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m v: [a, b] — R? immersed curve,
parametrized by arclength, i.e. |9]
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=

m Tangent vector T(x) = 4(x)

m Rotation of T(x) by 5 ~» normal vector n(x)
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parametrized by arclength, i.e. |9]

m Tangent vector T(x) = 4(x)
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Geometric background University of Vienna

7: [a, b] — R? immersed curve,

Il
=

parametrized by arclength, i.e. |9]

m Tangent vector T(x) = 4(x)

Rotation of T(x) by 5 ~» normal vector n(x)

Curvature s(x) = (§(x), n(x))

Figure: A straight line: k = 0. Figure: A circle: k = %
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vector n(p)

m S C R®surface, pe S

m Tangent plane T,S, normal
vector n(p)

tangent

m For v € T,S, the set plane
7,8

S0 (p+ span(n(p), v))
veT,S

@Modified illustration of Eric Gaba at commons.wikimedia.org
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S tangent
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m For v € T,S, the set
7,8

50 (p+ span(n(p), v))
is a planar curve near p with
curvature k, at p. v € T,S

Figure: Principal curvatures.”

@Modified illustration of Eric Gaba at commons.wikimedia.org
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normal
vector n(p)

m S C R®surface, pe S

Tangent plane T,S, normal

vector n(p)

tangent

m For v € T,S, the set :P,'jrg
S0 (p+ span(n(p), v)) P
is a planar curve near p with
curvature k, at p. v € T,S

m Define the principal curvatures

Figure: Principal curvatures.”

k1(p) = mi:nl ke, ka(p) = max ky.

@Modified illustration of Eric Gaba at commons.wikimedia.org
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normal
vector n(p)

m S C R®surface, pe S

m Tangent plane T,S, normal
vector n(p)

tangent
plane

m For v € T,S, the set
7,8

50 (p+ span(n(p), v))
is a planar curve near p with
curvature k, at p. v € T,S

m Define the principal curvatures

Figure: Principal curvatures.”

k1(p) = mi:nl ke, ka(p) = max ky.

m mean curvature H := k1 + k2, Gauss curvature K := K1k2

@Modified illustration of Eric Gaba at commons.wikimedia.org
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Geometric background University of Vienna

m Y abstract oriented closed surface

m f: ¥ — R® smooth immersion ‘5

m Riemannian metric g 1= (0if, O;f) b 2

m = +/detgL? area measure /

m With the unit normal n: ¥ — S?, the 6 4+ 5
second fundamental form is Ay := (9;0;f, n). /_ﬁ
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An analytic definition of curvature

Geometric background University of Vienna

m Y abstract oriented closed surface

m f: ¥ — R® smooth immersion ‘B

m Riemannian metric g 1= (0if, O;f) 4 2

m = +/detgL? area measure /

m With the unit normal n: ¥ — S?, the e 4 5
second fundamental form is Ay := (9;0;f, n). /_ﬁ

m Symmetric Weingarten matrix W := g Ay; has =¥ v
S

eigenvalues K1, K2.
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m Y abstract oriented closed surface

m f: ¥ — R® smooth immersion ‘B

m Riemannian metric g 1= (0if, O;f) 4 2

m = +/detgL? area measure /

m With the unit normal n: ¥ — S?, the e 4 5 é
second fundamental form is Ay := (9;0;f, n). V -

m Symmetric Weingarten matrix Wj; := gikAkj has 4

eigenvalues K1, K2.
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m Gauss curvature K = k1Ko v
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Geometric background University of Vienna

m Y abstract oriented closed surface

m f: ¥ — R® smooth immersion ‘&
m Riemannian metric g 1= (0if, O;f) b 2
U 1ty ™y L M=7;
= \/detgL? area measure / R *
m With the unit normal n: ¥ — S?, the 6 4 é
/‘7
second fundamental form is Ay := (9;0;f, n). V
m Symmetric Weingarten matrix Wj; := gikAkj has 4
eigenvalues K1, K2.
N
m Gauss curvature K = k1Ko @
m Mean curvature
H:=k1+r1=tr W :gij((?;('?jf, n)
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The shape of biomembranes

m Canham—Helfrich model [Canham '70], [Helfrich '73]:
Lipid bilayers are critical for the energy

