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Abstract

The concept of an invariant set is of great importance in the theory of dynamical systems.
An invariant set D can be described as follows: if a solution enters, or starts in D, then it
stays in D. In this thesis, the main focus lies on dynamical systems generated by a system
of non-linear differential equations. It is of great interest to identify and construct such
invariant sets, in order to decipher the structure of a solution, especially when a closed-
form is not available. This thesis is divided into four parts. In the first part (Chapter
2), important notions and theorems of the qualitative theory of differential equations are
being treated, and the definition of a dynamical system is being introduced. It turns
out that proving the global existence of solutions is a recurrent obstacle. In the second
part (Chapter 3), the concept of invariance is formally defined, and criteria to identify
invariant sets are presented and also applied to specific examples. More complicated sets
are treated at the end of this Chapter, showing how complicated the structures of invariant
sets can be. In the third part (Chapter 4), stability concepts are being presented. The
linearization of a system around an equilibrium is being studied. Moreover, the concept
of a Lyapunov function is introduced. Finally, in the fourth part (Chapter 5), methods
to construct invariant sets are studied. While the concept of Lyapunov functions can
be directly applied to construct invariant sets, the relationship between stability and
invariance is rarely treated in the literature. More research and analysis are needed in
this area.
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Chapter 1 Introduction

1 Introduction

The principal goal in dynamical systems theory (sometimes known as non-linear dynam-

ics or chaos theory), is to understand the behaviour of states in a system, namely the

population of a country, the density of a compound in a chemical solution, or the position

of a particle in a physical system. Historically, the modern theory of dynamical systems

derives from the foundations laid by H.J. Poincaré (1854- 1912) on the qualitative analysis

of non-linear differential equations. His work includes the study of periodic motions and

definitions of stability (see Section 4.1.1). The formal study of dynamical systems involves

studying mathematical models derived from various fields, such as physics, chemistry, bi-

ology or economics. For example, one can formulate problems from classical mechanics as

a dynamical system, where the position and velocity of a particle are the state variables.

In this case, one can write the dynamical system down as a system of differential equa-

tions, which will be the sole focus in this thesis. Thus, only dynamical systems derived

from (non-linear) systems of ordinary differential equations (ODEs) are being considered.

The essential definitions and theorems treating existence, uniqueness and positivity of

solutions for a system of ODEs of the form (1) are addressed in Section 2.2.

Inherent in the concept of dynamical systems is the primary focus on the “qualitative

theory”, due to the fact, that exact solutions for complex systems are often too challenging

to solve or even fully interpret. One takes the following approach instead: the system of

differential equations which model some natural or technical phenomenon, may still deliver

pieces of information without the demand of an exact solution. Dynamical systems theory

does not propose specific models of the reality; it is broadly speaking, a set of methods

to decipher systems of ODEs possessing the form

ẋi(t) = fi(t, x1, x2, . . . , xn) (1)

with t ∈ R, x ∈ Rn, where x1, x2, . . . , xn are called the state variables. The main purpose

is naturally the solving of (1), to obtain the so-called orbits (or solution curves of (1))

x(t) = (x1(t), x2(t), . . . , xn(t)) t ∈ [0,∞).

In the world of dynamical systems, the methods accentuate the considerations of all orbits,

especially the description of qualitative properties mentioned above: namely the existence

of solutions, rather than derivation of explicit closed-form expressions or in the field of

numerical mathematics, approximations.

Roughly speaking, a set D ⊂ Rn is invariant with respect to a system (1), if for every
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Chapter 1 Introduction

orbit x(t) and t0 ∈ R,

x(t0) ∈ D ⇒ x(t) ∈ D for all t ≥ t0.

Now, only a few non-linear ODEs can be solved analytically. However, one can deduce

a great deal from the study of the linearization of systems around an equilibrium (or

other invariant sets), considered in Section 4.1. For instance, the linearization of the sys-

tem about an equilibrium x̃ = (x̃1(t), x̃2(t), . . . , x̃n(t)), where fi(x̃1(t), x̃2(t), . . . , x̃n(t)) =

0 for i = 1, . . . , n leads to the linear system ẏ = Df(x̃)y, with Df(x̃) being the n × n

Jacobian matrix evaluated at the equilibrium point. One can say, that linear theory is

important in the study of non-linear dynamical systems since the stability of solutions

of non-linear systems can often be derived from the stability of their linearization. In

summary, the goal of the qualitative theory is to understand the behaviour of the solu-

tions through geometrical and topological lenses (further details on the development and

history of the concept of dynamical systems over the years can be found in [20, p 115-138]

for example).

The concept of invariance is formally introduced on general sets D ∈ Rn in Chapter 3 and

considered on convex sets in Section 3.2. A central aim in this chapter is to find criteria

proving the invariance of a giving set D ⊂ Rn. Further classes of more complicated and

complex invariant sets are being considered in Section 3.3. In any non-linear dynamical

system, the “skeletal structure” of the global dynamical behaviour is built on the invariant

sets of the system, such as:

1. Equilibria or fixed points;

2. Periodic orbits;

3. The connecting orbits or invariant sets amongst them.

Therefore, one central enquiry in dynamical systems theory is to get a grasp of the exis-

tence and structure of invariant sets. One can even show the presence of invariant sets

with complicated structures in systems with chaotic behaviour, briefly treated in Chapter

3.3.3. The stability properties, and especially the concept of the Lyapunov stability, and

how they relate to the idea of invariance, are being treated in Chapter 4. Finally, some

methods and tools for the construction of invariant sets are being presented in Chapter

5.
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Chapter 2 Differential Equations and Dynamical Systems

2 Differential Equations and Dynamical Systems

2.1 Notations

In this thesis, the standard terminology known from topology and mathematical analysis

shall be used. As usual, N,R and C represent the natural, real and complex numbers,

respectively. Moreover, N0 = N ∪ {0}.
The open and closed balls with radius r and centre x0 ∈ Rn are denoted by Br(x0)

and Br(x0). The distance from a point x ∈ Rn to a set D ⊂ Rn is denoted by

dist(x,D) := inf
d∈D
|x− d| . Furthermore, intD, ∂D and D shall be the interior, the bound-

ary and the closure of a set D ∈ Rn, respectively.

The scalar product in Rn is denoted by (·|·); the absolute value of a real number as well

as a non-specified norm defined on Rn shall be designated with |·|.
Let the interval I ⊂ R, k ∈ N0 ∪ {∞}, then Ck(I;Rn) designates the space of the k-times

continuously differentiable functions u: I → Rn. For k = 0, one sets C(I;Rn): = C0(I;Rn).

A projection P in Rn satisfies P 2 = P and induces with x = Px+ (x− Px) a decompo-

sition of Rn in a direct sum. Finally, the dot denotes the derivative with respect to the

time t.

2.2 Differential Equations

Let G ⊂ Rn+1 be an open set with (t0, x0) ∈ G, f :G → Rn continuous and locally

Lipschitz in x. The following initial value problem (IVP) for a system of first-order ODEs{
ẋ = f(t, x)

x(t0) = x0
(2)

is being considered in this section, if not specified otherwise.

If f does not explicitly depend on t, i.e. f : Ω0 → Rn with Ω0 ⊂ Rn, then one has a system

of autonomous ordinary differential equations (ODEs) given by{
ẋ = f(x)

x(t0) = x0.
(3)

2.2.1 Existence and Uniqueness of Solutions

Before diving into the concept of dynamical systems, this subsection is dedicated to fun-

damental theorems and lemmata from the qualitative theory of differential equations.
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Chapter 2 Differential Equations and Dynamical Systems

Astonishingly, the existence of a local solution requires only the continuity of f(t, x) in

(2), as treated in the following theorem.

Theorem 2.1 (Peano’s existence theorem, 1886). Let Ω ⊂ R × Rn be an open set,

f : Ω → Rn continuous and (t0, x0) ∈ Ω an initial value. Then, the IVP defined in (2)

possesses a local solution φ: [t0 − α, t0 + β]→ Rn, with suitable R 3 α, β > 0.

Proof. The proof can be found in [62, Satz 2.3].

Peano’s result ensures a local solution for the IVP (2) if f(t, x) is at least continuous in

a neighbourhood of (t0, x0). One speaks of local existence, which is unfortunately not

suited for the remainder of this thesis.

Example 2.2. [25, Section 4.2] Consider the ODE ẋ = 2
√
|x|. One can see that x(t) = 0

is a solution on (−∞,∞), but also x(t) = x2 on [0,∞) and x(t) = −x2 on (−∞, 0]. But

x 7→ x2 is not a maximal solution on R+, because it can be extended to a solution on R
through

x 7→

x2, if x ≥ 0,

0, otherwise,

or also

x 7→


−(x− a)2 if x ≤ a,

0 if a ≤ x ≤ b,

(x− b)2 if b ≤ x.

This entails, that there is an endless number of solutions for ẋ = 2
√
|x| with initial value

x(t0) = x0.

The previous example shows that the plain existence of a solution for (2) is not sufficient,

hence one also needs uniqueness. To this end, the notion of Lipschitz continuity (see,

e.g. [4, Definition 1.17]) shall be reminded:

Definition 2.3. Let G ⊂ Rn+1. A continuous function f :G → Rn is called locally

Lipschitz with respect to x, if for every open set K ⊂ G and (t0, x0) ∈ K there is a

closed ball B̄r(x0), an α > 0 with [t0 − α, t0 + α]× B̄r(x0) ⊂ K and a Lipschitz constant

L(t0, x0) > 0 fulfilling

|f(t, x)− f(t, x̃)| ≤ L(t0, x0) |x− x̃| , with |t− t0| ≤ α, x, x̃ ∈ B̄r(x0).

Remark 1. In the case, that the Lipschitz constant does not depend on (t0, x0) ∈ K, f is

called globally Lipschitz.

With the notion of a locally Lipschitz function, it is now possible to formulate an essential
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Chapter 2 Differential Equations and Dynamical Systems

result on the existence and uniqueness of solutions of (2).

Theorem 2.4 (Picard-Lindelöf theorem). Let the function f :G→ Rn with f ∈ C(G;Rn)

be locally Lipschitz in x on an open set G ⊂ R × Rn. Then for every (t0, x0) ∈ G, there

exists a unique solution of the IVP (2) in some open interval containing t0.

Proof. The proof can be found in [4, Section 1.2.3].

At first glance, the Lipschitz property seems a little bit too demanding, but this appre-

hension is unfounded, as can be seen in the following proposition.

Proposition 2.5. Let G ⊂ R × Rn and f :G → Rn be of the class C1(G;Rn) (i.e.

continuously differentiable), then f is locally Lipschitz in x.

Proof. The proof can be found in [4, Proposition 1.19].

Theorem 2.4 establishes that Lipschitz continuity of f guarantees the unique existence of

a solution of (2) on an interval containing t0. The following questions now come to mind:

1. Is it possible to extend the solution to a larger interval?

2. If so, is there a “greatest” interval that supports the solution?

However, before discussing this topic any further, it shall be noted that one can put

solutions together. For instance, let x1(t) be the solution on the interval [t0, t1] and x2(t)

the solution on [t1, t2], satisfying x1(t1) = x2(t1). Now, one has

ẋ1(t1) = f(t1, x1(t1)) =
x1(t1)=x2(t1)

f(t1, x2(t1)) = ẋ2(t1)

and therefore the joint function

x(t) =

{
x1(t), for t ∈ [t0, t1]

x2(t), for t ∈ [t1, t2]
(4)

is continuously differentiable on [t0, t2].

This property and the uniqueness of the solutions of (2) lead to the following (see [48,

Def. 2.3.1]) notion.

Definition 2.6. Let t±(t0, x0) ∈ R be defined by

t+ = t+(t0, x0) = sup{t1 ≥ t0| a solution x1 exists for (2) on [t0, t1]},

t− = t−(t0, x0) = sup{t2 ≤ t0| a solution x2 exists for (2) on [t2, t0]}.

The intervals [t0, t+), (t−, t0] or (t−, t+) are called maximal interval of existence to

5



Chapter 2 Differential Equations and Dynamical Systems

the right, to the left, or per se, respectively. The maximal solution of (2) is defined by

x(t) = x1(t) for all t ∈ [t0, t1] and by x(t) = x2(t) on [t2, t0], respectively. Hence, one has

x(t) ∈ C1((t−, t+);Rn).

Under the assumptions of Theorem 2.4, the maximal interval of a solution x: I → Rn of

(2) is the largest open interval (t−, t+) where the existence of a solution coincides with

x ∈ I. But it should be noted, that for an interval J with I ⊂ J , it is relatively open in

J , i.e. I = O ∩ J for some open set O ⊂ R (for a proof, see [35, Proposition 4.4]). One

can readily suspect, that the maximal interval of a solution will unfortunately not always

be R, as can be clearly (cf. [4, Example 1.45]) seen in the following example.

Example 2.7. Let f(t, x): = x2 and x(t0) = x0 in Equation (2). One can readily see,

that the solutions are (for c ∈ R)

• x(t) = 0 for x0 = 0 with the maximal interval R,

• x(t) =
1

t0 − t+ 1
x0

with the maximal intervals

{
(−∞, t0 + 1

x0
), for x0 > 0

(t0 + 1
x0
,∞), for x0 < 0.

The possible situations, which can arise for a maximal interval of existence, are summa-

rized in the following theorem.

Theorem 2.8 (Extension Theorem). A solution x(t) ∈ C1([t0, t1);Rn), t1 > t0 for (2)

can be continued into the future until the boundary of the phase space Ω, if and only if

there exists a continuation x̃ ∈ C1([t0, t+);Rn) of x(t) with t1 ≤ t+ ≤ ∞ such that x̃ also

satisfies (2). One can characterize the point t+ on the right-hand side according to the

three following cases:

1. t+ = ∞ : x(t) is therefore a global solution to the right (see Example 2.7, case

x0 < 0).

2. t+ < ∞ and lim
t→t+
|x̃(t)| = ∞. This is the case of a so-called “blow up”, as can be

seen in Example 2.7, case x0 > 0.

3. t+ < ∞ and lim
t→t+

dist((t, x̃(t)), ∂Ω) = 0, i.e. the solution “collapses” in finite time

at the boundary of Ω.

The three situations are analogous in the case of t−.

Proof. The proof and further details can be found in [15, Definition 2.3, 48, Satz 2.3.2].

Now, Picard-Lindelöf’s Theorem 2.4 secures a unique local solution for (2) and Theo-

rem 2.8 describes its maximal interval of existence. Sometimes useful to obtain a global

6



Chapter 2 Differential Equations and Dynamical Systems

existence of a solution for (2) is the following result.

Proposition 2.9. Let G = J ×Rn, J ⊂ R open, (t0, x0) ∈ G and f :G→ Rn continuous,

locally Lipschitz in x. Further, let f be linearly bounded, i.e.

|f(t, x)| ≤ r(t) |x|+ s(t) (5)

for all t ∈ J, x ∈ Rn and continuous functions r, s: J → R+. The solution of (2) then

exists globally.

Proof. For the proof, see [37, Satz 2.11].

Example 2.10. One considers the IVP

ẋ(t) =
√
|t| |cos(t)|+ g(t) with x(0) = x0, (6)

g being a continuous function g: J → R+, J ⊂ R. For instance, one can take g(t) =

t4 + t2 + et. Let f(t, x): =
√
|t| |cos(t)| + g(t). One can clearly see, that f is continuous,

and that

|f(t, x)− f(t, x̃)| ≤
√
|t| ||cos(x)| − |cos(x̃)|| ≤

√
|τ | |x− x̃|

holds for t ≤ τ . It follows with Theorem 2.4 and Definition 2.6 that there exists a unique

maximal solution for (6). Now, if one takes r(t) = 0 and s(t) =
√
|t|+ g(t),

f(t, x) ≤ r(t) |x|+ s(t)

holds. It follows with Proposition 2.9, that the solution of (6) exists globally.

Models originating in the life sciences, for example from Volterra-Lotka and Kermack-

McKendrick, usually do not satisfy the conditions of Proposition 2.9. Therefore, one

needs a criterion for proving global existence to the right for (2).

Proposition 2.11. Let G = J×Rn, J ⊂ R open, (t0, x0) ∈ G and f :G→ Rn continuous,

locally Lipschitz in x. A constant ω ≥ 0 shall exist satisfying

(f(t, x)|x) ≤ ω |x|22 (7)

for all (t, x) ∈ G. Then, all the solutions of (2) exist globally to the right.

Proof. The proof can be found in [48, Korollar 2.5.3].

An interesting application of Proposition 2.11 can be found in an article from Mugnolo

[44], concerning the discrete p-Laplace operator.

7



Chapter 2 Differential Equations and Dynamical Systems

Example 2.12. (The discrete p-Laplacian) An essential notion in the graph theory is the

signed incidence matrix, defined as follows (see, e.g. [26, Definition 1.1.17]):

Definition 2.13. (Signed incidence matrix) Let G be a finite oriented graph, m and n

the number of edges and vertices, respectively. The signed incidence matrix is an n ×m
matrix I, such that

Iij =


0, if vertex vi and edge ej are not incident,

1, if the vertex vi is the head of edge ej,

−1, if the vertex vi is the tail of edge ej.

Let D be the diagonal degree matrix, and A be the adjacency matrix of a finite undirected

graph. The discrete Laplacian is a notable notion in the world of the graph theory and

was introduced by Kirchhoff as

∆ := D − A.

He then discovered that for any orientation of the graph, its related signed incidence

matrix I satisfies

∆ = IIT .

Let G be a finite (oriented) graph, I his associated signed incidence matrix, 2 ≤ p < ∞
and as usual f a real function of several variables. Now, the considerations above motivate

the definition (see [44, Equation 1.4]) of the discrete p-Laplacian

∆p: f 7→ I(
∣∣ITf ∣∣p−2 ITf), (8)

in clear analogy with the p-Laplacian in the continuum (see, e.g. [2, Section 12.5])

∆̃p: f 7→ ∇(|∇f |p−2∇f).

The discrete p-Laplacian is an essential concept in graph theory and can be viewed as the

discrete version of the p-Laplace operator. One can define the system of ODEs

dx

dt
= −∆p x(t), (9)

and set f(t, x(t)): = −∆p x(t). Now, if G = J × Rn, J ⊂ R open, (t0, x0) ∈ G, then

f :G→ Rn is obviously continuous and locally Lipschitz in x. One has

(f(t, x)|x) = −
(
I(
∣∣ITx∣∣p−2 ITx)|x

)

8



Chapter 2 Differential Equations and Dynamical Systems

= −
(∣∣ITx∣∣p−2 IITx|x)

= −
(∣∣ITx∣∣p−2 ITx|ITx)

= −
∣∣ITx∣∣p−2 (ITx|ITx)

= −
∣∣ITx∣∣p−2 ∣∣ITx∣∣2

= −
∣∣ITx∣∣p

≤ 0.

