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Zusammenfassung

Ein Inkonsistenzmaß bewertet den Grad der Inkonsistenz einer Wissensbasis. In
den letzten Jahren wurden viele Maße zur Inkonsistenzmessung entwickelt. Zur
Bewertung ihrer Qualität und Eigenschaften wurden unterschiedliche Ansätze vor-
geschlagen, die von Rationalitätspostulaten über Expressivitätsmerkmale bis hin zur
Komplexitätsanalyse reichen. Diese Bachelorarbeit untersucht ein neues Inkonsistenz-
maß, das Entailment Inkonsistenzmaß, das auf Schlussfolgerungen in Teilmengen
einer Wissensbasis definiert wird. Die Arbeit gibt einen Überblick über Bewertungs-
methoden für Inkonsistenzmaße, insbesondere Rationalitätspostulate, Expressivität
und Komplexität. Das vorgeschlagene Inkonsistenzmaß wird dann im Hinblick auf
diese Methoden bewertet.

Die Ergebnisse zeigen, dass das Entailment Inkonsistenzmaß fünf von insgesamt
20 analysierten Rationalitätspostulaten erfüllt. Dieses Ergebnis ist schlechter im
Vergleich zu den Ergebnissen bereits vorgeschlagener Inkonsistenzmaße. Die Expres-
sivität ist für alle vier Expressivitätscharakteristiken maximal und damit höher als die
Expressivität vieler bereits existierender Inkonsistenzmaße. In Bezug auf die Kom-
plexität ist das resultierende Entailment Inkonsistenzmaß aufwändig zu berechnen,
da es sich wahrscheinlich jenseits der dritten Ebene der polynomiellen Hierarchie
befindet. Mit diesem Ergebnis gehört das neue Maß zu den Inkonsistenzenmaßen
mit der höchsten Komplexitätsbewertung.

Abstract

An inconsistency measure evaluates the degree of inconsistency of a knowledge base.
Many inconsistency measures have been developed in the last years. For the evalua-
tion of their quality and properties, different approaches have been proposed, which
range from rationality postulates, expressivity characteristics and computational
complexity analysis. This bachelor thesis defines and investigates a new inconsis-
tency measure, the entailment inconsistency measure, that is based on inferences in
subsets of a given knowledge base. Besides giving an overview of evaluation meth-
ods for inconsistency measures, in particular with regard to rationality postulates,
expressivity and complexity, the newly proposed inconsistency measure is evaluated
with regard to these methods.

Results show that the entailment inconsistency measure satisfies five of in total
20 analysed rationality postulates. This result is inferior with regard to the results
of already proposed inconsistency measures. Expressivity is maximal for all four
expressivity characteristics and thus higher than many already existing inconsis-
tency measures. Regarding computational complexity, the entailment inconsistency
measure is computationally demanding with likely being beyond the third level of
the polynomial hierarchy. With this result, it belongs to the computationally most
demanding inconsistency measures.
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1 Introduction

Inconsistency typically arises from conflicting pieces of information that cannot
simultaneously hold true. In the realm of knowledge management, inconsistency is
commonly perceived as undesirable. The traditional view is that knowledge bases
and information systems should ideally maintain perfect consistency. However,
reality shows a different picture: Inconsistency does not occur occasionally, or as an
exception, but is commonly prevalent in real-world data [GH91, GH93, Hun03].

On the one hand, information about underlying inconsistencies is needed to resolve
these inconsistencies in order to restore consistency. On the other hand, reasoning
with inconsistent information, so dealing with the inconsistency instead of removing
it, is as well needed for certain systems. That is, because contrary to conventional
beliefs, inconsistencies can offer additional information. By recognizing this, there
arises a need to assess whether an inconsistency exists and which level of severity
the inconsistency has. With that information, one can decide what to do with the
inconsistency [GH91].

Inconsistency measurement is a discipline which aims to quantify and assess the
extent of inconsistencies. It answers the questions about the amount of inconsistency
in information and the severity of this inconsistency. Furthermore, it comprises
research about methodologies for evaluating the characteristics of these inconsistency
measures characteristics and their quality [HK06, Thi09, Thi17b].

The contribution of this bachelor thesis is to give a definition of a new inconsistency
measure that is based on inferences in subsets. The new inconsistency measure is then
evaluated by current evaluation methods for inconsistency measures, in particular
rationality postulates, expressivity and computational complexity. The results are
discussed with regard to already existing inconsistency measures.

The thesis is structured as follows. Section 2 give some preliminaries on propo-
sitional logic and computational complexity that are necessary for the following
parts. In Section 3 an overview about the current state of research on inconsistency
measurement is given by presenting existing approaches with already proposed in-
consistency measures and discussing the evaluation methods of rationality postulates,
expressivity and complexity. Section 4 introduces the new inconsistency measure
and evaluates the measure by the mentioned evaluation methods. A summary and
outlook is given in Section 5.

2 Preliminaries

For the proofs, definitions and results in the following sections some preliminaries
are needed, which are given in this section.
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2.1 Propositional Logic

Let L(At) be a propositional language with At being a finite set of propositional
atoms. L(At) uses the classical logical connectives {',(,→,¬}. Let φ be an arbitrary
formula, then At(φ) is the set of atoms appearing in φ. A literal is an atom a or its
negation ¬a. A clause is a disjunction of literals. A formula φ in conjunctive normal
form (CNF) is a conjunction of clauses. A knowledge base K is a finite set of formulae
K ¦ L(At). Let K be the set of all knowledge bases.

Semantics for a propositional language is given by interpretations. An interpre-
tation w is a function from At to {true, false}. Let Ω(At) be the set of all possible
interpretations for At. An interpretation w is a model of an atom a ∈ At, denoted by
w ⊨ a, if and only if w(a) = true. The satisfaction relation ⊨ is extended to formulae:
An interpretation w is a model of a formula φ, denoted by w ⊨ φ, if and only if
w(φ) = true. For Φ ¦ L(At) we define w ⊨ Φ if and only if w ⊨ φ for every φ ∈ Φ. The
set of models Mod(φ) = {w ∈ Ω(At) | w ⊨ φ} for every formula or set of formulae φ.
If Mod(φ) = ∅, denoted by φ ⊨ §, φ is inconsistent.

The following paragraph deals with basic notions for inconsistency measurement.
Minimal inconsistent subsets represent one approach for determining inconsistency
in a knowledge base. A minimal inconsistent subset is, by definition, inconsistent
and a subset of the knowledge base. It is minimal, thus has no strict subset which is
inconsistent [HK04, GH08].

Definition 1. A set M ¦ K is called a minimal inconsistent subset (MI) of K if M ⊨ § and
there is no M ′ ¢ M with M ′ ⊨ §. Let MI(K) be the set of all MIs of K.

A formula of a knowledge base is called a free formula if it does not belong to any
minimal inconsistent subset of the knowledge base and is therefore not participating
in any conflict [HK04, GH08].

Definition 2. A formula φ ∈ K is called a free formula if φ /∈
⋃

MI(K). Let Free(K) be the
set of all free formulae of K.

A formula of a knowledge base is called a safe formula if its signature is disjoint
from the signature of the rest of the knowledge base [Thi09, Thi18]. A safe formula is
always a free formula [Thi18].

Definition 3. A formula φ ∈ K is called a safe formula if it is consistent and At(φ)∩At(K\
{φ}) = ∅. Let Safe(K) be the set of all safe formulae of K.

Last, the definitions of the length of a formula and the length of a knowledge base
are given.

Definition 4. Let φ be a formula. The length of φ, len(φ), is defined as

len(φ) =























1 if φ ∈ At

1 + len(φ′) if φ = ¬φ′

1 + len(φ1) + len(φ2) if φ = φ1 ' φ2

1 + len(φ1) + len(φ2) if φ = φ1 ( φ2

The length of a knowledge base len(K) is then defined as len(K) =
∑

φ∈K len(φ).
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2.2 Computational Complexity

P is the class of decision problems for which the positive and negative instances can
be accepted by a deterministic Turing machine in polynomial time, whereas NP is the
class of decision problems for which the instances can be accepted in polynomial time
by a nondeterministic Turing machine. coNP is the class of the decision problems
whose complement is in NP [Pap94].

The canonical NP-complete problem is the satisfiability problem SAT which an-
swers, whether a satisfying interpretation exists for a propositional formula. The
complement of this problem is UNSAT, which is the canonical coNP-complete prob-
lem. The problem asks whether a given propositional formula has no satisfying
model [Pap94].

SAT Input: a formula φ in CNF
Output: TRUE iff Mod(φ) ̸= ∅

UNSAT Input: a formula φ in CNF
Output: TRUE iff Mod(φ) = ∅

For any two complexity classes C and D, the class CD is the class of decision
problems solvable in class C with access to an oracle Turing machine for some problem
complete in D. The oracle Turing machine is able to solve any of these problems
and answers instantaneously. With that, the polynomial hierarchy is defined in the
following [Pap94].

Definition 5. Let Σp
0 = ∆p

0 = Πp
0 = P. Then for i g 0

Σp
i+1 = NP

Σp
i

Πp
i+1 = coNP

Σp
i

∆p
i+1 = P

Σp
i

Specifically, we have Σp
1 = NP, Πp

1 = coNP and ∆p
1 = P.

The complexity class Dp
i contains all decision problems which are the conjunction

of a decision problem in Σp
i and a decision problem in Πp

i . coDp
i is the class of the

decision problems whose complement is in D
p
i .

Functional problems are problems which answer is not simply TRUE or FALSE, but
the answer is more complex. E.g., the problem is not about answering whether there
is a satisfying interpretation for a formula, but to find this interpretation. FP is the
class of functional problems that can be solved by a deterministic Turing machine in
polynomial time, whereas FNP is the class of function problems that can be solved by
a non-deterministic Turing machine in polynomial time [Pap94]. A typical problem
of the latter class is FSAT which asks for a model of a given propositional formula.
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FSAT Input: a formula φ in CNF
Output: Mod(φ)

The class FPC[f(n)] is the class of all functional problems solvable by a deterministic
polynomial-time Turing machine with O(f(n)) calls to an oracle Turing machine
complete for some problem in class C.