Haa(F) = [ (G0 =)+ Rk ) a
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The shape of biomembranes

m Canham—Helfrich model [Canham '70], [Helfrich '73]:
Lipid bilayers are critical for the energy

Haa(F) = [ (G0 =)+ Rk ) a

subject to the constraint of fixed area and enclosed
volume. Empirically ¢o < 0 for red blood cells.
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m Canham—Helfrich model [Canham '70], [Helfrich '73]:
Lipid bilayers are critical for the energy

Hep i (F) = /z G(H — )+ I?CK> du

subject to the constraint of fixed area and enclosed Figure: A red blood cell.”

volume. Empirically ¢o < 0 for red blood cells.
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m Canham—Helfrich model [Canham '70], [Helfrich '73]:
Lipid bilayers are critical for the energy

Haa(F) = [ (G0 =)+ Rk ) a

subject to the constraint of fixed area and enclosed

Figure: A red blood cell.”
volume. Empirically ¢o < 0 for red blood cells.

m If the topology of ¥ is fixed, then by Gauss—Bonnet we may equivalently minimize

He(F) = /(H— ) du.

bDatabase Center for Life Science (DBCLS) at commons.wikimedia.org
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m Canham—Helfrich model [Canham '70], [Helfrich '73]:
Lipid bilayers are critical for the energy

Haa(F) = [ (G0 =)+ Rk ) a

subject to the constraint of fixed area and enclosed

Figure: A red blood cell.”
volume. Empirically ¢o < 0 for red blood cells.

m If the topology of ¥ is fixed, then by Gauss—Bonnet we may equivalently minimize

He(F) = /(H— ) du.

m If g = 0, this is the Willmore energy

W(f) = %/Zszu.

bDatabase Center for Life Science (DBCLS) at commons.wikimedia.org

Fabian Rupp Li-Yau inequalities for the Helfrich functional



- wiversitat
The variational problem Wien

The Helfrich and Willmore functionals University of Vienna

Fabian Rupp Li-Yau inequalities for the Helfrich functional



. hwiversitat
The variational problem W wien

Variational Canham—Helfrich problem

Minimize He,(f) among f: £ — R® with genus(X) = g, A(f) = Ao, V(f) = Vo,

where g € Ny and A, Vo > 0 satisfy the isoperimetric inequality 36w VZ < A3.
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Variational Canham—Helfrich problem

Minimize He,(f) among f: £ — R® with genus(X) = g, A(f) = Ao, V(f) = Vo,
where g € Ny and A, Vo > 0 satisfy the isoperimetric inequality 36w VZ < A3.

m Here A(f) := [ du is the area, V(f) := —% [ (f, n) dyu is the (algebraic) volume.
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Variational Canham—Helfrich problem

Minimize He,(f) among f: £ — R® with genus(X) = g, A(f) = Ao, V(f) = Vo,
where g € Ny and A, Vo > 0 satisfy the isoperimetric inequality 36w VZ < A3.

m Here A(f) := [ du is the area, V(f) := —% [ (f, n) dyu is the (algebraic) volume.
m ¢ = 0: Smoothly embedded minimizers exists by [Schygulla '12],
[Keller—-Mondino—Riviére '14], [Mondino—Scharrer '20], [Kusner-McGrath '21].
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Variational Canham—Helfrich problem

Minimize He(f) among f: & — R® with genus(Z) = g, A(f) = Ao, V(f) = Vo,
where g € Ny and A, Vo > 0 satisfy the isoperimetric inequality 36w VZ < A3.

m Here A(f) := [ du is the area, V(f) := —% [ (f, n) dyu is the (algebraic) volume.
m ¢ = 0: Smoothly embedded minimizers exists by [Schygulla '12],
[Keller—-Mondino—Riviére '14], [Mondino—Scharrer '20], [Kusner-McGrath '21].

m ¢ # 0: Existence of varifold minimizers [Brazda—Lussardi-Stefanelli '19], immersed
bubble trees [Mondino—Scharrer '20].
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Theorem (Li-Yau, '82)

If f: ¥ — R? is an immersion and xo € R3, then

dr#f (x0) < W(F). (1)
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Theorem (Li-Yau, '82)

If f: ¥ — R? is an immersion and xo € R3, then
4 (x0) < W(F). (1)

m Scaling invariance: W(rf) = W(f) for all r > 0.

