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Graphs

A graph is a quadruple G = (X, w, K, i), given by
e a countable set of nodes X
e a nonnegative edge-weight function w: X x X — [0, +00);
* a nonnegative killing term (or potential) k: X — [0, 00);
® a positive node measure p: X — (0,4+00)
where the edge-weight function w satisfies:
(A1) Symmetry: w(x,y) = w(y,x) for every x,y € X
(A2) No self-loops: w(a: x) =0 for every z € X;
(A3) Finite sum: Z w(z,y) < oo for every z € X.

yeX
If w(z,y) # 0, we write x ~ y. Vice-versa, we write x ~ y.
d
deg(w) i= 3 w(op) + wa) and Degla) i= S,

yeX
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Graphs

If X is finite, we say that G is a finite graph.If for every pair z,y € X
exists a finite sequence {xy}jL such that

then G is said to be connected.Define

C(X)={u: X — R}.



Graphs
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Graph Laplacian

The (formal) graph Laplacian on G is defined in the following way:
dom (A) ={ue C(X |Z (z,y)|lu(y)] < oo Vae X},

yeX
Bula) = 5 3 wley) (ule) = ) + = uta).

- yeX

Recalling that

deg(x) = Z w(z,y) + k(x), Deg(z) = dlz%i:;)

yeX

we can write

1
Aule) = Deslele) = 5 3wl it



Graph Laplacian - finite case

Let us fix X = {z1,...,2,} and define

W e R™™ such that W;; == w(z;,z;),



Graph Laplacian - finite case

Let us fix X = {z1,...,2,} and define
W e R™™ such that W;; == w(z;,z;),
deg(z;) ifi=j,

D e R™"™ such that D, ;= _
0 otherwise,



Graph Laplacian - finite case

Let us fix X = {z1,...,2,} and define
W e R™™ such that W;; == w(z;,z;),
deg(z;) ifi=j,

D e R™"™ such that D, ;= _
0 otherwise,

NEETI
M € R™™ such that M, = plas) i ]_’
0 otherwise.



Graph Laplacian - finite case

Let us fix X = {z1,...,2,} and define

W e R™™ such that W;; == w(z;,z;),

deg(z;) ifi=j.
D e R™™ such that D, ; ::{ egli) ifi=]

0 otherwise,

NEETI

M € R™™ such that M, = plas) i ]_’
0 otherwise.

Then, identifying u € C(X) with w == (u(x1),...,u(z,))’ € R", we
can write A in matrix form,

A=M"YD-W)

b



Graph Laplacian - finite case

Let us fix X = {z1,...,2,} and define

W e R™™ such that W;; == w(z;,z;),

deg(z;) ifi=j.
D e R™™ such that D, ; ::{ egli) ifi=]

0 otherwise,

NEETI

M € R™™ such that M, = plai) if i ]_’
0 otherwise.

Then, identifying u € C(X) with w == (u(x1),...,u(z,))’ € R", we
can write A in matrix form,

A=MYD-Ww)

W is called adjacency matrix, and D degree matrix.

b
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Interior and boundary points

Let AC X, A#0(. Then,

A={zcAlzryifyec X\ A} interior of A,

OA:={x e A|xz~y forsome y € X\ A} interior boundary of 4,

DA = {r e X\A |z ~y forsome y € A} exterior boundary of A.
Clearly, A= ALJA and HA C X \ A.

b
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Subgraphs

Definition (Induced subgraph)

F = (A,w', k', 1) is the canoncial induced subgraph of
G=(X,w,k,p)if

e ACX;
o W' =wjaxa;
o 1= pa;

o &'(z) = K(z) for every z € A.
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Subgraphs

Definition (Induced subgraph)

F = (AW, ) is an induced subgraph of G = (X, w, x, u) if
e ACX;

o w = Wi AxAs

o i = pya;

o 1'(x) = k(x) for every z € A. )

Remark: we do not fix the values of ' on the interior boundary
points 0 A.Different choices of ’iiéA produce different subgraphs.
If necessary, we will indicate with A the graph Laplacian associated

to the subgraph F'.

b



Subgraphs

Definition (Dirichlet subgraph)

Fyir = (A, W, Kgir, ¢/') is the Dirichlet subgraph of G = (X, w, k, i) if
e AC X,

o w' = Wi Ax A

o 1= pa;

* kgir(x) = Kk(x) + Z w(z,y).

yeX\A

We will indicate with Ag;, the graph Laplacian associated to Fy;,.
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Graph Laplacian of a Dirichlet subgraph

Let i: C(A) < C(X) be the canonical embedding

() = v(z) ifzeA,
T 0 frex\ A

Then
Agirv(z) = Aiv(z).

