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Abstract

Testing distributional assumptions is an evergreen topic in statistics, econometrics and other
quantitative disciplines. A key assumption for extant distributional tests is some form of
stationarity. Yet, under time-varying mean or time-varying volatility, the observed marginal
distribution belongs to a mixture family with components having the same baseline distri-
bution but di�erent location and scale parameters. Therefore, distribution tests consistently
reject when stationarity assumptions are violated, even if the baseline distribution is correctly
speci�ed. At the same time, time-varying means or variances are common in economic data.
We therefore propose distribution tests that are robusti�ed to such time-variability of the
data by means of a local standardization procedure. As a leading case in applied work, we
demonstrate our approach in detail for the case of testing normality, while our main results
are extended to general location-scale models without essential modi�cations. In addition
to time-varying mean and volatility functions, the data generating process may exhibit fea-
tures such as generic serial dependence. Speci�cally, we base our tests on raw moments of
probability integral transformations of the series standardized using rolling windows of data,
of suitably chosen width. The use of probability integral transforms is advantageous as they
accommodate a wide range of distributions to be tested for and imply simple raw moment
restrictions. Flexible nonparametric estimators of the mean and the variance functions are
employed for the local standardization. Short-run dynamics are taken into account using the
(�xed-b) Heteroskedasticity and Autocorrelation Robust [HAR] approach of Kiefer and Vo-
gelsang (2005, Econometric Theory), which leads to robustness of the proposed test statistics
to the estimation error induced by the local standardization. To ease implementation, we
propose a simple rule for choosing the tuning parameters of the standardization procedure,
as well as an e�ective �nite-sample adjustment. The provided Monte Carlo experiments show
that the new tests perform well in terms of size and power and outperform alternative tests
even under stationarity. Finally, we �nd � in contrast to other studies � no evidence against
normality of the aggregate U.S. real output growth rates after accounting for time-variation
in mean and variance.
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1 Introduction

Testing distributional assumptions is an important aspect of applied work. In particular, normal

distributions are often assumed in economics, and not only for simplicity or their analytical prop-

erties: for instance, the central limit theorem provides a justi�cation for normally distributed

stochastic model components, which is of particular interest when working with macroeconomic

aggregates. In many dynamic macroeconometric models, distributional assumptions are key

in the modelling cycle of speci�cation, estimation, inference and prediction.1 The popular

Kolmogorov-Smirnov statistic can be used to test hypotheses on distributions in an iid sam-

pling situation only, and is not straightforwardly extended to serial dependence and parameter

estimation error.2 Bai (2003) employs the martingale transformation of Khmaladze (1981) to

this end. Such an approach is quite demanding, though, and Bai and Ng (2005) decisively extend

the work of Jarque and Bera (1980) to propose moment-based tests of normality under serial de-

pendence; see also Lomnicki (1961) for an early discussion for linear processes or Bontemps and

Meddahi (2005) for an ingenious choice of moment restrictions. While Bai and Ng (2005) address

normality testing explicitly, moment-based testing can be extended to test other distributions as

well.

But serial dependence and estimation uncertainty are not the only issues to be faced in applied

work. Consider for instance the situation where a time series is marginally normal, but exhibits

one (or more) shifts in the mean or the variance. The �pooled� distribution is mixed Gaussian with

two (or more) components, which is not normal anymore; depending on the mixture parameters,

the resulting distribution may exhibit skewness, excess kurtosis or even multimodality. Therefore,

a normality test ignoring mean and variance changes tends to reject the true null hypothesis

essentially more often than required by the nominal signi�cance level. The reasoning extends to

general patterns of time-variation in mean and variance, and also to other families of distributions.

Such implications of time-variability are not hypothetical in nature. Rather, economic data are

in fact often found to exhibit time-varying moments, both in mean and variance. Both, non-

constant means and non-constant variances have been widely documented. Empirical evidence

for structural changes in trend in U.S. real gross domestic product [GDP] are provided in Perron

and Wada (2009) and Luo and Startz (2014), and so are mean shifts in the corresponding

output growth rate; see e.g. Morley and Piger (2012) and Antolin-Diaz et al. (2017). Such

time-variation in the mean of GDP growth rates is typically associated with recessions and oil

crises. Time-varying volatility can be found in economic growth and also in other macroeconomic

variables such as in�ation measures (see e.g. Stock and Watson, 2002; Sensier and van Dijk, 2004;

Justiniano and Primiceri, 2008). Typical patterns are permanent changes or slowly evolving

trends in the variance (with the �Great Moderation� as an example for a downward change; see

e.g. McConnell and Perez-Quiros, 2000, Blanchard and Simon, 2001, Ramey and Vine, 2006 and

Gadea et al., 2018).

