficient to involve four moments. In this case the Gram-Charlier A
series is preferable. It performs nearly identical to the corresponding Edgeworth-
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Figure 3: Analytical Moments and High Precision Monte-Carlo Simulation with
1 Million Replications
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series, but includes only Hermite-polynomials of order four. This is particularly
beneficial in case of divergence because artifacts like locally negative density
approximations and other numerical problems are mostly avoided.

In order to asses the quality of the moment approximation, a high precision
Monte-Carlo study was conducted. One million trajectories were simulated
and grouped in 100 equally sized blocks, from which quantiles of the moment
distributions were calculated. The results are shown in figure 3. Obviously the
moment structure of the total log-return is represented extremely well, even
with rather extreme parameter values. This is an encouraging result, indicating
a very precise representation of the log-return distribution as already suggested
in figure 1. Thus, the analytical pricing formula is not compromised by a large
α.

3.2 High Volatility Persistence Scenario

The second test scenario is designed to generate high volatility persistence in
the log-return series. The following parameter configuration is used

ω = 2.5× 10−7 , α = 10−6 , β = 0.5 , γ∗ = 700 and r = 2× 10−4.

The volatility persistence resulting from this parameter set is ρ = 99%, which
results in an almost integrated GARCH process. Again, the initial values are
chosen to meet the requirements of h1 = 2h∞. High volatility persistence causes
the log-return density to deviate significantly from the normal density. Revert-
ing influences of the central limit theorem become effective very slowly and

-0.6 -0.4 -0.2 0.0 0.2 0.4

T = 100

Skew. -1.119
Kurt. 4.740
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Figure 4: Total Log-Return Distribution – Gram-Charlier A Series (Solid) & Edgeworth
Expansion (Dashed) and Monte-Carlo Simulation with 100.000 Replications
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delayed. Therefore, the total log return density should exhibit excessive skew-
ness and kurtosis, even for large T . Figure 4 illustrates the effects for different
times. The histogram density is generated from a Monte-Carlo simulation with
100.000 paths. The Gram-Charlier A series is indicated by a solid line, the
Edgeworth-expansion dashed. Because the amount of skewness is noticeably
larger than zero, the additional Edgeworth term takes effect. Nevertheless both
expansions still nearly coincide.

The approximation quality is reduced significantly compared against the
previous scenario. Artifacts, caused by series divergence, like bimodality and
locally negative regions, are now immanent. The latter can be resolved by
an appropriate non-negativity condition but caution is recommended, because
the moment structure is altered by manipulating the density approximation.
Two questions have to be answered. First, should the fourth moment term be
abandoned in order to reduce quality degeneration of the series approximation?
Second, is the moment structure represented sufficiently to calculate a correct
option price?

The answer to the first question is provided by reviewing the Edgeworth-
expansion terms. Figure 5 provides the required information, organized as in
figure 2. Interestingly the maximum error induced by inclusion of the fourth
order term is always smaller than that of the third order term. Both terms are
roughly of the same order but it can be inferred that at least no harm is done
by expanding up to fourth order.

The moment representation itself is again investigated with a high precision
Monte-Carlo simulation study. As in the previous scenario, one million trajec-
tories have been generated and grouped in 100 equally sized blocks. Figure 6
shows the results. The first two moments are tracked with remarkable preci-
sion. However, the higher moments seem to be slightly underestimated. Notice
that the shaded areas are only 90% high probability areas. Further, the density
functions of the higher moments seem to be skewed themselves. This is due to
the strong deviation of the log-return distribution from normal. Slightly un-
derestimating the higher moments might eventually turn out beneficial because
artifacts due to divergence of the series expansion are compensated naturally in
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Figure 5: Errors Induced by Including Edgeworth Expansion Terms – First Term
Dashed, Second Term Solid
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Figure 6: Analytical Moments and High Precision Monte-Carlo Simulation with
1 Million Replications

that way. Even though the moment representation seems satisfactory, consider-
ing all facts, the final question is yet not answered.

In order to asses the quality of the log-return density approximation, and
hence the validity of the suggested pricing formula, different options have to
be evaluated analytically and by simulation. This was done for four different
times to maturity and a quasi continuous spectrum from deep out of the money
to deep into the money options with strike price K = 100. The comparison
criterion is the relative pricing error defined by

Rel. Pricing Error =
CAnal.

CMC
− 1.