As we will see with the definition of the new inconsistency measure in Section 4.1,
it is necessary to analyse problems associated with counting. For this, counting com-
plexity classes are introduced. Counting decision problems are problems which ask,
whether there are at least or exactly a given number of solutions. These make them
intuitively harder than decision problems that ask “only”, if there is any solution.
First, the predicate-based counting quantifier C is defined in the following which is
needed for the definition of the complexity classes [Wag86].

Definition 6. C is defined for a predicate H(x, y) with free variables x and y as
Ck
yH(x, y) ´ |{y | H(x, y) is true}| g k.

This means, the counting quantifier is true for the predicate H(x, y) and bound k iff
the number of values of y, for which the predicate holds, is at least k. The following
definition is about the polynomially bounded version of the counting quantifier
[Wag86].

Definition 7. For a class of problems K a problem A is in CK iff there is a problem B ∈ K,
a polynomial-time computable function f , and a polynomial p with

x ∈ A ´ C
f(x)
|y|fp(|x|)(x, y) ∈ B.

This means, that an instance x is in problem A iff the number of values of y, which
is polynomially bounded by x, for which the predicate holds and the predicate being
in B, is at least f(x). The canonical problem for the class CP is, whether there are at
least k models for a Boolean formula (this problem seems to have no explicit name).

Input: a formula φ in CNF
Output: TRUE iff |Mod(φ)| g k

For the counting polynomial time hierarchy, we have CΣp
i = CΠp

i = coCΣp
i for

all i g 0. The class which will be mainly used in the complexity analysis section is
CNP. A variation of this class is C=NP, for which there is no lower bound k for the
counting quantifier, but the number should be exactly the value k [Wag86].

Lastly, preliminaries for functional counting problems are introduced. Functional
counting problems ask for the number of solutions. A solution is defined by a witness
function w. The cardinality of witnesses |w| is then the output of the associated
counting problem. The class #P is the class of functional problems that ask for the
number of accepting paths of nondeterministic Turing machines in polynomial time
[Val79]. This also means, the class encompasses underlying decision problems that
are in NP. The canonical #P-complete problem is the counting satisfiability problem
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#SAT which asks for the number of models for a propositional formula [Pap94]. The
model is in this case the witness w.

#SAT Input: a formula φ in CNF
Output: |Mod(φ)|

Hemaspaandra and Vollmer expanded the work by Valiant with a predicate based
framework [HV95]. If C is a complexity class of decision problems, then #·C is the
class of all counting problems with witness function w, which meets the following
two conditions: for every input string x, every y ∈ w(x) is polynomially bounded
by x and the decision problem of deciding y ∈ w(x) for given strings x and y is in C
[HV95]. With this notion, we have #P = #·P and for higher complexity classes #Σp

i =
#Πp

i = #·Πp
i for i g 1, so particularly #NP = #·coNP.

An example for this class is #CIRCUMSCRIPTION [DHK05]. The underlying deci-
sion problem asks for the minimal models of a given formula. Durand showed that
this problem is #·coNP-complete.

#CIRCUMSCRIPTION Input: a formula φ in CNF
Output: |MinMod(φ)|

For showing hardness of the previous example and in general for counting prob-
lems, Durand et. al introduced substractive reductions [DHK05]. The basic idea behind
these reductions is to overcount the number of solutions for a problem and then
subtract the surplus.

Definition 8. Let #·A and #·B be two counting problems with the witness functions
wA(x) and wB(x). A counting problem #·A reduces to the counting problem #·B via
strong substractive reduction, written as #·A fssr #·B, if there exist two polynomial-time
computable functions f and g such that for each x: wB(f(x)) ¦ wB(g(x)) and |wA(x)| =
|wB(g(x))| − |wB(f(x))|.

With these substractive reductions completeness for counting problems in #·coNP
and higher counting complexity classes can be proved.

3 State of Research on Inconsistency Measurement

Having introduced the preliminaries in the previous chapter, this chapter gives an
overview of the research about inconsistency measures and their evaluation methods.

3.1 Measuring Inconsistency

Inconsistency measures are basically functions that assign a non-negative real value to
a given knowledge base [Thi09, GH11, Bes14], see Definition 9. By that, they quantify
the severity of inconsistency of the knowledge base. The informal convention is, that
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the higher the value of the inconsistency measure is, the higher is the inconsistency
in the knowledge base. An inconsistency value of zero means that there is no
inconsistency in the knowledge base.

Definition 9. An inconsistency measure I is any function I : K → R∞
g0.

An example of a very simple inconsistency measure is the drastic inconsistency
measure Id which assigns the value 0 to consistent knowledge bases and the value 1
to inconsistent knowledge bases [HK08].

Definition 10. Id(K) =

{

1 if K ⊨ §

0 otherwise

Example. Let K1 = {a, b} and K2 = {a,¬a}. Then, Id(K1) = 0 and Id(K2) = 1.

Inconsistency measures can be divided into approaches that are formula-based,
respectively syntactic, and measures that are language-based, respectively semantic
[HK04, HK06, HDBGK18, Thi19]. However, this is not a unanimously agreed on
division, shown by the fact that there are several measures that fall in neither of both
categories [Thi19].

Syntactic approaches, on the one hand, use syntactic objects to quantify inconsis-
tency. They mainly focus on conflicts between or within formulae in the knowledge
base. Common approaches of the syntactic approach are measurements using mini-
mum inconsistent subsets [Hun04, HK08, MLJ11, GH11, JMR14, JMR+16, DGHK19]
and closely related to that, measures which focus on maximal consistent subsets
[GH11, ARSO15, ASOR17, DGHK19]. Other inconsistency measurement approaches
use so called minimal proofs [JR13] or are based on forgetting, meaning restoring a
consistent knowledge base [Bes16, Sal19].

Three exemplary inconsistency measures are the MI-inconsistency measure, the
MIC-inconsistency measure, and the Df -inconsistency measure. The MI-inconsistency
measure is based on the number of minimal inconsistent subsets [HK08] .

Definition 11. The MI-inconsistency measure is defined as IMI = |MI(K)| for K ∈ K.

The MIC-inconsistency measure is, as well, based on minimal inconsistent subsets,
but takes the size of each minimal inconsistent subset into account [HK08].

Definition 12. The MIC-inconsistency measure is defined as IMIC =
∑

M∈MI(K)
1

|M | for
K ∈ K.

The Df -inconsistency measure is, as well, based on minimal inconsistent subsets,
and further on consistent subsets [MLJB11]. Both their sizes are taken into account.
For the definition of the inconsistency measure, the following definitions are needed
first.

For K ∈ K, MI
i(K) = {M ∈ MI(K) | |M | = i}, and for consistent subsets CNi(K) =

{C ∈ K | |C| = i ' C ⊨ §}. With that, Ri(K) = 0 if |MI
i(K)| + |CNi(K)| = 0 and

otherwise Ri(K) = |MI
i(K)|/(|MI

i(K)|+ |CNi(K)|).
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Definition 13. The Df -inconsistency measure is defined as IDf
= 1−Π

|K|
i=1(1−Ri(K)/i)

for K ∈ K.

Semantic approaches, on the other hand, focus on conflicts between atoms of the
language. This means that the approaches typically use non-classical logics [Thi17a,
GH23]. The inconsistency measures are typically based on multi-valued logics,
including quasi-classical logic [Hun00, Hun02, XLMQ10], 3-valued logic [XLMQ10,
GH11, GH23], 4-valued logic [Hun06, GH08, MQX+09, XLMQ10], probabilistic logic
[Kni02, Thi09, Thi13], and fuzzy logic [Thi17a].

An example is the contension inconsistency measure Ic which is based on three-
valued logic with the interpretation v that is a function from At to {T, F,B} [GH11].
T and F are the classical truth values and B stands for both, which means that there is
a conflict for the respective atom. An interpretation satisfies a formula φ, if v(φ) = T
or v(φ) = B, denoted by v ⊨3 φ. The contension inconsistency measure is defined
on interpretations of a knowledge base that assign the truth value B to a minimum
number of atoms.

Definition 14. The contension inconsistency measure is defined as Ic = min{v−1(B) | v ⊨3

K} for K ∈ K.

There are as well inconsistency measures that do not fall in one of the two categories
described above. These measures include the mv-inconsistency measure [XM12], the
hitting-set inconsistency measure [Thi16b], distance-based measures [GH13, GH17],
and measures that are based on extended propositional logic [Gra20, Gra23].

The mv-inconsistency measure Imv , as an example from this group, is based on the
atoms occurring in minimal inconsistent subsets in relation to the whole knowledge
base [XM12].

Definition 15. The mv-inconsistency measure is defined as Imv =
|
⋃

M∈MI(K) At(M)|

|At(K| for
K ∈ K.

Having introduced the current state of research about measuring inconsistency
including example measures, the following section is about methods to evaluate
inconsistency measures. The introduced inconsistency measures serve again as
examples.

3.2 Evaluation of Inconsistency measures

Besides defining inconsistency measures, researchers have focused on describing
characteristics of these measures for their evaluation and comparison. Evaluation
methods for inconsistency measures comprise rationality postulates, expressivity,
and complexity which are described in detail in the following sections.
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3.2.1 Rationality Postulates

Rationality postulates have been proposed by various researchers to define favorable
characteristics of inconsistency measures. Hunter and Konieczny proposed the first
five of the following rationality postulates [HK06]. These have been extended by
various other researchers over time. In the following, 20 rationality postulates will be
introduced and described.

The first postulate is Consistency [HK06, HK08, HK10, Thi09, GH11]. This postulate
can be seen as the most basic requirement for inconsistency measurement. It states
that only consistent knowledge bases get the value zero, and inconsistent knowledge
bases a value greater than zero. The postulate guarantees that inconsistency, instead
of information, is measured [Thi09]. This means, those inconsistency measures that
fulfill the postulate are able to quantify differences in inconsistencies but do not
differentiate between consistent knowledge bases, as all consistent knowledge bases
are assigned inconsistency value zero. This postulate is inherently the basis for
inconsistency measures.

Postulate (Consistency). I(K) = 0 iff K is consistent.

