Li-Yau inequalities for the Helfrich functional

joint work with Christian Scharrer (MPIM Bonn)

Fabian Rupp

Faculty of Mathematics, University of Vienna

May 2, 2022

Outline

- Geometric background
- 2 The Helfrich and Willmore functionals
- 3 A Li-Yau inequality and applications
- 4 Sketch of the proof of the Li–Yau inequality

Geometric background

How much does a curve curve?

Geometric background

University of Vienna

 $\qquad \gamma\colon [{\it a},{\it b}]\to \mathbb{R}^2 \mbox{ immersed curve,} \\ \mbox{parametrized by arclength, i.e. } |\dot{\gamma}|\equiv 1.$

Geometric background

University of Vienna

- $\gamma\colon [a,b] o \mathbb{R}^2$ immersed curve, parametrized by arclength, i.e. $|\dot{\gamma}|\equiv 1.$
- Tangent vector $T(x) = \dot{\gamma}(x)$

- $\qquad \gamma\colon [{\it a},{\it b}]\to \mathbb{R}^2 \mbox{ immersed curve,} \\ \mbox{parametrized by arclength, i.e. } |\dot{\gamma}|\equiv 1.$
- Tangent vector $T(x) = \dot{\gamma}(x)$
- Rotation of T(x) by $\frac{\pi}{2} \rightsquigarrow$ normal vector n(x)

- $\quad \gamma\colon [\mathbf{a},\mathbf{b}]\to\mathbb{R}^2 \text{ immersed curve,}$ parametrized by arclength, i.e. $|\dot{\gamma}|\equiv 1.$
- Tangent vector $T(x) = \dot{\gamma}(x)$
- Rotation of T(x) by $\frac{\pi}{2} \rightsquigarrow$ normal vector n(x)
- Curvature $\kappa(x) = \langle \ddot{\gamma}(x), n(x) \rangle$

- $\gamma \colon [a,b] \to \mathbb{R}^2$ immersed curve, parametrized by arclength, i.e. $|\dot{\gamma}| \equiv 1$.
- Tangent vector $T(x) = \dot{\gamma}(x)$
- Rotation of T(x) by $\frac{\pi}{2} \rightsquigarrow$ normal vector n(x)
- Curvature $\kappa(x) = \langle \ddot{\gamma}(x), n(x) \rangle$

Figure: A straight line: $\kappa \equiv 0$.

Figure: A circle: $\kappa \equiv \frac{1}{r}$.

Curvature of surfaces in \mathbb{R}^3

■ $S \subset \mathbb{R}^3$ surface, $p \in S$

University of Vienna

Geometric background

- $S \subset \mathbb{R}^3$ surface, $p \in S$
- Tangent plane T_pS , normal vector n(p)

- $S \subset \mathbb{R}^3$ surface, $p \in S$
- Tangent plane T_pS , normal vector n(p)
- For $v \in T_pS$, the set $S \cap (p + \operatorname{span}(n(p), v))$

universität wien

University of Vienna

Geometric background

- $S \subset \mathbb{R}^3$ surface, $p \in S$
- Tangent plane T_pS , normal vector n(p)
- For $v \in T_pS$, the set $S \cap (p + \operatorname{span}(n(p), v))$

Figure:

а

^a Modified illustration of Eric Gaba at commons.wikimedia.org

universität wien

- $S \subset \mathbb{R}^3$ surface, $p \in S$
- Tangent plane T_pS , normal vector n(p)
- For $v \in T_pS$, the set $S \cap (p + \operatorname{span}(n(p), v))$ is a planar curve near p with curvature k_v at p.

Figure: Principal curvatures.a

^a Modified illustration of Eric Gaba at commons.wikimedia.org

- $S \subset \mathbb{R}^3$ surface, $p \in S$
- Tangent plane T_pS , normal vector n(p)
- For $v \in T_pS$, the set $S \cap (p + \operatorname{span}(n(p), v))$ is a planar curve near p with curvature k_v at p.
- Define the principal curvatures

$$\kappa_1(p) := \min_{|v|=1} k_v, \quad \kappa_2(p) := \max_{|v|=1} k_v.$$

Figure: Principal curvatures.^a

^a Modified illustration of Eric Gaba at commons.wikimedia.org

WICH

universität

- $S \subset \mathbb{R}^3$ surface, $p \in S$
- Tangent plane T_pS , normal vector n(p)
- For $v \in T_pS$, the set $S \cap (p + \operatorname{span}(n(p), v))$ is a planar curve near p with curvature k_v at p.
- Define the principal curvatures

$$\kappa_1(p) := \min_{|\nu|=1} k_{\nu}, \quad \kappa_2(p) := \max_{|\nu|=1} k_{\nu}.$$

Figure: Principal curvatures.^a

[■] mean curvature $H := \kappa_1 + \kappa_2$, Gauss curvature $K := \kappa_1 \kappa_2$

^a Modified illustration of Eric Gaba at commons.wikimedia.org

Geometric background University of Vienna

Σ abstract oriented closed surface

- ∑ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion

- ∑ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion

- Σ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion
- Riemannian metric $g_{ij} := \langle \partial_i f, \partial_j f \rangle$

- Σ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion
- Riemannian metric $g_{ij} := \langle \partial_i f, \partial_j f \rangle$
- $\mu := \sqrt{\det g} \mathcal{L}^2$ area measure

- Σ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion
- Riemannian metric $g_{ij} := \langle \partial_i f, \partial_j f \rangle$
- $\mu := \sqrt{\det g} \mathcal{L}^2$ area measure
- With the unit normal $n: \Sigma \to \mathbb{S}^2$, the second fundamental form is $A_{ii} := \langle \partial_i \partial_i f, n \rangle$.