Now, setting w = 0, one recognizes that the prerequisites of Proposition 2.11 are satisfied.

Therefore, the solutions of (9) exist globally to the right.

It has to be said, that neither of the criterions 2.9 and 2.11 has proven itself in practice,

and should therefore not be further pursued (see [53, page 119] for more details). An

advantageous method will be treated later on in Section 4.2.

2.2.2 Linear Equations with Constant Coefficients

This Section, based on [48, Section 3.3.2, 13, Section 2.1.4, 58, Chapter 6] serves as a brief

reminder of the theory of solutions of linear equations (with constant coefficients). One

considers the IVP defined through

ẋ = Ax, x(t0) = x0 (10)

with the constant matrix A ∈ Rn×n and x(t) ∈ Rn. Rather than computing explicitly

the solutions of the linear system (10) directly, it is frequently rather useful for analytical

purposes, to consider the problem from a more theoretical point of view. Namely, the

exponential function can be generalized to a mapping defined on the set of square matrices.

One recalls that the set of linear operators L(Rn) on Rn is an n2-dimensional Banach space

equipped with the operator norm

‖A‖= sup
|v|=1

|Av| .

Now, one defines the exponential map exp:L(Rn)→ L(Rn) with

exp:A 7→ I +
∞∑
k=1

1

k!
Ak,

9
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and sets eA: = exp(A). Now, if A ∈ L(Rn), then the infinite series

exp(A): = I +
∞∑
k=1

1

k!
Ak

is absolutely convergent (the proof can be found in [13, Proposition 2.31] for example).

The considerations just above, motivate the following (see [48, Definition 3.3.1]) function

z 7→ eAz defined through

eAz =
N∑
k=0

Akzk

k!
, z ∈ C.

It is called the matrix exponential for the matrix A, and has the decisive property

d

dz

N∑
k=0

Akzk

k!
=

N∑
k=1

Akzk−1

(k − 1)!

= A

N−1∑
k=0

Akzk

k!

−−−→
N→∞

AezA,

i.e. the uniform convergence on compact sets of C with regards to z. It follows from the

property just above, that

x(t) = x0e
(t−t0)A, (11)

with x0 ∈ Rn, is the unique solution of the system (10). Now, one can observe that for

an eigenvector v from A,

etAv =

(
∞∑
k=0

Aktk

k!

)
v

=
∞∑
k=0

Akvtk

k!

=
∞∑
k=0

λkvtk

k!

=
Av=λv

(
∞∑
k=0

λktk

k!

)
v

= eλtv.

It follows that x(t): = eλtv is a solution for the linear system defined in (10). In summary:

the eigenvalues and eigenvectors of A are closely related to the solutions of ẋ = Ax. For

10
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the sake of convenience, it shall be assumed that for k = 1, . . . , n, the eigenvalues λk of A

are distinct, with their corresponding eigenvectors vk. In this situation, the system (10)

possesses n independent solutions, namely

eλ1tv1, . . . , e
λntvn, (12)

which are gathered as columns in a matrix

Φ: = (x1(t) . . . xn(t)) ,

in the literature sometimes referred to as the fundamental matrix. Now, every solution

of the IVP (10) can be put in the form

x(t) = Φ(t)Φ−1(t0)x0.

It follows from Equation (11) that t 7→ eAt is the fundamental matrix for the system (10).

One therefore obtains

Φ(t) = etA and consequently Φ−1(t) = e−tA.

Further details of the theory of solutions of linear systems, especially when λk is an

eigenvalue with multiplicity n, and the dimension of its eigenspace is smaller than n,

can be found in [3, Section 25] and [1, Section 12]. As one just saw, the eigenvalues

play a central role in the solutions of (10). It is well-known from the qualitative theory

of differential equations, that the solutions of (10) form an n-dimensional space L ⊂
C1(I;Rn), with I ⊂ R. Thus, considering the linear combinations of the solutions in

(12), leads naturally to the following result.

Proposition 2.14. Let A ∈ Rn×n. The system ẋ = Ax has:

• Solutions converging to 0 as t→ +∞ if and only if Re(λi) < 0, i = 1, . . . , n;

• Bounded Solutions in [0,∞), if and only if Re(λi) ≤ 0, i = 1, . . . , n. In the case of

λm = 0, for 1 ≤ m ≤ n, the algebraic and geometric multiplicities of λm concur.

Proof. The proof and details can be found in [11, Section 2.3].

Proposition 2.14 is an essential connection between the behaviour of solutions for the

system (10), and the eigenvalues for its defining matrix A. Furthermore, it builds a

bridge for stability considerations of linear systems in Section 4.1.1 later on.

11
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2.2.3 Continuous Dependence on the Initial Conditions

Let x(t) be the solution of (2) on its maximal interval of existence (t−, t+). J = [a, b]

a compact interval of (t−, t+), t0 ∈ [a, b] and define graphJ(x) := {(t, x(t)|t ∈ J)} ⊂ G.

This leads to the following (see [48, Definition 4.1.1]) definition.

Definition 2.15. A solution x(t) is called continuously dependent on the data (t0, x0, f),

if for every compact interval of J ⊂ (t−, t+), there is a compact neighbourhood K ⊂ G of

graphJ(x), such that: For every ε > 0 there is a δ > 0 such that the solution of the IVP

ẏ = g(t, y), y(τ0) = y0 exists for all t ∈ [a, b] and the inequality

|x(t)− y(t)| ≤ ε, for all t ∈ [a, b]

is satisfied, assuming that g:R × G → Rn is continuous and locally Lipschitz in x. Fur-

thermore,

|τ0 − t0| ≤ δ, |x0 − y0| ≤ δ and sup
(s,z)∈K

|f(s, z)− g(s, z) ≤ δ|

must hold.

This definition leads to an important result.

Theorem 2.16. Let G ⊂ Rn+1 be an open set with (t0, x0) ∈ G, f : G→ Rn continuous

and locally Lipschitz in x. Then, the solution x(t) of (2) is continuously dependent on

the data (t0, x0, f).

Proof. The proof can be found in [48, Satz 4.1.2].

An important property of the solutions for autonomous ordinary differential equations of

the form (3) is the following (see [15, Lemma 2.2]) result.

Lemma 2.17 (Translation invariance). Let Ω0 ⊂ Rn and J ⊂ R. One considers the

mapping f : Ω0 → Rn, x0 ∈ Ω0. For every solution x ∈ C1(J ;Rn), t0 ∈ J , of the

autonomous initial value problem (3), time translation by t ∈ R produces a solution

x(t− τ) ∈ C1(J ;Rn) of the IVP {
ẋ = f(x)

x(t0 + τ) = x0.
(13)

Proof. One has ẋ(t) = f(x(t)), for all t ∈ J , and it follows

d

dt
(x(t− τ)) =

∂x

∂t
(t− τ)

d

dt
(t− τ)

= ẋ(t− τ)

12
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= f(x(t− τ)).

Finally, taking t = t0 + τ and plugging it into x(t− τ) yields x(t0 + τ − τ) = x(t0) = x0

and the proof is concluded.

It follows from Lemma 2.17 that in autonomous cases the starting time t0 is not of any

importance. A translation in time maps solutions for distinct starting times, but equal

starting values, one into another. Thus, t0 can be freely set.

Lemma 2.18. Consider the autonomous system (3), and f shall be locally Lipschitz in

an open set G ⊂ Rn. If its solution x(t) exists for all t ≥ t0 and if x∞ = lim
t→∞

x(t) exists

and belongs to G ⊂ Rn, then x∞ is a critical point; i.e. f(x∞) = 0.

Proof. The proof can be found in [60, Chapter 10], for example.

The following definitions (see [48, Definition 1.4.1, 60, Chapters X and XI]) are useful for

this thesis:

Definition 2.19 (Isocline, nullcline). A curve having the equation f(x) = k for some

constant k ∈ R is called an isocline for the differential equation ẋ = f(x). The special

case of f(x) = 0 is called a nullcline.

Definition 2.20 (Equilibrium point). A point ã ∈ G ⊂ Rn is called an equilibrium point

(also a stationary point or critical point) of f , if f(ã) = 0. If ã is a critical point of f ,

then x(t) = ã is a (constant) solution.

2.3 Dynamical Systems

This section gives a brief introduction to the main ideas of dynamical systems and is

mainly based on [27, Chapter 1], [48, Section 4.4] and [29, Chapter 1]. Roughly speaking,

three things mainly characterize dynamical systems:

1. The phase space Ω, whose elements stand for possible states of the system.

2. The time t, which can be discrete or continuous (in this thesis only the latter). If

t can be extended to the past, one has a reversible process, otherwise irreversible.

In the case of a continuous-time process, t is represented by the set R if the process

is reversible and by R+ if otherwise.

3. The time-evolution law. Roughly speaking, it allows one to determine the state

of the system at each t from its states at previous times.

Moreover, characteristic in the dynamical theory is the main focus on the asymptotic

behaviour, i.e. one is interested in the state of the system after a very long time (typically

13
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t → ∞). The notion of a dynamical system has its origins (see [33, Section 1.1]) in the

qualitative theory of differential equations, developed in the last two decades of the 19th

century by Poincaré and Lyapunov. After more than 50 years of searching, the following

abstract notion (central for the scope of this thesis) arose.

Definition 2.21 (Dynamical System). Let M ⊂ Rn and (M,d) its corresponding metric

space. The mapping φ:R ×M → M, (t, x) 7→ φ(t, x) is called a dynamical system

(flow) if the following conditions are satisfied:

φ(0, x) = x ∀x ∈M, (DS1)

φ(t+ s, x) = φ(t, φ(s, x)) ∀t, s ∈ R, x ∈M and (DS2)

φ is continuous in (t, x) ∈ R×M. (DS3)

Condition (DS2) is called the group property and states that the dynamical system can

be reinitialized at a point x(s) along its trajectory to obtain the same result x(t + s),

starting at x(0) and travelling for some time t+ s. If only R+ is being considered in the

definition, one speaks of a semi-dynamical system on M (semi-flow), and in this case,

condition (DS2) is named semi-group property. The dynamical system is called discrete

if R is replaced by Z. The mapping Φ describes the dynamic of the system. Define the

system to be at the time t = 0 in x, then at a time t̃ it will be at φ(t̃, x). The set M is

called the phase space of the dynamical system. The phase portrait of a dynamical

system is the set of all its solution curves in the phase space M .

As already mentioned above, Definition 2.21 is rather abstract. However, this thesis

mainly focuses on dynamical systems defined through solutions of autonomous differential

equations leading to a very important result.

Theorem 2.22. [48, Satz 4.4.2] Let G ⊂ Rn be an open set, f :G→ Rn locally Lipschitz

and for every initial value y ∈ G, the solution x(t, y) of the IVP{
ẋ = f(x)

x(t0) = y
(1)

shall exist globally, i.e. ∀t ∈ R. Then, the function

φ(t, y): = x(t, y), y ∈ G, t ∈ R

defines a dynamical system. If the solutions exist at least globally to the right, then one

obtains a semi-flow.

14
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Proof. To prove this claim, one has to verify that the three conditions in Definition 2.21

are fulfilled. One has y = x(0) = x(0, y) = φ(0, y) so (DS1) holds. Now, φ(t+s, y) = x(t+

s, y) is, due to the autonomy of the system and Lemma 2.17, a solution of (1). Same goes

for φ(t, φ(s, y)) = x(t, x(s, y)). Setting t = 0, one has x(0 + s, y) = x(s, y) = x(0.x(s, y)).

Because uniqueness of the solution was assumed, it follows x(t+ s, y) = x(t, x(s, y)), and

this fulfils condition (DS2). Finally, x(t, y) = φ(t, y) continuously depends on y because

of Theorem 2.16. Therefore, (DS3) also holds and the proof is complete.

Theorem 2.22 can be nicely illustrated with the following example.

Example 2.23. ([46, Section 1.1]) Consider the (uncoupled) linear system

ẋ = Ax with A =

(
−1 0

0 2

)
,

with its solutions x1(t) = y1e
−t and x2(t) = y2e

2t, leading to

x(t, y) = y

(
e−t 0

0 e2t

)
.

The premises of Theorem 2.22 are fulfilled, leading to the dynamical system defined by

the linear system above:

φ(t, y): = y

(
e−t 0

0 e2t

)
.

The importance of Theorem 2.22 lies in the fact, that if the autonomous IVP (3) has a

unique global solution, then it always defines a dynamical system. If the solution exists

globally to the right, one still has a semi-dynamical system. It has to be noted that the

autonomy of (3) is essential to obtain a dynamical system. One considers, for instance

the IVP ẋ = tx, x(0) = y with solution x(t) = ye
1
2
t2 . Now, it holds

x(t+ s, y) = yet+s = yeset and ẋ(t+ s, y) = yet+s 6= tyet+s = f(t, x)

and therefore x(t+ s, y) is not a solution of (1).

Remark 2. One can reformulate Lemma 2.18 in the language of dynamical systems. Let

φ(t, x) be a semi-flow, and the limit value x∞: = lim
t→∞

φ(t, x0) shall exist. One has

φ(t, x∞) = φ(t, lim
s→∞

φ(s, x0)) =
(DS3)

lim
s→∞

φ(t, φ(s, x0)) =
(DS2)

lim
s→∞

φ(t+ s, x0) = x∞.

It follows, that limit points (i.e. for t → ∞) from solutions of (3) defined for all t ≥ 0,
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are always stationary points of the equation.

There is however a significant downside in Theorem 2.22, namely to prove the (global)

existence of the solution for the IVP, which can be a tedious task, especially when a

closed-form of the solution is not available.
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3 Invariance

Let G ⊂ Rn be an open set, f : R × G → Rn continuous. One recalls the initial value

problem {
ẋ = f(t, x)

x(t0) = x0
(2)

with x0 ∈ G, t0 ∈ R, defined in Section 2.2. Let x1 be the solution of (2) on the interval

[t0, t1]. The following useful notion shall be reminded: Let t+(t0, x0) ∈ R be defined as

t+ = t+(t0, x0) := sup{t1 ≥ t0 : a solution x1 exists for (2) on the closed interval [t0, t1]}.
The interval [t0, t+) shall then be called the maximal interval of existence of the solution

to the right. The maximal solution of (2) is defined as x(t) = x1(t) for all t ∈ [t0, t1].

Moreover, a solution of (2) shall be designated with x(t; t0, x0) to emphasize the initial

value x(t0) = x0.

3.1 Invariant Sets

For the rest of this section, one assumes uniqueness of solutions to the right. Let x(t; t0, x0)

be a solution of (2) on the maximal interval J+(t0, x0) := [t0, t+(t0, x0)]. One of the

essential concepts in the qualitative theory of ordinary differential equations is the notion

of an invariant set (see [48, Definition 7.1.1]).

Definition 3.1. Let D ⊂ G. The set D is called positively invariant for (2), if the solution

satisfies x(t; t0, x0) ∈ D for all t ∈ J+(t0, x0), assuming x0 ∈ D. Negative invariance is

defined accordingly, assuming uniqueness of solutions of (2) to the left. D is finally called

invariant if it is both positively and negatively invariant.

The invariance of a set D for (2) can be summarized as follows: If the initial value lies

in D, the solution of (2) will remain in D for all t ∈ R.

Invariant sets of dynamic systems play an essential part in various situations, in which

the behaviour of the solution is restrained. The existence of an invariant set in the state

space of a system entails bounds for the solution’s behaviour. The validation of a priori

specified constraints (physical constraints, the positivity of solutions) can be confirmed

with the help of invariant sets.

Before looking at examples of invariant sets, a few things can already be noted:

• ∅ and G are trivial examples of positively invariant sets.

• One can see, that unions (same goes for intersections) of (positively) invariant sets

are (positively) invariant.

17



Chapter 3 Invariance

• The smallest (biggest) invariant subset of D, is the intersection (union) of all the

invariant subsets of D.

Definition 3.2 (Orbit). Let y ∈ G ⊂ Rn be fixed. The set

γ(y) := {φ(t, y)|t ∈ R} (3)

is called the orbit (or trajectory) through the point y. Correspondingly, γ+(y) = φ(R+, y)

is called the positive semi-orbit of y.

Lemma 3.3.

1. If D is (positively) invariant, then this is also true for D.

2. If D1 and D2 are invariant, then so is the complement D1 \D2.

Proof. Let D be a (positively) invariant set, x ∈ D and a fixed t in the maximal interval

of existence (t−(t0, x), t+(t0, x)). If x is in the closure of D, it implies that there exists

a sequence (xn)n∈N with lim
n→∞

xn = x. Now, for an n0 chosen large enough, one has for

t ∈ (t−(t0, xn), t+(t0, xn)) and n ≥ n0

lim
n→∞

φ(t, xn) = φ(t, x) ∈ D.

In summary, one has derived that if x ∈ D then φ(t, x) ∈ D, hence the closure of D is

also (positively) invariant.

Now, let d1 ∈ D1 \D2. If the intersection of the orbit passing through d1 with D2 contains

a point d2, then it follows the equality γ(d1) = γ(d2), and both trajectories belong to D2,

in contradiction to the assumption d1 /∈ D2. It follows γ(d1) ⊆ D1 \D2, and thus D1 \D2

is invariant.

For the sake of getting a first idea of what invariant sets looks like, examples are useful.

Example 3.4. An equilibrium point {x0} (see Definition 2.20), with f(t, x0) = 0 for all t ∈
R, would be the simplest invariant set one can think of, considering that a solution starting

at this point would remain there forever.

Example 3.5. A rather simple invariant set is a periodic orbit Γ (see, e.g. [46, Sec-

tion 3.3]), determined by the initial condition x0 and a period T , defined as the shortest

time T > 0 for which φ(t+ T, xp) = φ(t, xp) holds.

After a few examples, it is now necessary to find conditions for the positive invariance of

D. The following considerations are mainly based on [48, Section 7.1]. Let x0 ∈ D be

arbitrary, D be positively invariant , h > 0 sufficiently small and set x̃ = x0 + hf(t0, x0).
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• If x̃ ∈ int(D), then it follows 0 = dist(x̃, D) ≤ |x̃− x(t0 + h;x0)|2 .

• Else, the distance from x̃ to D will be less or equal than the Euclidean distance

between x̃ and x(t0 + h; t0, x0).