The postulate of Normalization states that an inconsistency value shall be between
zero and one [HK06, HK10]. This postulate is usually not regarded mandatory
for inconsistency measures [HK06, HK10]. However, it is favorable as it allows
comparability between different inconsistency measures due to normalization [Thi09].
An example of a normalized inconsistency measure is the mv-inconsistency measure
[XM12, Thi17b]. An example for a measure that does not satisfy Normalization is IMI

[HK08].

Postulate (Normalization). 0 f I(K) f 1.

Example. Let K = {a ' ¬a, b, c ' ¬b, d}. Then Imv(K) = 1/2, but IMI(K) = 2.

Monotony states that with the growth of a knowledge base, i.e., new formulae are
added, the inconsistency value cannot decrease [HK06, HK08, HK10, Thi09, GH11].
An example for an inconsistency measure that satisfies Monotony is the measure IMI

[HK08, Thi13]. Contrary, the exemplary measure Imv does not satisfy this postulate
[Thi17b].

Postulate (Monotony). If K ¦ K′ then I(K) f I(K′).

Example. Let K = {a ' ¬a, b} and K′ = {a ' ¬a, b, c ' ¬b, d}. Then IMI(K) = 1 and
IMI(K

′) = 2.

Example. Let K = {a'¬a} and K′ = {a'¬a, b}. Then Imv(K) = 1 and Imv(K
′) = 1/2.

The postulate of Free-Formula Independence says that consistent formulae do not add
any inconsistency to the overall inconsistency [HK06, HK08, HK10, Thi09, GH11].
This means removing them from the knowledge base should not change the incon-
sistency value of the new knowledge base according to the postulate. Again, the
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inconsistency measure IMI satisfies this postulate, while the measure Imv does not
satisfy Free-Formula Independence [HK08, Thi17b].

Postulate (Free-Formula Independence). If α ∈ Free(K) then I(K) = I(K \ {α}).

Example. Let K = {a ' ¬a, b}. Free(K) = {b}. IMI(K) = 1 and IMI(K \ {b}) = 1.
Imv(K) = 1/2 and Imv(K \ {b}) = 1.

Dominance says that the substitution of a consistent formula by a weaker formula
does not lead to an increase of the inconsistency value [HK06, HK08, HK10]. Ic is an
exemplary inconsistency measure that satisfies Dominance, while IMI does not satisfy
this postulate [MLJB11, Thi17b].

Postulate (Dominance). If α ⊭ § and α ⊨ β then I(K ∪ {α}) g I(K ∪ {β}).

Example. Let K = {a,¬a}, α = {a} and β = {a'a}. Ic(K∪{α}) = 1 and Ic(K∪{β}) =
1. IMI(K ∪ {α}) = 1, but IMI(K ∪ {β}) = 2.

The next three postulates are originally proposed by Thimm [Thi09]. The postulate
of Super-Additivity states that the inconsistency sum of two disjoint knowledge bases
is not greater than the inconsistency of the joint knowledge base. Again, IMI is an
exemplary inconsistency measure that satisfies Super-Additivity, while Imv does not
satisfy this postulate [Thi13, Thi17b].

Postulate (Super-Additivity). If K ∩ K′ = ∅ then I(K ∪ K′) g I(K) + I(K′)

Example. Let K = {a ' ¬a, c} and K′ = {b ' ¬c, d}. IMI(K ∪ K′) = 2 > IMI(K) +
IMI(K

′) = 1.

Example. Let K = {a ' ¬a, c} and K′ = {b ' ¬b, c}. Imv(K ∪ K′) = 2/3 < Imv(K) +
Imv(K

′) = 1.

Safe-Formula Independence says that removing a safe formula, meaning a consistent
formula which signature is disjoint from the signature in the knowledge base, does
not change the inconsistency value. This is a weaker requirement than Free-Formula
Independence, as every safe formula is, by definition, also a free formula. Here, IMI is
an exemplary inconsistency measure that satisfies Safe-Formula Independence, while
Imv does not satisfy this postulate [Thi13, Thi17b].

Postulate (Safe-Formula Independence). If α ∈ Safe(K) then I(K) = I(K \ {α}).

Example. Let K = {a ' ¬a, c}. Safe(K) = {c}. IMI(K) = IMI(K \ {c}) = 1, but
Imv(K) = 1/2 and Imv(K \ {c}) = 1.

The Penalty postulate states that adding an inconsistent formula to a knowledge
base increases the inconsistency of the knowledge base. Again, IMI is an exemplary
inconsistency measure that satisfies Penalty, while Imv does not satisfy this postulate
[Thi13, Thi17b].
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Postulate (Penalty). If α /∈ Free(K) then I(K) > I(K \ {α}).

Example. Let K = {a'¬a, c'¬c} and α = {c'¬c}. IMI(K) = 2 > IMI(K \ {α}) = 1,
but Imv(K) = Imv(K \ {α}) = 1.

The following five postulates focus especially on measures that use minimal in-
consistent subsets. MI-Separability states that the sum of the inconsistency values
of two knowledge bases that have “non-interfering” sets of minimal inconsistent
subsets is equal to the inconsistency value of their union [HK10]. Once again, IMI is
an exemplary inconsistency measure that satisfies MI-Separability, while Imv does not
satisfy this postulate [HK10, Thi17b].

Postulate (MI-Separability). If MI(K∪K′) = MI(K)∪MI(K′) and MI(K∩K′) = ∅ then
I(K ∪ K′) = I(K) + I(K′).

Example. Let K = {a,¬a} and K′ = {b,¬b}. IMI(K) = 1, IMI(K
′) = 1. IMI(K ∪ K′) =

IMI(K) + IMI(K
′) = 2. Imv(K) = 1 and Imv(K

′) = 1, but Imv(K ∪ K′) = 1.

MI-Normalization states that the inconsistency value of a minimal inconsistent
subset should be one [HK10]. It thus represents an atomic unit of inconsistency
measurement [Thi17b, Thi18]. As an example, the measure IMI satisfies the postulate,
whereas the measure IMIC does not satisfy MI-Normalization [HK10, Thi17b].

Postulate (MI-Normalization). If M ∈ MI(K) then I(M) = 1.

Example. Let K = {a,¬a, b}. MI(K) = {a,¬a}. Then, IMI({a,¬a}) = 1, but
IMIC({a,¬a}) = 1/2.

The postulate of Attenuation requires smaller minimal inconsistent sets to have
larger inconsistency values than larger inconsistent sets [MLJ11]. As examples, the
measure IMIC satisfies Attenuation, while IMI does not satisfy the postulate [Thi17b,
Thi18].

Postulate (Attenuation). M,M ′ ∈ MI(K) and |M | > |M ′| implies I(M) < I(M ′).

Example. Let K = {a,¬a, b ' ¬b}. M = {a,¬a}, M ′ = {b ' ¬b}. IMIC(M) = 1/2 and
IMIC(M

′) = 1, but IMI(M) = IMI(M
′) = 1

The counterpart of the Attenuation postulate is Equal Conflict. It states that minimal
inconsistent subsets with the same size should have the same inconsistency value
[MLJ11]. Again, the measure IMIC satisfies Equal Conflict, while IMI does not satisfy
the postulate [Thi17b, Thi18]. Examples for these measures are given above for
Attenuation.

Postulate (Equal Conflict). M,M ′ ∈ MI(K) and |M | = |M ′| implies I(M) = I(M ′).
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Almost Consistency states that, when the number of elements in a minimal incon-
sistent subset becomes infinitely large, the inconsistency value reaches zero in the
limit [MLJ11]. As examples again, the measure IMIC satisfies Almost Consistency,
while IMI does not satisfy the postulate [Thi17b, Thi18]. The definitions of both
inconsistency measures highlight the difference: While IMI considers the number of
minimal inconsistent subsets independently from its size, the measure IMIC takes the
size into account with the result that infinitely large minimal inconsistent subsets
reach inconsistency value zero in the limit.

Postulate (Almost Consistency). Let M1,M2, ... be a sequence of minimal inconsistent
sets Mi with limi→∞|Mi| = ∞ , then limi→∞I(Mi) = 0.

Example. Let K = {a1, ..., ai,¬(a1 ' ... ' ai)}. K is minimally inconsistent. Then,
limi→∞IMIC(K) = 0, while limi→∞IMI(K) = ∞.

The following postulates are not restricted to measures that use minimal inconsis-
tent subsets. The postulate of Contradiction is based upon Normalization. Contradiction
requires the inconsistency value to be maximal, meaning to be one, if all subsets
of the given knowledge base are inconsistent [MLJB11]. As examples, the measure
IDf

satisfies Contradiction, while the measure Imv does not satisfy this postulate
[MLJB11, Thi17b].

Postulate (Contradiction). I(K) = 1 iff for all ∅ ≠ K′ ¦ K,K′ ⊨ §.

Example. Let K = {a,¬a}. IDf
(K) = 1/2. Imv(K) = 1, but {a} ⊭ §.

Free-Formula Dilution is a weaker form of Free-Formula Independence and is originally
based upon Normalization. It does not require the inconsistency value to stay equal
when removing free formulae like Free-Formula Independence, but the value can
decrease [MLJB11]. As examples, IMI satisfies this postulate, while Imv does not
satisfy Free-Formula Dilution [Thi17b]. An example of how these two measures behave
with regard to free formulae is given above with the introduction of Free-Formula
Independence.

Postulate (Free-Formula Dilution). If α ∈ Free(K) then I(K) g I(K \ {α}).

Having two given knowledge bases with pairwise equivalent formulae, the pos-
tulate of Irrelevance of Syntax requires them to have the same inconsistency value
[GH11, Thi11]. Exemplary measures are IMI which satisfies this postulate, while the
measure Imv does not satisfy Irrelevance of Syntax [Thi17b].

Postulate (Irrelevance of Syntax). If K ≡b K
′ then I(K) = I(K′).

Example. Let K = {¬a,¬b, a} and K′ = {¬a,¬b, a ' (b ( ¬b)}. IMI(K) = IMI(K
′) = 1.

Imv(K) = 1/2, but Imv(K
′) = 1.

The Exchange postulate states that switching consistent parts of the knowledge base
with equivalent ones the inconsistency value does not change [Bes14]. The measure
Ic is an exemplary measure that satisfies Exchange, while Imv does not satisfy this
postulate [Thi17b].
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Postulate (Exchange). If K′ ⊭ § and K′ ≡b K
′′ then I(K ∪ K′) = I(K′ ∪ K′′).