- Σ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion
- Riemannian metric $g_{ij} := \langle \partial_i f, \partial_j f \rangle$
- $\mu := \sqrt{\det g} \mathcal{L}^2$ area measure
- With the unit normal $n: \Sigma \to \mathbb{S}^2$, the second fundamental form is $A_{ii} := \langle \partial_i \partial_i f, n \rangle$.
- Symmetric Weingarten matrix $W_{ij} := g^{ik} A_{kj}$ has eigenvalues κ_1, κ_2 .

universität wien

- Σ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion
- Riemannian metric $g_{ij} := \langle \partial_i f, \partial_i f \rangle$
- $\mu := \sqrt{\det g} \mathcal{L}^2$ area measure
- With the unit normal $n \colon \Sigma \to \mathbb{S}^2$, the second fundamental form is $A_{ij} := \langle \partial_i \partial_j f, n \rangle$.
- Symmetric Weingarten matrix $W_{ij} := g^{ik} A_{kj}$ has eigenvalues κ_1, κ_2 .
- Gauss curvature $K = \kappa_1 \kappa_2$

universität wien

- Σ abstract oriented closed surface
- $f: \Sigma \to \mathbb{R}^3$ smooth immersion
- Riemannian metric $g_{ii} := \langle \partial_i f, \partial_i f \rangle$
- $\mu := \sqrt{\det g} \mathcal{L}^2$ area measure
- With the unit normal $n \colon \Sigma \to \mathbb{S}^2$, the second fundamental form is $A_{ij} := \langle \partial_i \partial_j f, n \rangle$.
- Symmetric Weingarten matrix $W_{ij} := g^{ik} A_{kj}$ has eigenvalues κ_1, κ_2 .
- Gauss curvature $K = \kappa_1 \kappa_2$
- Mean curvature

$$H := \kappa_1 + \kappa_1 = \operatorname{tr} W = g^{ij} \langle \partial_i \partial_j f, n \rangle$$

The Helfrich and Willmore functionals

The shape of biomembranes

The Helfrich and Willmore functionals

University of Vienna

The shape of biomembranes

The Helfrich and Willmore functionals

University of Vienna

Canham-Helfrich model [Canham '70], [Helfrich '73]: Lipid bilayers are critical for the energy

$$\mathcal{H}_{c_0,\bar{k}_c}(f) := \int_{\Sigma} \left(\frac{1}{4} (H-c_0)^2 + \bar{k}_c K \right) \mathrm{d}\mu$$

The shape of biomembranes

The Helfrich and Willmore functionals

University of Vienna

Canham-Helfrich model [Canham '70], [Helfrich '73]:
 Lipid bilayers are critical for the energy

$$\mathcal{H}_{c_0,\bar{k}_c}(f) := \int_{\Sigma} \left(\frac{1}{4} (H-c_0)^2 + \bar{k}_c K \right) \mathrm{d}\mu$$

subject to the constraint of fixed area and enclosed volume. Empirically $c_0 < 0$ for red blood cells.

Canham-Helfrich model [Canham '70], [Helfrich '73]:
 Lipid bilayers are critical for the energy

$$\mathcal{H}_{c_0,\bar{k}_c}(f) := \int_{\Sigma} \left(\frac{1}{4} (H-c_0)^2 + \bar{k}_c K \right) \mathrm{d}\mu$$

subject to the constraint of fixed area and enclosed volume. Empirically $c_0 < 0$ for red blood cells.

Figure: A red blood cell.^b

The Helfrich and Willmore functionals

Canham-Helfrich model [Canham '70], [Helfrich '73]:
 Lipid bilayers are critical for the energy

$$\mathcal{H}_{c_0,ar{k}_c}(f) := \int_{\Sigma} \left(rac{1}{4} (H-c_0)^2 + ar{k}_c \mathcal{K}
ight) \mathrm{d}\mu$$

subject to the constraint of fixed area and enclosed volume. Empirically $c_0 < 0$ for red blood cells.

Figure: A red blood cell.^b

lacksquare If the topology of Σ is fixed, then by Gauss–Bonnet we may equivalently minimize

$$\mathcal{H}_{c_0}(f) = \frac{1}{4} \int_{\Sigma} (H - c_0)^2 \,\mathrm{d}\mu.$$

universität

The Helfrich and Willmore functionals

Canham-Helfrich model [Canham '70], [Helfrich '73]:
 Lipid bilayers are critical for the energy

$$\mathcal{H}_{c_0,\bar{k}_c}(f) := \int_{\Sigma} \left(\frac{1}{4} (H-c_0)^2 + \bar{k}_c K \right) \mathrm{d}\mu$$

subject to the constraint of fixed area and enclosed volume. Empirically $c_0 < 0$ for red blood cells.

Figure: A red blood cell.b

 \blacksquare If the topology of Σ is fixed, then by Gauss–Bonnet we may equivalently minimize

$$\mathcal{H}_{c_0}(f) = \frac{1}{4} \int_{\Sigma} (H - c_0)^2 d\mu.$$

■ If $c_0 = 0$, this is the Willmore energy

$$\mathcal{W}(f) := \frac{1}{4} \int_{\Sigma} H^2 d\mu.$$

 $^{^{}m b}$ Database Center for Life Science (DBCLS) at commons.wikimedia.org

The variational problem

The Helfrich and Willmore functionals

University of Vienna

University of Vienna

Variational Canham-Helfrich problem

$$\begin{array}{ll} \text{Minimize} & \mathcal{H}_{c_0}(f) & \text{among } f \colon \Sigma \to \mathbb{R}^3 \text{ with } \text{genus}(\Sigma) = g, \mathcal{A}(f) = A_0, \mathcal{V}(f) = V_0, \end{array}$$

where $g\in\mathbb{N}_0$ and $A_0,\,V_0>0$ satisfy the isoperimetric inequality $36\pi\,V_0^2\leq A_0^3$.

Variational Canham-Helfrich problem

 $\begin{array}{ll} \text{Minimize} & \mathcal{H}_{c_0}(f) & \text{among } f \colon \Sigma \to \mathbb{R}^3 \text{ with } \text{genus}(\Sigma) = g, \mathcal{A}(f) = A_0, \mathcal{V}(f) = V_0, \end{array}$

where $g\in\mathbb{N}_0$ and $A_0,\,V_0>0$ satisfy the isoperimetric inequality $36\pi\,V_0^2\leq A_0^3$

■ Here $\mathcal{A}(f) := \int_{\Sigma} \mathrm{d}\mu$ is the area, $\mathcal{V}(f) := -\frac{1}{3} \int_{\Sigma} \langle f, n \rangle \, \mathrm{d}\mu$ is the (algebraic) volume.

Variational Canham-Helfrich problem

 $\begin{array}{ll} \text{Minimize} & \mathcal{H}_{c_0}(f) & \text{among } f \colon \Sigma \to \mathbb{R}^3 \text{ with } \text{genus}(\Sigma) = g, \mathcal{A}(f) = \mathcal{A}_0, \mathcal{V}(f) = V_0, \end{array}$

where $g\in\mathbb{N}_0$ and $A_0,\,V_0>0$ satisfy the isoperimetric inequality $36\pi\,V_0^2\leq A_0^3$.

- Here $\mathcal{A}(f) := \int_{\Sigma} \mathrm{d}\mu$ is the area, $\mathcal{V}(f) := -\frac{1}{3} \int_{\Sigma} \langle f, n \rangle \, \mathrm{d}\mu$ is the (algebraic) volume.
- $c_0 = 0$: Smoothly embedded minimizers exists by [Schygulla '12], [Keller–Mondino–Rivière '14], [Mondino–Scharrer '20], [Kusner–McGrath '21].