It follows the inequality

dist(x̃, D) ≤ |x̃− x(t0 + h;x0)|2 . (4)

By the fundamental theorem of calculus, x(t0 + h;x0) can be written as

x(t0 + h;x0) = x0 +

t0+h∫
t0

ẋ(s; t0, x0) ds.

Plugged in the inequality (4), it follows with ẋ(t0; t0, x0) = f(t0, x0)

dist(x̃, D) ≤

∣∣∣∣∣∣hẋ(t0)−
t0+h∫
t0

ẋ(s; t0, x0) ds

∣∣∣∣∣∣
2

,

and further ∣∣∣∣∣∣hẋ(t0)−
t0+h∫
t0

ẋ(s; t0, x0) ds

∣∣∣∣∣∣
2

= |hẋ(t0)− (x(t0 + h)− x(t0))|2

= h

∣∣∣∣ẋ(t0)−
(x(t0 + h)− x(t0))

h

∣∣∣∣
2

.

Now, if h → 0, then lim
h→0

x(t0+h)−x(t0)
h

= ẋ(t0). It means that for every ε > 0, there is a

δ > 0 such that

dist(x0 + hf(t0, x0), D) ≤ εh

is fulfilled, if h ∈ (0, δ]. One has derived an essential result with these considerations.

Proposition 3.6 (The subtangential condition (SC)). Let x be an element of an invariant

subset D, then

lim
h→0+

1

h
dist(x+ hf(t, x), D) = 0

holds, for all t ∈ R.

Proposition 3.6 leads to a result of significant importance. But before the next step, the

theorem of Arzelà-Ascoli shall be reminded (a proof can be found in [52, Theorem 11.28]):
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Theorem 3.7 (Arzelà-Ascoli). Let F be a pointwise bounded equicontinuous collection

of complex functions on a metric space X, and that X contains a countable dense subset

E. Every sequence {fn} in F possesses then a subsequence, that converges uniformly on

every compact subset of X.

Proposition 3.8. Let G ⊂ Rn be an open set, f : R × G → Rn continuous and D ⊂ G

closed. Then the following assertions are equivalent:

a) D is positively invariant for (2),

b) f and D satisfy the SC.

Proof. The implication a⇒ b has already been derived at the beginning of this section

(see Proposition 3.6). It remains to prove the existence of a solution for (2), such that

x(t) ∈ D for all t ∈ [t0, t0 + a] (a ∈ R), assuming that the SC is fulfilled. The proof for

the local solution is sufficient since uniqueness of a solution for the initial value problem

(2) would imply, that the maximal solution in D to the right would remain in D. The

existence of a solution x(t) ∈ D for (2) on the interval [t0, t0 +a] is shown with a sequence

of points (tj, xj) that approximate its graph. The proof is rather lengthy, so only the

main ideas are being presented here.

• Let M := max{|f(t, x)| : t ∈ [t0, t0 + 1], x ∈ Br(x0) ∩ D}, a := min{1, r
M+1
} and

ε ∈ (0, 1) arbitrary. Now, let (tj, xj) be already constructed. Because one assumes

that the SC is fulfilled in this point, one can find hj+1 > 0 and xj+1 ∈ D (more

precisely xj+1 ∈ ∂D) such that the following holds:

dist(xj + hj+1f(tj, xj), D) = |xj + hj+1f(tj, xj)− xj+1| ≤ εhj+1, ε ∈ (0, 1).

• One then shows that the sequence aborts when tj+1 ≥ t0 + a occurs (there is only

a finite number of tj ≤ t0 + a).

• The linear spline passing through the points (tj, xj) and (tj+1, xj+1) has the form

xε(t) =
t− tj
hj+1

xj+1 +
tj+1 − t
hj+1

xj, tj ≤ t < tj+1,

(for simplicity, x(t) ∈ R). One then has the inequality∣∣∣∣∣∣xε(t)− x0 −
t∫

t0

f(sj, xj) ds

∣∣∣∣∣∣ ≤ εa.

• Now, if one takes for ε the values εk = 1/k, the corresponding splines xεk(t) are
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uniformly bounded and Lipschitz continuous with Lipschitz constant L = M + 1 on

the interval [t0, t0 + a], thus they are equicontinuous. The existence of a solution

follows with Theorem 3.7 from Arzelà-Ascoli: xεk possesses a uniformly convergent,

D-valued subsequence xεkm → x.

More details of the proof (especially for b⇒ a) can be found in [48, Satz 7.1.4].

In the case that the solutions for (2) are not unique, if at least one of them exists in D, then

D is called positively weakly invariant. Historically, the concept of the subtangential

condition can be traced back to Bouligand’s (as cited in [6, Definition 4.6]) definition of

the “tangent cone” in the 1930s.

Definition 3.9. (Tangent cone) Let S be a closed set, the tangent cone to S at x is then

being defined as

TD(x) =

{
z ∈ Rn : lim inf

h→0+

dist(x+ hz,D)

h
= 0

}
. (5)

It should be noted, that even if dist(x+hz,D) depends on the concrete norm, the set TD(x)

doesn’t. Two more similar definitions of the tangent cone exist. One was made by Bony

[8, Definition 2.2], although he did not specifically use this term. He used the notion of a

vector field X(x) tangent to a closed set F (“Un champ de vecteurs X(x) est dit tangent

au fermé F si, ...”). The other definition traces back to Clarke [14, Section 1.2, p11].

Nevertheless, in the case of convex sets, the three definitions are equivalent. Furthermore,

if D is a convex set, so is TD(x) and therefore, lim inf can be replaced by lim in (5). With

the notion of the tangent cone, one can reformulate Proposition 3.8 (in the autonomous

case) as follows:

Theorem 3.10 (The SC revisited). One considers the system ẋ(t) = f(x(t)). The exis-

tence of its (not necessarily unique) solution for all t ≥ 0 shall be assumed, for an initial

value x(0) in an open set O. Let D ⊂ O be a closed set. Then, D is weakly positively

invariant for the system if and only if Nagumo’s condition f(x) ∈ TD(x) for all x ∈ D, is

satisfied. One obtains positive invariance if one assumes the uniqueness of the solution.

Proof. The proof dates back to Nagumo [45] in 1942. In the literature, this result is

sometimes referred to as the Nagumo theorem.

The subtangential condition is equal to the fact, that the vector field f(x) points inward

or lies below the tangent plane along ∂D. There lies the origin of the term “subtan-

gential condition”, which was first formulated by Nagumo. Interestingly, he does not use

the word positive invariance in his paper; he used the notion of “majorant to the right

in D” instead (“nach rechts majorant in D”). Nevertheless, his findings did not get much
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attention until the late sixties, when the invariance problem was brought to life again.

A drawback from Proposition 3.8, is the prerequisite of the presumed invariant set D.

Its application, therefore, depends on an educated guess, or mathematical intuition. A

possibility to circumvent this hurdle is the following important result from Wilke and

Prüss (see [48, Satz 7.2.1]):

Theorem 3.11. Let Φ ∈ C1(Rn;R) and let a ∈ R be a regular value for Φ, i.e. ∇Φ(x) 6=
0 for all x ∈ Φ−1(a). Then, the following assertions are equivalent:

1. D = Φ−1((−∞, a]) is positively invariant for (2).

2. (f(t, x)|∇Φ(x)) ≤ 0 for all t ∈ R, x ∈ Φ−1(a) = ∂D.

Proof. Assume that 1. is valid. Set t ∈ R, x ∈ ∂D and define y = f(t, x). According to

Proposition 3.8, f and D satisfy the SC, entailing the existence of a function g ∈ D so

that for every ε ∈ (0, 1), there is a δ > 0 with

‖x+ hy − g(h)‖2≤ εh,

for every h ∈ (0, δ]. Considering that Φ is continuously differentiable, there exits a ζ > 0

with

|Φ(g(h))− Φ(x)− (∇Φ(x)|g(h)− x)| ≤ ε‖g(h)− x‖2,

if ‖g(h)−x‖2≤ ζ is fulfilled. One can see that ‖g(h)−x‖2≤ h(1+‖y‖2) holds, and therefore

0 < h ≤ min{δ, ζ
(1+‖y‖2)}. Because of the definition of D and x, one has Φ(x) = a and

Φ(g(h)) ≤ a. Thus (one remembers the bilinearity of a scalar product),

(y|∇Φ(x)) =
(
y − h−1(g(h)− x)|∇Φ(x)

)
+
(
h−1(g(h)− x)|∇Φ(x)

)
≤ ‖∇Φ(x)‖2ε+ h−1 |Φ(g(h))− Φ(x)− (∇Φ(x)|g(h)− x)|

≤ ‖∇Φ(x)‖2ε(1 + ‖y‖2)

≤ kε

with k ∈ R. Considering that ε is arbitrary, the claim follows.

Now, one assumes that 2. holds, and sets t0 ∈ R, x0 ∈ D. The following ODE

ẋ = f(t, x)− ε∇Φ(x)

shall be considered. Theorem 2.1 (Peano’s existence theorem ) guarantees the existence

of a solution xε(t) with initial value xε(t0) = x0. One defines φ(t) = Φ(xε(t)). One can see

that φ(t0) ≤ a, and also (with the chain rule and bilinearity of the scalar product once
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more)

φ̇(t) = (ẋε(t)|∇Φ(xε(t))) = (f(t, xε(t))|∇Φ(xε(t)))− ε |∇Φ(xε(t))|2

hold. Now, if one assumes xε(t) /∈ D for some t > t0, then there exists a t1 ≥ t0 with

xε(t1) ∈ ∂D and xε(t) ∈ D if t ≤ t1. One then obtains

φ̇(t1) ≤ −ε |∇Φ(xε(t1))|2 < 0,

since a is a regular value. On the other hand, one has with the formal definition of the

derivative

φ̇(t1) = lim
h→0+

φ(t1)− φ(t1 − h)

h
= lim

h→0+

a− φ(t1 − h)

h
≥ 0,

and therefore a contradiction to φ̇(t1) < 0. It follows, that the solution xε(t) stays in D,

on its maximal interval of existence. Finally, one can see that xε(t) converges uniformly

to x(t) (the solution of (2)) on compact intervals for ε → 0, and it follows the positive

invariance of D.

Example 3.12. One considers the system of ODEs

ẋ = y2 − x

ẏ = −xy,

and the right-hand side shall be designated with f(x, y). f is continuously differentiable,

guaranteeing a unique local solution of the system. Moreover, one has

(f(x, y)|( xy )) = xy2 − x2 − xy2 = −x2 ≤ 0

and it follows with Proposition 2.11, that all the solutions of the system exist globally to

the right. Let 0 6= a ∈ R be arbitrary but fixed and one defines Φ(x, y) = 1
2
(x2 + y2).

One recognizes Φ ∈ C1(R2;R) with ∇Φ(x, y) = (x, y)T . Now, ∇Φ(x) = 0 if and only if

(x, y)T = (0, 0). Considering the fact that Φ(0, 0) = 0 6= a, one has (0, 0)T /∈ Φ−1(a), and

therefore a is a regular value for Φ. It holds

(f(t, x)|∇Φ(x)) = (y2 − x,−xy)T

(
x

y

)
= y2x− x2 − xy2 = −x2 ≤ 0

for all t ∈ R, x ∈ Φ−1(a). According to Theorem 3.11, D = Φ−1((−∞, a]) is positively

invariant for the system of ODEs, D being the circle with centre (0, 0) and radius
√

2a.

It has to be said, that in Proposition 3.8, the difficulty of guessing a presumed invariant

set D, has been replaced with the task of finding a function Φ with the desired properties
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stated in Theorem 3.11. However, this result will be improved in Section 4.2, especially

with Corollary 5.11.

3.2 Invariant Convex Sets

Before exploring further the geometric meaning of the SC, the notions of the outer normal

(see [49, Appendix, Section B]) and convex sets shall be reminded.

Definition 3.13 (The outer normal). Let D ⊂ Rn and x ∈ ∂D. The vector ν 6= 0 ∈ Rn

is called outer normal of D in x, if B|ν|(x+ ν) ∩D = ∅ . The set of outer normals in

x ∈ ∂D should be named ND(x).

One can say, that ν is an outer normal to D at x ∈ ∂D if the open ball B has no shared

point with D. From a geometric point of view, B touches D at x ∈ ∂D ∩B̄. It can further

be seen from Definition 3.13, that an outer normal must not always exist. As an example,

one can take a concave polygon, which possesses at least one “jumping in” corner. This

unpleasant property will be getting ridden off in this section, when convexity of the set

is assumed.

Definition 3.14 (Convex sets). A set K ⊂ Rn is called convex if it satisfies:

x, y ∈ K then λx+ (1− λ)y ∈ K for all 0 ≤ λ ≤ 1.

It can be formulated in the following way: For two distinct points in K, their connecting

line entirely lies in K.

Some essential properties of convex sets shall be reminded:

• The intersection of convex sets is convex.

• The union of convex sets is usually non-convex (two intersecting circles for example).

• The closure of a convex set yields a convex set.

The definitions and proofs for the properties of convex sets can be found in [61, Section

1.22]. With the concept of the outer normal, it will now be possible to formulate a criterion

to characterize invariant convex sets of (2). But before that, one needs the following (see

[48, Lemma 7.3.3]) result.

Lemma 3.15. Let D ⊂ Rn be a convex closed set, x ∈ ∂D and z ∈ Rn. The SC

lim
h→0+

1

h
dist(x+ hz,D) = 0
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is then equivalent to

(z|y) ≤ 0 for all y ∈ N(x).

Proof. The proof for the implication lim
h→0+

1
h
dist(x + hz,D) = 0 ⇒ (z|y) ≤ 0 for all y ∈

ND(x) can be found in [48, Lemma 7.1.3]. Now, assume that (z|y) ≤ 0 for all y ∈ ND(x)

holds, but that the SC is wrong. Thus, there exists an ε > 0 and a sequence hn → 0+

with

εhn ≤ dist(x+ hnz,D) ≤ hn‖z‖2.

It follows (one remembers the projection P )

ε ≤
∣∣h−1n (x− P (x+ hnz)) + z

∣∣ ≤ ‖z‖2.
It follows with Bolzano-Weierstrass that there exists a subsequence h̃n with h̃n → 0+ and

a sequence

yn := h̃−1n (x− P (x+ h̃nz)) + z

that converges to a y 6= 0. It can be shown (see [48, Lemma 7.3.1] for a proof), that for

every u ∈ Rn, there is precisely a Pu ∈ D satisfying

(u− Pu|v − Pu) ≤ 0 (6)

for all v ∈ D. Now, it follows for a v ∈ D with (6)

0 ≤ (yn|P (x+ h̃nz)− v)→ (y|x− v)

and thus the positivity of (y|x− v). One further recognizes

‖x+ y − v‖22= ‖x− v‖22+2(x− v|y) + ‖y‖22≥ ‖y‖22

for all v ∈ D. This entails B‖y‖2(x + y) ∩ D = ∅, hence y is an outer normal on D in

the point x. Further, one obtains again with (6) by setting v = x and u = x + h̃nz the

inequality

(x+ h̃nz − P (x+ h̃nz)|x− P (x+ h̃nz)) ≤ 0.

Taking the limit n→∞, one obtains

(z|y) ≥ ‖y‖22> 0,

a contradiction to (z|y) ≤ 0 and the claim is proven.
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To grasp a geometric interpretation of Lemma 3.15, one needs the well-known relation

of the angle Θ between two non-zero vectors and their scalar product cos(Θ) = v·w
||v||||w|| .

Now, if (z|y) ≤ 0, it entails cos(Θ) ≤ 0, considering the positivity of a norm. It follows

that Θ is an angle between π
2

and 3π
2
, thus an obtuse angle. With the help of Lemma 3.15,

the SC can be interpreted as follows: The angle Θ between ẋ(t) and every outer normal

in x(t) ∈ ∂D is always higher than π
2
. Geometrically speaking, if a solution of (2) reaches

the boundary of D, then the SC forces it to turn back. It can be visualized graphically,

that a convex set D is positively invariant if a trajectory through each boundary point

“moves inward”.

Theorem 3.16. [48, Satz 7.3.4] Let G be an open set of Rn and D ⊂ G a closed convex

set. Then the following assertions are equivalent:

i) D is positively invariant for (2);

ii) (f(t, x)|y) ≤ 0 for all t ∈ R, x ∈ ∂D, y ∈ ND(x).

Proof. According to Proposition 3.8, it follows from the positive invariance of D for (2),

that lim
h→0+

1
h
dist(x + hf(t, x), D) = 0. Combining it with Lemma 3.15, one obtains the

equivalence (f(t, x)|y) ≤ 0 for all y ∈ ND(x).

A particular case of Theorem 3.16 is the positive set

Rn
+ := {x ∈ Rn:xk ≥ 0, k = 1, . . . , n}.

To this end, one considers the set

Hk := {x ∈ Rn:xk ≥ 0}.

Let α > 0 and ek be the k-th unit vector in Rn. One can see that the outer normal in

x ∈ ∂Hk is given by y = −αek. Theorem 3.16 yields positive invariance for Hk if

xk = 0⇒ fk(x) ≥ 0

is satisfied. One further obtains for x ∈ ∂Rn
+

NRn
+

(x) = {y ∈ −Rn
+:xkyk = 0 for all k}.

One has just proven the following positivity criterium (see [49, Appendix]):

Lemma 3.17. One considers the positive set Rn
+. The following are then equivalent:

1. Rn
+ is positively invariant for (3);
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2. For x ∈ Rn
+, xk = 0⇒ fk(x) ≥ 0 for all k.

In the particular case of f(x) = Ax with a matrix A ∈ Rn×n, property 2 in Lemma 3.17

is satisfied if all the non-diagonal entries of A are non-negative. These matrices are called

quasi-positive. For this reason, a function f satisfying property 2 in Lemma 3.17 shall

also be called quasi-positive.

The following example from Walter (see [60, Chapter 10]) is a well-studied model originat-

ing in the life sciences. Despite being rather simple in its construction, it is nevertheless

fascinating for visualization purposes of the SC.

Example 3.18. (Competing species) One considers the autonomous system

u̇ = u(3− u− 2v), v̇ = v(4− 3u− v), (7)

which describes the numbers of animals in two different populations (u(t) and v(t)), feed-

ing on the same limited food source, with positive initial values u0, v0. As usual, t rep-

resents the time variable and let f1(u, v) := u(3− u− 2v) and f2(u, v) := v(4− 3u− v).