Example. As in the previous example, let K = {¬a,¬b, a} and K′ = {¬a,¬b, a'(b(¬b)}.
Ic(K) = Ic(K

′) = 1. Imv(K) = 1/2, but Imv(K
′) = 1.

Adjunction Invariance requires that the set notation of a knowledge base, compared
to the conjunction notation of its formulae, has the same inconsistency value [Bes14].
Again, the measure Ic is an exemplary measure that satisfies Adjunction Invariance,
while IMI does not satify this postulate [Thi17b].

Postulate (Adjunction Invariance). I(K ∪ {α, β}) = I(K ∪ {α ' β}).

Example. Let K = {a, a ' a,¬a} and K′ = {a ' a ' a,¬a}. Then, Ic(K) = Ic(K
′) = 1.

IMI(K) = 2, but IMI(K
′) = 1.

A publication by Besnard and Grant focused on the difference between relative
and absolute measures which they define, on the one hand, as measuring the total
amount of inconsistency in a knowledge base, and, on the other hand, measuring
the proportion of a knowledge base that is inconsistent [BG20]. That is, why relative
measures build upon the postulate of Normalization. For relative measures they
defined two postulates.

First, Free-Formula Reduction is a postulate which states that adding a free formula to
an inconsistent knowledge base decreases the inconsistency value of the knowledge
base. The Df inconsistency measure satisfies Free-Formula Reduction, while the
measure Imv does not satisfy this postulate [BG20].

Postulate (Free-Formula Reduction). For α /∈ K, α is free for K, and I(K) ̸= 0, then
I(K ∪ {α}) < I(K).

Example. Let K = {a'¬a} and α = {a( a}. IDf
(K) = 1 and IDf

(K∪{α}) = 1/2, but
Imv(K) = Imv(K ∪ {α}) = 1.

Second, Relative Separability describes how inconsistency values behave when
splitting a knowledge base into two language-disjoint parts with different ratios. The
proportion of inconsistency for the whole knowledge base should be in between
the proportion of the two parts. The mv-inconsistency measure satisfies Relative
Separability, while the drastic measure Id does not satisfy this postulate [BG20].

Postulate (Relative Separability). If I(K) ≾ I(K′) and At(K) ∩ At(K′) = ∅, then
I(K) ≾ I(K ∪ K′) ≾ I(K′) where either ≾ is < in every instance or ≾ is = in every
instance.

Example. Let K = {a ' ¬a} and K′ = {b}. Then, Imv(K) = 1, Imv(K
′) = 0, and

Imv(K ∪ K′) = 1/2. Id(K) = 1, Id(K
′) = 0, but Id(K ∪ K′) = 1.

Some of these postulates are incompatible and other postulates imply further
postulates [Thi17b, Thi18]. This means that any inconsistency measure cannot fulfill
all of the described postulates. Furthermore, for each postulate, we can find an
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inconsistency measure that satisfies this postulate and contrary another inconsistency
measure, that does not satisfy this postulate. Examples have been given for each pos-
tulate. An overview of the compliance of a large number of inconsistency measures
is given by Thimm [Thi17b, Thi18].

3.2.2 Expressivity

Expressivity is an evaluation method for inconsistency measures that quantifies
to which extent a given inconsistency measure is capable to distinguish between
different inconsistent knowledge bases [Thi16a]. This method has been introduced
by Thimm [Thi16a] to extend and complement the evaluation of inconsistency mea-
sures beyond the described rationality postulates. The reason for this is that single
rationality postulates commonly focus on a single characteristic of inconsistency
[Thi16a]. Furthermore, the rationality of the proposed postulates has been discussed
by researchers, see for example, publications by Besnard [Bes14, Bes17].

Four expressivity characteristics have been proposed by Thimm [Thi16a]. They
evaluate how many different values an inconsistency measure can attain, with the
differentiation between four different dimensions of sub-classes of knowledge bases,
each focusing on a different characteristic of the size of the knowledge base.

Definition 16. The four subclasses for the set of all knowledge bases are defined as

Kv(n) = {K ∈ K | |At(K)| f n}

Kf (n) = {K ∈ K | |K| f n }

Kl(n) = {K ∈ K | ∀φ ∈ K : len(φ) f n}

Kp(n) = {K ∈ K | ∀φ ∈ K : |At(φ)| f n}.

These four subclasses are the set of all knowledge bases that mention at most a
certain number of different atoms Kv(n), the set of all knowledge bases that contain at
most a defined number of formulae Kf (n), the set of all knowledge bases that contain
only formulae with a maximal defined length Kl(n), and the set of all knowledge
bases that contain only formulae that mention a certain number of different atoms
each Kp(n). The expressivity characteristics are defined in the following [Thi16a].

Definition 17. Let I be an inconsistency measure and n > 0. Let α ∈ {v, f, l, p}. The
α-characteristic Cα(I, n) of I wrt. n is defined as Cα(I, n) = |{I(K) | K ∈ Kα(n)}|.

As examples, find the results for α-characteristics of the already introduced incon-
sistency measures in the following Table 1. Results are taken from Thimm [Thi16a].

With regard to expressivity, inconsistency measures should consider the size of
the knowledge base in a way, that larger knowledge bases with regard to these
four subclasses provide a larger variety of inconsistency values compared to the
given knowledge base. For example, results of the drastic measure Id with regard to
expressivity characteristics are not favorable, as it can only take two values, regardless
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Cv(I, n) Cf (I, n) Cl(I, n) Cp(I, n)

Id 2 2 2∗ 2
IMI ∞

(

n
+n/2,

)

+ 1 ∞∗ ∞

IMIC ∞ f Ψ(n)∗∗ ∞∗ ∞
Ic n+ 1 ∞ ∞∗ ∞
IDf

∞ f Ψ(n)∗∗ ∞∗ ∞
Imv n+ 1 ∞∗ ∞∗ ∞

Table 1: α-characteristics for some inconsistency measures for n g 1 (∗for n > 1,
∗∗ Ψ(n) is the number of monotone Boolean functions of n variables. Results
are taken from Thimm [Thi16a].

of the size of the knowledge base for all four α-characteristics. Contrary, all the other
measures, that are shown in Table 1, have maximal expressivity with regard to
Cl(I, n) and Cp(I, n) which is ideal.

With the definition of expressivity, it is possible to compare inconsistency measures
quantitatively in a form of an order relationship which is an essential part of the
described method [Thi16a]. Basis for a comparative analysis is given by the following
definition of the expressivity order [Thi16a].

Definition 18. An inconsistency measure I is at least as expressive as an inconsistency
measure I ′ wrt. a characteristic Cα(α ∈ {f, v, l, p}), denoted by I °α I ′ , if there is n0 ∈ N
such that for all n > n0, Cα(I, n) g Cα(I ′, n).

Two inconsistency measures I and I ′ are equally expressive wrt. Cα if both I °α I ′

and I ′ °α I and we write I ∼α I. If I °α I ′ but not I ∼α I, we write I {α I ′. It
means that I is strictly more expressive than I ′.

So, regarding the number of atoms within different knowledge bases, the following
example shows the expressivity order. Here, inconsistency measures within the same
set have the same expressivity. This means, Ic and Imv have the same expressivity,
which in turn is higher than the expressivity of the drastic measure and lower than
the expressivity of the measures IMI, IMIC , and IDf

.

Example. {IMI, IMIC , IDf
} {v {Ic, Imv} {v {Id}.

An overview of expressivity results for a large number of inconsistency measures
is given by Thimm [Thi16a, Thi17a, Thi18]. Within this overview the drastic measure
has least expressivity. This is not surprising as it can only take two values for all
four α-characteristics. The overview also shows that a large number of inconsistency
measures have maximal expressivity with regard to Cl(I, n) and Cp(I, n).

However, expressivity should not be the only evaluation for inconsistency mea-
sures, but should rather serve as an additional means to characterize inconsistency
measures besides rationality postulates [Thi16a].
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3.2.3 Complexity

Research on computational complexity of different inconsistency measures is rel-
atively sparse compared to the number of inconsistency measures that have been
proposed, but has gained some attention in recent years. With regard to the existing
literature, the following three decision problems are considered for the investigation
of the computational complexity of inconsistency measurement [MQX+10, XM12,
TW19, PG23a]. The first one is EXACTI which is about the decision whether a given
value x is the inconsistency value of a given knowledge base. UPPERI and LOWERI

are the problems of deciding whether a given value x is the upper or lower bound
of the inconsistency value of a given knowledge base. Furthermore, the functional
problem of determining the actual inconsistency value, VALUEI , is considered as
well for the analysis.

EXACTI Input: K ∈ K, x ∈ R∞
g0

Output: TRUE iff I(K) = x

UPPERI Input: K ∈ K, x ∈ R∞
g0

Output: TRUE iff I(K) f x

LOWERI Input: K ∈ K, x ∈ R∞
g0 \ {0}

Output: TRUE iff I(K) g x

VALUEI Input: K ∈ K
Output: The value of I(K)

Ma et al. analyze the complexity of an inconsistency measure based on 4-valued
logic which is a variant of the contension inconsistency measure [MQX+10]. They
prove that LOWERI is coNP-complete, while UPPERI is NP-complete, and EXACTI is
D
p
1-complete. Furthermore, VALUEI is FPNP[logn]-complete.
Xiao and Ma propose the mv-inconsistency measure and also analyze the com-

plexity of it [XM12]. They show that LOWERI is Σp
2-complete, while UPPERI is

Πp
2-complete, and EXACTI is D

p
2-complete. They further show that VALUEI is in

FP
Σp

2[logn].
Thimm and Wallner analyse and give a comprehensive overview on complexity

of several inconsistency measures [TW19]. An overview of some of the introduced
inconsistency measures with results of LOWERI , UPPERI , EXACTI , and VALUEI is
given in Table 2. Overall, the measures Id and Ic are within the first level of the
polynomial hierarchy, the measure Imv is on the second level of the polynomial
hierarchy, and the measures IMI and IMIC are beyond the polynomial hierarchy. This
shows that there can be considerable differences in computational complexity with
regard to different inconsistency measures.