Variational Canham-Helfrich problem

Minimize $\mathcal{H}_{c_0}(f)$ among $f: \Sigma \to \mathbb{R}^3$ with genus $(\Sigma) = g, \mathcal{A}(f) = A_0, \mathcal{V}(f) = V_0$,

where $g\in\mathbb{N}_0$ and $A_0,\,V_0>0$ satisfy the isoperimetric inequality $36\pi\,V_0^2\leq A_0^3$.

- Here $\mathcal{A}(f) := \int_{\Sigma} \mathrm{d}\mu$ is the area, $\mathcal{V}(f) := -\frac{1}{3} \int_{\Sigma} \langle f, \mathbf{n} \rangle \, \mathrm{d}\mu$ is the (algebraic) volume.
- $c_0 = 0$: Smoothly embedded minimizers exists by [Schygulla '12], [Keller–Mondino–Rivière '14], [Mondino–Scharrer '20], [Kusner–McGrath '21].
- $c_0 \neq 0$: Existence of varifold minimizers [Brazda–Lussardi–Stefanelli '19], immersed bubble trees [Mondino—Scharrer '20].

The Li-Yau inequality for the Willmore energy

The Helfrich and Willmore functionals

University of Vienna

The Li-Yau inequality for the Willmore energy

The Helfrich and Willmore functionals

University of Vienna

Theorem (Li-Yau, '82)

$$4\pi \# f^{-1}(x_0) \le \mathcal{W}(f).$$
 (1)

The Helfrich and Willmore functionals

University of Vienna

Theorem (Li-Yau, '82)

If $f: \Sigma \to \mathbb{R}^3$ is an immersion and $x_0 \in \mathbb{R}^3$, then

$$4\pi \# f^{-1}(x_0) \le \mathcal{W}(f).$$
 (1)

■ Scaling invariance: W(rf) = W(f) for all r > 0.

The Helfrich and Willmore functionals

University of Vienna

Theorem (Li-Yau, '82)

$$4\pi \# f^{-1}(x_0) \le \mathcal{W}(f).$$
 (1)

- Scaling invariance: W(rf) = W(f) for all r > 0.
- $W(f) \ge 4\pi$, equality if and only if f is a round sphere.

The Helfrich and Willmore functionals

University of Vienna

Theorem (Li–Yau, '82)

$$4\pi \# f^{-1}(x_0) \le \mathcal{W}(f). \tag{1}$$

- Scaling invariance: W(rf) = W(f) for all r > 0.
- $W(f) \ge 4\pi$, equality if and only if f is a round sphere.
- If $W(f) < 8\pi$, then f is an embedding.

The Li-Yau inequality for the Willmore energy

The Helfrich and Willmore functionals

University of Vienna

Theorem (Li–Yau, '82)

$$4\pi \# f^{-1}(x_0) \le \mathcal{W}(f). \tag{1}$$

- Scaling invariance: W(rf) = W(f) for all r > 0.
- $W(f) \ge 4\pi$, equality if and only if f is a round sphere.
- If $W(f) < 8\pi$, then f is an embedding.
- Energy threshold of 8π is crucial for existence of minimizers, regularity of critical points and convergence of the (constrained) gradient flow.

The Li-Yau inequality for the Willmore energy

universität wien

The Helfrich and Willmore functionals

University of Vienna

Theorem (Li–Yau, '82)

If $f: \Sigma \to \mathbb{R}^3$ is an immersion and $x_0 \in \mathbb{R}^3$, then

$$4\pi \# f^{-1}(x_0) \le \mathcal{W}(f).$$
 (1)

- Scaling invariance: W(rf) = W(f) for all r > 0.
- $W(f) \ge 4\pi$, equality if and only if f is a round sphere.
- If $W(f) < 8\pi$, then f is an embedding.
- Energy threshold of 8π is crucial for existence of minimizers, regularity of critical points and convergence of the (constrained) gradient flow.

Motivating question

Does the Helfrich energy \mathcal{H}_{c_0} allow for an inequality like (1)?

A Li-Yau inequality and applications

A few first obstructions

A Li-Yau inequality and applications

University of Vienna

A Li-Yau inequality and applications

University of Vienna

Question

Can we find C > 0 such that for immersions $f : \Sigma \to \mathbb{R}^3$ we have

$$\#f^{-1}(x_0) \le C\mathcal{H}_{c_0}(f)$$
? (2)

Can we find C > 0 such that for immersions $f: \Sigma \to \mathbb{R}^3$ we have

$$\#f^{-1}(x_0) \le C\mathcal{H}_{c_0}(f)$$
? (2)

■ No: If $f = \iota \colon \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ with standard orientation, then $\mathcal{H}_{c_0}(f) = 0$ for $c_0 = 2$.

Can we find C > 0 such that for immersions $f: \Sigma \to \mathbb{R}^3$ we have

$$\#f^{-1}(x_0) \le C\mathcal{H}_{c_0}(f)$$
? (2)

- No: If $f = \iota : \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ with standard orientation, then $\mathcal{H}_{c_0}(f) = 0$ for $c_0 = 2$.
- Invariances of (2)

Can we find C > 0 such that for immersions $f: \Sigma \to \mathbb{R}^3$ we have

$$\#f^{-1}(x_0) \le C\mathcal{H}_{c_0}(f)$$
? (2)

- No: If $f = \iota : \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ with standard orientation, then $\mathcal{H}_{c_0}(f) = 0$ for $c_0 = 2$.
- Invariances of (2)

rescaling	$rf: \Sigma \to \mathbb{R}^3$	$\#(rf)^{-1}(rx_0) = \#f^{-1}(x_0)$	$\mathcal{H}_{c_0}(\mathit{rf}) = \mathcal{H}_{\mathit{rc}_0}(\mathit{f})$

A Li-Yau inequality and applications

Question

Can we find C > 0 such that for immersions $f: \Sigma \to \mathbb{R}^3$ we have

$$\#f^{-1}(x_0) \le C\mathcal{H}_{c_0}(f)$$
? (2)

- No: If $f = \iota : \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ with standard orientation, then $\mathcal{H}_{c_0}(f) = 0$ for $c_0 = 2$.
- Invariances of (2)

rescaling	$rf: \Sigma \to \mathbb{R}^3$	$\#(rf)^{-1}(rx_0) = \#f^{-1}(x_0)$	$\mathcal{H}_{c_0}(\mathit{rf}) = \mathcal{H}_{\mathit{rc}_0}(\mathit{f})$
reversing orientation	$\hat{f}: \hat{\Sigma} \to \mathbb{R}^3$	$\#f^{-1}(x_0) = \#\hat{f}^{-1}(x_0)$	$\mathcal{H}_{c_0}(\hat{f})=\mathcal{H}_{-c_0}(f)$