One has f1(0, v) = f2(u, 0) = 0, and it follows with Lemma 3.17, that the solutions of

the system are positive for t ≥ 0, if the initial values u0 and v0 are positive. Therefore,

one can restrain seeking positively invariant sets on Q := [0,∞] × [0,∞]. Now, one can

see, that the right-hand side f(u, v) is polynomial, and in particular continuously differ-

entiable, which guarantees a unique solution of the system in an open interval containing

t0 = 0. Let I = [0, t+] be the maximal interval of existence. One has

u̇ = u(3− u− 2v) ≤ 3u, v̇ = v(4− 3u− v) ≤ 4v

and therefore, 0 ≤ u(t) ≤ e3tu0 and 0 ≤ v(t) ≤ e4tv0. It follows, that the solutions

u(t), v(t) are bounded on every finite interval, and thus, t+ = ∞ and the solutions exist

globally for t ≥ 0.

Setting the right-hand side of the system to zero provides (after a short calculation)

the equilibria (0, 0), (0, 4) and (3, 0). As already pointed out in Remark 2, limit points

from solutions of (3) defined for all t ≥ 0, are always stationary points of the equation.

Therefore, a solution of the system will eventually converge to one of these points. A

repeatedly encountered difficulty in the search for invariant sets is its localization: One

needs an educated guess or a conjecture of where the invariant sets could be. In this

example, one can analyse the nullclines, as a starting point. Setting f1(u, v) and f2(u, v)
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Figure 1: Phase portrait (left) and vector field (right) for a competing species model.

to zero yields the nullclines

u = 0, v = 0, v =
3− u

2
and v = 4− 3u,

depicted in Figure 1 (right).

Remark 3. Setting the nullclines to equality, leads to f1(u, v) = f2(u, v) = 0, and thus

u̇ = v̇ = 0. It follows that each point of intersection of the nullclines is an equilibrium

point.

Now, the (convex) set Ω1 (depicted in Figure 1 on the left) shall be considered.

• On the left boundary, one has nl := (−1, 0)T as outer normal, and u = 0. Thus,

(f(u, v)|nl) = (0, v(4− v))T ( −10 ) = 0.

• On the upper boundary, one has nu := (3, 1)T as outer normal, u ∈ [0, 1] and v =

4− 3u. One obtains (f(u, v)|nl) = (u(3− u− 2(4− 3u)), 0)T ( 3
1 ) = 0 = 15(u− 1) ≤

0, if u ∈ [0, 1].

• On the lower boundary, one has nd := (−1,−2)T as outer normal, u ∈ [0, 1] and v =

3−u
2

. Thus (0, 3−u
2

(4− 3u− 3−u
2

))T
( −1
−2
)

= −2 (5− 5u)
3− u

4︸ ︷︷ ︸
≥0 if u∈[0,1]

≤ 0.

It follows with Theorem 3.16 that Ω1 is a positively invariant set for the system (7). One

can show with analogous calculations, that Ω3 is also a positively invariant set for the

competing species system.

The second example, for visualization purposes of the SC among other things, from Prüss,

Zacher, and Schnaubelt [49, Chapter 8] is by now famous in the world of dynamical

systems.
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Example 3.19. (Mathematical Modelling of Infectious Diseases) Many models that de-

scribe the spreading of an epidemic work similarly: one partitions the host population

into categories. In the SIR model of Kermack and McKendrick, there are three different

dividing classes:

1. Susceptible (S): The persons who are not immune to the infectious organism, and

therefore could contract the infection in case of an exposition.

2. Infectious (I): The persons who are at present infected, and therefore can transmit

the disease to responsive subjects they are in contact with

3. Removed (R): The individuals who are immune to the disease, and for this reason

do not have any influence on the transmission of the infectious agent in case of

contact with other individuals

The SIR model’s main goal is to describe the changes in the sizes of the three compart-

ments over a specific period. Diseases that lead to a possible immunity have a different

class structure from diseases which do not lead to immunity. In the above SIR model,

the disease confers immunity against re-infection (in the case of measles, for example).

It should be assumed that the infection of a non-infected person with an infected one,

happens with a fixed relative frequency. Therefore, Ṡ is proportional to S and I with

some proportionality constant r > 0, called infection rate. One further assumes that

a formerly infected person has gained immunity after overcoming the disease, i.e. the

healing process occurs randomly with a fixed rate a > 0. The above discussion entails

that individuals pass through the following scheme

S ↪→︸︷︷︸
rSI

I ↪→︸︷︷︸
aI

R,

leading to the system of ODEs

Ṡ = −rSI := f1(S, I, R),

İ = rSI − aI := f2(S, I, R),

Ṙ = aI := f3(S, I, R),

with given constants a, r > 0. Furthermore, due to the fact that S, I and R represent

the size of a portion of the population N , the initial conditions S(0) = S0, I(0) =

I0 and R(0) = R0 are positive, and one defines the (initial) total population N = S0 +

I0 + R0. One further defines the reproduction rate of the infection R = rN
a

, describing

how many infections an individual causes in a middle period of infection, presupposing
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that the number of individuals which could be infected is constant. First of all, the right-

hand side of the system (i.e. f(S, I, R)) is obviously continuously differentiable, and thus

locally Lipschitz with respect to S, I, R. It follows with Theorem 2.4 that the system

possesses a unique solution (S, I, R) for given positive initial values. Now, if one assumes

S, I, R ≥ 0, then it follows

f1(0, I, R) = f2(S, 0, R) = 0 and f3(S, I, 0) = aI ≥ 0.

It follows with Lemma 3.17 that the solution of the SIR model is positive for all t ≥ 0.

Furthermore, one has Ṡ + İ + Ṙ = 0, and thus the total host population size N = S(t) +

I(t)+R(t) is constant on the interval of existence of the solution. Thus, S(t), I(t), R(t) ≤
N , due to their just proven positivity. Hence, the solution exists for all t ≥ 0 following

the extension theorem (see Theorem 2.8), and furthermore defines a dynamical system.

Now, it can be beneficial to “normalize” the system, utilizing the new variables

u(at) =
S(t)

N
, v(at) =

I(t)

N
,w(at) =

R(t)

N
, u0 =

S0

N
, v0 =

I0
N
,w0 =

R0

N
.

One can see from these definitions, that

u(t) + v(t) + w(t) =
S(t) + I(t) +R(t)

N
= 1 =

S0 + I0 +R0

N
= u0 + v0 + w0. (8)

The idea behind normalization is to resize the variables on values between 0 and 1. Now,

one has
du(at)

dt
= au̇ =

Ṡ

N
=
−rSI
N

=
−rN
a

a

N

SI

N
= −Ruva,

i.e. one obtains u̇ = −Ruv. Analogous computations lead to the “normalized” system of

ODEs

u̇ = −Ruv (9)

v̇ = Ruv − v, (10)

ẇ = v, (11)

for all t ≥ 0, with initial values u(0) = u0, v(0) = v0, w(0) = w0. One can see, that the

variable w only appears in Equation (11), and therefore, one can restrict the analysis of

the “reduced” system (9)-(10). From Equation (8), one readily see, that u + v ≤ 1, and

therefore, the solutions of (9)-(10) lie in the triangle

T := {(u, v) ∈ R2 : u+ v ≤ 1 with u, v ≥ 0}.

30



Chapter 3 Invariance

A quick calculation yields the solutions for Equation (11)

w(t) = w0 +

t∫
0

v(ξ) dξ

for t ≥ 0. Now, on the (convex) triangle T one obtains:

• On the left boundary, one has nl := (−1, 0)T as outer normal, and u = 0. Thus,

(f(u, v)|nl) = (0,−v)T ( −10 ) = 0.

• On the upper boundary, one has nu := (1, 1)T as outer normal, u ∈ [0, 1] and v =

1−u. One obtains (f(u, v)|nu) = (−Ru(1−u),Ru(1−u)−1+u)T ( 1
1 ) = −1+u ≤

0, if u ∈ [0, 1].

• On the lower boundary, one has nd := (0,−1)T as outer normal, u ∈ [0, 1] and v = 0.

Thus (f(u, v)|nd) = (0, 0)T ( 0
−1 ) = 0.

It follows with Theorem 3.16 that the triangle T is a positively invariant set for the system

(9)-(10).

3.3 Further Examples of Invariant Sets

Before considering furthermore complicated examples of invariant sets, some first basic

ideas on the notion of stability shall be introduced. The concept of stability is an

essential and extensively studied property of invariant sets (equilibria in particular), and

can roughly be summarized as follows:

• An invariant set (equilibrium) is called stable if orbits starting close to it, stay close

to it;

• Unstable if they do not;

• Asymptotically stable if the invariant set (equilibrium) is stable, and additionally

orbits starting close to it converge to it if t→∞.

A rigorous concept of stability is being formally defined and studied in Chapter 4. This

section mainly follows the ideas of Teschl ([57, Section 6.3]) , Wilke/Prüss ([48, Sec-

tion 8.4]) and Meiss ([40, Section 4.9]). The considerations are restricted to autonomous

initial value problems, i.e. on ODE systems of the form

ẋ = f(x) (12)
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with t0 ≥ 0 and x(0) = x0. As usual, f :G→ Rn shall be continuous, with G ⊂ Rn being

an open set. The uniqueness of solutions shall not necessarily be assumed. As a reminder,

a neighbourhood of a set A is an open set U with A ⊂ U . An interesting observation is

the following: if q ∈ γ(p) then q = φ(t′, p) for some t′ ∈ (a, b). It follows

φ(t, q) = φ(t, φ(t′, p)) = φ(t+ t′, p),

again with the group property of a dynamical system, and one obtains

γ(q) = γ(p),

i.e. orbits either concur or do not cross. It has to be emphasized, that this property is

inherent for autonomous systems, and is not necessarily true for non-autonomous systems,

as the following example from Lebovitz [34, Example 7.1.1] demonstrates.

Example 3.20. One considers the non-autonomous system (with k ∈ R)

ẋ = −x+ k(cos(t)− sin(t))

ẏ = y + k(cos(t) + sin(t))

with solutions

x(t) = ae−t + k cos(t), y(t) = bet + k sin(t),

for a, b ∈ R. The choice a = b = 0 leads to an orbit described by a circle with centre

(0, 0) and radius k. Now, taking as initial values (0, k
2
) lead to the fact, that the solutions

in this case

x(t) = k(cos(t)− e−t), y(t) = k(
1

2
et + sin(t)),

leave the circle of radius k, and thus intersect it at a certain time t > 0.

3.3.1 Limit Sets

Let x:R+ → Rn be a continuous solution of the system (12).

Definition 3.21. The set

ω+(x) :={y ∈ Rn| there exists a sequence (tk) ∈ R with tk →∞ and x(tk)→ y}

={y ∈ Rn| there is a sequence (tk) ∈ R with tk →∞ and φ(tk, x)→ y}

is called the (positive) limit set of x. The negative limit set ω− is defined accordingly.

Definition 3.21 can be extended to some set X ⊆ M ⊂ Rn. The positive limit set of X

32



Chapter 3 Invariance

is the set ω+(X) of all points y ∈ M , for which there exists sequences tn → +∞ and

xn ∈ X with φ(tn, xn)→ y. It should be noticed that it follows from this definition, that

the inclusion ⋃
x∈X

ω+(x) ⊆ ω+(X)

is valid, equality being rarely the case (for further details, see [57, Section 8.1]).

Roughly speaking, limit sets are states, that a dynamical system can attain when time

goes to infinity, either by passing forward or backwards in time. Limit sets are crucial

since they can be exploited to understand the long term behaviour of a dynamical system.

The first type that would come to mind for a limit set would be an asymptotically stable

equilibrium (see Definition 4.3). Limit sets can be further divided into the following

categories:

• A periodic orbit (see Example 3.5);

• An attractor (see Section 3.3.3);

• A limit cycle (introduced in Section 3.3.2).

One can see from the definition of a limit set, that w+(x) is empty if a solution passing

through x is not defined for all t ≥ 0, or unbounded as t → ∞. The following example

from Knauf (see [30, 5.1 Beispiel]) illustrates that further premises are needed to ensure

the non-emptiness of the limit set.

Example 3.22. Let a ∈ R, and one defines the ODE ẋ = ax with initial value x(0) = x0.

Its flow then reads φ(t, x0) = eatx0. One obtains the following cases:

• If a < 0, then ω+(x0) = {0};

• If a = 0, then ω+(x0) = {x0};

• If a > 0, then ω+(x0) = ∅.

If one assumes, that the positive orbit is contained in a compact set C, then the solution

x(t) is included in C, as long as it exists for t > 0. According to the theorem of Bolzano-

Weierstrass, every sequence x(tk) has a convergent subsequence. One has derived a first

significant result concerning limit sets.

Proposition 3.23. Let the forward orbit of x be contained in a compact set. The limit

set ω(x) is then non-empty, compact, and connected. One further has for t→∞

φ(t, x)→ ω+(x).

Proof. The proof can be found in [40, Lemma 4.42].
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Very interesting for the scope of this thesis is the following result:

Proposition 3.24. The limit set ω+(x) is a closed, invariant set.

Proof. The empty set is trivially closed and invariant. It can, therefore, be assumed,

that w+(s) is non-empty for some s ∈ Rn.

Let (sn) be a sequence converging to s. One knows from the definition of the limit set,

that there exists a sequence (tn,k), with tn,k →∞, with φ(tn,k, x)→ sn as k →∞. Now,

for each n, one can choose an L(n) satisfying ‖φ(tn,k, x) − sn‖< 1
n
, ∀k > L(n). Now, for

any given ε > 0, one can set an N such that ‖s− sn‖< ε
2
, if n > N . One then obtains

‖φ(tn,L(n), x)− s‖ ≤ ‖φ(tn,L(n), x)− sn‖+‖s− sn‖

<
1

n
+
ε

2

< ε

if n > max{N, 2
ε
} is satisfied. It follows that s lies in ω+(x), and therefore, ω+(x) is a

closed set. Now, let x ∈ ω+(s), and one considers φ(T, x) for a fixed t ∈ R. If φ(tn, x)→ y,

then it follows (once again) from the group property and by the continuity of the flow

φ(tn + t, x) = φ(t, φ(tn, x)) →︸︷︷︸
n→∞

φ(t, y)

for all t on the maximal interval of existence of the solution. It follows

φ(t, x) ∈ ω+(s)

proving the invariance of ω+(s).

It follows from Proposition 3.24, that limit sets are another important class of invariant

sets, that occur in systems of dimension two or higher. It has to be emphasized, that

Proposition 3.24 is not necessarily true in the non-autonomous case.

Example 3.25. One considers the IVP ẋ = 1
1+t2

, with x(t0) = x0. One can see that the

solution takes the form (keeping in mind that lim
t→±∞

arctan = ±π
2
)

x(t) = x0 +
π

2
− arctan(t0).

One recognizes, that the limit set depends on the initial value, and would therefore not

be inevitably invariant.
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3.3.2 Limit Cycles

Before diving in the concept of limit cycles, a quick reminder of the notion of a closed

curve (see, e.g. [19, Definition 2.5.4]) is necessary:

Definition 3.26. The curve Γ is a closed curve contained in Rn, if there exists a continu-

ous mapping γ : [0, 1]→ Rn satisfying γ(0) = γ(1),Γ = {γ(t) : t ∈ [0, 1]}, with Γ 6= γ(0).

Roughly speaking, a limit cycle is a closed trajectory in the phase space, possessing the

property that at least another path spirals into, or away from it. More precisely, this

leads naturally (see, e.g. [19, Definition 2.54]) to the following notion.

Definition 3.27. One considers the system (12). A limit cycle of (12) is a closed curve

Γ ⊂ Rn, such that Γ is the positive limit set of the positive orbit γ+(x) of (12), or the

negative limit set of the negative orbit γ− of (12), presupposing that x /∈ Γ.

Definition 3.27 entails that a cycle of (12) is a closed solution curve (not an equilibrium

point) of the system (12). Therefore, periodic orbits are made of closed curves in the

phase space (see [5, Section 2.1]).

In general, the task of finding cycles is not an easy one. In the preceding examples in two

dimensions, the solutions behaved in a rather smooth way. Most of the time, they would

either converge to an equilibrium point or a periodic orbit. The reason for this distinctive

behaviour in two dimensions (in contrast to Rn, n ≥ 3), is the validity of the Jordan

curve theorem:

Theorem 3.28. Let C be a connected simple plane curve that is a closed subset of R2.

Then, C separates R2 into two connected regions, i.e. R2 \ C has exactly two attached

components with a common boundary C.

Proof. An astonishing fact about the Jordan curve theorem is the “simplicity” of its

content, and the surprising difficulties arising, when one tries to prove it. A proof can be

found in [42, Theorem 9.14] for example.

After a substantial amount of definitions, the following modified example from Richards

(see [51, Section 17.3.1]) is useful to get more clarity:

Example 3.29. One considers the system

ẋ =y − x(x2 + y2 − 1) (13)

ẏ =− x− y(x2 + y2 − 1). (14)

The right-hand side is polynomial, and therefore continuously differentiable, securing

the uniqueness of the solutions of the system in an open interval containing t0 ∈ R.
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Furthermore, one has

(f(x, y)|(x, y)) = xy − x2(x2 + y2 − 1)− xy − y2(x2 + y2 − 1)

= −(x2 + y2 − 1)(x2 + y2)

≤ ‖(x, y)‖22,

and it follows with Proposition 2.11, that the solutions of (13)-(14) exist globally to the

right. Let (x, y) be a solution of this system with corresponding polar coordinates r ≥
0 and φ, i.e. one has x(t) = r cos(t) and y(t) = r sin(t) and therefore r2(t) = x2(t)+y2(t).

Differentiating on both sides yields r′(t)2r(t) = 2x(t)x′(t) + 2y(t)y′(t), and it follows

r′(t)r(t) = x(t)x′(t) + y(t)y′(t)

= x(t)y(t)− x2(t)(x2(t) + y2(t)− 1)− x(t)y(t)− y2(t)(x2(t) + y2(t)− 1)

= −(x2(t) + y2(t)− 1)(x2(t) + y2(t)).

Substituting back yields, that r(t) solves the ODE ṙ = −(r2(t) − 1)r(t). One further

derives from tanφ(t) = y(t)
x(t)

φ′(t)

cos2(t)
=
y′(t)x(t)− y(t)x′(t)

x2(t)

=
−x2(t)− x(t)y(t)(x2(t) + y2(t)− 1)− y2(t) + x(t)y(t)(x2(t) + y2(t)− 1))

x2(t)

=− r2(t)

r2(t) cos2(t)
.

The system is therefore equivalent to the polar coordinate system

ṙ(t) = −(r2(t)− 1)r(t)

φ̇(t) = −1.