In recent times, there have been more publications that analyze computational
complexity of inconsistency measures. Parisi and Grant investigate several inconsis-
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EXACTI UPPERI LOWERI VALUEI

Id D
p
1 ∩ coD

p
1 NP-c coNP-c FNP

IMI C=NP-h CNP-c CNP-c #·coNP-c
IMIC C=NP-h CNP-h CNP-h FP

#·coNP

Ic D
p
1-c NP-c coNP-c FP

NP[logn]-c
Imv D

p
2-c Πp

2-c Σp
2-c FP

Σp
2[logn]

Table 2: Computational complexity of the introduced inconsistency measures. The
ending “-c” means completeness. Results are taken from [MQX+10, XM12,
TW19].

tency measures for databases and also give complexity results for these measures
[PG20, PG23a, PG23b].

4 Definition and Evaluation of a new Inconsistency Measure

First, this section gives a formal definition of the new inconsistency measure. Based
on the state of research on evaluation methods for inconsistency measurement,
the new inconsistency measure is then analyzed with regard to the 20 described
rationality postulates. After that, the analysis focuses on expressivity and gives
results for the α-characteristics. Finally, the computational complexity is analyzed
for the three decision problems of, whether a given value is the lower bound, upper
bound, or the actual value of the inconsistency value of a given knowledge base and
for the functional problem of determining the actual inconsistency value.

4.1 Definition

The new inconsistency measure multiplies, for each atom a of the underlying lan-
guage, the number of subsets from which a can be entailed with the number of
subsets from which the negation of a can be entailed. The inconsistency measure
is then the sum of these products for all atoms a of the underlying language. A
definition is given in the following. We call this measure the entailment inconsistency
measure Ie.

Definition 19. For each a ∈ At let Ma(K) = {M ¦ K | M ⊨ a} and M¬a(K) = {M ¦
K | M ⊨ ¬a}.

The entailment inconsistency measure is defined as Ie(K) =
∑

a∈At |Ma(K)| · |M¬a(K)|.

Example. Let K = {a ' ¬a, b}. Then Ma(K) = {{a ' ¬a}, {a ' ¬a, b}}, M¬a(K) =
{{a ' ¬a}, {a ' ¬a, b}} and Mb(K) = {{b}, {a ' ¬a}, {a ' ¬a, b}}. Thus, Ie(K) = 4.

With this definition the new measure Ie does not only consider inconsistent formu-
lae or minimal inconsistent sets, but focuses on which atoms cause the inconsistency
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in the knowledge base. Thus, the measure is also able to take into account hidden con-
flicts, which can arise in formulae, and which are not part of a minimal inconsistent
set. These are described by De Bona and Hunter as so-called “iceberg inconsistencies”
[DH17]. The following example is taken from their publication [DH17].

Example. Let K = {¬s ' ¬g, (s ( m) ' g,¬m}. MI(K) = {{¬s ' ¬g, (s ( m) ' g}}.
Thus, Free(K) = {¬m}.

The example shows that ¬m does not belong to any minimal inconsistent subset.
However, we can argue that this formula of the knowledge base takes part in the
inconsistencies as well. That is because both m and ¬m can be entailed with the
formulae given. In contrast to that, with the inconsistency measure Ie, the part of this
atom to the overall inconsistency is taken into account.

Example. Again, let K = {¬s ' ¬g, (s (m) ' g,¬m}.
Mm(K) = {{¬s ' ¬g, (s (m) ' g}, {¬s ' ¬g, (s (m) ' g,¬m}}, so |Mm(K)| = 2.
M¬m(K) = {{¬m}, {¬m, (s(m)' g}, {¬m,¬s'¬g}, {¬s'¬g, (s(m)' g,¬m}},

so |M¬m(K)| = 4.

Having defined the entailment inconsistency measure Ie, the next section evaluates
this new inconsistency measure.

4.2 Evaluation

Results of the evaluation of the entailment inconsistency measure with regard to
rationality postulates, expressivity and computational complexity are given in this
section.

4.2.1 Rationality Postulates

The following subsection provides results for the compliance of the proposed in-
consistency measure Ie with regard to the 20 introduced rationality postulates. For
reasons of better readability, the definition of each postulate is given again, directly
followed by the result of the entailment inconsistency measure for this postulate. An
overview of all results is given in Table 3.

CO NO MO IN DO SA SI PY MI MN
✓ x ✓ x x ✓ x ✓ x x
AT EC AC CD FD SY EX AI FR RS
x x x x ✓ x x x x x

Table 3: Compliance of the inconsistency measure with the rationality postulates
(✓reads “holds” and x reads “fails”).

Postulate (Consistency, CO). I(K) = 0 iff K is consistent.
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Proposition. The entailment inconsistency measure satisfies Consistency.

Proof. Either |Ma(K)| = 0 or |M¬a(K)| = 0 ∀a ∈ At iff K is consistent. Then Ie(K) = 0.

Postulate (Normalization, NO). 0 f I(K) f 1.

Proposition. The entailment inconsistency measure does not satisfy Normalization.

Example. K = {a,¬a}. Ma = {{a}, {a,¬a}},M¬a = {{¬a}, {a,¬a}}, |Ma| =
2, |M¬a| = 2. So Ie(K) = 4.

Postulate (Monotony, MO). If K ¦ K′ then I(K) f I(K′).

Proposition. The entailment inconsistency measure satisfies Monotony.

Proof. This is shown further below with the proof of Super-Additivity. Super-Additivity
implies Monotony [Thi17b]. Thus, as Ie satisfies Monotony, Super-Additivity is satisfied by
the entailment inconsistency measure.

Postulate (Free-Formula Independence, IN). If α ∈ Free(K) then I(K) = I(K \ {α}).

Proposition. The entailment inconsistency measure does not satisfy Free-Formula Inde-
pendence.

Example. K = {a ' ¬a, a}. a ∈ Free(K). Ma = {{a ' ¬a}, {a}, {a ' ¬a, a}}, M¬a =
{{a ' ¬a}, {a ' ¬a, a}}. Ie(K) = 6 but Ie(K \ {a}) = 1.

Postulate (Dominance, DO). If α ⊭ § and α ⊨ β then I(K ∪ {α}) g I(K ∪ {β}).

Proposition. The entailment inconsistency measure does not satisfy Dominance.

Example. K = {a,¬a}, α = {a}, β = {a ' a}. α ⊭ § and α ⊨ β but Ie(K ∪ {α}) = 4
and Ie(K ∪ {β}) = 24.

Postulate (Super-Additivity, SA). If K ∩ K′ = ∅ then I(K ∪ K′) g I(K) + I(K′)

Proposition. The entailment inconsistency measure satisfies the postulate of Super-Additivity.

Proof. By monotonicity of classical entailment, it follows that if M ⊨ a then M ∪M ′ ⊨ a
for any M ′. As a consequence, the number of subsets from which a can be concluded cannot
decrease in a joint knowledge base for any two knowledge bases K and K′ with K ∩ K′ = ∅,
thus |Ma(K)|+ |Ma(K

′)| f |Ma(K ∪ K′)| ∀a ∈ At(K ∪ K′).

Ie(K) + Ie(K
′) =

∑

a∈At(K)

|Ma(K)| · |M¬a(K)|+
∑

a∈At(K′)

|Ma(K
′)| · |M¬a(K

′)|

f
∑

a∈At(K)∪At(K′)

(|Ma(K)|+ |Ma(K
′)|) · (|M¬a(K)|+ |M¬a(K

′)|)

f
∑

a∈At(K)∪At(K′)

|Ma(K ∪ K′)| · |M¬a(K ∪ K′)|

= Ie(K ∪ K)
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Note that from the first to the second line of the proof, the following inequality is used:

|Ma(K)| · |M¬a(K)|+ |Ma(K
′)| · |M¬a(K

′)|

f (|Ma(K)|+ |Ma(K
′)|) · (|M¬a(K)|+ |M¬a(K

′)|)

= |Ma(K)| · |M¬a(K)|+ |Ma(K
′)| · |M¬a(K

′)|+ |Ma(K)| · |M¬a(K
′)|+

|Ma(K
′)| · |M¬a(K)|

Postulate (Safe-Formula Independence, SI). If α ∈ Safe(K) then I(K) = I(K \ {α}).

Proposition. The entailment inconsistency measure does not satisfy Safe-Formula Inde-
pendence.

Example. K = {a ' ¬a, b}. Safe(K) = {b}. Ie(K) = 10, but Ie(K \ {b}) = 1.

Postulate (Penalty, PY). If α /∈ Free(K) then I(K) > I(K \ {α}).

Proposition. The entailment inconsistency measure satisfies Penalty.

Proof. α /∈ Free(K), so ∃a ∈ At(α) with |Ma(α)| > 0 and |M¬a(α)| > 0. This is because
every formula, which is not a free formula, causes some kind of conflict, as it is part of at least
one minimal inconsistent set. With that Ie(K ∪ α) > Ie(K) for any K.

Postulate (MI-Separability, MI). If MI(K ∪ K′) = MI(K) ∪MI(K′) and MI(K ∩ K′) = ∅
then I(K ∪ K′) = I(K) + I(K′).

Proposition. The entailment inconsistency measure does not satisfy MI-Separability.

Example. K = {a'¬a' c} and K′ = {b'¬b'¬c}. MI(K∪K′) = {K,K′} = {a'¬a'
c, b ' ¬b ' ¬c}. MI(K) = K, MI(K′) = K′ but I(K ∪ K′) = 27 and I(K) + I(K′) = 4.

Postulate (MI-Normalization, MN). If M ∈ MI(K) then I(M) = 1.

Proposition. The entailment inconsistency measure does not satisfy MI-Normalization.

Example. K = {a,¬a}. K is minimally inconsistent. |Ma| = 2, |M¬a| = 2. So Ie(K) = 4.

Postulate (Attenuation, AT). M,M ′ ∈ MI(K) and |M | > |M ′| implies I(M) < I(M ′).

Proposition. The entailment inconsistency measure does not satisfy Attenuation.

Example. K = {a,¬a} and K′ = {a ' ¬a}. K and K′ are minimally inconsistent.
|K| > |K′| but Ie(K) = 4 and Ie(K

′) = 1.

Postulate (Equal Conflict, EC). M,M ′ ∈ MI(K) and |M | = |M ′| implies I(M) =
I(M ′).