Can we find C > 0 such that for immersions $f: \Sigma \to \mathbb{R}^3$ we have

$$\#f^{-1}(x_0) \le C\mathcal{H}_{c_0}(f)$$
? (2)

- No: If $f = \iota \colon \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ with standard orientation, then $\mathcal{H}_{c_0}(f) = 0$ for $c_0 = 2$.
- Invariances of (2)

rescaling	$rf: \Sigma \to \mathbb{R}^3$	$\#(rf)^{-1}(rx_0) = \#f^{-1}(x_0)$	$\mathcal{H}_{c_0}(rf) = \mathcal{H}_{rc_0}(f)$
reversing orientation	$\hat{f}: \hat{\Sigma} \to \mathbb{R}^3$	$\#f^{-1}(x_0) = \#\hat{f}^{-1}(x_0)$	$\mathcal{H}_{c_0}(\hat{f})=\mathcal{H}_{-c_0}(f)$

■ For $|c_0|$ small, one may use the Li–Yau inequality for \mathcal{W} and $\lim_{r\searrow 0}\mathcal{H}_{c_0}(rf)=\mathcal{W}(f)$.

Main result: compact smooth case

A Li-Yau inequality and applications

University of Vienna

universität

Let $f: \Sigma \to \mathbb{R}^3$ be a smooth immersion of an oriented closed surface Σ . Let $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$ and define the concentrated volume

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu.$$

Then

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi} \mathcal{V}_c(f, x_0).$$

University of Vienna

A Li-Yau inequality and applications

Theorem (R.-Scharrer, '22)

Let $f: \Sigma \to \mathbb{R}^3$ be a smooth immersion of an oriented closed surface Σ . Let $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$ and define the concentrated volume

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f-x_0,n\rangle}{|f-x_0|^2} \,\mathrm{d}\mu.$$

Then

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi} \mathcal{V}_c(f, x_0).$$

■ Reversing orientation yields $V_c(\hat{f}, x_0) = -V_c(f, x_0)$, $\mathcal{H}_{c_0}(\hat{f}) = \mathcal{H}_{-c_0}(f)$.

A Li-Yau inequality and applications

University of Vienna

Theorem (R.-Scharrer, '22)

Let $f: \Sigma \to \mathbb{R}^3$ be a smooth immersion of an oriented closed surface Σ . Let $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$ and define the concentrated volume

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu.$$

Then

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi} \mathcal{V}_c(f, x_0).$$

- Reversing orientation yields $V_c(\hat{f}, x_0) = -V_c(f, x_0)$, $\mathcal{H}_{c_0}(\hat{f}) = \mathcal{H}_{-c_0}(f)$.
- Asymptotically sharp for spheres

On the concentrated volume

A Li-Yau inequality and applications

University of Vienna

On the concentrated volume

A Li-Yau inequality and applications

University of Vienna

Recall

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu.$$

A Li-Yau inequality and applications

University of Vienna

Recall

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu.$$

■ The integral is singular, but subcritical.

A Li-Yau inequality and applications

University of Vienna

Recall

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu.$$

- The integral is singular, but subcritical.
- If $f(\Sigma) = \partial \Omega$, $\Omega \subset \mathbb{R}^3$ open and n is the interior unit normal, the divergence theorem yields

$$\mathcal{V}_c(f, x_0) = \int_{\Omega} \operatorname{div} \frac{x - x_0}{|x - x_0|^2} dx = \int_{\Omega} \frac{1}{|x - x_0|^2} dx > 0.$$

universität

Recall

A Li-Yau inequality and applications

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu.$$

- The integral is singular, but subcritical.
- If $f(\Sigma) = \partial \Omega$, $\Omega \subset \mathbb{R}^3$ open and n is the interior unit normal, the divergence theorem yields

$$V_c(f, x_0) = \int_{\Omega} \operatorname{div} \frac{x - x_0}{|x - x_0|^2} dx = \int_{\Omega} \frac{1}{|x - x_0|^2} dx > 0.$$

If $c_0 \leq 0$, we then have $4\pi \# f^{-1}(x_0) \leq \mathcal{H}_{c_0}(f)$.

A Li-Yau inequality and applications

University of Vienna

Recall

$$\mathcal{V}_c(f,x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu.$$

- The integral is singular, but subcritical.
- If $f(\Sigma) = \partial \Omega$, $\Omega \subset \mathbb{R}^3$ open and n is the interior unit normal, the divergence theorem yields

$$\mathcal{V}_c(f,x_0) = \int_{\Omega} \operatorname{div} \frac{x - x_0}{|x - x_0|^2} \, \mathrm{d}x = \int_{\Omega} \frac{1}{|x - x_0|^2} \, \mathrm{d}x > 0.$$

If $c_0 \le 0$, we then have $4\pi \# f^{-1}(x_0) \le \mathcal{H}_{c_0}(f)$.

■ There exist immersions with $V_c(f, x_0) < 0 < V(f)$.

A Li-Yau inequality and applications

University of Vienna

A Li-Yau inequality and applications

University of Vienna

Corollary

Let $f: \Sigma \to \mathbb{R}^3$ be an Alexandrov immersion, i.e. there exists a compact 3-manifold M with $\partial M = \Sigma$, the inner unit normal field ν along Σ and an immersion $F: M \to \mathbb{R}^3$ with $f = F|_{\Sigma}$ and $n = \mathrm{d}F(\nu)$.

A Li-Yau inequality and applications

University of Vienna

Corollary

Let $f: \Sigma \to \mathbb{R}^3$ be an Alexandrov immersion, i.e. there exists a compact 3-manifold M with $\partial M = \Sigma$, the inner unit normal field ν along Σ and an immersion $F: M \to \mathbb{R}^3$ with $f = F|_{\Sigma}$ and $n = \mathrm{d}F(\nu)$. Then for all $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$, we have

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi}\mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi}\int_{F(M)} \frac{\#F^{-1}(x)}{|x-x_0|^2} dx.$$

A Li-Yau inequality and applications

University of Vienna

Corollary

Let $f: \Sigma \to \mathbb{R}^3$ be an Alexandrov immersion, i.e. there exists a compact 3-manifold M with $\partial M = \Sigma$, the inner unit normal field ν along Σ and an immersion $F: M \to \mathbb{R}^3$ with $f = F|_{\Sigma}$ and $n = \mathrm{d}F(\nu)$. Then for all $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$, we have

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi}\mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi}\int_{F(M)} \frac{\#F^{-1}(x)}{|x-x_0|^2} dx.$$

■ For $c_0 < 0$, it follows $4\pi \# f^{-1}(x_0) < \mathcal{H}_{c_0}(f)$. In particular $\mathcal{H}_{c_0}(f) > 4\pi$.