In order to get illustrative Monte-Carlo confidence bands, five thousand paths
were generated for each single configuration of moneyness and time to maturity.
Figure 7 shows the results. The relative pricing error by analytical evaluation
is indicated by diamonds, connected by a solid line. Sample options with price
C < 0.5 were abandoned because they generate large relative errors by a small
divider. The same precaution was taken in Duan et al. (1999). The 95% Monte-
Carlo confidence regions are indicated gray, bordered by circles.

Obviously, the misspricing is not severe. Options at and in the money are
valuated quite well, out of the money options seem to be slightly underpriced.
Roughly interpolation of the relative pricing error leads to the conclusion that
the analytical pricing formula still operates within sufficient limits.
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Figure 7: Relative Pricing Error – Analytical Solution (Black) and 95% Monte-Carlo
Confidence Area (Gray)

4 Pricing Options in Real Markets

In order to asses the performance of the new pricing formula in real markets, the
GARCH model (1a), (1b) has to be estimated under the physical measure P .
This can be accomplished by maximum likelihood. Table 1 shows the estimation
results for some selected index markets. Four years of historical data, ranging
from Sep. 01, 2004 to Aug. 31, 2008, were included in the estimation procedure,
resulting in a total of 1007 observations. The annual risk free rate of return was

Maximum-Likelihood Estimation

Parameter Estimates
Index ω̂ α̂ β̂ γ̂ λ̂ Ann. Vol. Pers.
S&P 500 4.51e-7 1.24e-6 0.73 445.3 0.13 13.82% 97.79%

(2.17e-7) (4.16e-7) (0.07) (138.2) (3.64)
Dow Jones 2.17e-7 1.52e-6 0.80 340.2 -0.19 13.47% 97.60%

(2.49e-7) (4.31e-7) (0.04) (87.54) (3.80)
Hang Seng 9.35e-18 9.87e-6 0.87 81.67 2.28 20.15% 93.92%

(1.34e-6) (1.68e-6) (0.02) (14.69) (2.30)
DAX 4.07e-6 3.11e-6 0.65 296.5 3.82 15.79% 92.80%

(8.46e-7) (8.22e-7) (0.07) (73.56) (3.16)

Table 1: Maximum-Likelihood Parameter Estimation under Physical Measure P
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Index Option Valuation with GARCH

Option Features Option Price
Index Maturity Moneyness Gearing Obs. BSC GARCH MC & (Std.)
S&P 500 15 −3.84% 196.63 0.04 0.022 0.03 0.029 (0.001)

S&P 500 15 0.08% 52.05 0.165 0.131 0.155 0.156 (0.002)

S&P 500 15 7.84% 12.28 0.715 0.706 0.712 0.715 (0.003)

S&P 500 100 −9.72% 80.49 0.105 0.081 0.068 0.064 (0.002)

S&P 500 100 −1.88% 25.30 0.345 0.29 0.303 0.311 (0.004)

S&P 500 100 13.79% 6.66 1.325 1.332 1.365 1.366 (0.008)

Option Features Option Price
Index Maturity Moneyness Gearing Obs. BSC GARCH MC & (Std.)
Dow Jones 41 −8.54% 227.85 0.03 0.014 0.016 0.014 (0.001)

Dow Jones 41 2.32% 24.17 0.325 0.305 0.341 0.349 (0.003)

Dow Jones 41 15.34% 6.48 1.225 1.256 1.26 1.272 (0.005)

Dow Jones 189 −8.54% 39.86 0.195 0.193 0.184 0.187 (0.004)

Dow Jones 189 0.15% 16.26 0.485 0.482 0.503 0.512 (0.006)

Dow Jones 189 8.83% 8.47 0.935 0.958 1.0 1.005 (0.008)

Option Features Option Price
Index Maturity Moneyness Gearing Obs. BSC GARCH MC & (Std.)
Hang Seng 106 −6.77% 21.75 0.79 0.627 0.547 0.543 (0.010)

Hang Seng 106 2.94% 11.21 1.58 1.427 1.40 1.401 (0.016)

Hang Seng 106 22.35% 4.24 4.26 4.27 4.295 4.30 (0.023)

Hang Seng 294 −35.88% 52.19 0.325 0.312 0.205 0.202 (0.009)

Hang Seng 294 2.95% 7.74 2.31 2.329 2.263 2.272 (0.029)

Hang Seng 294 27.21% 3.41 5.31 5.561 5.58 5.593 (0.039)