Proposition. The entailment inconsistency measure does not satisfy Equal Conflict.

Example. K = {a'¬a} and K′ = {a'¬a' b'¬b}. K and K′ are minimally inconsistent.
|K| = |K′| = 1 but Ie(K) = 1 and Ie(K

′) = 2.
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Postulate (Almost Consistency, AC). Let M1,M2, ... be a sequence of minimal inconsistent
sets Mi with lim

i→∞
|Mi| = ∞ , then lim

i→∞
I(Mi) = 0.

Proposition. The entailment inconsistency measure does not satisfy Almost Consistency.

Example. K = {a1, ..., ai,¬(a1 ' ... ' ai)}, K is minimally inconsistent. lim
i→∞

Ie(K) =

lim
i→∞

∑

ai
|Mai(K)| · |M¬ai(K)| = lim

i→∞

∑

ai
22i = ∞.

Postulate (Contradiction, CD). I(K) = 1 iff for all ∅ ≠ K′ ¦ K,K′ ⊨ §.

Proposition. The entailment inconsistency measure does not satisfy Contradiction.

Example. K = {a ' ¬a ' b ' ¬b}. With that Ie(K) = 2 but for all ∅ ≠ K′ ¦ K,K′ ⊨ §.

Postulate (Free-Formula Dilution, FD). If α ∈ Free(K) then I(K) g I(K \ {α})

Proposition. The entailment inconsistency measure satisfies Free-Formula Dilution.

Proof. Ie satisfies Monotony. Monotony implies Free-Formula Dilution [Thi17b]. Thus,
Ie satisfies Free-Formula Dilution.

Postulate (Irrelevance of Syntax, SY). If K ≡b K
′ then I(K) = I(K′).

Proposition. The entailment inconsistency measure does not satisfy Irrelevance of Syntax.

Example. K = {a ' ¬a} and K′ = {a ' ¬a ' b ' ¬b}. Then K ≡b K
′ but Ie(K) = 1 and

Ie(K
′) = 2.

Postulate (Exchange, EX). If K′ ⊭ § and K′ ≡b K
′′ then I(K ∪ K′) = I(K′ ∪ K′′).

Proposition. The entailment inconsistency measure does not satisfy Exchange.

Example. K = {¬a}, K′ = {a}, and K′′ = {a, a ' a}. Then K′ ⊭ § and K′ ≡b K
′′ but

Ie(K ∪ K′) = 4 and Ie(K ∪ K′′) = 24.

Postulate (Adjunction Invariance, AI). I(K ∪ {α, β}) = I(K ∪ {α ' β}).

Proposition. The entailment inconsistency measure does not satisfy Adjunction Invari-
ance.

Example. K = {¬a, a} and K′ = {¬a ' a}. Then Ie(K) = 4 but Ie(K
′) = 1.

Postulate (Free-Formula Reduction, FR). For α /∈ K, α is free for K, and I(K) ̸= 0, then
I(K ∪ {α}) < I(K).

Proposition. The entailment inconsistency measure does not satisfy Free-Formula Reduc-
tion.

Example. K = {¬a ' a} and α = {b}. With that Ie(K) = 1 and Ie(K ∪ α) = 4.
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Postulate (Relative Separability, RS). If I(K) ≾ I(K′) and At(K) ∩ At(K′) = ∅, then
I(K) ≾ I(K ∪ K′) ≾ I(K′) where either ≾ is < in every instance or ≾ is = in every
instance.

Proposition. The entailment inconsistency measure does not satisfy Relative Separability.

Example. K = {¬a ' a} and K′ = {b,¬b}. With that Ie(K) = 1, Ie(K
′) = 4 and

Ie(K ∪ K′) = 16 + 36 = 52.

Overall, the newly proposed entailment inconsistency measure Ie satisfies five of
the 20 described rationality postulates. This number seems to be quite low. E.g., the
measure IMI satisfies 12 of 18 rationality postulates (excluding the two last rationality
postulates Free-Formula Reduction and Relative Separability). However, it must be
noted that rationality postulates might be not an appropriate method to characterize
inconsistency measures alone which has been discussed in publications, e.g., by
Besnard and Thimm [Bes14, Thi18]. For example, the drastic inconsistency measure
also satisfies 12 of the 20 postulates. This has been shown for 18 rationality postulates
by Thimm [Thi17b] and can be easily verified for the remaining two postulates of Free-
Formula Reduction and Relative Separability. These results of the drastic measure seems
“better” compared to the new inconsistency measure Ie, but the drastic measure itself
is obviously not highly meaningful as it differentiates only between consistent and
inconsistent knowledge bases.

Nevertheless, there are some reasons why the inconsistency measures perform
relatively poor with regard to rationality postulates. First, the entailment inconsis-
tency measure is not built upon minimal inconsistent sets, which is something that
some rationality postulates, like MI-Separability, MI-Normalization, Attenuation, Equal
Conflict, or Almost Consistency, implicitly require. As a consequence, these postulates
are not satisfied by the entailment inconsistency measure Ie.

Besides that, the inconsistency measure is not based upon Normalization, as it can
take values greater than one. This is as well a prerequisite for a number other ratio-
nality postulates, like Contradiction, Free-Formula Reduction, and Relative Separability.
Nevertheless, the entailment inconsistency measure satisfies Free-Formula Dilution,
which, originally, also was defined based on normalized measures. But looking at the
definition, we can see that it is well applicable for measures that are not normalized.

Thus, it seems that the existing rationality postulates lack the ability to entirely
describe the characteristics of the newly proposed inconsistency measure. With
these results the question arises, if there are possible new rationality postulates that
capture the characteristic of the proposed inconsistency measure better than the
already described rationality postulates.

We could think of a weaker form of Safe-Formula Independence. Like the weaker form
of Free-Formula Independence, which is Free-Formula Dilution, a rationality postulate
called Safe-Formula Dilution could be introduced. This postulate does not require that
the inconsistency value stays the same when removing safe formulae, but allows
the inconsistency value to decrease. As every safe formula is also a free formula,
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an inconsistency measure which satisfies Free Formula-Dilution, also satisfies Safe-
Formula Dilution. This can be applied to the entailment inconsistency measure Ie
as well, but in the following an alternative proof is given for the satisfaction of this
postulate.

Postulate (Safe-Formula Dilution, SD). If α ∈ Safe(K) then I(K) g I(K \ {α}).

Proposition. The entailment inconsistency measure satisfies Safe-Formula Dilution.

Proof. Let K be a knowledge base and α ∈ Safe(K). ∀a ∈ At(K \ {α}), we have Ma(K) g
Ma(K \ {α}) because of monotonicity of classical entailment.

Ie(K) =
∑

a∈At(K)

|Ma(K)| · |M¬a(K)|

=
∑

a∈At(K\{α})

|Ma(K)| · |M¬a(K)|+
∑

a∈At(α)

|Ma(K)| · |M¬a(K)|

g
∑

a∈At(K\{α})

|Ma(K)| · |M¬a(K)|

g
∑

a∈At(K\{α})

|Ma(K \ {α})| · |M¬a(K \ {α})|

= Ie(K \ {α})

This postulate captures a certain characteristic of the entailment inconsistency mea-
sure, as safe formulae increase the inconsistency value by monotonicity of classical
entailment and on the contrary by removing them decrease the inconsistency value.

A further characteristic, that is worth being analyzed in more detail, is the behavior
of the entailment inconsistency measure towards Adjunction Invariance. It is arguable,
if it should be a favorable feature that an inconsistency measure recognizes the
difference between {a, b} and {a' b}. There are inconsistency measures which do not
recognize the difference at all (by that satisfying Adjunction Invariance) and others that
show an incoherent behavior with regard to this difference [Thi16a]. An example for
the latter are the measures IMI, IMIC , IMIC , and IDf

. In the publication by Thimm, the
different behavior is described as '-Indifference, '-Penalty and '-Mitigation with '-
Indifference being the same as Adjunction Invariance, '-Penalty meaning I(K∪{a, b}) f
I(K ∪ {a ' b}), and '-Mitigation meaning I(K ∪ {a, b}) g I(K ∪ {a ' b}). With
these definitions, the question arises how the entailment inconsistency measure
behaves with regard to '-Penalty and '-Mitigation as it does not satisfy '-Indifference.
The following example, taken from Thimm [Thi16a], shows that, like the before-
mentioned inconsistency measures, the entailment inconsistency measure does not
satisfy neither '-Penalty nor '-Mitigation. Adding the conjunction {a ' b} to the
knowledge base leads to a higher value compared to separate formulae {a, b}. For
adding {a'¬a,¬¬a} and {a'¬a'¬¬a}, it is the other way round: adding separate
formulae leads here to a higher value.
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Example. Let K = {a,¬a}, then Ie(K) = 4,
Ie(K ∪ {a, b}) = 16, but Ie(K ∪ {a ' b}) = 24,
Ie(K ∪ {a ' ¬a,¬¬a}) = 168, but Ie(K ∪ {a ' ¬a ' ¬¬a}) = 36.

As a final remark regarding rationality postulates, it should be mentioned that
a further analysis might include a normalized entailment inconsistency measure.
As proposed by Besnard and Grant [BG20], measures that do not originally satisfy
Normalization can be normalized so that they are relative measures. This could be
done with the proposed measure as well, see the following definition of a relative
entailment inconsistency measure Ir

e . The upper bound of the measure is defined by
the number of all subsets of the knowledge base from which both each atom and its
negation could be entailed.

Definition 20. Ir
e (K) =

∑
a∈At(K) |Ma(K)|·|M¬a(K)|

|At(K)|(2|K|−1)2

Such a normalized measure satisfies Normalization and might also satisfy those
rationality postulates that are based upon Normalization. A detailed analysis of
satisfying rationality postulates goes beyond scope of this bachelor thesis and might
be a topic for future research.

4.2.2 Expressivity

The results regarding α-characteristics for the new inconsistency measure are shown
in Table 4. Proofs for the results are given in the following.

Cv(I, n) Cf (I, n) Cl(I, n) Cp(I, n)

∞ ∞ ∞∗ ∞

Table 4: α-characteristics of the new inconsistency measure for n g 1 (∗for n > 1).

Proposition. Cv(I, n) = ∞.