The Dirichlet graph Laplacian Agj, can be viewed as the restriction of
A having imposed (zero) Dirichlet conditions on the exterior

boundary OA.
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Solving the Poisson problem on (finite) graphs

Fix G = (X, w,k =0, u) connected and a subset ) # A C X .Let us
consider the following problem

Au(z) =g(z) ifxe xfl,
u(z) =0 if x € 0A.

It is equivalent to solve
Adiru(‘fz") = g(ﬂi),

on Fy, = (A,w|AXA, /ﬁdir,,um).There exists a unique solution for
every g € C(A).
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° n+2:{$i’i:0,...,n+1},
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0 otherwise.
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Simple example of a graph with locally uniform
structure

The path graph:
G= (Xn+27 w, R, }UJ)

where
° n+2:{$i’i:0,...,n+1},

1 ifli—j]=1
° w(l’i,l'j):{ : ‘Z ‘7’ ’

0 otherwise.
e ri(z;) =0and pu(x;) =1 forevery i =0,...,n+ 1.
Fix Xp, ={z;|i=1,...,n} C X,y and

Fyir = (Xn, Wix, x X, s Kdirs H|x,,) C G

b



Simple example of a graph with locally uniform
structure

CHHHDHH A

- (Xn+2a w, K, :u’)

u(zg) =0 Agiru(z;) = g(z;) w(Tny1) =0

Fair = (X, wx, x X, » Kdirs | X,)
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Let us complexifying the example

Ty T2 T3 T4 Ts Te Xy Xy Tg Tio T11 T12
2|0 wy wy wsfly 0 0 00 0 0 0
[0 wr wy ] w0 0 00 0 0 |0 0 0 0
W_w1000 z3{wpy 0 0 00 0 0 0|0 O 0 0
"1 lwmo o o zy{ws 0 0 00 0 0 0|0 0O 0 0
w; 0 0 0 b 0 0 0 |0 wy wopws|ly 0 0 0
— 0 0 0fw0 0 0[0 0 0 Ik
0 b 0|w0 0 0[0 0 0 O
0 0 0|ws0 0 0[0 0 0 O
00 0L 0 0 00 w w wy
00 01[0 00 O w000
00 01[0 0 &b OfwO 0 0

00 0 0 0




Let us complexifying the example

ulw) =0 Agirtl) = g(a) u(w) = 0

Fair = (Xon, W) x, X, » Fdirs 14X, )



Solving the Poisson problem on (finite) graphs
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be an iterative method for the solution of system (1).
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Solving the Poisson problem on (finite) graphs

Suppose |X,,| = d,,. We need to solve the linear system
Adi,u =4g. (l)
Let ‘ A
u(]+1) = S(Adira g, U(]))

be an iterative method for the solution of system (1). Given a fixed
tolerance € := ||t — Uexact|| > 0, typically the number of iterations N
to reach that tolerance depends on d,,, that is, N = N(e, d,).

wi=1, wy=2, w3=3, 1 =10, lb=1, g(a,;)=sin(ki).

dp, Gauss-Seidel

1016 96
4088 > 100
16376 > 100

b
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We want to accelerate the convergence making NN independent of d,,.

A Two-Grid Method (TGM) is defined by the following algorithm
1. rn, = Ad;ru(j) - g

2. 7 = (P

3 d|r = (Pm)HAdIF(P )
4. Solve A,y = T,

5. a) =ul) — pry

6 u(j+1) = S(Adira il'(J)ag)

where P € C % C™, with m < dy,, is a full-rank matrix.
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Solving the Poisson problem on (finite) graphs: TGM

We want to accelerate the convergence making NN independent of d,,.

A Two-Grid Method (TGM) is defined by the following algorithm

1. rn, = Ad;ru(j) - g

2. vy = (P Ty

3 d|r = (Pm)HAdIF(P )
4. Solve A,y = T,

5. a) =ul) — pry

6 u(j+1) = S(Adira il'(J)ag)

where P € C % C™, with m < dy,, is a full-rank matrix.

We need to find a “good” P".
b



Symbol of a sequence of matrices



Asymptotic spectrum

Definition (Spectral symbol)

Let {Ay . }n be a sequence of matrices and let §: D — C"*” be a
measurable Hermitian matrix-valued function defined on the
measurable set D C R™, with 0 < (D) < o0.