One can see, that (0, 0) is an equilibrium of this system, and there exists a periodic orbit

for r = 1. Now, one has

ṙ|r= 1
2

= −(
1

4
− 1)

1

2
=

3

8
> 0,

implying that all orbits crossing the circle with radius r = 1
2

and centre (0, 0), enter the

exterior of this circle when t increases. One further has

ṙ|r= 6
5

= −((
6

5
)− 1)

6

5
= − 66

125
< 0,
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implying this time, that orbits intersecting the circle with radius r = 6
5

and centre (0, 0),

enter the interior of this circle when t increases. It follows from these two observations,

that the annulus region

D := {(x, y) :
1

2
< r <

6

5
}

is positively invariant for this system. Thus, if the initial values (x0, y0) are non zero, then

one has

ω+(x0, y0) = ∂B1(0)

as a limit cycle.

3.3.3 Dynamical Systems in Higher Dimensions

In most applications, the principal goal is to analyse the long-time behaviour of the flow of

a dynamical system (especially generated by a differential equation in this thesis). Thus,

it is crucial to understand how solutions starting in a given set D will behave in the future.

To this purpose, in this section based on [57, Sections 8.1-2], some additional definitions

are necessary.

Definition 3.30 (Stable and unstable sets). Let D be an invariant set D ⊂ M ⊂ Rn.

The sets

W+(D) = {x ∈M : lim
t→+∞

dist(φ(t, x), D) = 0} and

W−(D) = {x ∈M : lim
t→−∞

dist(φ(t, x), D) = 0}

are called the stable and unstable sets of D respectively.

This leads to the following notion:

Definition 3.31. An invariant set D is named attracting if W+(D) is a neighbourhood

of D. The set W+(D) is then referred to as domain or basin of attraction for D.

Furthermore, for any positively invariant neighbourhood U for D, one has

W+(D) =
⋃
t<0

φ(t, U).

As already mentioned in Section 3.1, the union and the complement of invariant sets

are also invariant. It follows, that if additionally, one chooses U as an open set, then it

follows that the basin of attraction of W+(D) is an invariant and open set. Furthermore,

the boundary ∂W+(D) = W+(D) \W+(D) is also invariant. A difficulty that now arises

is how to determine an attracting set. Fortunately, there is a course of action with the

definitions from above. An open, connected set E possessing a compact closure is called

a trapping region for the flow, if φ(t, E) ⊂ E is satisfied for all t > 0. In most of the
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situations, a trapping region can be found by seeking areas bounded by some surface (see

Section 5.1), such that the SC is satisfied, i.e. the vector field points inwards on that

surface (see Chapter 3 as a reminder).

Lemma 3.32. Consider a trapping region E. One then has, that the set

D = ω+(E) =
⋂
t≥0

φ(t, E)

is a nonempty, compact, invariant, and connected attracting set.

Proof. One has ⋂
t≥0

φ(t, E) =
⋂
t≥0

φ(t, E) =
⋂
t≥0

φ(t, γ+(E)) = ω+(E).

Moreover, this concludes the proof of the first part with Propositions 3.23 and 3.24. It

remains to show that D is an attracting set. One shall assume, that there are an e ∈ E
and a sequence tn →∞ with dist(φ(tn, e), D) ≥ ε > 0. Considering that E is a trapping

region, it would follow that φ(tn, e) stays in the compact set E, and thus φ(tn, e) → ẽ

(with a subsequence by Bolzano-Weierstrass). Nevertheless, one has ẽ ∈ ω+(e) ⊆ ω+(E),

a contradiction.

Regrettably, the notion of an attracting set is not sufficient in some cases, considering the

fact, that it always contains the unstable sets of all its equilibria (see [57, Lemma 8.6]).

To eliminate potentially unpleasant situations, one has to guarantee that an attracting

set cannot be divided into smaller invariant sets. A possible loophole is to define an

attractor, which is an attracting set that cannot be split into smaller attracting sets.

Example 3.33. In Example 3.29, the attractor with respect to M = R2 \ {0} is the unit

circle ∂B1(0).

Example 3.34. One considers the system of ODEs

ẋ = x(1− x2)

ẏ = −y,

with initial value (x0, y0). The right-hand side is Lipschitz in (x, y), and one has

(f(x, y)|(x, y)) = x2(1− x2)− y2 ≤ x2 + y2 = ‖(x, y)‖22.

It follows with Proposition 2.9 that the solutions exist (at least) globally to the right.

Setting f(x, y) to zero yields the equilibria (±1, 0) and (0, 0). Now, let 0 < ε < 1, ε ∈ R.
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A vertical segment through the origin, i.e. the set {(x, y) ∈ R2 : x = 0,−ε ≤ y ≤ ε} is

obviously a (closed) convex set. One obtains for x = 0 and the normal vector n = (±1, 0)T

(f(0, y)|n) = (0,−y)T ( ±10 ) = 0.

Moreover, it follows with Theorem 3.16, that the segment is a positively invariant set for

the system. Furthermore, one considers the squares with side lengths 2ε S+
ε and S−ε with

centres (1, 0) and (−1, 0), respectively. Applying Theorem 3.16 again, it can be shown

that S+
ε and S−ε are trapping regions for (1, 0) and (−1, 0) respectively, for any ε defined

just above, particularly when ε→ 0. It follows from these considerations, that the basins

of attraction for the first two equilibria are W+({(±1, 0)}) = R2 \ {(x, y) ∈ R2 : x = 0}.
Considering the fact, that only (−1, 0) and (1, 0) are attracting fixed points (see Section

4.1.1 for further details), it follows that {(−1, 0)} and {(1, 0)} are attractors for this

system.

The preceding examples may have given the impression, that limit sets and attractors

always possess a simple structure, and that the number of limit sets can still be calculated.

Nevertheless, one could not be further from the truth. It becomes evident when one studies

models of a dynamical system for Rn, n ≥ 3. Even worse: one considers the case of planar

polynomial systems of the form

ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials in the variables x and y. The challenge is to evaluate

the maximal number and relative positions of limit cycles in this system (also known in

the mathematical world as “The Second Part of Hilbert’s Sixteenth Problem”).

Despite being easily stated (one remembers the Jordan curve theorem), the second part of

Hilbert’s sixteenth problem remains mostly completely unresolved (see [36, Section 17.1]

for further details). These considerations lead to a famous system in the world of dynam-

ical systems (see, e.g. [57, Section 8.2]):

Example 3.35 (The Lorenz equations). One of the most renowned dynamical systems

exhibiting chaotic behaviour is the Lorenz equation, a system of ODEs defined as

ẋ = −σ(x− y), (15)

ẏ = rx− y − xz, (16)

ż = xy − bz, (17)

with σ, r and b being positive constants. Lorenz derived these equations by modelling a
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fluid cell in two dimensions, between two parallel plates being at different temperatures.

A first possible solution of the system can be obtained by setting x(t) = 0, y(t) = 0,

yielding ż = −bz, and thus with initial value z(t0) = z0, one obtains z(t) = z0e
−bt. It

follows, that the z−axis is an invariant set for the system in this case.

Equilibria of the Lorenz system:

Setting Equation (15) to zero yields x = y. Inserted in (17), one obtains x2 − bz = 0 and

hence x2

b
= z. Putting z in Equation (16) yields rx−x− x3

b
= 0 and thus x(r− 1− x2

b
) =

0. These calculations yield the possible first equilibrium x∗ = (0, 0, 0)T . For further

equilibria, one has to consider the equation

r − 1− x2

b
= 0⇔ b(r − 1) = x2. (18)

One can recognize from equation (18), that if r ≤ 1, then b(r− 1) ≤ 0, and thus x∗ is the

only equilibrium. More importantly, one has the following result:

Lemma 3.36. If r ≤ 1, then the Lorenz equation has only the equilibrium x∗, and every

solution converges to the origin if t→∞.

Proof. This lemma can be proven with the concept of Lyapunov functions, introduced

in Section 4.2. The proof can be found in [57, Lemma 8.7] for example.

If on the other hand, one considers r > 1, then there are two equilibria in this case,

namely

x1 :=


√
b(r − 1)√
b(r − 1)

r − 1

 , x2 :=

−
√
b(r − 1)

−
√
b(r − 1)

r − 1

 .

Now, this is where the situation becomes interesting. To simplify the analysis of the

system, one considers the case σ = 10 and b = 8
3
. If one sets r1 ∼= 1.3456, r2 ∼= 24.737,

Boyce, DiPrima, and Meade [9, Section 9.8] show that:

• For 1 < r < r1 or r1 < r < r2, the equilibria x1 and x2 are asymptotically stable,

and x∗ is unstable.

• For r > r2, all the critical points are unstable. Most solutions close to x1 or x2

spiral away from the equilibrium point.

One would assume in the case of r > r2, that since none of the equilibrium points is

stable, most orbits should diverge and tend to infinity. Surprisingly, this is not the case:

it can be proven that every solution remains bounded, as t→∞.
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Invariant sets of the Lorenz system:

As a starting point, one considers the function

Φ(x, y, z) := rx2 + σy2 + σ(z − 2r)2.

Now, one has

Φ̇(x, y, z) :=(f(x, y, z)|∇Φ(x, y, z))

=(−σ(x− y), rx− y − xz, xy − bz)T

 2rx

2σy

2σ(z − 2r)


=− 2σ(rx(x− y)− y(rx− y − xz)− (z − 2r)(xy − bz))

=− 2σ(rx2 + y2 + b(z − r2)− br2).

One defines the set E = {(x, y, z) : Φ̇(x, y, z) ≥ 0}. Because σ is presupposed positive, it

follows that Φ̇ ≥ 0 only holds, if rx2 + y2 + b(z − r2)− br2 ≤ 0, i.e. the set E defines an

ellipsoid. Thus, E is a bounded set. Considering, that Φ̇(x, y, z) is a continuous function,

it follows that E is also a closed set, hence E is a compact set, entailing that Φ(x, y, z)

possesses a maximum M := max
(x,y,z)∈E

Φ(x, y, z). Now, one defines a further ellipsoid

EM = {(x, y, z) : Φ(x, y, z) < M + 1}.

Because of this definition, any point outside of EM is also outside of E, and it follows that

Φ̇(x, y, z) < 0 for these points. Nevertheless, this entails, that for all (x, y, z) ∈ R3 \ EM ,

Φ strictly decreases in value along the trajectory of the system. Thus, it has to enter the

ellipsoid EM at a certain point in time. Furthermore, EM is a trapping region for the

Lorenz equations, and the related attracting set D = ω+(EM) is called the attractor of

the Lorenz equations. It follows that the solutions of the system exist for all t ≥ 0 (and

therefore the Lorenz equations define a dynamical system). It can be recognized in Figure

2, that the attracting set D possesses a quite complicated nature. This is the reason why

it is sometimes called the strange attractor of the Lorenz equations ( for further details,

see, e.g. [57, Chapter 11, 55, Chapter 9]). The example shows again the very complicated

behaviour, even for assumed simple systems in R3. Such strange behaviour is ruled out

in R2.
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Figure 2: Solution for the Lorenz equation with the initial condition (1, 1, 1) and param-
eters σ = 10, b = 8/3, r = 28. The red dotted line and the blue line represent
the evolution of the solution on the time segments [0, 20] and [20.01, 40], respec-
tively.
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4 The Concept of Stability

As mentioned earlier in this thesis, one of the main questions is the long-time behaviour

of a dynamical system. Notably, one often wants to know whether the solution is stable

or not. As one recalls Definition 2.20, an equilibrium point (in the autonomous case) of f

is a point x̃ ∈ G ⊂ Rn satisfying f(x̃) = 0. Usually, one considers a fixed point and wants

to know the future behaviour of a solution if the starting point is close to it. Taking into

account that equilibria are valuable invariant sets, the notion of stability shall be defined

and considered on them in this section. These definitions can be extended to more general

types of invariant sets. Before diving into the concept of stability, there is an interesting

link between a convex, compact and positively invariant set, and an equilibrium (see [35,

Theorem 4.45]).

Proposition 4.1. Let D ⊂ G ⊂ Rn be a non-empty, convex and compact set. If D is

positively invariant under the local flow φ(t, x), then D contains an equilibrium.

Useful for the proof of Proposition 4.1 is an essential theorem from Brouwer (a proof can

be found in [63, Section 1.14.4]).

Theorem 4.2 (Brouwer’s fixed-point theorem). Let M be a non-empty, convex and com-

pact set in a finite-dimensional normed space over a field K, and a continuous operator

A : M → M. Then, A has at least one fixed-point, i.e. there exists at least one point

x ∈M satisfying A(x) = x.

Proof of Proposition 4.1. Because D is assumed being positively invariant, one con-

siders the sequence (tn) with values in (0,∞) and converging to 0, i.e. lim
n→∞

tn → 0.

Further, because of the invariance of D, it follows φ(tn, x) ∈ D for all x ∈ D,n ∈ N.

Now, one defines the continuous map

fn(x) = φ(tn, x)

for all x ∈ D. The prerequisites of Brouwer’s fixed-point Theorem 4.2 are satisfied, and

therefore there exists a sequence xn ∈ D with

xn = fn(xn) = φ(tn, xn)

for all n ∈ N. Now, using the group property DS2 of a dynamical system, one has

φ(tn + tn, xn) = φ(tn, φ(tn, xn))

= φ(tn, xn)
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entailing that xn is a periodic point for each n ∈ N, and thus the maximum interval of

existence of xn is R. Now, considering that D is compact, there exists an x ∈ D with

lim
n→∞

xn → x. It remains to show, that x is a fixed point, i.e. φ(t, x) = x for all t ∈ R. Let

t ∈ R be arbitrary, one has

‖φ(t, x)− x‖ = ‖φ(t, x)− φ(t, xn)‖︸ ︷︷ ︸
→0,

+ ‖φ(t, xn)− φ(tn, xn)‖︸ ︷︷ ︸
(∗)

+ ‖φ(tn, xn)− x‖︸ ︷︷ ︸
=‖xn−x‖→0

because of xn → x and continuity of φ, as n → ∞. It remains to consider the term (∗).
As already shown above, xn is tn-periodic, so it holds

φ(ktn, xn) = xn for all k ∈ Z, n ∈ N.

However, this means that for all n ∈ N, there is a kn ∈ Z satisfying kntn ≤ t < (kn + 1)tn

and thus, there is a qn ∈ [0, 1) with t = kntn + qntn. It follows

φ(t, xn) = φ(kntn + qntn, xn)

=︸︷︷︸
group property

DS2

φ(qntn, xn) for all n ∈ N,

and thus

‖φ(t, xn)− φ(tn, xn)‖ = ‖φ(qntn, xn)− xn‖

→ ‖φ(0, x)− x‖

= ‖x− x‖

= 0 if t→∞.

The study of an equilibrium x̃ can be reduced to the consideration of x̃ = 0 with the

following trick (see [48, Section 5.1]): Let x1(t), t ≥ t0 be a designated solution for (2),

with initial value x1(t0) = x1,0. Now, if one defines y(t) = x(t) − x1(t), t ≥ t0, then one

has

ẏ(t) = ẋ(t)− ẋ1(t) = f(t, x(t))− f(t, x1(t)) = f(t, y(t) + x1(t))− f(t, x1(t)).

Because x1(t) is a fixated solution, the last term only depends on y(t), and thus one can

define g(t, y(t)) = f(t, y(t) + x1(t))− f(t, x1(t)). This leads to the new ODE

ẏ(t) = g(t, y(t))
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which is locally Lipschitz in y and continuous in t. Furthermore, one has

g(t, 0) = f(t, 0 + x1(t))− f(t, x1(t)) = 0,

entailing that the trivial solution y(t) = 0 solves ẏ = g(t, y), with initial value y(t0) = 0.

For this reason, the sole consideration of the case f(t, 0) = 0 with t ≥ t0 is sufficient.

For the study of the stability of equilibria, two methods have been proven particularly

fruitful:

1. The principle of linearized stability;

2. The Lyapunov stability with the help of Lyapunov functions.

These two methods will be described in Sections 4.1 and 4.2, respectively.

4.1 The Principle of Linearized Stability

One considers the autonomous ODE

ẋ = f(x) (19)

with f ∈ C1(Rn;Rn), i.e. f is continuously differentiable on Rn, and thus locally Lipschitz

due to Proposition 2.5. Now, let x̃ be an equilibrium of (19), and x(t) one of its solutions.

Setting y(t) := x(t)− x̃ leads to

ẏ(t) = ẋ(t)− d

dt
x̃︸︷︷︸

=0

= ẋ(t)− f(x̃), x̃ being an equilibrium point, i.e. f(x̃) = 0

= f(y(t) + x̃)− f(x̃), due to the definition of y(t).

Now, applying Taylor’s theorem for multivariate functions (see, e.g. [16, Corollar 1]) on

f(y(t) + x̃), one obtains

f(x̃+ y(t)) = f(x̃) +Df(x̃)y(t) + o(‖y‖),

if ‖y‖→ 0, with

Df(x) :=
∂f

∂x
(x) ∈ Rn×n
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being the well known Jacobi matrix. One further defines the Landau symbol o as follows:

Let ζ be a function defined in a neighbourhood of 0 ∈ Rn with values in Rn. Then,

lim
x→0

ζ(x)

‖x‖
= 0,

can be written as

ζ(x) = 0(‖x‖).

It follows

ẏ(t) = f(x̃) +Df(x̃)y(t) + o(‖y‖)− f(x̃)

= Df(y)y(t) + o(‖y‖).

If one sets r(y) := o(‖y‖) for ‖y‖→ 0, and A := Df(x̃), one obtains the equivalent

semi-linear system to (19):

ẏ = Ay + r(y), (20)

which will be compared to the linear system

ẏ = Ay. (21)

The system ẋ = Ax is called the linearization of ẋ = f(x) at the point x = 0, and gives

pieces of information about the behaviour of the non-linear system, in a neighbourhood

of the zero point. Thus, it is of great importance to consider linear systems in general

[10, Section 1.4.2, 48, Section 5.4]. As mentioned just above, the systems (19) and (21)

shall be compared, and to this end, the main goal of this section will lie on the study of

autonomous linear systems. The considerations in the two following sections are mainly

based on [48, Sections 5.2-5.3], [10, Section 1.4.3] and [57, Section 3.2], and will show how

closely the eigenvalues of A and the stability properties of x̃ = (0, . . . , 0)T are linked.

4.1.1 Stability of Linear Systems

Definition 4.3. [48, Definition 5.1.1] Let f :R × G → Rn be continuous and locally

Lipschitz in x, and further satisfy f(t, 0) = 0, and let x(t, x0), t ≥ t0 be the solution for

the IVP (2).