A Li-Yau inequality and applications

University of Vienna

Corollary

Let $f: \Sigma \to \mathbb{R}^3$ be an Alexandrov immersion, i.e. there exists a compact 3-manifold M with $\partial M = \Sigma$, the inner unit normal field ν along Σ and an immersion $F: M \to \mathbb{R}^3$ with $f = F|_{\Sigma}$ and $n = \mathrm{d}F(\nu)$. Then for all $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$, we have

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi}\mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi}\int_{F(M)} \frac{\#F^{-1}(x)}{|x-x_0|^2} dx.$$

- For $c_0 < 0$, it follows $4\pi \# f^{-1}(x_0) < \mathcal{H}_{c_0}(f)$. In particular $\mathcal{H}_{c_0}(f) > 4\pi$.
- Can be generalized to boundaries of sets of finite perimeter, or more generally varifolds with enclosed volume.

A Li-Yau inequality and applications

University of Vienna

Corollary

Let $f: \Sigma \to \mathbb{R}^3$ be an Alexandrov immersion, i.e. there exists a compact 3-manifold M with $\partial M = \Sigma$, the inner unit normal field ν along Σ and an immersion $F: M \to \mathbb{R}^3$ with $f = F|_{\Sigma}$ and $n = \mathrm{d}F(\nu)$. Then for all $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$, we have

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi}\mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi}\int_{F(M)} \frac{\#F^{-1}(x)}{|x-x_0|^2} dx.$$

- For $c_0 < 0$, it follows $4\pi \# f^{-1}(x_0) < \mathcal{H}_{c_0}(f)$. In particular $\mathcal{H}_{c_0}(f) > 4\pi$.
- Can be generalized to boundaries of sets of finite perimeter, or more generally varifolds with enclosed volume.
- For λ , $p \ge 0$ consider the penalized energy

$$\mathcal{H}_{c_0}^{\lambda,p}(f) := \mathcal{H}_{c_0}(f) + \lambda \mathcal{A}(f) + p \mathcal{V}(f).$$

A Li-Yau inequality and applications

University of Vienna

Corollary

Let $f: \Sigma \to \mathbb{R}^3$ be an Alexandrov immersion, i.e. there exists a compact 3-manifold M with $\partial M = \Sigma$, the inner unit normal field ν along Σ and an immersion $F: M \to \mathbb{R}^3$ with $f = F|_{\Sigma}$ and $n = \mathrm{d}F(\nu)$. Then for all $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$, we have

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi} \int_{F(M)} \frac{\#F^{-1}(x)}{|x - x_0|^2} dx.$$

- For $c_0 < 0$, it follows $4\pi \# f^{-1}(x_0) < \mathcal{H}_{c_0}(f)$. In particular $\mathcal{H}_{c_0}(f) > 4\pi$.
- Can be generalized to boundaries of sets of finite perimeter, or more generally varifolds with enclosed volume.
- For $\lambda, p \geq 0$ consider the penalized energy

$$\mathcal{H}_{c_0}^{\lambda,p}(f) := \mathcal{H}_{c_0}(f) + \lambda \mathcal{A}(f) + p \mathcal{V}(f).$$

If $c_0 < 0$ then $\not\exists \min \mathcal{H}_{c_0}^{\lambda,p}(f)$ among embeddings $f \in C^{\infty}(\mathbb{S}^2;\mathbb{R}^3)$.

(Non-)examples of Alexandrov immersions

A Li-Yau inequality and applications

University of Vienna

A Li-Yau inequality and applications

University of Vienna

A Li-Yau inequality and applications

University of Vienna

A Li-Yau inequality and applications

University of Vienna

Theorem (R.-Scharrer '22)

Let $c_0 \in \mathbb{R}$ and suppose $A_0,\,V_0>0$ satisfy the isoperimetric inequality $36\pi\,V_0^2 \le A_0^3$. Let

$$\eta(c_0,A_0,V_0):=\inf\left\{\mathcal{H}_{c_0}(f)\mid f\in C^\infty(\mathbb{S}^2;\mathbb{R}^3) \text{ embedding}, \mathcal{A}(f)=A_0,\mathcal{V}(f)=V_0\right\}. \tag{3}$$

A Li-Yau inequality and applications

University of Vienna

Theorem (R.–Scharrer '22)

Let $c_0 \in \mathbb{R}$ and suppose $A_0, V_0 > 0$ satisfy the isoperimetric inequality $36\pi V_0^2 \le A_0^3$. Let

$$\eta(c_0,A_0,V_0):=\inf\left\{\mathcal{H}_{c_0}(f)\mid f\in C^\infty(\mathbb{S}^2;\mathbb{R}^3) \text{ embedding}, \mathcal{A}(f)=A_0,\mathcal{V}(f)=V_0\right\}. \tag{3}$$

Then there exists $\Gamma(c_0, A_0, V_0) > 0$ such that if

$$\eta(c_0, A_0, V_0) < \begin{cases} 8\pi + \Gamma(c_0, A_0, V_0) & \text{if } c_0 < 0, \\ 8\pi - \Gamma(c_0, A_0, V_0) & \text{if } c_0 > 0, \end{cases} \tag{4}$$

then the infimum in (3) is attained.

A Li-Yau inequality and applications

University of Vienna

Theorem (R.–Scharrer '22)

Let $c_0\in\mathbb{R}$ and suppose $A_0,\,V_0>0$ satisfy the isoperimetric inequality $36\pi\,V_0^2\leq A_0^3.$ Let

$$\eta(c_0,A_0,V_0) := \inf\left\{\mathcal{H}_{c_0}(f) \mid f \in C^\infty(\mathbb{S}^2;\mathbb{R}^3) \text{ embedding}, \mathcal{A}(f) = A_0, \mathcal{V}(f) = V_0\right\}. \tag{3}$$

Then there exists $\Gamma(c_0, A_0, V_0) > 0$ such that if

$$\eta(c_0, A_0, V_0) < \begin{cases} 8\pi + \Gamma(c_0, A_0, V_0) & \text{if } c_0 < 0, \\ 8\pi - \Gamma(c_0, A_0, V_0) & \text{if } c_0 > 0, \end{cases} \tag{4}$$

then the infimum in (3) is attained.

■ For all $c_0 \le 0$ there exist $A_0, V_0 > 0$ such that $\eta(c_0, A_0, V_0) < 8\pi$.