Fabian Rupp Li-Yau inequalities for the Helfrich functional



The Li—Yau inequality for the Willmore energy & ngﬁrs'tat

Theorem (Li-Yau, '82)

If f: ¥ — R? is an immersion and xo € R3, then
4 (x0) < W(F). (1)

m Scaling invariance: W(rf) = W(f) for all r > 0.
m W(f) > 4m, equality if and only if f is a round sphere.
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Theorem (Li-Yau, '82)

If f: ¥ — R? is an immersion and xo € R3, then
dn#f 7 (x0) < W(F). (1)
m Scaling invariance: W(rf) = W(f) for all r > 0.

m W(f) > 4m, equality if and only if f is a round sphere.
m If W(f) < 8, then f is an embedding.

Fabian Rupp Li-Yau inequalities for the Helfrich functional



The Li—Yau inequality for the Willmore energy /\7 Wigﬁrsitét

The Helfrich and Willmore functionals University of Vienna

Theorem (Li-Yau, '82)

If f: ¥ — R? is an immersion and xo € R3, then
4 (x0) < W(F). (1)

m Scaling invariance: W(rf) = W(f) for all r > 0.
m W(f) > 4m, equality if and only if f is a round sphere.
m If W(f) < 8, then f is an embedding.

m Energy threshold of 8 is crucial for existence of minimizers, regularity of critical

points and convergence of the (constrained) gradient flow.
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The Helfrich and Willmore functionals University of Vienna

Theorem (Li-Yau, '82)

If f: ¥ — R? is an immersion and xo € R3, then
4 (x0) < W(F). (1)

m Scaling invariance: W(rf) = W(f) for all r > 0.
m W(f) > 4r, equality if and only if f is a round sphere.
m If W(f) < 8, then f is an embedding.

m Energy threshold of 8 is crucial for existence of minimizers, regularity of critical

points and convergence of the (constrained) gradient flow.

Motivating question

Does the Helfrich energy H., allow for an inequality like (1)?
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Can we find C > 0 such that for immersions f: £ — R3 we have

#£7(x0) < CHe(f)? ()
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Can we find C > 0 such that for immersions f: £ — R3 we have
#F 1 (x0) < CHe(F)? (2)

m No: If f =4: §? — R® with standard orientation, then He,(f) = 0 for ¢o = 2.
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Can we find C > 0 such that for immersions f: £ — R3 we have
#F 1 (x0) < CHe(F)? (2)

m No: If f =4: §? — R® with standard orientation, then He,(f) = 0 for ¢o = 2.

m Invariances of (2)
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A Li-Yau inequality and applications University of Vienna

Can we find C > 0 such that for immersions f: £ — R3 we have
#F 1 (x0) < CHe(F)? (2)

m No: If f =4: §? — R® with standard orientation, then He,(f) = 0 for ¢o = 2.

m Invariances of (2)

rescaling i = R | #(rf) Hro) = #F7H(%0) | Heo(rf) = Hey ()
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Can we find C > 0 such that for immersions f: £ — R3 we have
#F 1 (x0) < CHe(F)? (2)

m No: If f =4: §? — R® with standard orientation, then He,(f) = 0 for ¢o = 2.

m Invariances of (2)

rescaling i = R | #(rf) Hro) = #F7H(%0) | Heo(rf) = Hey ()

reversing orientation || f: 5 — R3 | #f (x0) = #f *(x0) Hey(F) = Hooo(F)
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A Li-Yau inequality and applications University of Vienna

Can we find C > 0 such that for immersions f: £ — R3 we have
#F 1 (x0) < CHe(F)? (2)

m No: If f =4: §? — R® with standard orientation, then He,(f) = 0 for ¢o = 2.

m Invariances of (2)

rescaling i = R | #(rf) Hro) = #F7H(%0) | Heo(rf) = Hey ()

reversing orientation || f: 5 — R3 | #f (x0) = #f *(x0) Hey(F) = Hooo(F)

m For |co| small, one may use the Li-Yau inequality for W and lim,~ o Hc,(rf) = W(F).
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A Li-Yau inequality and applications

University of Vienna

Theorem (R.—Scharrer, '22)

Let f: ¥ — R® be a smooth immersion of an oriented closed surface . Let ¢; € R,
xo € R® and define the concentrated volume

Then

_ 1
#(x0) < 2 Hal(F) + ;—;Vc(f,xo).