1In the same vein, non-normality of disturbances might be taken to indicate model misspeci�cation in regression
analysis; in duration models, deviations from the exponential distribution may again indicate misspeci�cation.

2It has been known at least since Durbin (1973) that plugging in estimated parameters may have an e�ect on
the relevant limiting null distributions; see also Andrews (1997) for a conditional Kolmogorov-Smirnov test in a
parametric regression setup with independent observations.
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Such time-varying means and variances may conveniently be captured by Markov switching

models, case already made for the U.S. real output growth by Hamilton (1989). More generally,

Markov switching models gained popularity in the �eld of identi�cation of structural macroe-

conomic shocks involving output; see e.g. Lanne et al. (2010) and Herwartz and Lütkepohl

(2014). Furthermore, time-heteroskedasticity is quite useful for identifying structural shocks; see

e.g. Rigobon (2003), Lanne and Lütkepohl (2008), Lewis (2017) and Lütkepohl et al. (2021).

In this context, the normal distribution plays an important role as elaborated by Lanne et al.

(2017) and Gouriéroux et al. (2020).

Allowing for time-varying means and variances when testing for normality, say, is therefore of

undeniable importance in practice. To account for possible time-variation of unknown shape

in the location and the scale of the variable of interest, we introduce here tests based on local

standardization using means and variances estimated in a �exible nonparametric fashion. A

nonparametric approach allows for various forms and types of changes in the mean or the variance

by using rolling windows of observations for standardization rather than the full sample. The

distribution tests build on moments of probability integral transformations [PIT]s of the locally

standardized time series. PITs have already been used successfully by Diebold et al. (1998) in the

context of forecast density evaluation.3 The use of raw moments as suggested in Knüppel (2015)

is advantageous as they are almost unbiased even in smaller samples, while centered moments

like sample skewness or kurtosis can be severely biased in the presence of serial dependence (Bao,

2013), leading to distorted moment-based tests for normality.

To assess the statistical signi�cance of the deviations of the empirical raw PIT moments from

the theoretical ones we follow Bai and Ng (2005) and rely on long-run variance estimation for

the PITs of the locally standardized series. We however adopt here the �xed-b asymptotic

framework of Kiefer and Vogelsang (2005), and do so for two reasons. First, �xed-b asymptotics

provide more accurate �nite-sample inference by holding the required bandwidth �xed as a linear

fraction of the sample size T , i.e. B = bT with b ∈ (0, 1]. This way, the resulting asymptotic

limiting null distributions of test statistics (like t, Wald and F ) re�ect the choice of bandwidth

B and kernel, say κ, even as T → ∞.4 Perhaps more importantly in the economy of this

paper, the use of the �xed-b framework has a second key motivation beyond possible �nite-

sample improvements. Namely, due to the nature of �xed-b asymptotics relying on partial sums,

the cumulated estimation e�ect cancels out in the limiting distributions of our proposed test

statistics, as opposed to the usual small-b asymptotics. This is quite useful in practice as only

one set of �xed-b critical values are then required.

Concretely, we show here that the mean and variance functions may be estimated using non-

parametric methods without altering the limiting distributions of the �xed-b test statistics based

on locally standardized series (under certain conditions on the involved window widths). This

asymptotic result implies that practitioners do not need to specify a particular model for the

mean and the variance explicitly. Since the tests are applicable just as well when the mean and

variance functions are known as when they are locally estimated, this leads to a straightfor-

3See also Rossi and Sekhposyan (2014) for a discussion of the normality assumption in the context of predictive
density evaluation for U.S. output growth.

4See Yang and Vogelsang (2011), Vogelsang and Wagner (2013) or Sun (2014a,b) for contributions to this �eld,
inter alia.
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Figure 1: U.S. real GDP growth rate (1947Q2-2019Q4). Top left: time series plot of the raw time
series; top right: nonparametric locally standardized time series; bottom left: normal QQ-plot
for the raw time series and bottom right: normal QQ-plot for nonparametric locally standardized
time series.

ward implementation of the discussed procedures. Furthermore, we propose a simple selection

rule for the window width required for local standardization and discuss a simple yet e�ective

�nite-sample correction. We provide extensive Monte Carlo evidence that the performance of

the proposed tests does not hinge on a particular choice of kernel for nonparametric estimators.