We say that {A,,, }n is distributed like § in the sense of eigenvalues,
in symbols {An , }n ~ f, if

lim 7ZF )\k nz/ d:um( )

Dy

for all F € C.(R), where A\i(f(y)),..., A\ (f(y)) are the eigenvalues
of f(y) and \i(Xn ), ..., Aa, (Xn,) are the eigenvalues of {X,, , },
sorted in non-decreasing order.

v

b



Definition (Monotone rearrangment)

Let f:Q C R? — R be measurable on a set Q with 0 < 114(Q) < oc.
The monotone rearrangement of f is the function denoted by fT and
defined as follows:
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Definition (Monotone rearrangment)

Let f:Q C R? — R be measurable on a set Q with 0 < 114(Q) < oc.
The monotone rearrangement of f is the function denoted by fT and
defined as follows:

Ckalf <ud
<R 1a($2) Zy}.

It holds that if {A,}, ~ f, then {4, }, ~2 fT. Under suitable
assumptions (for example, continuity of f and fT), it can be proved
that if {A,}, ~» f, then

[ -1 ()1} 0 snoe

fT :(0,1) - R, fT(y) = inf{u

max
=1,...,n n+1
See:
® D, Bianchi, Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential
operators. Calcolo 58.38 (2021): pp. 1-47.

® G. Barbarino, D. Bianchi, and C. Garoni, Constructive approach to the monotone rearrangement of functions.
Expositiones Mathematicae 40.1 (2021).

b



Asymptotic spectrum: Examples

Toeplitz matrix T;, € C™*™:

to  t-1 t1—n
T, — 1 to ’
. ot
tn—1 1 to
n—1
{To}n ~to+ Z(tk +t_)cos(kl) + (tx — t_g)vsin(k0) 6 € [—m, 7).
k=1



Fix: tl = t_l = 1, t2 = t_2 = —6, t3 = t_3 = 1, t4 = t_4 = 1,
and 0 all the other coefficients. Then

§(8) = 2cos(#) — 12 cos(20) + 2 cos(36) + 2 cos(40).
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Asymptotic spectrum: Examples

{(AY,, ~x £(8) = D — [W + (L + L) cos(6) + (L — L )usin(6)] € R,
where 0 € [—m, 7]. See

® A Adriani, D. Bianchi, and S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local
Structure (Part 1): Theory. Milan Journal of Mathematics 88 (2020): pp. 409-454.

® A Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform
Local Structure (Part Il): Numerical Applications. Preprint (2021), arXiv: 2111.13859.

b



ma Au(£(0)

i i (£(8))

It is possible to check that 0 < A;(f(0)) < A2(f(0)) < A3(f(8)) < Aa(f(8)) for all 6 € [—m, ], and
det(f(6)) = 292 — 292 cos(6).

Hence, we deduce that both the determinant and A;(f(6)) have a zero of order 2 in § = 0.

b



Solving the Poisson problem on (finite) graphs: TGM
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that is, fT(G) has only one zero of order 2 in § = 0, we can prescribe
a suitable grid transfer operator P;* for the TGM.
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Once we know that A1 (f(0)) has only one zero of order 2 in § = 0,
that is, fT(G) has only one zero of order 2 in § = 0, we can prescribe
a suitable grid transfer operator P} for the TGM.Fix k =n/g, g = 2
and a polynomial p. We choose

P:zﬂ = Tn(p)Kn

where T,,(p) is the Toeplitz matrix generated by the Fourier
coefficients of the polynomial p and K, is the cutting matrix
1 if¢=0(modn),

0 otherwise

Kn=[0igjlijy, i=0,....n—1;j=0,....k—1, 5[{



Solving the Poisson problem on (finite) graphs: TGM

Once we know that A1 (f(0)) has only one zero of order 2 in § = 0,
that is, fT(G) has only one zero of order 2 in § = 0, we can prescribe
a suitable grid transfer operator P} for the TGM.Fix k =n/g, g = 2
and a polynomial p. We choose

P;Lﬂ = Tn(p)Kn

where T,,(p) is the Toeplitz matrix generated by the Fourier
coefficients of the polynomial p and K, is the cutting matrix
Kp=1[0igjlijy i=0,...n—1j=0,. . k-1 &= {1 if£=0(modn),

’ 0 otherwise
Choose p : [0, 7] — R such that

20
lim sup 27 —9)

> ’ A~ .
DO Ty <% p*(0) +p*(r —0) >0V € [0,7]

b



Solving the Poisson problem on (finite) graphs: TGM

Once we know that A1 (f(0)) has only one zero of order 2 in § = 0,
that is, fT(G) has only one zero of order 2 in § = 0, we can prescribe
a suitable grid transfer operator P} for the TGM.Fix k =n/g, g = 2
and a polynomial p. We choose

P;Lﬂ = Tn(p)Kn

where T,,(p) is the Toeplitz matrix generated by the Fourier
coefficients of the polynomial p and K, is the cutting matrix
Kp=1[0igjlijy i=0,...n—1j=0,. . k-1 &= {1 if£=0(modn),

’ 0 otherwise
Choose p : [0, 7] — R such that

lim sup Z- 7 —9)
6—0 f(@)
Then the TGM is optimal. See

® A Adriani, D. Bianchi, P. Ferrari, S. Serra-Capizzano, Asymptotic Spectra of Large (Grid) Graphs with a Uniform
Local Structure (Part I1): Numerical Applications. Preprint (2021), arXiv: 2111.13859. (And all references therein.)