1. The trivial solution x̃ = 0 is called stable, if for every ε > 0, there is a δ > 0 with

Bδ(0) ⊂ G, and the solution x(t, x0) with x0 ∈ Bδ(0) exists for all t ≥ t0 and

‖x(t, x0)‖≤ ε, for all ‖x0‖≤ δ, and t ≥ t0 (22)
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Figure 3: Different stability situations for the equilibrium x(t) = 0: stable (left), asymp-
totically stable (middle) and unstable (right). Image from [10, page 123].

is satisfied.

2. The solution x̃ is called unstable if x∗ is not stable.

3. The solution x̃ is called attractive, if a δ0 > 0 exists, such that Bδ0 ⊂ G, the

solution x(t, x0) with x0 ∈ Bδ0(0) exists for all t ≥ t0 and

lim
t→∞
‖x(t, x0)‖= 0 for all x0 ∈ Bδ0(0) (23)

holds.

4. The solution x̃ = 0 is called asymptotically stable, if x∗ = 0 is stable and

attractive.

One can see from Definition 4.3, that an asymptotically stable equilibrium is an attractor

of (19). Central for the stability of x̃ = 0 for linear systems of the form (21) is the following

result.

Theorem 4.4 (Stability of linear systems). The equilibrium x̃ = 0 of the linear system

ẋ = Ax is in its stability behaviour determined by the eigenvalues of A. Namely, 0 is:

• Asymptotically stable, if Reλi < 0 for all i = 1, . . . n;

• Stable, if Reλi ≤ 0, and if for each eigenvalue λ with Reλ = 0, the algebraic and

geometric multiplicities concur;

• Unstable, if there is at least a λ with Reλ > 0.

Proof. The proof can be found in [10, Section 1.4.3].

For more clarity, planar linear systems are being explicitly considered, i.e. autonomous

linear ODEs of the form:

ẋ = Ax, with A =

(
a11 a12

a21 a22

)
∈ R2×2. (24)
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Known from the linear algebra, to determine the eigenvalues of a matrix A ∈ Rn×n, one

has to consider the characteristic polynomial pA(λ) from A:

PA(λ) = det(λI − A)

= (λ− a11)(λ− a22)− a21a12
= λ2 − λ a11 + a22︸ ︷︷ ︸

=: trace A

+ a11a22 − a21a12︸ ︷︷ ︸
= det A

= λ2 − pλ+ q,

with p = trace A( written trA) and q = detA. Setting pA(λ) = 0, one gets with the

quadratic formula

λ1,2 =
trA

2
±
√

(trA)2

4
− detA. (25)

There are many different phase portraits (14 in total), depending on the constellation of

the eigenvalues λ1,2, which can be classified as follows:

a. λ1,2 ∈ R, λ1 6= λ2;

b. λ1 = λ2 with λ1,2 ∈ R;

c. λ1 = a+ ib, λ2 = a− ib, a, b ∈ R, b 6= 0.

This leads to the following notions (see [10, Definition 1.12]):

Definition 4.5.

1. If λ1 and λ2 ∈ R have the same sign, the equilibrium 0 is called:

a) A stable knot, if λ1 < λ2 < 0;

b) An unstable knot if 0 < λ1 < λ2.

2. If λ1 = λ2 ∈ R, 0 is called a degenerate knot.

3. If λ1, λ2 ∈ R differ in their signs, 0 is called a saddle point.

• If both eigenvalues λ1,2 are positive, then all solutions grow exponentially as t→∞
and decay as t → −∞. In this situation, the origin is called a source, as can be

recognized in Figure 4 (right). Similarly, if both eigenvalues λ1,2 are negative, the

situation can be mirrored with the previous one by exchanging t by − t. In this

case, the phase portrait remains the same, except that solution curves, are being

travelled in the reversed direction, as can be seen in Figure 4 (left). One calls the

origin a sink in this case.
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Figure 4: Phase portraits for a stable knot with λ1 = −2, λ2 = −1(left), and an unstable
knot with λ1 = 1, λ2 = 2 (right).

• In the case of Definition 4.5.2, for λ := λ1,2 < 0 or λ > 0, stable or unstable

knots, respectively, appear, as can be seen in Figure 5 (left). In the presence of

a saddle point, the orbits are given by the eigenvectors of the negative eigenvalue

and eventually converge to the critical point. The orbits that are given by the

eigenvectors of the positive eigenvalue move in exactly the opposite direction. Saddle

points are always unstable, as can be seen in Figure 5 (right).

It can be recognized from (25), that:

• If detA > 0, trA < 0, then x̃ is asymptotically stable;

• If detA < 0, then x̃ is saddle point;

• If detA > 0, then x̃ is either a knot or a spiral.

It is worth noting that in the case of linear systems, the basin of attraction of an asymp-

totically stable equilibrium is the whole state space. Every initial condition leads to an

orbit approaching the origin. The considerations in Section 4.1.1 show, that boundedness

of solutions of ẋ = Ax for t ∈ [0,∞) and stability of its equilibria lead to algebraic ques-

tions. However, already for n ≥ 4, the calculation of the eigenvalues by seeking the roots

of pA(λ) can be a tedious task. Thus, criteria securing that the roots of the characteristic

polynomial of A have the desired properties from Theorem 4.4 are of great interest. A

very well-known criterion is due to Routh and Hurwitz, given here without a proof (for

further details, see, e.g. [11, Section 2.4]).

Proposition 4.6. (Routh-Hurwitz criterion) Let p(z) = zn + a1z
n−1 + · · · + an be a
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Figure 5: Phase portraits for an unstable knot with λ1 = λ2 = −1 (left) and a saddle
point with λ1 = −2, λ2 = 1,(right).

polynomial with real coefficients, and define D1 = a1, and

Dk = det



a1 a3 a5 . . . a2k−1

1 a2 a4 . . . a2k−2

0 a1 a3 . . . a2k−3

0 1 a2 . . . a2k−4

. . . . . . . . . . . . . . .

0 0 0 . . . ak


, k = 2, 3, . . . n,

with ai = 0 if i > n. If for all determinants Dk > 0, k = 1, 2, . . . , n holds, then all the

roots of p(z) have negative real parts.

Example 4.7. (Generalized competing species model) Example 3.18 can be generalized to

a frequently used model to describe the dynamics of n competing species: the quadratically

non-linear Gauss-Lotka-Volterra equations, described by May and Leonard [38], which this

example is based on. One defines the non-linear system

dNi(t)

dt
= riNi(t)

(
1−

n∑
j=1

αijNj(t)

)
, (26)

with parameters

• Ni(t): the number of individuals in the ith population at time t;

• ri: the intrinsic growth rate of the ith population;

• αij: competition coefficients that assess the amount, to which the jth species alters

the growth rate of the ith.
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In the case of three competing species (i.e. n = 3) which will be called 1, 2 and 3

respectively, the number of parameters can be reduced with the following assumptions:

• Symmetry, i.e. r1 = r2 = r3 = r;

• Concerning competition, 2 affects 1, as 3 affects 2, as 1 affects 3, i.e. α12 = α23 =

α31 = α, and by the same argument, α21 = α32 = α13 = β;

• The number of individuals Ni can be rescaled to obtain αii = 1, and t can be rescaled

to attain r = 1.

Assuming α, β > 0 leads to a competitive system. These presumptions lead to the sim-

plified system:

dN1

dt
= N1(1−N1 − αN2 − βN3) =: f1(N1, N2, N3), (27)

dN2

dt
= N2(1− βN1 −N2 − αN3) =: f2(N1, N2, N3), (28)

dN3

dt
= N3(1− αN1 − βN2 −N3) =: f3(N1, N2, N3) (29)

and its Jacobian matrix1− 2N1 − αN2 − βN3 −αN1 −βN1

−βN2 1− βN1 − 2N2 − αN3 −αN2

−αN3 −βN3 1− αN1 − βN2 − 2N3

 .

The right-hand side of the system (27)-(29) shall be designated by f(N). One can see,

that for (N1, N2, N3) ∈ R3
+ and Nk = 0, one has fk(N1, N2, N3) = 0 for all k = 1, 2, 3. It

follows with Lemma 3.17, that R3
+ is positively invariant for (27)-(29). Moreover, one has

(f(N)|N) = N2
1 (1−N1 − αN2 − βN3) +N2

2 (1− βN1 −N2 − αN3)

+N2
3 (1− αN1 − βN2 −N3)

≤ N2
1 +N2

2 +N2
3

= ‖N‖22,

due to the positiveness of N1, N2, N3, α and β. It follows with Proposition 2.11 that all

the solutions of (27)-(29) exist globally to the right. Now, setting the right-hand side of

the system (27)-(29) to zero yields eight equilibria.

• The non-existence of specimens at all (0, 0, 0) with triple eigenvalue λ = 1. One has

with Proposition 4.4 that the origin is an unstable knot.
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• Only one species exists, i.e. one has the three equilibria (1, 0, 0), (0, 1, 0) and (0, 0, 1),

with corresponding eigenvalues (−1, 1 − α, 1 − β) in each case. Using Proposition

4.4 again, it follows that these equilibria are stable if 1−α ≤ 0 and 1− β ≤ 0 hold.

• The coexistence of two species with equilibria

1

1− αβ

1− α
1− β

0

 ,
1

1− αβ

 0

1− α
1− β

 ,
1

1− αβ

1− β
0

1− α


which shall not be further investigated.

• Probably the most compelling case is the three-species equilibrium E∞ := 1
1+α+β

1

1

1

.

The corresponding Jacobian matrix reads

1

1 + α + β

−1 −α −β
−β −1 −α
−α −β −1


︸ ︷︷ ︸

=:AE∞

.

Furthermore, it follows with Proposition 4.4 once more, that the three-species equi-

librium is stable if all eigenvalues of the matrix AE∞ have negative real parts (α, β

are greater than 0 by assumption). Now, one has as characteristic polynomial of

AE∞

λ3 + 3λ2 + (3− 3αβ)λ+ α3 + β3 − 3αβ + 1.

Setting D1 := 3,

D2 := det

(
3 α3 + β3 − 3αβ + 1

1 3− 3αβ

)
and

D3 := det

3 α3 + β3 − 3αβ + 1 0

1 3− 3αβ 0

0 3 α3 + β3 − 3αβ + 1

 ,

leads to the inequalities 8 − 6αβ − α3 − β3 > 0 and α3 + β3 − 3αβ + 1 > 0,

derived from D2 > 0 and D3 > 0, respectively. With the Routh-Hurwitz criterion

stated in Proposition 4.6, it follows that the three-species equilibrium is stable if

the inequalities just above are satisfied.
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4.2 Lyapunov Stability

One of the most common issues in the study of dynamical systems is its stability. It is

characterized by considering the response of a dynamical system to minor perturbations.

More precisely, an equilibrium of a dynamical system is called stable if, for “small” values

of initial disturbances, the perturbed orbit stays in a randomly prescribed “small” area of

the state space (see Section 3.3). Furthermore, stability is equal to the continuity of solu-

tions as a function of the initial values of a system in a neighbourhood of the fixed-point

uniformly in time. If additionally, all orbits of the dynamical system come close to the

equilibrium for t→∞, then the equilibrium point is designated as asymptotically stable.

In this section based on Sections 5.5 and 8.1 from [48], Section 7.1 from [41] and Appendix

C from [49], the concepts of stability shall further be investigated. At the beginning of

the qualitative analysis of dynamical systems, problems originating in mechanics lead to

the studies of their stability properties and equilibria. The most exhaustive contribution

to the stability analysis of non-linear dynamical systems was introduced at the end of the

nineteenth century by A. M. Lyapunov, who provided a mighty framework for analysing

the stability of non-linear dynamical systems (see [19, Section 3.1] for further details).

4.2.1 Lyapunov Functions

One considers the autonomous ODE

ẋ = f(x), (30)

f :G → Rn being locally Lipschitz, G ⊂ Rn open. Central in the qualitative theory of

ODEs is the following notion:

Definition 4.8. A function V ∈ C(G;R) is called a Lyapunov function for (30) if V

is decreasing alongside the solutions of (30). It means that the function φ(t) := (V ◦x)(t)

is decreasing with respect to t for every solution x(t) of (30). If φ(t) is strictly decreasing

for every nonconstant solution of (30), then V is called a strict Lyapunov function.

Now, let x(t) be a solution of (30) and V ∈ C1(G;R). If one applies the chain rule on

φ(t), one has

φ̇(t) = (∇V (x(t))|ẋ(t)) = (∇V (x(t))|f(x(t))).

From elementary analysis, it is well known that the function φ(t) is decreasing if φ̇(t) ≤ 0.

It follows that V is a Lyapunov function, if and only if

(∇V (x(t))|f(x(t))) ≤ 0 for all x ∈ G (31)
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holds. Similarly, V is a strict Lyapunov function, if and only if

(∇V (x(t))|f(x(t))) < 0 for all x ∈ G \ E , (32)

with E = {x ∈ G|f(x) = 0} being the set of equilibria of (30).

To extend the concept of the Lyapunov function to the non-autonomous case, one con-

siders the IVP (2), with the interval of existence J(x), and defines J+(x) = J(x)∩ [0,∞).

Definition 4.9. [48, Definition 8.1.1] Let V :R+×G→ R be continuous, G ⊂ Rn. V (t, x)

is a Lyapunov function for (2), if the function

φ(t) = V (t, x(t)), t ∈ J+(x),

is decreasing for every solution x(t) of (2).

If V ∈ C1(R+ ×G), then so is φ(t) and the chain rule yields

φ̇(t) =
dV (t, x(t))

dt
+
(
∇xV (t, x(t)| ˙x(t))

)
=
dV (t, x(t))

dt
+ (∇xV (t, x(t)|f(t, x(t))) .

One can see that the right-hand side of the last equation only depends on t and x, and

therefore it is reasonable to define

V̇ (t, x) =
dV (t, x(t))

dt
+ (∇xV (t, x(t)|f(t, x(t))) , t ∈ R+, x ∈ G.

V̇ is called the orbital derivative of V alongside the solutions of (2) [43, Definition 2.18].

In the case of autonomous systems and that V does not explicitly depend on t, one has

V̇ (x) = (∇xV (x(t))|f(x(t))) , x ∈ G.

Example 4.10. (Virus dynamics) Bonhoeffer et al. [7] suggest a basic model for viral

dynamics, consisting of the following components:

1. The uninfected cells x produced at a constant rate λ and meeting their demise at a

rate mx.

2. The infected cells y, dying at a rate ay and producing new virus agents at a rate

ky.

3. The free virus agents v dying at a rate uv. They infect not infected cells to produce
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infected cells y at a rate βxv.

It follows from the above definitions that 1/m, 1/a, and 1/u give the average life-spans

of uninfected cells, infected cells, and free virus agents, respectively. The average number

of virus agents generated over the lifespan of a single infected cell (the burst size) is given

by k/a. The premises and definitions finally lead to the system:

ẋ = λ−mx− βxv, (33)

ẏ = βxv − ay, (34)

v̇ = ky − uv. (35)

The system is continuously differentiable, guaranteeing a unique local solution for the

system. The right-hand side of the system shall be by designated by f(x, y, v).

Definition 4.11. (Basic reproductive ratio) One defines the basic reproductive ratio R0,

as the average number of newly infected cells which arise from a single infected cell when

almost all cells are uninfected.

In the above virus model, one obtains R0 = βλk
amu

. Now, one can recognize, that a small

initial amount of virus agents v0, can only spread itself in an organism if the number

of newly infected cells through a single infected cell is greater than 1, i.e. R0 > 1. In

the absence of an infection, i.e. y = v = 0, one can readily see that the equilibrium is

(λ/m, 0, 0). Therefore, one assumes at least that v0 is strictly greater than zero. Now,

setting (34) and (35) to 0, one obtains

x∗ =
au

βk
=

λ

mR0

. (36)

If x∗ is plugged into Equation (33) and set to 0, one obtains

v∗ =
λ−mx
βx

=
m

β
(R0 − 1). (37)

Finally, putting v∗ in (35) and setting it to 0 yields

y∗ =
um(R0 − 1)

βk
=
u

k
v∗. (38)

Bonhoeffer et al. [7] show that the system converges in damped oscillations to the equi-

librium (x∗, y∗, v∗) if the basic reproduction ratio is greater than 1. Furthermore, Ko-

robeinikov shows that the Lyapunov function for the system (33)-(35) is built accordingly

to R0 (see [32, 31]).
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Case R0 > 1 :

One defines the function

V (x, y, v) = x∗(
x

x∗
− ln

x

x∗
) + y∗(

y

y∗
− ln

y

y∗
) +

a

k
v∗(

v

v∗
− ln

v

v∗
).

It follows

(∇V (x, y, v)|f(x, y, v)) =
(

1− x∗

x
1− y∗

y
a
k
(1− v∗

v
)
)T λ−mx− βxvβxv − ay

ky − uv



= λ−mx−βxv−λx
∗

x
+mx∗+βx∗v+βxv−ay−βxvy

∗

y
+ay∗+ay− a

k
uv−ayv

∗

v
+
a

k
uv∗.

Using the equalities derived for x∗, y∗ and v∗ in (36),(37) and (38), respectively, one ob-

tains

(∇V (x, y, v)|f(x, y, v)) = mx∗(2− x

x∗
− x∗

x
) + ay∗(3− x∗

x
− xvy∗

x∗v∗y
− yv∗

y∗v
).

The following well known inequality shall be reminded: n
√
a1 . . . an ≤ a1+...an

n
, with equality

holding if and only if all ai’s are equal, a1, . . . an ∈ R being positive numbers. Using this

inequality on x, x∗ yields

2
√
xx∗ ≤ x+ x∗

2
⇐⇒ xx∗ ≤ x2 + (x∗)2 + 2xx∗

4
⇐⇒ 0 ≤ x

x∗
+
x∗

x
− 2

and in a similar manner, x∗

x
+ xvy∗

x∗v∗y
+ yv∗

y∗v
− 3 ≥ 0 if x, y, v > 0 is assumed. It follows

(∇V (x, y, v)|f(x, y, v)) ≤ 0 for all x, y, v > 0, if x∗, y∗, v∗ ≥ 0.

Case R0 ≤ 1 :

As already mentioned above, in the case of R0 ≤ 1, no infection of the organism is possible,

and therefore Q0 = ( λ
m
, 0, 0) is the only possible equilibrium. Let x0 = λ

m
and one defines

the function U(x, y, v) = x0(
x
x0
− ln x

x0
) + y + a

k
v. It holds:

U̇(x, y, z) =
(

1− x0
x
, 1, a

k

)T λ− x(m+ βv)

βxv − ay
ky − uv

 = λ(2− x

x0
− x0

x
) +

au

k
(R0 − 1)v.
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Using the inequalities 2− x
x0
− x0

x
≤ 0 and R0−1 ≤ 0, it follows (∇U(x, y, v)|f(x, y, v)) ≤ 0

for all x, v > 0. Interestingly, the variable y has no influence in this case, whether U(x, y, v)

is a Lyapunov function for the system or not.