Building on the proposed robust tests, we then investigate the non-normality of U.S. real output

growth series. In the context and motivation of macroeconomic tail risks (see e.g. Acemoglu

et al., 2017), deviations from normality due to large economic movements during booms and

recessions play a key role. This hypothetical empirical regularity also serves as the basis for a

behavioral macroeconomic model as in De Grauwe (2012). Fagiolo et al. (2008) acknowledge

the presence of conditional heteroskedasticity in real output growth rates, but the slow variation

of unconditional variances due to the Great Moderation and the Great Recession is overlooked;

see also Acemoglu et al. (2017). These major and long-run changes in volatility a�ect extant

distributional tests like the Bai and Ng (2005) test in a severe way, as our theoretical framework

and simulation results show.

In contrast to the popular view that U.S. real output growth rates are non-Gaussian, our results

suggest that the opposite is actually the case. The newly proposed tests, which account for
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time-varying means and variances, do not reject the null of Gaussianity, while the Bai and Ng

(2005) test rejects � quite likely speci�cally due to neglected time-variation of location and scale.

This �nding is summarized by the visualization in Figure 1. In a 2×2 plot, we show U.S. real

GDP growth rate (left), the locally standardized time series (right) together with their respective

quantile-quantile (QQ) plots. While the raw real output growth rate seems non-normal (mainly

due to its striking tail behaviour), the normal distribution provides a much better approximation

of the distribution of the locally standardized series.

The remainder of the paper is structured as follows. In Section 2, the setup is described and

newly proposed test statistics are introduced for the important particular case of normality.

The case of uncertainty induced by nonparametrically estimated standardization is located in

Section 3, followed by the extension to other distributions. Our Monte Carlo simulations study

is included in Section 4. Section 5 discusses the normality hypothesis of U.S. real output growth

rates from the perspective of possible time-variation of location and scale. Section 6 summarizes,

while additional results, technical proofs, response curves for critical values and a summary of

the popular Bai and Ng (2005) test procedure are given in the Appendix.

2 Model and baseline test

To �x ideas and notation, we �rst describe the proposed procedure for the null hypothesis of

normality and assuming that the mean and variance functions of the time series of interest are

known. Section 3 discusses the feasible version with nonparametric local standardization together

with the application to other null distributions besides the normal.

2.1 Technical assumptions

As the leading example, the null hypothesis of interest is marginal normality of the time series

xt under consideration. In the following, xt exhibits time-varying mean and variance behavior

as given by the following simple component model

xt = µt + σtzt, t = 1, 2, . . . , T,

where zt is unconditionally homoskedastic and otherwise short-range dependent, while the time-

varying mean and variance are allowed to have triangular array structures, µt = µt,T and σt =

σt,T , allowing e.g. for slowly varying functions of time. The following assumptions make the

notions of short-run dependence and time-variation precise.

Assumption 1 Let zt be a marginally standard normal, strictly stationary time series with

strong mixing and mixing coe�cients α(j) for which α (j) < Aj−b for some b > 10/3. Assume

that the long-run covariance matrix of zt and z
2
t is positive de�nite. Finally, assume absolutely

summable 8th-order cumulants of zt.

Together with regularity conditions on the mean and variance functions µt and σ2t in Assumption

2, Assumption 1 speci�es a particular case of a so-called locally stationary process; see Dahlhaus
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(2012) for a general introduction. Such models are well-suited to capture stylized facts of eco-

nomic time series such as time-varying volatility. The strong mixing condition is a standard way

of controlling for the persistence of stochastic processes and ensures zt to have short memory.

Given unit variance, zt is integrated of order zero and σ2t is interpreted as the local variance. The

mixing coe�cients α(j) are only mildly restricted, given that normality of zt ensures �niteness

of moments of any order and the typical trade-o� between serial dependence and �niteness of

higher-order moments is not relevant here. The contemporaneous covariance of zt and z2t is zero

under marginal normality, but the long-run covariance need not be zero due to serial dependence

in zt. The condition also allows for mild forms of conditional heteroskedasticity, so the observed

time series xt may exhibit both conditional and unconditional heteroskedasticity.