A Li-Yau inequality and applications

University of Vienna

Theorem (R.–Scharrer '22)

Let $c_0 \in \mathbb{R}$ and suppose $A_0, V_0 > 0$ satisfy the isoperimetric inequality $36\pi V_0^2 \le A_0^3$. Let

$$\eta(c_0,A_0,V_0):=\inf\left\{\mathcal{H}_{c_0}(f)\mid f\in C^\infty(\mathbb{S}^2;\mathbb{R}^3) \text{ embedding}, \mathcal{A}(f)=A_0,\mathcal{V}(f)=V_0\right\}. \tag{3}$$

Then there exists $\Gamma(c_0, A_0, V_0) > 0$ such that if

$$\eta(c_0, A_0, V_0) < \begin{cases} 8\pi + \Gamma(c_0, A_0, V_0) & \text{if } c_0 < 0, \\ 8\pi - \Gamma(c_0, A_0, V_0) & \text{if } c_0 > 0, \end{cases} \tag{4}$$

then the infimum in (3) is attained.

- For all $c_0 \le 0$ there exist $A_0, V_0 > 0$ such that $\eta(c_0, A_0, V_0) < 8\pi$.
- Existence of smoothly embedded minimizers for the Canham–Helfrich model for $c_0 \le 0$ and $\Sigma = \mathbb{S}^2$ if (4) holds.

Sketch of the proof of the Li-Yau inequality

Theorem (R.–Scharrer, '22)

Let $f: \Sigma \to \mathbb{R}^3$ be a smooth immersion of an oriented closed surface Σ , let $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$. Then

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi} \mathcal{V}_c(f, x_0).$$

where $V_c(f, x_0) := -\int_{\Sigma} \frac{\langle f - x_0, n \rangle}{|f - x_0|^2} d\mu$ denotes the concentrated volume.

Theorem (R.-Scharrer, '22)

Let $f: \Sigma \to \mathbb{R}^3$ be a smooth immersion of an oriented closed surface Σ , let $c_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^3$. Then

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \mathcal{H}_{c_0}(f) + \frac{c_0}{2\pi} \mathcal{V}_c(f, x_0).$$

where $\mathcal{V}_c(f,x_0):=-\int_{\Sigma} rac{\langle f-x_0,n
angle}{|f-x_0|^2}\,\mathrm{d}\mu$ denotes the concentrated volume.

Idea of the proof:

$$\#f^{-1}(x_0) = \lim_{\rho \to 0} \frac{\mu(f^{-1}(B_{\rho}(x_0)))}{\pi \rho^2}$$

and use first variation of area [Simon '93].

The first variation formula

Sketch of the proof of the Li-Yau inequality

University of Vienna

Sketch of the proof of the Li-Yau inequality

University of Vienna

Let $0 < \sigma < \rho$, $x_0 = 0 \in \mathbb{R}^3$. Consider

$$\varphi(t) := \left(\max\{t,\sigma\}^{-2} - \rho^{-2}\right)_+,$$

define
$$X(x) = \varphi(|x|)x$$
.

Let
$$0 < \sigma < \rho$$
, $x_0 = 0 \in \mathbb{R}^3$. Consider

$$\varphi(t) := \left(\max\{t,\sigma\}^{-2} - \rho^{-2} \right)_+,$$

define
$$X(x) = \varphi(|x|)x$$
.

Figure: Plot of |X(x)|.

Let
$$0<\sigma<\rho$$
, $x_0=0\in\mathbb{R}^3$. Consider

$$\varphi(t) := \left(\max\{t,\sigma\}^{-2} - \rho^{-2}\right),\,$$

define $X(x) = \varphi(|x|)x$. With $\vec{H} := Hn$, we have the first variation formula

$$\int_{\Sigma} \operatorname{div}_{\top} X \circ f \, \mathrm{d}\mu = - \int_{\Sigma} \langle X \circ f, \vec{H} \rangle \, \mathrm{d}\mu.$$

Figure: Plot of |X(x)|.

$$\varphi(t) := \left(\max\{t, \sigma\}^{-2} - \rho^{-2} \right)_+,$$

define $X(x) = \varphi(|x|)x$. With $\vec{H} := Hn$, we have the first variation formula

$$\int_{\Sigma} \operatorname{\mathsf{div}}_{\top} X \circ f \, \mathrm{d} \mu = - \int_{\Sigma} \langle X \circ f, \vec{H} \rangle \, \mathrm{d} \mu.$$

With
$$\hat{B}_{\rho} := f^{-1}(B_{\rho}(0))$$
 compute

Figure: Plot of |X(x)|.

Let $0 < \sigma < \rho$, $x_0 = 0 \in \mathbb{R}^3$. Consider

$$\varphi(t) := \left(\max\{t, \sigma\}^{-2} - \rho^{-2} \right)_+,$$

define $X(x) = \varphi(|x|)x$. With $\vec{H} := Hn$, we have the first variation formula

$$\int_{\Sigma} \operatorname{\mathsf{div}}_{\top} X \circ f \, \mathrm{d} \mu = - \int_{\Sigma} \langle X \circ f, \vec{H} \rangle \, \mathrm{d} \mu.$$

With $\hat{B}_{\rho} := f^{-1}(B_{\rho}(0))$ compute

$$\begin{split} &\frac{2\mu(\hat{B}_{\sigma})}{\sigma^{2}} + \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} \frac{2\langle f, n \rangle^{2}}{|f|^{4}} \, \mathrm{d}\mu \\ &= \frac{2\mu(\hat{B}_{\rho})}{\rho^{2}} - \sigma^{-2} \int_{\hat{B}_{\sigma}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu \end{split}$$

Figure: Plot of |X(x)|.

 $=\frac{2\mu(\hat{\mathcal{B}}_{\rho})}{\rho^{2}}-\sigma^{-2}\int_{\hat{\mathcal{B}}}\langle f,\vec{H}\rangle d\mu+\rho^{-2}\int_{\hat{\mathcal{B}}}\langle f,\vec{H}\rangle d\mu-\int_{\hat{\mathcal{B}}_{\gamma}\setminus\hat{\mathcal{B}}}|f|^{-2}\langle f,\vec{H}\rangle d\mu.$

Let $0 < \sigma < \rho$, $x_0 = 0 \in \mathbb{R}^3$. Consider

$$\varphi(t) := \left(\max\{t, \sigma\}^{-2} - \rho^{-2} \right)_+,$$

define $X(x) = \varphi(|x|)x$. With $\vec{H} := Hn$, we have the first variation formula

$$\int_{\Sigma} \operatorname{div}_{\top} X \circ f \, \mathrm{d}\mu = - \int_{\Sigma} \langle X \circ f, \vec{H} \rangle \, \mathrm{d}\mu.$$