Fabian Rupp
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A Li-Yau inequality and applications

University of Vienna

Theorem (R.—Scharrer, '22)

Let f: ¥ — R® be a smooth immersion of an oriented closed surface . Let ¢; € R,
xo € R® and define the concentrated volume

Then
0 =4 < 2 c\l', X0)-

= Reversing orientation yields Ve(7,x0) = —Ve(f, x0), Hey(F) = H_qy(f).
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A Li-Yau inequality and applications

University of Vienna

Theorem (R.—Scharrer, '22)

Let f: ¥ — R® be a smooth immersion of an oriented closed surface . Let ¢; € R,
xo € R® and define the concentrated volume

Then
0 =4 < 2 c\l', X0)-

= Reversing orientation yields Ve(7,x0) = —Ve(f, x0), Hey(F) = H_qy(f).
m Asymptotically sharp for spheres

Fabian Rupp
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Recall
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A Li-Yau inequality and applications University of Vienna

Recall

m The integral is singular, but subcritical.
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A Li-Yau inequality and applications University of Vienna

Recall

m The integral is singular, but subcritical.
m If f(¥) = 9Q, Q C R? open and n is the interior unit normal, the divergence

theorem yields

X — X

1
Ve(f, x :/diviodx:/idx>0.
(F0) = N P = Jy =P

Fabian Rupp Li-Yau inequalities for the Helfrich functional



wiversitat
On the concentrated volume wien

A Li-Yau inequality and applications

University of Vienna

Recall

m The integral is singular, but subcritical.

m If f(¥) = 9Q, Q C R? open and n is the interior unit normal, the divergence
theorem yields

. X—Xo 1
Ve(f, x :/dIV7dX:/7dX>O.
(F0) = N =P & = Jy =P

If .o < 0, we then have 47r#f_1(xo) < He(F).
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A Li-Yau inequality and applications

University of Vienna

Recall

m The integral is singular, but subcritical.

m If f(¥) = 9Q, Q C R? open and n is the interior unit normal, the divergence
theorem yields

. X—Xo 1
Ve(f, x :/dlv dx:/idx>0.
(F0) = N =P & = Jy =P

If .o < 0, we then have 47r#f_1(xo) < He(F).

m There exist immersions with V(f, x) < 0 < V(f). ” .
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A Li-Yau inequality and applications

University of Vienna

Corollary

Let f: ¥ — R be an Alexandrov immersion, i.e. there exists a compact 3-manifold M

with M = X, the inner unit normal field v along ¥ and an immersion F: M — R® with
f = F|x and n = dF(v).
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A Li-Yau inequality and applications

University of Vienna

Corollary

Let f: ¥ — R be an Alexandrov immersion, i.e. there exists a compact 3-manifold M
with M = X, the inner unit normal field v along ¥ and an immersion F: M — R® with
f = F|s and n = dF(v). Then for all ¢ € R, xo € R®, we have

_ 1 fe #F(x)
1 < . 0
#f (%) < 47TH o(F) + o o Ix — x0[? dx
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A Li-Yau inequality and applications

University of Vienna

Corollary

Let f: ¥ — R be an Alexandrov immersion, i.e. there exists a compact 3-manifold M
with M = X, the inner unit normal field v along ¥ and an immersion F: M — R® with
f = F|s and n = dF(v). Then for all ¢ € R, xo € R®, we have

_ 1 fe #F(x)
1 < . 0
#f (%) < 47TH o(F) + o o Ix — x0[? dx

m For ¢ < 0, it follows 4m#f ~1(x0) < He (). In particular Hey(F) > 4.
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A Li-Yau inequality and applications

University of Vienna

Corollary

Let f: ¥ — R be an Alexandrov immersion, i.e. there exists a compact 3-manifold M
with M = X, the inner unit normal field v along ¥ and an immersion F: M — R® with
f = F|s and n = dF(v). Then for all ¢ € R, xo € R®, we have

_ 1 fe #F(x)
1 < . 0
#f (%) < 47TH o(F) + o o Ix — x0[? dx

m For ¢ < 0, it follows 4m#f ~1(x0) < He (). In particular Hey(F) > 4.

m Can be generalized to boundaries of sets of finite perimeter, or more generally
varifolds with enclosed volume.