For later reference, note that Assumption 1 ensures e.g. weak convergence of the suitably nor-

malized partial sums of zt and z2t ,

1√
T

[sT ]∑
t=1

(
zt

z2t − 1

)
⇒

(
W1 (s)

W2 (s)

)
, (1)

where (W1,W2)
′ is a bivariate Brownian motion and �⇒� stands for weak convergence in a

space of càdlàg functions endowed with a suitable norm (see e.g. Davidson, 1994, Chapter 29).

Strict stationarity is a more restrictive condition than needed for the convergence in (1), for

which weak stationarity would have su�ced in addition to the mixing property and uniform

boundedness of higher-order moments. We however consider nonlinear transformations of zt for

our tests, and strict stationarity of zt ensures that the transformed time series have constant

variance. Moreover, strict stationarity is a reasonable assumption once the time-varying mean

and variance have been accounted for. Finally, strict stationarity of zt also separates the variance

�uctuations from the serial dependence properties.

The mean and variance functions themselves are taken to satisfy smoothness conditions:

Assumption 2 The triangular arrays µt,T and σt,T are given as µt,T = µ (t/T) and σt,T =

σ (t/T), where both µ (·) and σ (·) are Lipschitz-continuous on [0, 1], and σ (·) is bounded away

from zero on [0, 1]. Let σ′′(·) exist and be bounded on [0, 1].

The Assumption allows e.g. for trends in the mean and the variance of various shapes and

directions, but also for cyclic behavior, provided the frequency of the cycle is not too high. In

particular, Assumption 2 accommodates phenomena like the Great Moderation with changes

occurring over several subperiods. Importantly, we make no parametric assumptions on the

nature of these changes in mean and variance, such that our distribution tests are robust against

generic time-variation in location and scale. Formally allowing for sudden breaks (captured by a

discontinuity in the mean or the variance function) requires more involved proofs and is left for

further research. We show in the analysis of the �nite-sample properties of our tests that breaks

do not a�ect their performance; see Section 4 for details.

6



2.2 Infeasible PIT-based tests

We base our test of the null hypothesis on moments of transformed time series rather than

the original time series zt, more precisely on the probability integral transform of zt. We shall

motivate our procedures by �rst assuming the mean and variance components to be known. This

will be relaxed in Section 3, where we consider �exible nonparametric estimation of µt and σt.

Concretely, with Φ being the cumulative distribution function (and ϕ denoting the density func-

tion) of the standard normal distribution, the PIT

pt = Φ (zt)

is marginally uniform on [0, 1] under the null. It then holds under the null of uniformly distributed

PITs that

E
(
pkt

)
=

1

k + 1
; k ∈ N (2)

such that, jointly with the convergence in (1),

1√
T

[sT ]∑
t=1


pt − 1

2
...

pKt − 1
K+1

⇒


B1 (s)
...

BK (s)

 (3)

under Assumption 1, where B = (B1, . . . , BK)′ is a K-variate Brownian motion with covariance

matrix denoted by Ω = E (B(1)B′(1)) = Cov (pt) with pt = (pt, p
2
t , . . . , p

K
t )′. One may resort

to an estimate thereof (based on the usual spectral density based approach; see Newey and West,

1987; Andrews, 1991; Andrews and Monahan, 1992) to build Wald test statistics of the moment

restrictions in (2), so it is not required to know Ω. This follows the approach of Bai and Ng

(2005) or Bontemps and Meddahi (2005) to deal with serial dependence of unknown form.

Compared with relying on zt directly, PITs have several advantages. For instance, PITs are

bounded such that their higher-order cumulants are smaller than those of the standard nor-

mal; therefore, the variability of the long-run covariance matrix estimators is smaller and the

χ2 asymptotic approximation is typically more accurate. The bias of the moments of PITs is

also typically smaller than those of the untransformed time series; see e.g. Knüppel (2015) for

evidence in this respect. At the same time, PITs still allow to distinguish between skewness and

kurtosis as causes of non-normality: since the cumulative distribution function of the standard

normal is symmetric about the point x = 0, y = 0.5, the �rst raw moment of the PITs captures

distributional asymmetry, but not skewness alone. So a rejection of the null which is not driven

by the �rst raw moment is clearly not due to skewness; see Knüppel (2015) again.