Option Features Option Price
Index Maturity Moneyness Gearing Obs. BSC GARCH MC & (Std.)
DAX 28 −5.04% 174.97 0.365 0.402 0.249 0.238 (0.006)

DAX 28 0.37% 37.42 1.72 1.646 1.582 1.623 (0.019)

DAX 28 8.87% 10.56 6.12 6.009 6.084 6.12 (0.031)

DAX 91 −12.83% 223.12 0.285 0.447 0.277 0.264 (0.010)

DAX 91 −2.01% 27.3 2.365 2.302 2.217 2.258 (0.032)

DAX 93 10.45% 7.85 8.20 7.773 7.956 7.943 (0.054)

Table 2: Valuation Results for various European Style Call Options

set to r = 5%. Standard errors are indicated in parentheses. The last two
columns give the annualized long term volatility associated with the parameter
estimates, and the persistence of volatility shocks ρ = β + αγ2. Obviously,
conditions are not as hostile as in the test scenarios of section 3.

An extended empirical analysis of the capabilities of the single lag GARCH
model (1a), (1b) regarding option valuation is provided in Heston and Nandi
(2000) and Hsieh and Ritchken (2005). The authors proved that it outperforms
the Black-Scholes model, even if volatility is updated along the specific implied
volatility and that a significant portion of the volatility smile can be explained.
Hence, the focus here is on demonstrating that option prices can be calculated
correctly within the corresponding GARCH model context.
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A collection of various index options with different moneyness and times to
maturity is presented in table 2. The features columns include time to maturity,
moneyness, which is defined as 1 − strike/spot, and the gearing, which is the
elasticity of the option price regarding changes in the spot asset price. The
gearing implicitly contains the ratio of the option. The price columns present
the observed option price, given as arithmetic mean of the Bid/Ask-spread, the
Black-Scholes price with volatility estimated by historical values, the analytical
option price, calculated as suggested in this paper and the Monte-Carlo simu-
lated discounted risk-neutral expectation with its standard deviation parenthe-
sized. 10.000 paths were simulated for each MC price in table 2, which results
in a good tradeoff between computation time and accuracy.

Attention should not be focused primarily on the misspricing of the GARCH
method and the Black-Scholes model, respectively, because very few data is
reported here. For a detailed empirical analysis see Heston and Nandi (1997,
2000) and Hsieh and Ritchken (2005). At this point it is more important to
verify that the analytically computed option price is correct within the suggested
GARCH model setup. As seen in section 3, this cannot unconditionally be
taken for granted, because approximations and series expansions are involved
in the calculation. Therefore, the third from last and the second last column
should be compared closely, considering a potential confidence region, indicated
by a multiple of the standard deviation in the last column. Obviously, the
calculated option prices are very precise. There is no systematic error induced
by a particular feature of the option. Hence, deterioration of the log-return
density approximation due to divergence of the Gram-Charlier A series seems
not to be a severe problem in practical applications. Both, S&P 500 and Dow
Jones Industrial Average index are high volatility persistent, as reported in table
1. The analytical price falls well into a trusted region around the Monte-Carlo
simulated option prices.

5 Conclusions

A new method for valuating European style call options analytically within a
GARCH framework was introduced. The procedure avoids excessive moment
calculations and numerical integration and is thus very fast. The suggested
approximation makes calculation speed independent of the properties of the op-
tion, in particular of the time to maturity, which is the major determinant in
Monte-Carlo approaches. The computing time, required for pricing one single
option, is roughly 10−19 seconds on an usual personal computer, which is effec-
tively instantaneous. The consequences are potentially far reaching because one
is able to valuate large option portfolios online. Hence, such portfolios become
accessible to risk evaluation and scenario analysis inside a closed GARCH model
context.

Extensive Monte-Carlo analysis was done to investigate the impact of ad-
verse parameter configurations. Two specific scenarios were analyzed, one de-
signed to compromise the approximations contained in the pricing formula, an-
other to cause deterioration of the series expansion by high volatility persis-
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tence. It turned out that the option pricing formula still provides satisfactory
results, even under extreme conditions. Finally a collection of index options
from different markets were valuated. The parameter estimates revealed that
the conditions in real markets are more convenient than in the test scenarios.
Not surprisingly, the analytical pricing formula performed well. There is no
noticeable systematic misspricing of any kind.
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Appendix A

A.1 Cumulants of Total Log-Return
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Appendix B

B.1 Proof of Proposition 2.1

By iterating expectations the following relation holds

Mt(k) = Et

[
Mt+1(k)

]
= Et

[
exp[kxt+1 + At+1 + ht+2Bt+1]

]
.