With $\hat{B}_{\rho}:=f^{-1}(B_{
ho}(0))$ compute

$$\frac{2\mu(\hat{B}_{\sigma})}{\sigma^{2}} + \int_{\hat{B}_{\rho}\setminus\hat{B}_{\sigma}} \frac{2\langle f, n \rangle^{2}}{|f|^{4}} d\mu
= \frac{2\mu(\hat{B}_{\rho})}{\rho^{2}} - \sigma^{-2} \int_{\hat{B}_{\sigma}} \langle f, \vec{H} \rangle d\mu + \rho^{-1}$$

$$\begin{aligned} & \frac{\langle f, \vec{H} - c_0 n \rangle}{|f|^2} + \frac{2\langle f, n \rangle^2}{|f|^4} \\ &= 2 \left| \frac{1}{4} (\vec{H} - c_0 n) + \frac{\langle f, n \rangle n}{|f|^2} \right|^2 - \frac{1}{8} |\vec{H} - c_0 n|^2 \end{aligned}$$

$$=\frac{2\mu(\hat{B}_{\rho})}{\rho^{2}}-\sigma^{-2}\int_{\hat{B}_{\sigma}}\langle f,\vec{H}\rangle\,\mathrm{d}\mu+\rho^{-2}\int_{\hat{B}_{\rho}}\langle f,\vec{H}\rangle\,\mathrm{d}\mu-\int_{\hat{B}_{\rho}\setminus\hat{B}_{\sigma}}|f|^{-2}\langle f,\vec{H}\rangle\,\mathrm{d}\mu.$$

A monotonicity argument

Sketch of the proof of the Li-Yau inequality

University of Vienna

A monotonicity argument

Hence, we find

$$\begin{split} \frac{2\mu(\hat{B}_{\sigma})}{\sigma^2} + \int_{\hat{B}_{\rho}\setminus\hat{B}_{\sigma}} 2\left|\frac{1}{4}(\vec{H} - c_0 n) + \frac{\langle f, n\rangle n}{|f|^2}\right|^2 \mathrm{d}\mu &= \frac{2\mu(\hat{B}_{\rho})}{\rho^2} - \sigma^{-2}\int_{\hat{B}_{\sigma}} \langle f, \vec{H}\rangle \, \mathrm{d}\mu \\ &+ \rho^{-2}\int_{\hat{B}_{\rho}} \langle f, \vec{H}\rangle \, \mathrm{d}\mu - c_0\int_{\hat{B}_{\rho}\setminus\hat{B}_{\sigma}} |f|^{-2}\langle f, n\rangle \, \mathrm{d}\mu + \frac{1}{8}\int_{\hat{B}_{\rho}\setminus\hat{B}_{\sigma}} \left|\vec{H} - c_0 n\right|^2 \mathrm{d}\mu. \end{split}$$

Sketch of the proof of the Li-Yau inequality

Hence, we find

$$\begin{split} \frac{2\mu(\hat{B}_{\sigma})}{\sigma^2} + \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} 2 \left| \frac{1}{4} (\vec{H} - c_0 \textbf{n}) + \frac{\langle f, \textbf{n} \rangle \textbf{n}}{|f|^2} \right|^2 \mathrm{d}\mu &= \frac{2\mu(\hat{B}_{\rho})}{\rho^2} - \sigma^{-2} \int_{\hat{B}_{\sigma}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu \\ &+ \rho^{-2} \int_{\hat{B}_{\rho}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu - c_0 \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} |f|^{-2} \langle f, \textbf{n} \rangle \, \mathrm{d}\mu + \frac{1}{8} \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} \left| \vec{H} - c_0 \textbf{n} \right|^2 \mathrm{d}\mu. \end{split}$$

In particular, the following function is monotonically nondecreasing

$$\gamma(\rho) := \frac{\mu(\hat{\mathcal{B}}_{\rho})}{\rho^2} + \frac{1}{16} \int_{\hat{\mathcal{B}}_{\rho}} |H - c_0 n|^2 d\mu - \frac{c_0}{2} \int_{\hat{\mathcal{B}}_{\rho}} \frac{\langle f, n \rangle}{|f|^2} d\mu + \frac{1}{2\rho^2} \int_{\hat{\mathcal{B}}_{\rho}} \langle f, H \rangle d\mu.$$

Sketch of the proof of the Li-Yau inequality

Hence, we find

$$\begin{split} \frac{2\mu(\hat{B}_{\sigma})}{\sigma^2} + \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} 2 \left| \frac{1}{4} (\vec{H} - c_0 \textbf{n}) + \frac{\langle f, \textbf{n} \rangle \textbf{n}}{|f|^2} \right|^2 \mathrm{d}\mu &= \frac{2\mu(\hat{B}_{\rho})}{\rho^2} - \sigma^{-2} \int_{\hat{B}_{\sigma}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu \\ &+ \rho^{-2} \int_{\hat{B}_{\rho}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu - c_0 \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} |f|^{-2} \langle f, \textbf{n} \rangle \, \mathrm{d}\mu + \frac{1}{8} \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} \left| \vec{H} - c_0 \textbf{n} \right|^2 \mathrm{d}\mu. \end{split}$$

In particular, the following function is monotonically nondecreasing

$$\gamma(\rho) := \frac{\mu(\hat{\mathcal{B}}_{\rho})}{\rho^2} + \frac{1}{16} \int_{\hat{\mathcal{B}}_{\rho}} |H - c_0 n|^2 d\mu - \frac{c_0}{2} \int_{\hat{\mathcal{B}}_{\rho}} \frac{\langle f, n \rangle}{|f|^2} d\mu + \frac{1}{2\rho^2} \int_{\hat{\mathcal{B}}_{\rho}} \langle f, H \rangle d\mu.$$

We have

$$\blacksquare \lim_{\rho \to 0} \gamma(\rho) = \pi \# f^{-1}(x_0),$$

Sketch of the proof of the Li-Yau inequality

Hence, we find

$$\begin{split} \frac{2\mu(\hat{B}_{\sigma})}{\sigma^2} + \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} 2 \left| \frac{1}{4} (\vec{H} - c_0 \textbf{n}) + \frac{\langle f, \textbf{n} \rangle \textbf{n}}{|f|^2} \right|^2 \mathrm{d}\mu &= \frac{2\mu(\hat{B}_{\rho})}{\rho^2} - \sigma^{-2} \int_{\hat{B}_{\sigma}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu \\ &+ \rho^{-2} \int_{\hat{B}_{\rho}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu - c_0 \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} |f|^{-2} \langle f, \textbf{n} \rangle \, \mathrm{d}\mu + \frac{1}{8} \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} \left| \vec{H} - c_0 \textbf{n} \right|^2 \mathrm{d}\mu. \end{split}$$