Suppose for now that the test can be based directly on empirical moments of pt (i.e. under known

functions µt and σt). With mk = 1
T

∑T
t=1 p

k
t , a simple t-statistic for a single restriction on the

k-th moment is given by

tk =
√
T
mk − 1

k+1

ω̂k
(4)
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with ω2
k being the k-th diagonal element of Ω (i.e. the long-run variance of pkt ). Concretely, let

Ω̂ =
T−1∑

j=−T+1

κ

(
j

B

)
Γ̂j (5)

denote an estimator of Ω with proportional bandwidth B = bT, b > 0, where Γ̂j is the usual

autocovariance matrix estimator at lag j,

Γ̂j =
1

T

T∑
t=j+1

(pt − p̄)
(
pt−j − p̄

)′
, j ≥ 0, and Γ̂j = Γ̂−|j|, j < 0,

with pt = (pt, p
2
t , . . . , p

K
t )′. Given the weak convergence in (3) with assumed positive de�nite Ω,

we have from Kiefer and Vogelsang (2005) the following limit result for b ∈ (0, 1]:

t2k ⇒
W̃ 2(1)

Qb,κ
,

where W̃ represents a standard Wiener process and the functional Qb,κ is given in terms of the

Brownian bridge W̃ (s)− sW̃ (1) and depends explicitly on the choice of kernel κ and bandwidth

B. For simplicity we work with the two most popular kernels in applied time series analysis, a)

the quadratic spectral [QS] kernel of Andrews (1991) with κ(s) = 25
12π2s2

(
sin(6πs/5)

6πs/5 − cos(6πs/5)
)

and b) the Bartlett kernel κ(s) = (1− |s|) 1 (|s| ≤ 1) with 1(·) being the indicator function. For

kernels with smooth second-order derivative (e.g. the QS kernel) it holds under �xed-b that

Qb,κ = −
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)(
W̃ (r)− rW̃ (1)

)(
W̃ (s)− sW̃ (1)

)
drds ,

while, for the Bartlett kernel,

Qb,κ =
2

b

ˆ 1

0

(
W̃ (r)− rW̃ (1)

)2
dr − 2

b

ˆ 1−b

0

(
W̃ (r + b)− (r + b)W̃ (1)

)
(W (r)− rW (1)) dr.

For both kernels, the standard limit result, i.e. t2k ⇒ χ2
1, is recovered when b → 0 at a suitable

rate (Qb,κ
d→ 1 for b → 0; c.f. Kiefer and Vogelsang, 2005). It should be noted that such HAR

covariance matrix estimation does not work with a di�erent estimator than HAC, but rather

provides an asymptotic framework which results in more accurate asymptotic approximations.

Working with several raw moments (in e�ect a portmanteau test), we construct

TK = T

(
m1 −

1

2
, . . . ,mK −

1

K + 1

)
Ω̂
−1
(
m1 −

1

2
, . . . ,mK −

1

K + 1

)′
. (6)

Under the null, it follows similarly that

TK ⇒ W̃
′
K(1)Q−1K,b,κW̃K(1),

where W̃K(s) represents a K-dimensional vector of independent standard Wiener processes,

QK,b,κ is the K × K matrix variant of the above functionals relying on the Brownian bridges
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W̃K(s)− sW̃K(1); see Kiefer and Vogelsang (2005) for details.

To take advantage of the properties of the PITs based test it is however imperative to correctly

standardize the time series prior to applying the PIT, so the unknown µt and σt have to be

estimated. We address this issue in the following Section.

3 Dealing with estimation uncertainty

3.1 Local standardization

Under the particular circumstance that the location and scale functions of time series under

test are known, the tests can be applied directly. In most cases, however, these functions are

unknown and need to be estimated. An exception would be for instance the case of density

forecast evaluation; see e.g. Diebold et al. (1998) and Knüppel, 2015. Let ẑt denote the locally

standardized time series and

p̂t = Φ (ẑt) = Φ

(
xt − µ̂t
σ̂t

)
(7)

denote the PIT applied to ẑt. In (7), µ̂t and σ̂t are generic estimators of the time-varying location

and scale functions µt and σt. Let then

m̂k =
1

T

T∑
t=1

p̂kt

denote the sample average of p̂kt .

The use of p̂t instead of pt for computing a feasible statistic, say t̂k, typically a�ects the limiting

distributions and requires corrections. This is known in the literature as the Durbin problem;

see Durbin (1973). In previous work, Bai and Ng (2005) show how to robustify against esti-

mating (constant) mean and variance, while Bontemps and Meddahi (2012) derive conditions

under which more general parametric standardization does not a�ect the limiting distribution.