Inserting model equations (1a) and (1b) shows

Mt(k) = Et

[
exp

[
k(xt + r + λht+1 +

√
ht+1zt+1) + At+1 + ωBt+1

+Bt+1

(
α(zt+1 − γ

√
ht+1)2 + βht+1

)]]
.

After suitable rearrangement of terms, one obtains

Mt(k) = Et

[
exp

[
k(xt + r) + At+1 + ωBt+1

+αBt+1

(
zt+1 −

(
γ − k

2αBt+1

)√
ht+1

)2

+
(
k(λ + γ) + βBt+1 −

k2

4αBt+1

)
ht+1

]]
.

The random variable zt+1 does not depend on the information set Ft and there-
fore, the expectation becomes unconditional. Using

E
[
ea(z+b)2

]
= e−

1
2

log[1−2a]+ ab2

1−2a

for arbitrary a and b, and equating terms in the L.H.S. and R.H.S results in the
recursion formulae (4b) and (4c).

For t = T − 1, hT is known and xT is normally distributed. Therefore

MT−1(k) = exp
[
kxT−1 + k(r + λhT ) +

k2

2
hT

]
holds. Identifying terms shows

AT−1 = kr and BT−1 = λk +
k2

2
,

which concludes the proof. �

B.2 Proof of Proposition 2.2

Under the risk neutral measure Q the parameter substitutions λ∗ = −1
2 and

γ∗ = γ + λ + 1
2 take place. Therefore, Bt changes to

Bt =
1
2
(k2 − k)− 1

2
(k − γ∗)2 + βBt+1 +

1
2(k − γ∗)2

1− 2αBt+1

=
1
2
(k2 − k) + βBt+1 +

α(k − γ∗)2Bt+1

1− 2αBt+1

= BT−1 + βBt+1 +
α(k − γ∗)2

1
Bt+1

− 2α
.
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The first step in obtaining an explicit formula is to show that 2αBt+1 remains
reasonably small in a vicinity of k = 0 for all t. Because 2α is constant, the
order of Bt+1 has to be analyzed. This is no trivial task, because B is a function
of k.

In order to calculate cumulants one has to compute derivatives of the cumu-
lant generating function at k = 0. Thus, the behavior of B in an ε-vicinity of
k = 0 is of interest. Define the left limit vicinity [0, ε] of k = 0, with 0 < ε � 1.
Then obviously, BT−1 < 0 holds and Bt is a monotonically increasing function
of t inside this ε-vicinity. It follows

Bt = BT−1 + βBt+1 +
α(ε− γ∗)2

1
Bt+1

− 2α

> BT−1 + βBt+1 +
α(ε− γ∗)2

1
Bt+1

,

and thus

|Bt| <
∣∣BT−1 +

(
β + α(ε− γ∗)2

)
Bt+1

∣∣.
This recursion can be iterated in order to obtain an explicit expression. One
obtains

|Bt| < |BT−1|
T−t−2∑

j=0

(
β + α(ε− γ∗)2

)j + |BT−1|
(
β + α(ε− γ∗)2

)T−t−1

= |BT−1|
T−1−t∑

j=0

(
β + α(ε− γ∗)2

)j
.

If the stationarity condition β+αγ∗ < 1 under the risk-neutral measure Q holds,
it follows immediately that β +α(ε−γ∗)2 < 1 for all positive γ∗ ≥ ε

2 . These are
very mild conditions, because the leverage parameter can be expected positive
and ε may be chosen arbitrarily small.

Because Bt is a monotonically increasing, non-positive function of t inside the
ε-vicinity, |Bt| is monotonically decreasing. Hence, |Bt| approaches its maximum
in the limit t → −∞. Using the stationarity condition and the restriction for
γ∗, one obtains

sup |B| = lim
t→−∞

|Bt| <
|BT−1|

1− β − α(ε− γ∗)2
=

1
2
· ε− ε2

1− β − α(ε− γ∗)2

<
1
2
· ε

1− β − αγ∗2
= c · ε,

with constant c. This result indicates that Bt is of order O(ε) for all t. Thus,
two conclusions can be drawn. First, 2αBt+1 is of order O(ε) as well inside the
ε-vicinity of k = 0. Second, in calculating derivatives, the limit ε → 0 has to be
computed. In that limit terms of O(ε2) vanish. Therefore, terms of O(α2B2

t+1)
may be neglected in the following series expansions.
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The second half of the proof starts by expanding the denominator in the
R.H.S. of the initial equation for Bt into a geometric series. By only including
terms of order O(αBt+1), one obtains

Bt =
1
2
(k2 − k)− 1

2
(k − γ∗)2 + βBt+1 +

1
2
(k − γ∗)2(1 + 2αBt+1)

=
1
2
(k2 − k) +

(
β + α(k − γ∗)2

)
Bt+1

= a + b ·Bt+1,

with
a =

1
2
(k2 − k) and b = β + α(k − γ∗)2.