Proof. For |At(K)| = 1 consider the knowledge bases Ki = {¬a, a, a ' a, ...,
∧i

j=1 a} for
i ∈ N.

The subsets that entail ¬a are all subsets of K \ {¬a}, each combined by union with {¬a}.
Thus, |M¬a(Ki)| = 2i.

The subsets that entail a are all subsets of the knowledge base excluding the empty set and
{¬a}. Thus, |Ma(Ki)| = 2i+1 − 2.

With this I(Ki) = |Ma| · |M¬a| = 22i+1−2i+1 and lim
i→∞

I(Ki) = ∞. So, Cv(I, n) = ∞.

Proposition. Cf (I, n) = ∞.

Proof. For |K| = 1 consider the knowledge bases Ki = {¬a1 'a1 ' ...'¬ai 'ai} for i ∈ N.
Then |M¬ai(Ki)| = 1 and |Mai(Ki)| = 1. With this I(Ki) =

∑

i |Mai | · |M¬ai | =
∑

i 1 = i and lim
i→∞

I(Ki) = ∞. Thus Cf (I, n) = ∞.
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Proposition. Cl(I, n) = ∞ for n > 1.

Proof. Cl(I, 1) = 1 is trivial.
For len(φ) > 1 consider the knowledge bases Ki = {a1,¬a1, ..., ai,¬ai} for i ∈ N.
The subsets that entail ¬a are all subsets of the knowledge base Ki \ {¬ai}, which number

is 22i−1, combined with {¬ai}. Then |M¬ai(Ki)| = 22i−1.
The combination of subsets which entail ai are calculated in analogy to the subsets that

entail ¬ai. Thus, |Mai(Ki)| = 22i−1.
With this I(Ki) = 24i−2i and lim

i→∞
I(Ki) = ∞. Thus Cl(I, n) = ∞.

Proposition. Cp(I, n) = ∞.

Proof. For |At(φ)| = 1 consider the same knowledge bases as before Ki = {a1,¬a1, ..., ai,¬ai}
for i ∈ N. Then, |M¬ai(Ki)| = 22i−1 and |Mai(Ki)| = 22i−1. With this I(Ki) = 24i−2i
and lim

i→∞
I(Ki) = ∞. Thus Cp(I, n) = ∞.

The results show that the proposed inconsistency measure Ie has maximal expres-
sivity values with regard to all four expressivity characteristics. This means, that
this newly proposed inconsistency measure is able to distinguish very well inconsis-
tency of different knowledge bases with regard to their size(s). With these results,
the entailment inconsistency measure is comparable to the measure IΣ

dalal because
this measure also has maximal expressivity with regard to all four α-characteristics
[Thi16a].

The following example shows the expressivity order the introduced inconsistency
measures as well as the entailment inconsistency measure. Inconsistency measures
in the same set have the same expressivity.

Example. Expressivity orders for the introduced inconsistency measures:
{IMI, IMIC , IDf

, Ie} {v {Imv, Ic} {v {Id}.
{Imv, Ic, Ie} {f {IMI} {f {Id}.
{IMI, IMIC , IDf

, Imv, Ic, Ie} {l {Id}.
{IMI, IMIC , IDf

, Imv, Ic, Ie} {p {Id}.

For all four expressivity characteristics, the entailment inconsistency measure is
within the set with the highest expressivity. Thus, it performs better than the other
shown measures in the example because each of these measures do not have maximal
expressivity for at least one α- characteristic.

4.2.3 Complexity

The results of the computational complexity analysis is shown in Table 5. Proofs for
the results are given in the following.

Complexity is shown for the problem variant of determining the subsets from
which an atom can be entailed. The reason for this is, that for the problem of
determining the inconsistency value of a knowledge base, this variant problem has
to be solved twice for each atom. So, the overhead compared to the variant problem
is linear, and is therefore omitted in the further analysis.
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EXACTI UPPERI LOWERI VALUEI

C=NP CNP CNP #·coNP

Table 5: Computational complexity of the proposed inconsistency measure. All
statements are membership statements.

Proposition. VALUEI is in #·coNP.

Proof. We recall, #·C is the class of counting problems with witness function w, which
meets the following conditions: for every input string x, every y ∈ w(x) is polynomially
bounded by x and the decision problem of deciding y ∈ w(x) for given strings x and y is
in C. In this case, the input x is the given knowledge base K and the witness function w
is Ma(K) = {M ¦ M ⊨ a}. The size of all subsets M , so especially M ∈ Ma(K), is
polynomially bounded by the size of K as each formula of the knowledge base can appear
maximally once in a subset: len(M) f len(K). Deciding M ∈ Ma means deciding M ⊨ a,
which is equivalent to deciding whether M ∪ ¬a is unsatisfiable for a given subset M . This
problems corresponds to UNSAT which is in coNP. So, the underlying decision problem is in
coNP. As a result, VALUEI is in #·coNP.

Proposition. UPPERI and LOWERI are in CNP, EXACTI is in C=NP.

Proof. Membership follows from the fact, that there is a problem in B ∈ coNP s.t. (K,M)
is a yes instance iff M ⊨ a as this is equivalent to M ∪ ¬a, with M ∈ Ma(K) and
Ma(K) = {M ¦ K | M ⊨ a}. For a given instance of LOWERI , i.e., a knowledge base
K and an integer k, (K, k) is a yes instance of LOWERI (EXACTI ), iff there are at least
(exactly) k subsets M ∈ Ma(K) iff Ck

M (K,M) ∈ B. The size of any subset M ∈ Ma is
polynomially bounded by the size of K as each formula of the knowledge base can appear
maximally once in a subset: len(M) f len(K). Thus, LOWERI is in CNP and EXACTI is
in C=NP.

Membership for UPPERI follows from the fact, that an instance (K, k) is a yes instance of
UPPERI iff (K, k + 1) is a no instance of LOWERI . This, in turn, can be characterized as a
no instance of a problem in CNP. CNP is closed under complement, i.e., coCNP = CNP.

The author of this text was not able to develop a substractive reduction using a
problem already known to be #·coNP-complete for the proof of hardness and thus
completeness for the complexity results. Thus, this remains an open issue which
should be addressed in future work.

The results show that the computational complexity of the proposed inconsistency
measure is likely beyond the polynomial hierarchy. Although, the definition of the
new measure seems “simple”, the computational complexity is very high. A reason
might be that the measure involves counting certain structures, and that the number
of these structures is exponential to the size of the knowledge base, see also Section
4.2.2.

The new inconsistency measure is, with regard to computational complexity, com-
parable to the measure IMI. This measure is beyond the polynomial hierarchy as
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well and shows the same complexity membership results for the three decision
problems and the functional problem [TW19]. Also, the results support the observa-
tion about the tendency of measures with high expressivity values towards higher
computational complexity [TW19].

5 Summary and Outlook

The objective of this bachelor thesis was to define a new inconsistency measure that
is based on inferences in subsets and evaluate that new inconsistency measure with
regard to rationality postulates, expressivity and computational complexity.

The new entailment inconsistency has been defined. This measure quantifies
inconsistency by multiplying the subsets from which an atom and its negation can
be entailed. The product is summed up for all atoms in the knowledge base. The
advantage of this measure is that “hidden” conflicts, which are conflicts, that are not
part of a minimal inconsistent subsets, can be measured.

The evaluation of the entailment inconsistency measure with regard to rationality
postulates shows that only five of in total 20 rationality postulates can be satisfied.
These results are inferior compared to other inconsistency measures. The reasons
have been discussed: Many rationality postulates implicitly require Normalization or
taking minimal inconsistent subsets into account. Not being a normalized measure
and not building upon minimal inconsistent subsets are thus reasons that lead to the
result of not complying with these postulates. Future work could include an analysis
of a normalized measure built upon the entailment inconsistency measure which
might satisfy a higher number of rationality postulates.

Although performing relatively poor with regard to rationality postulates, the
entailment inconsistency measure shows very good results with regard to expres-
sivity: For all four α-characteristics the expressivity is maximal. So, the entailment
inconsistency measure is very well able to distinguish between knowledge bases
of different sizes. With these results of maximal expressivity, it is superior to many
other inconsistency measures.

Regarding computational complexity the results show that the entailment inconsis-
tency measure is computationally demanding. Complexity of the measure is beyond
the third level of the polynomial hierarchy with regard of the decision problems
of the upper/lower and exact bound and the functional problem of computing the
actual inconsistency value. One reason for this is the underlying problem of counting
certain structures in knowledge bases. The result of high computational complexity
leads to difficulties in using the entailment measure in practical use cases. Proofs
for hardness and completeness are still an open issue which should be addressed in
future work.

26



References

[ARSO15] Meriem Ammoura, Badran Raddaoui, Yakoub Salhi, and Brahim
Oukacha. On measuring inconsistency using maximal consistent sets.
In Sébastien Destercke and Thierry Denoeux, editors, Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, pages 267–276,
Cham, 2015. Springer International Publishing.

[ASOR17] Meriem Ammoura, Yakoub Salhi, Brahim Oukacha, and Badran Rad-
daoui. On an mcs-based inconsistency measure. International Journal of
Approximate Reasoning, 80:443–459, 2017.

[Bes14] Philippe Besnard. Revisiting postulates for inconsistency measures. In
Eduardo Fermé and João Leite, editors, Logics in Artificial Intelligence,
pages 383–396, Cham, 2014. Springer International Publishing.

[Bes16] Philippe Besnard. Forgetting-based inconsistency measure. In Steven
Schockaert and Pierre Senellart, editors, Scalable Uncertainty Manage-
ment, pages 331–337, Cham, 2016. Springer International Publishing.

[Bes17] Philippe Besnard. Basic postulates for inconsistency measures. In Ab-
delkader Hameurlain, Josef Küng, Roland Wagner, and Hendrik Decker,
editors, Transactions on Large-Scale Data- and Knowledge-Centered Systems
XXXIV: Special Issue on Consistency and Inconsistency in Data-Centric
Applications, pages 1–12, Berlin, Heidelberg, 2017. Springer Berlin Hei-
delberg.

[BG20] Philippe Besnard and John Grant. Relative inconsistency measures.
Artificial Intelligence, 280:103231, 2020.