The application of Lyapunov’s direct method just above (also named the second method

of Lyapunov) makes it possible to determine the stability of a system, without explicitly

solving the non-linear system of differential equations. The main idea can be summarized

as follows: The considered trajectories in the phase plane are characterized by decreasing

values of a non-negative function, the Lyapunov function. The trajectory and its

corresponding Lyapunov function will both decrease until the zero value has been attained.

Thus, a root of the Lyapunov function (i.e. V (x) = 0) characterizes an equilibrium point

(see [21, Section 9.4.3] for further details).

As promised at the end of Section 2.2.1, a method to prove the global existence to the right

for an autonomous system (30) should be caught up, with the concept of the Lyapunov

function.

Proposition 4.12. ([48, Proposition 5.5.2]) Let G ⊂ Rn be open, f :G → Rn locally

Lipschitz, V ∈ C(G;R) a Lyapunov function for (30) and

1. lim
|x|→∞

V (x) =∞, if G is boundless (V is called coercive)

2. lim
x→∂G

V (x) = ∞

shall hold. Then, every solution of (30) exits globally to the right. Furthermore,

sup
t≥0
|x(t)| <∞ and inf

t≥0
dist(x(t), ∂G) > 0

are fulfilled.

Proof. Let x(t) solve the system (30) on its maximal interval of existence [0, t+). Fol-

lowing the property of a Lyapunov function, V (x(t)) is monotonically decreasing for all

t ∈ [0, t+). The proof shall be carried out by contradiction.

• Firstly, it shall be assumed that x(t) is unbounded. Then, there exists a sequence

(tn)n∈N that converges to t+, satisfying

lim
n→∞

|x(tn)| → ∞.

Now, because V (x) is continuous on x ∈ G, one obtains with the sequential criterion
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for the continuity of a function

V ( lim
n→∞

x(tn)) = lim
n→∞

V (x(tn)) →︸︷︷︸
coercivity
of V (x)

∞,

which contradicts the monotony of V (x).

• Secondly, lim
tn→t+

dist(x(tn), ∂G) → 0 shall be assumed. From the second premiss,

it follows V (x(tn)) → ∞ if n → ∞, which is again a contradiction. According to

Theorem 2.8, it follows the existence of a global solution to the right, i.e. t+ =∞.

Example 4.13. The Lyapunov functions for the virus dynamics model (see Example

4.10) are

V (x, y, v) = x∗(
x

x∗
− ln

x

x∗
) + y∗(

y

y∗
− ln

y

y∗
) +

a

k
v∗(

v

v∗
− ln

v

v∗
)

and

U(x, y, v) = x0(
x

x0
− ln

x

x0
) + y +

a

k
v,

if R0 > 1 and R0 ≤ 1 respectively. Let G = (0,∞)2. The prerequisites 1. and 2. in

Proposition 4.12 are satisfied in both cases, and therefore, every solution exits globally to

the right.

As stated at the beginning of this section, the stability properties of equilibria can be

studied employing Lyapunov functions.

Theorem 4.14. Let x̃ be an equilibrium point for ẋ = f(x), with f :Rn → Rn. Let

V :U → R, be a C1(U) (Lyapunov) function on a neighbourhood U of x̃, satisfying

i) V (x̃) = 0 and V (x) > 0 for x ∈ U \ {x̃},

ii) V̇ (x) ≤ 0 in U \ {x̃}.
Then x̃ is stable. Additionally, if

iii) V̇ (x) < 0 in U \ {x̃},
then x̃ is asymptotically stable.

Proof. The proof can be found in [12, Theorem 2.6, 48, Satz 5.5.4].

Example 4.15. (Linear Systems [59, Chapter 2])

One considers the linear unforced system ẋ(t) = Ax(t), x ∈ Rn, A ∈ Rn×n. It is reasonable

to seek a Lyapunov function of the form V (x) = xTPx, P being a positive definite sym-

58



Chapter 4 The Concept of Stability

metric matrix. The goal is to build the matrix P , so that the conditions for asymptotic

stability in Theorem 4.14 are satisfied. One has:

V̇ (x) =ẋTPx+ xTPẋ

=xTATPx+ xTPAx

=xT (ATP + PA︸ ︷︷ ︸
=:Q

)x.

Requiring the orbital derivative of V to be a negative definite function leads to

V̇ (x) = xT (ATP + PA)x = −xTQx < 0.

Thus, V̇ (x) < 0 is satisfied, if and only if Q is a positive definite symmetric matrix.

One obtains the following result for a linear unforced system: The equilibrium x̃ = 0 is

asymptotically stable in the Lyapunov sense, if

ATP + PA = −Q (39)

holds, P and Q being positive definite symmetric matrices. In the literature, Equation

(39) is sometimes referred to as the Lyapunov equation. In practice, the analysis of the

stability of a linear system is carried out in the following way: usually, one chooses the

identity matrix for Q. The symmetric matrix P is then determined through the Lyapunov

Equation (39). If P is positive definite, then the linear system is asymptotically stable in

the Lyapunov sense.

Remark 4. If one considers closely Theorem 4.14, one observes that V (x) = xTPx >

0 for all x 6= 0 is equivalent to P � 0. Therefore, 4.14 ii) can be reformulated as

0 ≥ V̇ (x) = (∇V (x)|ẋ)

= 2 (Px|Ax)

= 2xTPAx ( due to P T = P )

= xT (ATP + PA)x,

and one obtains

ATP + PA � 0 for x ∈ U \ {x̃}.

If one considers the Lyapunov functions from the virus dynamics model in Example 4.10,
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one has

V (x∗, y∗, z∗) 6= 0 and U(x0, 0, 0) 6= 0 if R0 > 1 and R0 ≤ 1, respectively,

and therefore, the prerequisites of Theorem 4.14 are not fulfilled. Thus, these Lyapunov

functions are not suited for the study of the stability of their corresponding equilibrium.

Two main features of Lyapunov’s second method crystallised out in this section (for

further details, see [50, Section 2]):

1. No precise insight is needed concerning the considered non-linear system. Only

the existence of a decreasing function alongside the trajectories of the system’s

solutions is required to identify the long-term behaviour. Therefore, the solving of

the equations is not necessary.

2. There is however a severe drawback: no systematic approach is (until now) known,

to determine if a dynamical system admits a Lyapunov function or not. Worse, in

the case where the mere existence would be proven for a system, there still would

be the (mostly) difficult task to find such a function.
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5 Construction of Invariant Sets

In Chapter 3, the concept of an invariant set was introduced. As one recalls, a set that

possibly fulfils the conditions of invariance was already given. A question that naturally

arises is how to find or construct such a set. In this thesis, the following two methods

are presented in detail:

1. Construction with primary geometric regions.

If there is no possibility to postulate a rather primary function that yields a closed

formula for the boundary of a positively invariant set, then one can try to localize

its bounds as a curve (or a surface if one works in higher dimensions). The approach

would consist of putting the boundary as several simple pieces together, i.e. straight

segments, or parts of an ellipsoid.

2. Construction based on Lyapunov functions.

5.1 Construction with Basic Geometric Regions

As one can easily guess, one of the most straightforward positively invariant set would be

a rectangle (or a rectangular box in the case of higher dimensions) with parallel sides to

the coordinate axes.

Example 5.1. [36, Section 11.2, Example 2] The system of ODEs

ẋ = y − 8x3, ẏ = 2y − 4x− 2y3 (40)

is being considered, let x̃ = (x, y)T . As a starting point, one can suspect the positive

invariance of a rectangle R with corners at (±1,±2). Now, the outer normal vectors

on the boundaries (normalized to unit magnitude) are nr = (1, 0) on the right side,

nl = (−1, 0) on the left side, nu = (0, 1) on the upside and nd = (0,−1) on the downside.

Therefore ND(x̃) = {(1, 0), (−1, 0), (0, 1), (0,−1)}. One has

• (f(x̃)|nr) = y − 8x3 = y − 8 ≤ 0, if x = 1 and y ∈ [−2, 2],

• (f(x̃)|nl) = −y + 8x3 ≤ 0, if x = −1 and y ∈ [−2, 2],

• (f(x̃)|nu) = 2y − 4x− 2y3 = −4x− 12 ≤ 0, if y = 2 and x ∈ [−1, 1] and

• (f(x̃)|nd) = −2y + 4x+ 2y3 = −20 + 4x ≤ 0, if y = −2 and x ∈ [−1, 1].

It follows with Theorem 3.16 that the rectangle R is positively invariant for (40).

In the rest of this section based on [23] and [6, Section 4], continuous linear dynamical
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systems described by the (linear) equation

ẋ(t) = Ax(t), (41)

with a constant real matrix A ∈ Rn×n, are being considered. As usual, let x(t) ∈ Rn,

x(t0) = x0 the initial value and t ∈ R. One may assume, without loss of generality, that

A is not the zero matrix. Ellipsoids and polyhedral sets have been, without a doubt,

the most successful categories of eligible invariant sets. For this reason, it is legitimate to

consider cases, in which these types of invariant sets appear.

5.1.1 Polyhedral Sets

Definition 5.2. A polyhedron P ⊂ Rn can be defined as the intersection of a finite number

of half-spaces P = {x ∈ Rn : Gx ≤ b}, with G ∈ Rm×n and b ∈ Rm.

Lemma 5.3. ([23, Lemma 3.5]) Let P be a polyhedron as in Definition 5.2 and the non-

zero set of indices Ix for all x ∈ P. One has that P is an invariant set for the continuous

system (41) if and only if for every x ∈ ∂P (i.e. GT
i x = bi) the following inequality holds:

GT
i Ax ≤ 0 for all i ∈ Ix. (42)

Proof. To apply Theorem 3.10, the tangent cone for the closed convex polyhedron of

Definition 5.2 is needed. Let x be an element on the boundary of P . Now, one has for

the tangent cone (see [22, Examples 5.2.6 (c)])

TP (x) = {x ∈ Rn|(gi, d) ≤ 0 for i ∈ Ix} = {x ∈ Rn|GT
i x ≤ 0 for i ∈ Ix}.

The proof concludes straightforward with Nagumo’s Theorem 3.10 choosing f(x) = Ax.

Example 5.4. [23, Example 4.1] Let the polyhedron be defined by

P = {(x, y)|x+ y ≤ 1,−x+ y ≤ 1, x− y ≤ 1,−x− y ≤ 1}

i.e. one has the form in Definition 5.2 with

G =


1 1

−1 1

1 −1

−1 −1

 and b =


1

1

1

1

 ,
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and the system of ODEs

ẋ = −x, ẏ = −y ( i.e. A = −I2) (43)

with solutions x(t) = x0 exp(−t) and y(t) = y0 exp(−t). Now, one has on the first bound-

ary the relation GT
1

(
x

y

)
= x+ y = 1. It follows

GT
1A

(
x

1− x

)
= −x− 1 + x ≤ 0.

The other inequalities are checked in the same manner, and one obtains the inequality

GT
i Ax ≤ 0 for every i ∈ Ix and ∀x ∈ ∂P . Thus, with Lemma 5.3, the polyhedron P is an

invariant set for the system of ODEs, assuming that (x0, y0) ∈ P .

5.1.2 Ellipsoids

Definition 5.5. An ellipsoid E ⊂ Rn centred at the origin is defined as E = {x ∈
Rn:xTQx ≤ 1} with a symmetric matrix Q ∈ Rn×n satisfying Q � 0. An ellipsoid which

is not centred at the origin can be transformed into an ellipsoid centred at the origin.

In the case of an ellipsoid, its invariance can be proven with the following result:

Theorem 5.6. An ellipsoid E given as in Definition 5.5 is an invariant set for the con-

tinuous system (41) if and only if the following relation is satisfied:

ATQ+QA � 0. (44)

Proof. Define the ellipsoid E = {x ∈ Rn : xTQx ≤ 1} with boundary ∂E = {x ∈
Rn : xTQx = 1} and set φ(x1, . . . , xn) = xTQx. The vector ∇φ is normal to the surface

φ(x1, . . . , xn) = 1, and considering the symmetry of Q, one obtains ∇φ = 2Qx. More

details of the derivation of ∇φ can be found in [17, Section 4.6]. Thus, the outer normal

vector of the ellipsoid E at an x on the boundary is Qx. Stern and Wolkowicz have shown

([54, Section 2]) that the tangent cone at x ∈ ∂E has the form T = {y ∈ Rn|yTQx ≤ 0}.
With Nagumo’s Theorem 3.10, one obtains that E is an invariant set for the linear system

(41), if and only if

(Ax)TQx ≤ 0 (45)

holds, for all x on the boundary. Now, inequality (45) can be rewritten as

xT (ATQ+QA)x ≤ 0 for all x ∈ ∂E. (46)
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Moreover, one can see that (46) follows directly from (44). If inequality (46) is being

assumed, then for all 0 6= y ∈ Rn, one can find an x on the boundary of E and an α ∈ R,

satisfying y = αx, and one obtains

yT (ATQ+QA)y =
1

α2
xT (ATQ+QA)x ≤ 0,

which is equivalent to (44).

Amazingly, the inequality (44) is identical to the one already encountered in Remark 4. In

summary: The study of the stability of an equilibrium point x̃ for an autonomous system

of ODEs employing a Lyapunov function defined by V (x) = xTPx, P being a positive

definite symmetric matrix, is directly related to finding an invariant set for a linear

system. This leads to the illustrating modified example from Horváth, Song, and Terlaky

[23, Example 4.3]:

Example 5.7. Let E = {x ∈ Rn : xTQx ≤ 1} be the ellipsoid with Q =

(
1
9

0

0 1
4

)
and

the system of ODEs with A =

(
−9 0

4 −4

)
, initial values

(
1

1

)
. Now, one has

ATQ+QA =

(
−2 1

1 −2

)

with its corresponding eigenvalues{−3,−1}. It follows ATQ + QA � 0, and one obtains

with Theorem 5.6, that E is an invariant set for the system of ODEs defined by A.

5.1.3 Lorenz Cones

Definition 5.8. A Lorenz cone, CL ⊂ Rn with a vertex at the origin is defined as CL =

{x ∈ Rn : xTQx ≤ 0, xTun ≥ 0} where Q ∈ Rn×n is a symmetric nonsingular matrix with

one negative eigenvalue λn and corresponding eigenvector un. As already seen in Section

5.1.2, any Lorenz cone with non-zero vertex can also be transformed to a Lorenz cone with

a vertex at the origin.

In the case of a Lorenz cone, Horváth, Song, and Terlaky [23, Theorems 3.34 and 3.35]

show that its invariance can be proven with the following result:

Theorem 5.9. A Lorenz cone CL is an invariant set for a system of ODEs (41) if and

only if

∃η ∈ R satisfying ATQ+QA− ηQ � 0.
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Theorem 5.9 can be nicely visualized with the following example from Horváth, Song, and

Terlaky [23, Example 4.4]:

Example 5.10. Let Q =

1 0 0

0 1 0

0 0 −1

 with corresponding sole negative eigenvalue -1

and its eigenvector (0, 0, 1)T . Obviously, Q is symmetric and nonsingular. Thus, one

obtains the Lorenz cone CL = {x2 + y2 ≤ z2, z ≥ 0}. Now, let the system of ODEs be

ẋ = x− y, ẏ = x+ y and ż = z, i.e. A =

1 −1 0

1 1 0

0 0 1

, with initial values (0, 0, 0.3). One

obtains as solutions for the system x(t) = y(t) = 0 and z(t) = 1
3
et. It follows

ATQ+QA+ ηQ =

η + 2 0 0

0 η + 2 0

0 0 −η − 2

 .

Setting η = −2, one sees that the conditions in Theorem 5.9 are satisfied, and therefore

the Lorenz cone CL is an invariant set of the system of ODEs defined by A.

Let f :G→ Rn be continuous with G ⊂ Rn open. If not stated otherwise, the IVP

ẋ = f(x), t ≥ 0, with x(0) = t0, (47)

shall be considered for the remainder of this chapter.

5.2 Construction based on Lyapunov Functions

Another possibility to build (positively) invariant sets lies in the interesting (at first sight

surprising) feature of Lyapunov functions (see, e.g. [48, Korollar 8.1.3]).

Corollary 5.11. Let V be an autonomous Lyapunov function (which does not explicitly

depend on t) for the system (2), and α ∈ R. Then, the sets

D = V −1((−∞, α]) ⊂ G

are positively invariant for (2).

Proof. Since only positive invariance is considered, let t ∈ R+ and t0 ≥ 0. The defini-

tion of D leads to V (x0) ≤ 0, and because the Lyapunov function for the system (2) is
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decreasing in time alongside its solutions, it holds

V (x(t)) ≤ V (x0) ≤ α

for all t ≥ t0.

Example 5.12. (Pendulum [18, Section 8.2]) The pendulum is a classical example orig-

inating from mechanics. A mass m is hung up at the end of a rigid (massless) rod of

length R. Let α be the angle between the pendulum and the vertical. The force acting on

the pendulum is then −mg sin(α) in the direction of its movement (g = 9, 81m/s2 being

the constant earth acceleration). Now, with Newton’s famous second law F = ma, one

obtains the differential equation

−mg sin(α) = mα̈. (48)

As one can see, this equation is of second order, thus not in the desired form (2). This

issue is easily solvable with a well known-trick: one defines the vector x = (x1, x2)
T : =

(α, α̇) ∈ R2, then the system of ODEs

ẋ(t) =

(
x2(t)

−g sin(x1(t))

)
(49)

is equivalent to the differential equation (48). The system can be extended by a linear

friction term:

ẋ(t) =

(
x2(t)

−g sin(x1(t))− kx2(t)

)
(50)

with k > 0 being the friction coefficient. Now, though it is a tedious task, Lyapunov

functions can be constructed through the help of a physical thought process. The energy

of the pendulum is the sum of its kinetic energy Ekin :=
ẋ21
2

=
x22
2

, and its potential energy

Epot =
x1∫
0

g sin(α) dα = g(1 − cos(x1)) (the integral over the force necessary to shift the

pendulum from position 0 to the position x1). As an ansatz for the Lyapunov function,

one can try the total energy of the pendulum, i.e.

V (x1, x2) =
x22
2

+ g(1− cos(x1)), with V (x1, x2) ∈ C1(R2;R).

It follows

(∇V (x1, x2)|f(x1, x2)) =
(
g sin(x1) x2

)T ( x2(t)

−g sin(x1)− kx2

)
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= g sin(x1)x2 − x2g sin(x1)− kx22
= −kx22
≤ 0, if k > 0 for all x ∈ R2.