<oo, p*O)+p*(r—6)>0V0clo,x].



Solving the Poisson problem on (finite) graphs: TGM

Fix p(6) =2+ 2cos().

dp, Gauss-Seidel TGM

1016 96 9
4088 > 100 9
16376 > 100 9
65528 > 100 9
262136 > 100 9




Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in
general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians.



Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in
general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians. For example,
e fix a graph G with v nodes and adjacency matrix W € R'*";



Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in
general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians. For example,
e fix a graph G with v nodes and adjacency matrix W € R'*";

e Make a number m of copies of G,



Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in
general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians. For example,
e fix a graph G with v nodes and adjacency matrix W € R'*";

e Make a number m of copies of G,

o fix rintegers 0 < t1 <ty <---<t, <m-—1;



Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in
general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians. For example,
e fix a graph G with v nodes and adjacency matrix W € R'*";

e Make a number m of copies of G,

o fix rintegers 0 < t1 <ty <---<t, <m-—1;

Choose a fixed number of (not necessarily symmetric) connections
Ly, € RV such that Ly, , LTt # 0 if and only if

‘i —j’ € {tl,. . .,tr};



Asymptotic spectrum: Examples

If a sequence of graphs has a local uniform structure, then it is in
general possible to compute the symbol function f associated to the
(sequence of) adjacency matrices and graph Laplacians. For example,
e fix a graph G with v nodes and adjacency matrix W € R'*";

e Make a number m of copies of G,

o fix rintegers 0 < t1 <ty <---<t, <m-—1;

Choose a fixed number of (not necessarily symmetric) connections
Ly, € R such that Ltk,LTtk # 0 if and only if

‘i —j’ S {tl,. . .,tr};

G and G; are connected if and only if |i — j| € {t1,...,t.}.
Then {W} ~ £(0),

fo)=wW + Z Ly, + Ltk cos(trl) + Z Ly, — 1s1n(tk9)
k=1 k=1

b



Asymptotic spectrum: Examples

It is possible to compute explicitly the symbol functions for subgraphs
too.

A grid graph inside a sphere
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Asymptotic spectrum: Examples

A graph inside a triangle




Average sojourn time on a regular d-cycle
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Consider a sequence of graphs {G,},, with number of nodes n; and
zero killing term, and the correspondent sequence of graph Laplacians
{Au}n. Fix a€(0,2]. If

{An}n ~A f(0)7 0 € [077T]d7

then )
a/2 d
O gy €07
and
1 <4 1 1 / 1
lim — _— = — ——— d0.
na—00 Ng g )\Z/Q @ Jio.ma (f(8))2/?

This can be helpful to compute the average sojourn time, on a
departure node g, of a discrete random walk for a regular graph,
1 &1
To = lim — —.
0 ng—o0 Ny kZ—Q )\2/2

See
® T. M. Michelitsch, B. A. Collet, A. P. Riascos, A. F. Nowakowski, and F. C. G. A. Nicolleau. Recurrence of random
walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic
iges. Journal of Physics A: Mathematical and Theoretical 50 (2017): 505004.



Consider a cycle G,, with n nodes




Consider a cycle G,, with n nodes

and G¢ be the d-dimensional cycle, with d € N. Then
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Ty is then finite if and only if
1

& dO < oo.

[0,7] (2?21 2 — 2008(9j)> :
Therefore, by standard calculus, Ty is finite if and only if

/ % df < oo,
[0,7)d (Zd 02) 2

j=1"j

that is, by passing to spherical coordinates, if and only if

T d—1
/ P & dp < o0,
0 (p?)>
which is true if and only if 0 < a < d. It follows then that we have
recurrence if and only if &« > d and transience if and only if 0 < o < d.

b



Possible future directions of research

e Study the nonlinear Poisson equation A®u = g on large/infinite
graphs;

e Study recurrence properties of “diamond” graphs with complex
structures;

e Applications? Chemistry, Biology, etc.
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