Fabian Rupp
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A Li-Yau inequality and applications University of Vienna

Corollary

Let f: ¥ — R3 be an Alexandrov immersion, i.e. there exists a compact 3-manifold M
with M = X, the inner unit normal field v along ¥ and an immersion F: M — R® with
f = F|s and n = dF(v). Then for all ¢ € R, xo € R®, we have

_ 1 fe #F(x)
1 < . 0
#f (%) < 47TH o(F) + o o Ix — x0[? dx

m For ¢ < 0, it follows 47#f 1 (x0) < He (). In particular He, (f) > 4.

m Can be generalized to boundaries of sets of finite perimeter, or more generally
varifolds with enclosed volume.

m For A\, p > 0 consider the penalized energy

HEP(F) == Hey (F) + NA(F) + pV(f).
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Surfaces with a divergence theorem

A Li-Yau inequality and applications University of Vienna

Corollary

Let f: ¥ — R3 be an Alexandrov immersion, i.e. there exists a compact 3-manifold M
with M = X, the inner unit normal field v along ¥ and an immersion F: M — R® with
f = F|s and n = dF(v). Then for all ¢ € R, xo € R®, we have

_ 1 fe #F(x)
1 < . 0
#f (%) < 47TH o(F) + o o Ix — x0[? dx

m For ¢ < 0, it follows 47#f 1 (x0) < He (). In particular He, (f) > 4.

m Can be generalized to boundaries of sets of finite perimeter, or more generally
varifolds with enclosed volume.

m For A\, p > 0 consider the penalized energy
HAP(F) = Moo (F) + NA(F) + pV(F).

If co < 0 then AminHP(f) among embeddings f € C*(S* R?).
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A Li-Yau inequality and applications University of Vienna

Theorem (R.—Scharrer '22)

Let ¢ € R and suppose Ao, Vo > 0 satisfy the isoperimetric inequality 36w V¢ < A3. Let

n(co, Ao, Vo) i= inf{?—tco(f) | f € C®(S* R?) embedding, A(f) = Ao, V(f) = vo}‘ (3)
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A Li-Yau inequality and applications

Theorem (R.—Scharrer '22)
Let ¢ € R and suppose Ao, Vo > 0 satisfy the isoperimetric inequality 36w V¢ < A3. Let

n(co, Ao, Vo) i= inf{?—tco(f) | f € C®(S* R?) embedding, A(f) = Ao, V(f) = vo}‘ (3)
Then there exists '(co, Ao, Vo) > 0 such that if

8m+ I C(),Ao7 Vo if g < 0,
e, Ao, V) < Ao 1) )
8m — |_(Co7 Ao7 Vo) if co > 0,

then the infimum in (3) is attained.
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A Li-Yau inequality and applications

Theorem (R.—Scharrer '22)
Let ¢ € R and suppose Ao, Vo > 0 satisfy the isoperimetric inequality 36w V¢ < A3. Let

n(co, Ao, Vo) i= inf{?—tco(f) | f € C®(S* R?) embedding, A(f) = Ao, V(f) = vo}‘ (3)
Then there exists '(co, Ao, Vo) > 0 such that if

8m+ I C(),A()7 Vo if g < 0,
e, Ao, V) < Ao 1) )
8m — |_(Co7 Ao7 Vo) if co > 0,

then the infimum in (3) is attained.

m For all ¢ < 0 there exist Ao, Vo > 0 such that n(co, Ao, Vo) < 8.
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A Li-Yau inequality and applications

Theorem (R.—Scharrer '22)
Let ¢ € R and suppose Ao, Vo > 0 satisfy the isoperimetric inequality 36w V¢ < A3. Let

n(co, Ao, Vo) i= inf{?—tco(f) | f € C®(S* R?) embedding, A(f) = Ao, V(f) = vo}‘ (3)
Then there exists '(co, Ao, Vo) > 0 such that if

81 + r(C(),A()7 Vo) ifC() < 0,
(4)

T](C07A07 VO) <
8m — |_(C()7Ao7 Vo) if co > 0,

then the infimum in (3) is attained.

m For all ¢ < 0 there exist Ao, Vo > 0 such that n(co, Ao, Vo) < 8.
m Existence of smoothly embedded minimizers for the Canham—Helfrich model for

c < 0and X = S?if (4) holds.