In particular, the following function is monotonically nondecreasing

$$\gamma(\rho) := \frac{\mu(\hat{\mathcal{B}}_{\rho})}{\rho^2} + \frac{1}{16} \int_{\hat{\mathcal{B}}_{\rho}} |H - c_0 n|^2 d\mu - \frac{c_0}{2} \int_{\hat{\mathcal{B}}_{\rho}} \frac{\langle f, n \rangle}{|f|^2} d\mu + \frac{1}{2\rho^2} \int_{\hat{\mathcal{B}}_{\rho}} \langle f, H \rangle d\mu.$$

We have

$$\blacksquare$$
 $\lim_{\rho \to 0} \gamma(\rho) = \pi \# f^{-1}(x_0)$

Sketch of the proof of the Li-Yau inequality

Hence, we find

$$\begin{split} \frac{2\mu(\hat{B}_{\sigma})}{\sigma^2} + \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} 2 \left| \frac{1}{4} (\vec{H} - c_0 \textbf{n}) + \frac{\langle f, \textbf{n} \rangle \textbf{n}}{|f|^2} \right|^2 \mathrm{d}\mu &= \frac{2\mu(\hat{B}_{\rho})}{\rho^2} - \sigma^{-2} \int_{\hat{B}_{\sigma}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu \\ &+ \rho^{-2} \int_{\hat{B}_{\rho}} \langle f, \vec{H} \rangle \, \mathrm{d}\mu - c_0 \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} |f|^{-2} \langle f, \textbf{n} \rangle \, \mathrm{d}\mu + \frac{1}{8} \int_{\hat{B}_{\rho} \setminus \hat{B}_{\sigma}} \left| \vec{H} - c_0 \textbf{n} \right|^2 \mathrm{d}\mu. \end{split}$$

In particular, the following function is monotonically nondecreasing

$$\gamma(\rho) := \frac{\mu(\hat{\mathcal{B}}_{\rho})}{\rho^2} + \frac{1}{16} \int_{\hat{\mathcal{B}}_{\rho}} |H - c_0 n|^2 d\mu - \frac{c_0}{2} \int_{\hat{\mathcal{B}}_{\rho}} \frac{\langle f, n \rangle}{|f|^2} d\mu + \frac{1}{2\rho^2} \int_{\hat{\mathcal{B}}_{\rho}} \langle f, H \rangle d\mu.$$

We have

$$\left\| \lim_{\rho \to 0} \gamma(\rho) = \pi \# f^{-1}(x_0), \\ \left\| \lim_{\rho \to \infty} \gamma(\rho) = \frac{\mathcal{H}_{c_0}(f)}{4} + \frac{c_0}{2} \mathcal{V}_c(f, x_0). \right\| \Rightarrow \# f^{-1}(x_0) \le \frac{\mathcal{H}_{c_0}(f)}{4\pi} + \frac{c_0}{2\pi} \mathcal{V}_c(f, x_0).$$

University of Vienna

Thank you for your attention!

If time allows...

Sketch of the proof of the Li-Yau inequality

University of Vienna

Corollary (scale-invariant version)

Let $f\colon \Sigma o \mathbb{R}^3$ be an immersion of a closed oriented surface. Then for all $x_0 \in \mathbb{R}^3$

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \bar{\mathcal{H}}(f) + \frac{\bar{H}\mathcal{V}_c(f, x_0)}{2\pi} - \frac{\mathcal{V}_c(f, x_0)^2}{\pi \mathcal{A}(f)}.$$

Here $\bar{H}:=\int_{\Sigma}H\,\mathrm{d}\mu$ and $\bar{\mathcal{H}}(f):=\inf_{c_0\in\mathbb{R}}\mathcal{H}_{c_0}(f)=\frac{1}{4}\int_{\Sigma}(H-\bar{H})^2\,\mathrm{d}\mu.$

Corollary (scale-invariant version)

Let $f\colon \Sigma o \mathbb{R}^3$ be an immersion of a closed oriented surface. Then for all $x_0 \in \mathbb{R}^3$

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \bar{\mathcal{H}}(f) + \frac{\bar{H}\mathcal{V}_c(f, x_0)}{2\pi} - \frac{\mathcal{V}_c(f, x_0)^2}{\pi \mathcal{A}(f)}.$$

Here $\bar{H}:=\int_{\Sigma}H\,\mathrm{d}\mu$ and $\bar{\mathcal{H}}(f):=\inf_{c_0\in\mathbb{R}}\mathcal{H}_{c_0}(f)=\frac{1}{4}\int_{\Sigma}(H-\bar{H})^2\,\mathrm{d}\mu.$

lacktriangle Minkowski inequality: If $\Omega\subset\mathbb{R}^3$ is bounded, open, convex with C^2 -boundary, then

$$\frac{1}{2} \int_{\partial \Omega} H \, \mathrm{d} \mathcal{H}^2 \geq \sqrt{4\pi \mathcal{H}^2(\partial \Omega)}.$$

Corollary (scale-invariant version)

Let $f\colon \Sigma o \mathbb{R}^3$ be an immersion of a closed oriented surface. Then for all $x_0 \in \mathbb{R}^3$

$$\#f^{-1}(x_0) \leq \frac{1}{4\pi} \bar{\mathcal{H}}(f) + \frac{\bar{H}\mathcal{V}_c(f,x_0)}{2\pi} - \frac{\mathcal{V}_c(f,x_0)^2}{\pi \mathcal{A}(f)}.$$

Here $\bar{H}:=\int_{\Sigma}H\,\mathrm{d}\mu$ and $\bar{\mathcal{H}}(f):=\inf_{c_0\in\mathbb{R}}\mathcal{H}_{c_0}(f)=\frac{1}{4}\int_{\Sigma}(H-\bar{H})^2\,\mathrm{d}\mu.$

lacktriangle Minkowski inequality: If $\Omega\subset\mathbb{R}^3$ is bounded, open, convex with C^2 -boundary, then

$$\frac{1}{2} \int_{\partial \Omega} H \, \mathrm{d} \mathcal{H}^2 \geq \sqrt{4\pi \mathcal{H}^2(\partial \Omega)}.$$

• If for some $x_0 \in \mathbb{R}^3$ we have $\mathcal{V}_c(f,x_0) > 0$ and $\bar{\mathcal{H}}(f) \leq 4\pi \# f^{-1}(x_0)$, then

$$\frac{1}{2}\int_{\Sigma} H \,\mathrm{d}\mu \geq \sqrt{\left(4\pi\#f^{-1}(x_0) - \bar{\mathcal{H}}(f)\right)\mathcal{A}(f)} \geq 0.$$