[DGHK19] Glauber De Bona, John Grant, Anthony Hunter, and Sébastien
Konieczny. Classifying inconsistency measures using graphs. Jour-
nal of Artificial Intelligence Research, 66:937–987, 2019.

[DH17] Glauber De Bona and Anthony Hunter. Localising iceberg inconsisten-
cies. Artificial Intelligence, 246:118–151, 2017.

[DHK05] Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. Subtractive
reductions and complete problems for counting complexity classes.
Theoretical Computer Science, 340(3):496–513, 2005. Mathematical Foun-
dations of Computer Science 2000.

[GH91] Dov Gabbay and Anthony Hunter. Making inconsistency respectable:
a logical framework for inconsistency in reasoning, part 1. In Philippe
Jorrand and Jozef Kellemen, editors, Fundamentals of Artificial Intelligence
Research, International Workshop (FAIR 91), pages 19–32. Springer, 1991.

27



[GH93] Dov Gabbay and Anthony Hunter. Making inconsistency respectable:
Part 2 — meta-level handling of inconsistency. In Michael Clarke,
Rudolf Kruse, and Serafín Moral, editors, Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty, pages 129–136, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

[GH08] John Grant and Anthony Hunter. Analysing inconsistent first-order
knowledgebases. Artificial Intelligence, 172(8):1064–1093, 2008.

[GH11] John Grant and Anthony Hunter. Measuring consistency gain and
information loss in stepwise inconsistency resolution. In Weiru Liu,
editor, Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
pages 362–373, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[GH13] John Grant and Anthony Hunter. Distance-based measures of incon-
sistency. In Linda C. van der Gaag, editor, Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, pages 230–241, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[GH17] John Grant and Anthony Hunter. Analysing inconsistent information
using distance-based measures. International Journal of Approximate
Reasoning, 89:3–26, 2017. Special Issue on Theories of Inconsistency
Measures and Their Applications.

[GH23] John Grant and Anthony Hunter. Semantic inconsistency measures
using 3-valued logics. International Journal of Approximate Reasoning,
156:38–60, 2023.

[Gra20] John Grant. Measuring inconsistency in generalized propositional logic.
Logica Universalis, 14(3):331–356, September 2020.

[Gra23] John Grant. Measuring inconsistency in generalized propositional logic
extended with nonunary operators. Logica Universalis, 17(3):373–404,
September 2023.

[HDBGK18] Anthony Hunter, Glauber De Bona, John Grant, and Sébastien
Konieczny. Towards a unified framework for syntactic inconsistency
measures. Proceedings of the AAAI Conference on Artificial Intelligence, 32,
2018.

[HK04] Anthony Hunter and Sébastien Konieczny. Approaches to measuring
inconsistent information. In Leopoldo Bertossi, Anthony Hunter, and
Torsten Schaub, editors, Inconsistency Tolerance, pages 191–236, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[HK06] Anthony Hunter and Sébastien Konieczny. Shapley inconsistency val-
ues. In Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2006, pages 249–259, 2006.

28



[HK08] Anthony Hunter and Sébastien Konieczny. Measuring inconsistency
through minimal inconsistent sets. In Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning, KR
2008, pages 358–366, 2008.

[HK10] Anthony Hunter and Sébastien Konieczny. On the measure of conflicts:
Shapley inconsistency values. Artificial Intelligence, 174(14):1007–1026,
2010.

[Hun00] Anthony Hunter. Reasoning with contradictory information using
quasi-classical logic. Journal of Logic and Computation, 10(5):677–703,
October 2000.

[Hun02] Anthony Hunter. Measuring inconsistency in knowledge via quasi-
classical models. In Eighteenth National Conference on Artificial Intelli-
gence, pages 68––73, USA, 2002. American Association for Artificial
Intelligence.

[Hun03] Anthony Hunter. Evaluating significance of inconsistencies. In Georg
Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, pages
468–478, 2003.

[Hun04] Anthony Hunter. Logical comparison of inconsistent perspectives using
scoring functions. Knowledge and Information Systems, 6:528–543, 2004.

[Hun06] Anthony Hunter. How to act on inconsistent news: Ignore, resolve, or
reject. Data & Knowledge Engineering, 57(3):221–239, 2006.

[HV95] Lane Hemaspaandra and Heribert Vollmer. The satanic notations:
Counting classes beyond #p and other definitional adventures. SIGACT
News, 26:2–13, 03 1995.

[JMR14] Saïd Jabbour, Yue Ma, and Badran Raddaoui. Inconsistency measure-
ment thanks to mus decomposition. 13th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2014, 2:877–884,
May 2014.

[JMR+16] Saïd Jabbour, Yue Ma, Badran Raddaoui, Lakhdar Sais, and Yakoub
Salhi. A mis partition based framework for measuring inconsistency.
In International Conference on Principles of Knowledge Representation and
Reasoning, 2016.

[JR13] Saïd Jabbour and Badran Raddaoui. Measuring inconsistency through
minimal proofs. In Linda C. van der Gaag, editor, Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty, pages 290–301, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

29



[Kni02] Kevin Knight. Measuring inconsistency. Journal of Philosophical Logic,
31:77–98, 2002.

[MLJ11] Kedian Mu, Weiru Liu, and Zhi Jin. A general framework for measur-
ing inconsistency through minimal inconsistent sets. Knowledge and
Information Systems, 27:85–114, April 2011.

[MLJB11] Kedian Mu, Weiru Liu, Zhi Jin, and David Bell. A syntax-based ap-
proach to measuring the degree of inconsistency for belief bases. Inter-
national Journal of Approximate Reasoning, 52(7):978–999, 2011.

[MQX+09] Yue Ma, Guilin Qi, Guohui Xiao, Pascal Hitzler, and Zuoquan Lin.
An anytime algorithm for computing inconsistency measurement. In
Dimitris Karagiannis and Zhi Jin, editors, Knowledge Science, Engineering
and Management, pages 29–40, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[MQX+10] Yue Ma, Guilin Qi, Guohui Xiao, Pascal Hitzler, and Zuoquan Lin.
Computational complexity and anytime algorithm for inconsistency
measurement. Int. J. Software and Informatics, 4(1):3–21, March 2010.

[Pap94] C.H. Papadimitriou. Computational Complexity. Theoretical computer
science. Addison-Wesley, 1994.

[PG20] Francesco Parisi and John Grant. On measuring inconsistency in re-
lational databases with denial constraints. In Giuseppe De Giacomo,
Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto
Bugarín, and Jérôme Lang, editors, ECAI 2020 - 24th European Confer-
ence on Artificial Intelligence, 29 August-8 September 2020, Santiago de
Compostela, Spain - Including 10th Conference on Prestigious Applications
of Artificial Intelligence (PAIS 2020), volume 325 of Frontiers in Artificial
Intelligence and Applications, pages 857–864. IOS Press, 2020.

[PG23a] Francesco Parisi and John Grant. On measuring inconsistency in defi-
nite and indefinite databases with denial constraints. Artificial Intelli-
gence, 318:103884, 2023.

[PG23b] Francesco Parisi and John Grant. Relative inconsistency measures for
indefinite databases with denial constraints. In Edith Elkind, editor,
Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI-23, pages 3321–3329. International Joint Conferences
on Artificial Intelligence Organization, August 2023.

[Sal19] Yakoub Salhi. Measuring inconsistency through subformula forgetting.
In Nahla Ben Amor, Benjamin Quost, and Martin Theobald, editors,
Scalable Uncertainty Management, pages 184–191, Cham, 2019. Springer
International Publishing.

30



[Thi09] Matthias Thimm. Measuring Inconsistency in Probabilistic Knowledge
Bases. In Jeff Bilmes and Andrew Ng, editors, Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence (UAI’09), pages
530–537. AUAI Press, June 2009.

[Thi11] Matthias Thimm. Analyzing inconsistencies in probabilistic condi-
tional knowledge bases using continuous inconsistency measures. In
Christoph Beierle and Gabriele Kern-Isberner, editors, Proceedings of
the Third Workshop on Dynamics of Knowledge and Belief (DKB’11), pages
31–45, October 2011.

[Thi13] Matthias Thimm. Inconsistency measures for probabilistic logics. Artifi-
cial Intelligence, 197:1–24, April 2013.

[Thi16a] Matthias Thimm. On the expressivity of inconsistency measures. Artifi-
cial Intelligence, 234:120–151, February 2016.

[Thi16b] Matthias Thimm. Stream-based inconsistency measurement. Interna-
tional Journal of Approximate Reasoning, 68:68–87, January 2016.

[Thi17a] Matthias Thimm. Measuring inconsistency with many-valued logics.
International Journal of Approximate Reasoning, 86:1–23, July 2017.

[Thi17b] Matthias Thimm. On the compliance of rationality postulates for in-
consistency measures: A more or less complete picture. Künstliche
Intelligenz, 31(1):31–39, March 2017.

[Thi18] Matthias Thimm. On the evaluation of inconsistency measures. In John
Grant and Maria Vanina Martinez, editors, Measuring Inconsistency in
Information, volume 73 of Studies in Logic. College Publications, February
2018.

[Thi19] Matthias Thimm. Inconsistency measurement. In Nahla Ben Amor,
Benjamin Quost, and Martin Theobald, editors, Proceedings of the 13th In-
ternational Conference on Scalable Uncertainty Management (SUM’19), vol-
ume 11940 of Lecture Notes in Artificial Intelligence, pages 9–23. Springer
International Publishing, December 2019.

[TW19] Matthias Thimm and Johannes P. Wallner. On the complexity of in-
consistency measurement. Artificial Intelligence, 275:411–456, October
2019.

[Val79] L.G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, 1979.

[Wag86] Klaus W. Wagner. The complexity of combinatorial problems with
succinct input representation. Acta Informatica, 23(3):325–356, 1986.

31



[XLMQ10] Guohui Xiao, Zuoquan Lin, Yue Ma, and Guilin Qi. Computing in-
consistency measurements under multi-valued semantics by partial
max-sat solvers. In Twelfth International Conference on the Principles of
Knowledge Representation and Reasoning (KR), October 2010.

[XM12] Guohui Xiao and Yue Ma. Inconsistency measurement based on vari-
ables in minimal unsatisfiable subsets. In European Conference on Artifi-
cial Intelligence, 2012.

32