Hence, one sees from (31), that V is a Lyapunov function for the system (50). If x2 6= 0,

(∇V (x1, x2)|f(x1, x2)) < 0 holds, and thus V (x) is even a strict Lyapunov function for the

pendulum system in this case. The equilibria of the system are (0, 0) and (2kπ, 0) with 0 6=
k ∈ Z. Now, one has V (0, 0) = V (2kπ, 0) = 0, and V (x1, x2) > 0 for (x1, x2)

T ∈
R2 \ {(0, 0)} and R2 \ {(2kπ, 0)}, respectively. As shown just above, one has V̇ (x1, x2) ≤
0, if k > 0 for all x ∈ R2. Furthermore, with Theorem 4.14, the equilibria (2kπ, 0) are

stable. If one assumes small amplitude oscillations, then the only equilibrium (0, 0) is

asymptotically stable. Because of V̇ (x1, x2) = −kx22, the orbital derivative is only zero

and stays zero, if x2 is zero. This entails ẋ2 = 0, and consequently x1 = 0. It shows, that

V̇ (x1, x2) = 0, only when x1 = x2 = 0, proving the asymptotic stability of (0, 0) (see [28,

Example 2.2.2] for further details). Another approach is to modify the Lyapunov function

so that Theorem 4.14 iii) is applicable. One defines the modified Lyapunov function

Vα(x1, x2) =
x22
2

+ g(1− cos(x1)) + αx2 sin(x1),

with a parameter α > 0. For x1 ∈ [−π, π] and 0 < α < min{k, 4gk
4g+k2

}, there exists a

constant c > 0 with

V̇α(x1, x2) ≤ −c(sin2(x1) + x22),

and it follows that the prerequisites of Theorem 4.14 iii) are satisfied, proving the asymp-

totic stability of (0, 0). More details can be found in [18, Section 8.2]. An application of

Corollary 5.11 with α = 8 yields the family of sets depicted in Figure 6a.

The competing species example shall be considered again in regard to a Lyapunov func-

tion.

Example 5.13. (Competing species revisited) Example 3.18 is a two-dimensional com-

petitive Lotka-Volterra system

u̇ = u(b1 − u− αv) (51)

v̇ = v(b2 − βu− v) (52)

with b1 = 3, α = 2, b2 = 4 and β = 3. An application of Lemma 3.17 confirms that the

solutions u(t), v(t) are positive for t ≥ 0 if the initial values are positive (which they are

again because one considers the number of animals). Tang, Yuan, and Ma [56] show the
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(a) Representation of the invariant sets
V (x1, x2) ≤ 8, with V (x1, x2) =
x22
2 + g(1− cos(x1)).

(b) Solutions for the pendulum system with ini-
tial values (−6, 3) (red), (0, 3) (blue) and
(6,−4) (yellow).

Figure 6: Visualization and confirmation of Corollary 5.11 for the pendulum system (50).

existence of a Lyapunov function for the system (51)-(52) in the form of

V (u, v) =
β

2
u2 +

α

2
v2 − βb1u− αb2v + αβuv, α, β ∈ R.

Applied on Example 3.18, one obtains the function V (u, v) = 3
2
u2 + v2 − 9u− 8v + 6uv.

It follows

(∇V (u, v)|f(u, v)) =
(

3u− 9 + 6v, 2v − 8 + 6u
)T (u(3− u− 2v)

v(4− 3u− v)

)

=
(
−3(−u+ 3− 2v), −2(−v + 4− 3u)

)T (u(3− u− 2v)

v(4− 3u− v)

)
=− 3u(3− u− 2v)2 − 2v(4− 3u− v)2 ≤ 0

due to the positivity of u(t), v(t). Therefore, the function V defined above is indeed

a Lyapunov function for the considered system, in Example 3.18. The application of

Corollary 5.11 with α = −10 and α = −5 yields the family of sets depicted in Figures 7a

and 7b, respectively.

Example 5.14 (The discrete p-Laplacian revisited). Let G = (V,E) be an undirected

graph with n = |V | vertices, m = |E| edges, and its corresponding incidence matrix I.

One further defines the Laplacian ∆ = IIT .

Lemma 5.15. The discrete Laplacian ∆ is positive semi-definite and singular.
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(a) Representation of the invariant sets
{(u, v) ∈ R2 : 3

2u
2+v2−9u−8v+6uv ≤

−10}.

(b) Representation of the invariant set
{(u, v) ∈ R2 : 3

2u
2+v2−9u−8v+6uv ≤

−5}.

Figure 7: Visualization and confirmation of Corollary 5.11 for the competing species sys-
tem.

Proof. Let λ be an eigenvalue of ∆ with corresponding eigenvector v, with ‖v‖= 1. One

has

λ = vT∆v = (vtI)(ITv) = (ITv)T (ITv) ≥ 0.

Moreover, considering that the sum of the elements of every column yields zero, it follows

that ∆ is singular.

One can see that ∆T = (IIT )T = IIT = ∆, and it follows that ∆ is a symmetric

matrix. It is well-known from the linear algebra, that symmetric matrices possess only

real eigenvalues. It follows that the eigenvalues of the Laplacian are non-negative real

numbers. Moreover, zero is always an eigenvalue of ∆ whose multiplicity agrees with the

number of connected components of G (see [44, Section 1]). The eigenvalues of ∆ can,

therefore, be ordered as follows:

0 = λ1 ≤ . . . ≤ λn.

For the sake of simplicity, G shall be connected, because in this case, one obtains the

following result:

Lemma 5.16. Let G be connected, then the null space of the Laplacian ∆ is of dimension

one and generated by the vector (1, . . . , 1)T .

Proof. Let x be an element of the null space of ∆. One has

xT∆x =
∑

(i,j)∈E

(xi − xj)2 = 0.
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It follows that xi = xj for every edge (i, j) ∈ E. Considering that G is connected, one

obtains that all xi’s are equal.

Let ∆p : H → Rn, H ⊂ Rn open, with ∆px = I(
∣∣ITx∣∣p−2 ITx). The initial value problem

defined in Example 2.12
dx

dt
= −∆px(t), (53)

with x(t0) = x0 shall be considered again. The right-hand side of (2.12) shall be denoted

by f(x). It was shown in Example 2.12, that the IVP (53) possesses a unique solution,

which exists globally to the right, and therefore defines a dynamical system. Setting

f(x) = 0 yields the equilibria of the system (53). One recognizes that the set of the fixed

points consists of the elements of the null space of ∆. Now, it follows with Lemma 5.15,

that the system has an infinite number of equilibrium points (∆ is singular). Furthermore,

Lemma 5.16 yields the set of equilibria E := {xλ := (λ, . . . , λ) : λ ∈ R}. If one defines the

vector

x− λ1 =


x1 − λ

...

xn − λ


and the function V :H → R defined by

V (x) =
1

2
(x1 − λ, . . . , xn − λ)T (x1 − λ, . . . , xn − λ) =

1

2
(x− λ1)T (x− λ1), (54)

one obtains with Lemma 5.15 (∆ is positive semi-definite)

(∇V (x)|f(x)) = −(x− λ1)TI(
∣∣IT (x− λ1)

∣∣p−2 IT (x− λ1))

= −
∣∣IT (x− λ1)

∣∣p−2 (x− λ1)TIIT (x− λ1)

≤ 0.

It follows that the function V , defined in (54), is indeed a Lyapunov function for the

considered system. Now, one sees that V (xλ) = 0 and V (xλ) > 0 for x ∈ H \ {xλ}.
Furthermore, if x /∈ E , then x− λ1 /∈ E and one obtains (x− λ1)TIIT (x− λ1) > 0. One

recognizes V̇ (x) < 0 in H \{xλ}, yielding with Theorem 4.14, that every equilibrium xλ is

asymptotically stable. It follows with Corollary 5.11, that the sets {1
2
(x−λ1)T (x−λ1) ≤

c : c, λ ∈ R, } are positively invariant for the system (53).

Before moving on to the next example, one needs the notion of a maximal weak-invariant

subset (see [48, Section 8.4]). Let D ⊂ G ⊂ Rn; if one considers the orbits γ(x) = x(R) ⊂
D, then the maximal weak-invariant subset MD of D is defined as the union of these

orbits. The concept of an attractor was defined in Section 3.3.3, but no method to find
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one has been presented so far. This gap shall be closed with a result from Prüss and

Wilke [48, Satz 8.4.6].

Proposition 5.17. Let G ⊂ Rn be open, V :G→ R a locally Lipschitz Lyapunov function

satisfying

V (x)→∞ for dist(x, ∂G)→ 0 or ‖x‖→ ∞.

Moreover, for an α ∈ R,

V̇ (x) < 0 for all x ∈ G with V (x) > α

shall hold. Let D = {x ∈ G : V (x) ≤ α} and M the maximal weak-invariant subset of

D. Then, all starting solutions in G exist globally in G. The set D ⊂ G is compact and

positively invariant. Furthermore, M is a global attractor for (47) in G.

The considerations just above lead to a well-studied system (see [48, Sections 8.4, 14.1]).

Example 5.18 (The FitzHugh-Nagumo system). One considers the system originating

in the electro-physiology

ẋ = g(x)− y, (55)

ẏ = σx− γy. (56)

σ, γ > 0 are constants, g:R→ R is continuous with g(0) = 0. This system was proposed

by FitzHugh, to simplify the complex Hodgkin-Huxley model, which describes excitement

conduct in the nerve tracts. Moreover, the “simplified” model should retain the qualitative

properties of the original system. Usually, one takes for g a cubic function possessing three

roots {0, a, b} with 0 < a < b. For instance, one has g(x) = −x(x− a)(x− b). It should

further be assumed, that there exists an r > 0 satisfying

xg(x) < 0, for |x| ≥ r. (57)

The right-hand side (denominated by f(x, y)) is continuous, and it follows with Peano,

that the system possesses a local solution (uniqueness is not required).

Equilibria:

One can see that x̃0 := (0, 0) is always an equilibrium of the system, for any value of

the parameters. Now, setting f(x, y) = 0, one obtains g(x) = y from (55). Inserting

g(x) in (56) leads to the consideration of the solutions from the following equation (with

δ = σ/γ):

p(x) := σx− γg(x) = x(δ + (x− a)(x− b)) = 0.
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One obtains the solutions (x = 0 excluded)

x̃± =
a+ b

2
± 1

2

√
(b− a)2 − 4δ.

Moreover, one recognizes that x̃− 6= x̃+ holds, if δ < δ0 := (b − a)2/4 is satisfied. One

obtains with y± = δx± the equilibria

x̃± := (x±, y±).

Stability:

One has

A := f ′(x, y) =

(
g′(x) −1

σ −y

)
,

and obtains

trA = −γ + g′(x) = −h′(x), h(x) := γx− g(x),

and

detA = −γg′(x) + σ = γp′(x).

It follows with the principle of linearized stability (see Section 4.1), that x̃0 is asymptoti-

cally stable for any value of the parameters, due to 0 < h′(0) and 0 < p′(0). One can see

that p′(x̃−) < 0 and p′(x+) > 0 and it follows that x̃− and x̃+ are a saddle point and a

knot (or a spiral), respectively. Furthermore, if −h′(x̃+) > 0, i.e. γ < g′(x̃+) < δ, then

x̃+ is unstable.

Lyapunov function:

Now, if one sets G = R2 and defines the function V (x, y) = x2

2
+ y2

2σ
, then one obtains

V̇ (x, y) = (∇V (x, y)|f(x, y)) = (x,
y

σ
)T

(
g(x)− y
σx− γy

)
= xg(x)− γ

σ
y2.

It follows V̇ (x, y) < 0 if (57) is satisfied. Now, if one considers the set V −1(α), then one

has for (x, y) ∈ V −1(α)
x2

2
+
y2

2σ
≤ α⇔ y2 ≤ 2ασ − σx2.

If one defines α0 = max{xg(x) + γx2 : |x| ≤ r}/2γ, then it follows

V̇ (x, y) = xg(x)− 2αγ + γx2 < 0,

if α > α0 is satisfied. With Proposition 5.17, one obtains global existence of the solution
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to the right, and the existence of a global attractor M ⊂ D := V −1(−∞, α0]. One sees

from these considerations that the whole dynamics of the FitzHugh-Nagumo system occur

inside the ellipse E := {(x, y) ∈ R2 : x2

2
+ y2

2σ
≤ α0}.

Last but not least, the behaviour of systems of chemical and biological oscillators shall

be studied, based on the considerations of Jadbabaie, Motee, and Barahona [24].

Example 5.19 (The Kuramoto Model of Coupled Non-linear Oscillators). Significant

attention has been dedicated to the question of the interconnected motion of multiple self-

governing entities. Numerous disciplines such as ecology, the social sciences, or computer

graphics are developing an apprehension of how a class of moving objects can attain an

agreement and move in an organized way without centralized coordination. These models

can especially be studied through the lens of network dynamics, i.e. the relationship

between a graph structure and the dynamical behaviour of large networks. The standard

Kuramoto model describes the dynamics of a set of N phase oscillators θi with natural

frequencies ωi. This model is one of the most popular dynamical systems which can be

studied on networks (see [47, Section 3.6]). The time evolution of an ith oscillator is

described through the following ODE:

θi = ωi +
K

N

N∑
j=1

sin(θj − θi), (58)

for every node i with its associated phase θi(t) ∈ [0, 2π), K is the coupling strength.

Kuramoto himself analysed the system (58) based on the order parameter r̃ exp(ψ) =

1
N

N∑
j=1

exp(iθj) as a measure of synchronization (ψ is called the average phase). One can

see from his definition, that if all the ωi ’s are identical then r̃ = 1. If all the oscillators

are spaced equally on the unit circle, then r̃ = 0. An in-depth analysis of the equilibria

of (58) would go beyond the scope of this thesis, and shall, therefore, be omitted (Mehta

et al. [39] point out that even for humble sizes N ∈ [10, 20], the number of equilibria rises

above 100000). Now, for an oriented graph G with N vertices and e edges, one considers

the N×e incidence matrix B and the N×N symmetric Laplacian L = BBT (see Example

5.14). In the framework of graph theory, the Kuramoto model (58) can be rewritten for

an unweighted graph, with the N × 1 vectors θ and ω as:

θ̇ = ω − K

N
B sin(BT θ). (59)

The order parameter r̃ can be “generalized” to (i is the imaginary unit):

r2 = 1− (exp(iθ))HL(exp(iθ))

N
, (60)
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with (exp(iθ)) := (exp(iθ1), . . . exp(iθN)))T and H denoting the complex conjugate trans-

pose. This representation yields an interesting physical interpretation: each oscillator

i can be viewed as a rotor travelling on a circle with unit radius, and velocity vector

vj = exp(iθj). Now, the Kuramoto model (59) shall be considered in its “unperturbed”

version, i.e. all the frequencies ωi’s are identical, over an arbitrary connected graph. Fur-

thermore, it can be assumed that the ωi’s are without loss of generality equal to zero.

One, therefore, studies the system

θ̇ = −K
N
B sin(BT θ). (61)

If one considers the function

V1(θ) :=
4
∣∣sin(BT θ/2)

∣∣2
2

N2
,

then one has

∇V1 =
4

N2
B sin

(
BT θ

2

)
cos

(
BT θ

2

)
=

2

N2
B

sin(BT θ)

2
= − 2

NK
θ̇,

using the identity 2 sin(x) cos(x) = sin(2x). One then obtains

V̇1(θ) = (∇V (θ)|θ̇) = − 2

NK
θ̇T θ̇ ≤ 0,

and it follows that V1 is a Lyapunov function for the system (61). With the help of the

function V1, Jadbabaie, Motee, and Barahona [24] show that all trajectories converge to

the set of equilibria solutions, for any value of K, and that the synchronized state is

locally asymptotically stable. They further point out, that one could use alternatively

V2 := 1
2

N∑
i=1

N∑
j=1

(θi − θj)
2 = θTLcθ, as a candidate for a Lyapunov function, where Lc =

NI − 11T is the Laplacian of a complete graph (I being the identity matrix). Finally, it

follows with Corollary 5.11, that the sublevel sets of V1 and V2 which are contained inside

|θi| < π
2
, with i = 1, . . . , e, are positively invariant.

A notable aspect of Corollary 5.11, is its similarity with Theorem 3.11, which delivered

a positively invariant set employing a function Φ(x) ∈ C1(Rn;R). In contrast, Corollary

5.11 gives a whole family of positively invariant sets. Furthermore, every solution

starting in D will remain in D. It follows that D is not only weakly positively invariant,

but also positively invariant.
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6 Conclusion and Further Prospects

The main goal of this thesis was to introduce the reader to the concept of invariance

in dynamical systems. To this end, the appropriate mathematical framework had to be

established first, especially the theory of differential equations and dynamical systems.

Several important notions and theorems were stated from the literature. Some criteria

for showing or disproving the invariance of a given set D ⊂ Rn were given, based mainly

on [48, Section 7], and then used in the final chapter for the construction of invariant sets.

A system of non-linear ODEs possesses in its essence many (positively) invariant sets;

the whole domain is especially always (a trivial) one. Therefore, it is of great interest to

narrow the invariant sets down as much as possible. One tries to show more precisely

where orbits (or solutions) of the system tend to when t approaches the upper bound of

the maximal time interval.

Stability is a frequently studied property of invariant sets, especially from fixed points

of a system. Therefore, the stability definitions were stated formally for equilibria, and

two methods to determine their stability were introduced. It turned out that Lyapunov

functions were beneficial for finding invariant sets. However, it can be seen from the

definition that stability describes a local property. If one is interested in the global be-

haviour, an essential (and complicated) question is which orbits will be attracted by a

stable equilibrium, and which will deviate from it. Unfortunately, results on this very

matter are rarely treated in the literature: invariance and stability theory are almost al-

ways considered separately. Furthermore, research papers on this matter mostly address

specific examples and do not seek overall results in the qualitative theory of non-linear

differential equations.

Considering the results from this thesis as a starting point, a possibility for further re-

search in this area could be seeking the existence and construction of Lyapunov functions,

leading to geometrically more complicated structures of invariant sets. One can think of

continuous piecewise-defined Lyapunov functions, for example. This is especially impor-

tant in the case of structurally complex orbits, as was seen in the Lorenz equation.

A still open research item beyond the scope of a master’s thesis is the evaluation of the

number of limit cycles in a planar system. Furthermore, it should be investigated in-

depth if the methods in this thesis for finding invariant sets, could be extended to partial

differential equations, or ODEs defined on graph structures.
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