Li-Yau inequalities for the Helfrich functional

Fabian Rupp



wniversitat
< wien

Sketch of the proof of the Li—Yau inequality
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Sketch of the proof of the Li-Yau inequality University of Vienna

Theorem (R.—Scharrer, '22)

Let f: ¥ — R® be a smooth immersion of an oriented closed surface ¥, let ¢y € R,
xo0 € R®. Then

_ 1
#£ 7 (x0) < 3= Ha(f) + 52 Ve(f, ).

where Ve(f, x0) := — [; <|C,:)§f0’|';> dy denotes the concentrated volume.
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Theorem (R.—Scharrer, '22)

Let f: ¥ — R® be a smooth immersion of an oriented closed surface ¥, let ¢y € R,
xo0 € R®. Then

_ 1
#£ 7 (x0) < 3= Ha(f) + 52 Ve(f, ).

where Ve(f, x0) := — [; <|C,:)§f0’|';> dy denotes the concentrated volume.

Idea of the proof:

#fﬁl(Xo) = lim w
p—0 P2

and use first variation of area [Simon '93].
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Let 0 < o < p, xo = 0 € R®. Consider
o(t) == (max{t, o} - p_z) ,
4

define X(x) = o(|x|)x.
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Let 0 < o < p, xo = 0 € R®. Consider
o(t) == (max{t, o} - p_z) ,
4

define X(x) = o(|x|)x.

Figure: Plot of |X(x)|.
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Let 0 < o < p, xo = 0 € R®. Consider
o(t) == (max{t, o} - p_z) ,
4

define X(x) = ¢(|x|)x. With H := Hn, we
have the first variation formula

/div-rXofdu:—/(Xof,I-_i)dp.
p p

Figure: Plot of |X(x)|.
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The first variation formula

Let 0 < o < p, xo = 0 € R®. Consider
o(t) == (max{t, o} - p_z) ,
4

define X(x) = ¢(|x|)x. With H := Hn, we
have the first variation formula

/div-rXofdpL:—/(Xof,I-_i)dp.
p p

With B, := f~1(B,(0)) compute .

Figure: Plot of |X(x)|.
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The first variation formula

Let 0 < o < p, xo = 0 € R®. Consider
o(t) = (max{t, o} - p_z) ,
4

define X(x) = ¢(|x|)x. With H := Hn, we
have the first variation formula

/divTXofdu:—/(Xof,ﬁ)dp.
p p

N g
With B, := f~!(B,(0)) compute 4
2u(éa) 2UF, n>2 Figure: Plot of | X(x)|.
=+ =d
o 8\6, Il
=203 ooz [ Ayap [ (R [ A7 A,
4 B, ép ép\é"
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The first variation formula

Sketch of the proof of the Li-Yau inequality University of Vienna

Let 0 < o < p, xo = 0 € R®. Consider
o(t) = (max{t, o} - p_z) ,
4

define X(x) = ¢(|x|)x. With H := Hn, we
have the first variation formula

/divTXofdu:—/(Xof,ﬁ)dp.
p p

(f, A - cn)  2(f,n)?

With B, := f~1(B,(0)) compute

|f]2 |£]* .
~ 1, - f,n)n 1 -
2u(Bs) / 2(f, n)? d :Z‘Z(H—con)—l— < \f|2> - §|H—c0n|2
o? g6, IfI*
=2 o [ Ay [ A [ 1A d
P B, 8, B,\Bo
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A monotonicity argument

Hence, we find

2u(B7) +/ 2‘1(/?— con) + {2m
o B,\B, If

_ - _ 1
w0 [ Aan—a [ g [
5 B,\Bo 8

B, Bo\Bo

N

2

. )

dp = 2MBp) _ 0_2/ (F, Hydp
5

N 2

H— con‘

du.
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A monotonicity argument

Hence, we find

2u(B7) +/ 2‘1(/?— con) + {2m
o B,\B, |f]

—|—p_2/ (f,ﬁ)dy—co/

B, By\Bo

N

2

) R

au = 245 —0_2/ (F, H) dp
B

2 1 - 2

|f] (f,n)d,u—{-g/ H—con‘

ép\éa

du.