Using the boundary condition at T − 1 one can calculate B0 in a successive way

B0 = a
T−2∑
t=0

bt + bT−1 · 1
2
(k2 − k) = a

T−2∑
t=0

bt + bT−1 · a = a
T−1∑
t=0

bt

= a · 1− bT

1− b
.

Now turning to equation (4b), which is identical under both measures, the
physical one and the risk-neutral. The logarithmic term in the R.H.S. can be
expanded into a MacLaurin-series. Neglecting terms of O(α2B2

t+1) yields

A0 = (T − 1)kr + kr + (ω + α)
T−1∑
t=1

Bt = Tkr +
ω + α

1− b
·

T−1∑
t=1

a
(
1− bT−t

)
= Tkr +

ω + α

1− b

(
a(T − 1)− a

T−1∑
t=1

bt
)

= Tkr +
ω + α

1− b

(
aT − a

T−1∑
t=0

bt
)

= Tkr +
ω + α

1− b

(
aT −B0

)
,

which proves proposition 2.2. �

B.3 Proof of Proposition 2.3

Let zT be the standardized total log-return under the risk neutral measure Q.
Following the idea of Jarrow and Rudd (1982), the probability density function
of −zT can be expanded around the standard normal density by

p(z) ≈ φ(z)
(
1− κ3

3!σ3
He3(z) +

κ4

4!σ4
He4(z)

)
.

Because of ST = S0e
µ+σzT , the following equivalence holds

ST ≥ K ⇔ −zT ≤
log[S0/K] + µ

σ
= d2
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and the fair price of the call option is

e−rT EQ
0

[
max[ST −K, 0]

]
= e−rT EQ

0

[
max

[
S0e

µ−σ(−zT ) −K, 0
]]

= e−rT

∫ d2

−∞

(
S0e

µ−σz −K
)
p(z)dz

≈ e−rT

∫ d2

−∞

(
S0e

µ−σz −K
)
φ(z)dz

− κ3

3!σ3
e−rT

∫ d2

−∞

(
S0e

µ−σz −K
)
(z3 − 3z)φ(z)dz

+
κ4

4!σ4
e−rT

∫ d2

−∞

(
S0e

µ−σz −K
)
(z4 − 6z2 + 3)φ(z)dz.

In order to evaluate these integrals, two important relations are established in
advance. First, from

e−rT EQ
0 [ST ] = e−rT

∫ ∞

−∞
S0e

µ−σz
(
1− κ3

3!σ3
He3(z) +

κ4

4!σ4
He4(z)

)
φ(z)dz = S0

it follows that
eµ+ σ2

2

(
1 +

κ3

3!
+

κ4

4!

)
= erT .

Second, with the definition of the Hermite-polynomials and d1 = d2 + σ, one
obtains ∫ d2

−∞
KHen(z)φ(z)dz = −KHen−1(d2)φ(d2)

= − 1√
2π

e−
1
2 (d1−σ)2KHen−1(d2)

= − 1√
2π

e−
1
2 d2

1+d1σ− 1
2 σ2

KHen−1(d2)

= −S0e
µ+ σ2

2 Hen−1(d2)φ(d1).

Now, using relation two, computation of the integrals yields

e−rT

∫ d2

−∞
(. . .)φ(z)dz = e−rT+µ+ σ2

2 S0Φ(d1)− e−rT KΦ(d2)

e−rT

∫ d2

−∞
(. . .)(z3 − 3z)φ(z)dz = −e−rT+µ+ σ2

2 S0σ
(
(2σ − d1)φ(d1) + σ2Φ(d1)

)
e−rT

∫ d2

−∞
(. . .)(z4 − 6z2 + 3)φ(z)dz = e−rT+µ+ σ2

2 S0σ
(
(d2

1 − 1− 3σd2)φ(d1) + σ3Φ(d1)
)
.

Collecting terms and considering relation one completes the proof of proposition
2.3. �
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