In particular, the following function is monotonically nondecreasing

w(B,) 1/ 2 Co/ (f,n) 1 /
— H— — f,H)du.
v(p) 2 T 16 épl anl”du — - 6, IFP du+2p2 _(f.H)du

P
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A monotonicity argument

Hence, we find

2u(B7) +/ 2‘1(/?— con) + {2m
o B,\B, |f]

—|—p_2/ (f,ﬁ)dy—co/

B, By\Bo

N

2

) R

au = 245 —0_2/ (F, H) dp
B

2 1 - 2

|f] (f,n)d,u—{-g/ H—con‘

ép\éa

du.

In particular, the following function is monotonically nondecreasing

w(B,) 1/ 2 Co/ (f,n) 1 /
— H— — f,H)du.
v(p) 2 T 16 épl anl”du — - 6, IFP du+2p2 _(f.H)du

P

We have
m limy0y(p) = 7#fH(x0),
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Hence, we find

2u(B7) +/ 2‘1(/?— con) + {2m
o B,\B, |f]

—|—p_2/ (f,ﬁ)dy—co/

B, By\Bo

N

2

) R

au = 245 —0_2/ (F, H) dp
B

2 1 - 2

|f] (f,n)d,u—{—g/ H—con‘

ép\éa

du.

In particular, the following function is monotonically nondecreasing

w(B,) 1/ 2 Co/ (f,n) 1 /
— H— — f,H)dpu.
v(p) 2 T 16 épl anl”du — - 6, IFP du+2p2 _(f.H)du

P

We have
m lim,—07(p) = 7#f " (x0),
m limyoov(p) = 220 1 2y (£ x).
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Hence, we find
2(8,) [ alti-ans
) + " 2| (H—cn)+ 7|2

_ - _ 1
iy / <f,H>du—cO/ ] 2<f,n>du+*/
: B\B, 8 Js,\8,

Bp

. )
au= 24200 o= [ iy
B,

2

N

H — cn

2
‘ du.

In particular, the following function is monotonically nondecreasing

_ B / @[ Eag, L
: H— - = — f,H)dpu.
W)= T g f, I — el dn =5 | S et g [, (L H) A
We have
I — m#F (),
= lim,—07(p) Wf (f)(XO) } = #F 1 (x0) < o) 4 oy (£ x).
B im0 7(p) = =% + 2V(f, x0).
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Thank you for your attention!
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Sketch of the proof of the Li-Yau inequality University of Vienna
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Corollary (scale-invariant version)

Let f: ¥ — R3 be an immersion of a closed oriented surface. Then for all xo € R>

AV (f, x0) _ Ve(f, x0)?
27 TA(f)

#f(x0) < %”Fl(f) F

Here H := [ Hdp and H(f) := infqer Hey(F) = 3 [o(H — H)* dp.
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Corollary (scale-invariant version)

Let f: ¥ — R3 be an immersion of a closed oriented surface. Then for all xo € R>

_q 1 - AV.(f,x0)  Ve(f,x0)?
#f (Xo)SE'H(f)-i- - ~ A

Here H := [ Hdp and H(f) := infqer Hey(F) = 3 [o(H — H)* dp.

m Minkowski inequality: If Q C R® is bounded, open, convex with C3-boundary, then

1

5/ HAH® > \/4nH2(0Q).
oN

Fabian Rupp
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Corollary (scale-invariant version)

Let f: ¥ — R3 be an immersion of a closed oriented surface. Then for all xo € R>

_q 1 - AV.(f,x0) Ve(f,x0)?
#f (Xo)SE'H(f)-i- - ~ A

Here H := [ Hdp and H(f) := infqer Hey(F) = 3 [o(H — H)* dp.
m Minkowski inequality: If Q C R® is bounded, open, convex with C3-boundary, then
1

2/ HdH? > /47 H2(09).
o

m If for some xo € R® we have Vc(f,x) > 0 and H(f) < 4n#f (%), then

%LHduz \/<47r#f*1(x0)—7-_{,(1‘)).,4(1‘)20.

Fabian Rupp
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