Alternatively, Bai (2003) uses the Khmaladze transform to tackle this issue. These approaches

have, however, only been discussed under stationarity assumptions, and it is not clear how they

are applicable under our conditions � or whether this is possible at all.

To account for time-variation, we employ a local standardization to match the local stationarity

properties of the model. This requires a localized estimation of the unknown functions µ (·) and
σ (·), on which we now become more precise.

Consider the Nadaraya-Watson estimator for µ (·) and σ (·), i.e. the local constant regressions of
xt and (xt − E(xt))

2 on the relative time t/T :

µ̂

(
t

T

)
= µ̂t =

∑T
j=1K

(
t/T−j/T

h

)
xj∑T

j=1K
(
t/T−j/T

h

)
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and

σ̂2
(
t

T

)
= σ̂t =

∑T
j=1K

(
t/T−j/T

h

)
(xj − µ̂j)2∑T

j=1K
(
t/T−j/T

h

)
where we assume for simplicity that x0,−1,... and xT+1,... are observed.5

These estimators are actually quite familiar in �classical� time series analysis: using the uniform

kernel, K(s) = 1/2 1(|s| ≤ 1), we obtain the more familiar centered moving averages

µ̂t =
1

2τ + 1

t+τ∑
j=t−τ

xj and σ̂2t =
1

2τ + 1

t+τ∑
j=t−τ

(xj − µ̂j)2 ,

where the window width τ is obtained from the bandwidth h by multiplication with T . The

window width τ is substantially smaller than T , hence ensuring that xt is approximately stan-

dardized in �nite samples, and letting τ →∞ at a rate lower than T ensures that, asymptotically,

each xt is standardized correctly. In fact, we may allow for di�erent window widths τµ and τσ
to allow for a more �exible choice of these tuning parameters; see also Remark 1 below. This is

simply local standardizing instead of global standardizing using the sample mean x̄ = 1
T

∑T
t=1 xt

and the sample standard deviation σ̂ =
√

1
T

∑T
t=1(xt − x̄)2, as would have been su�cient for the

case of strict stationarity of xt.

The key step in analyzing the feasible statistic based on p̂t is to note that the weak convergence

in (3) is � conveniently � replaced by the following limiting behavior.

Lemma 1 Let τµ, τσ, T → ∞ such that T ν1
τ%

+
τ%
T ν2 → 0 for 2/3 < ν1 < ν2 < 3/4 and % = {µ, σ}.

Then, under Assumptions 1 and 2 and the uniform kernel, we have jointly for all k = 1, . . . ,K

that

1√
T

[sT ]∑
t=1

(
p̂kt −

1

k + 1

)
⇒ Bk (s)− kϑk−1W1 (s)− k

2
$k−1W2 (s)

withW1 andW2 from (1) and Bk from (3), ϑk−1 = E
(
pk−1t ϕ (zt)

)
and $k−1 = E

(
pk−1t ztϕ (zt)

)
.

Proof: See Appendix B.

Remark 1 The choice of the window widths τµ and τσ is critical for the performance of the

smoothers. Note that the imposed restrictions imply undersmoothing. This is explained by the

nature of the desired result: while classical nonparametric regression focusses on minimizing the

MSE of the estimated curve, we need to reduce estimation bias in µ̂(·) and σ̂2(·) to a minimum,

since the e�ect of the bias on the partial sums of p̂t cumulates in t. Such bias e�ectively induces

undesired trends in the partial sums of p̂kt . For weak convergence to Wiener processes it is

however required that such trends are of negligible magnitude. As a consequence, if one were

to use standard procedures for the selection of the window width τ (such as cross-validation),

one would tend to select window widths (or equivalently bandwidths h in the local regression

5In the Nadaraya-Watson regression framework, we e�ectively treat the relative time t/T as a �xed-design
regressor, as for instance Vogt (2012) who considers nonparametric multivariate regressions with time as one of
the regressors.
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framework) that are quite likely too large for our testing situation. In the Monte Carlo study, we

advocate a simple recommendation regarding the choice of the window width τ in practice, based

on downscaling the cross-validated window width.

Remark 2 We state Lemma 1 for the case of the uniform kernel to simplify the proofs and

to keep the notation simple. Other kernel choices, e.g. the popular Gaussian or Epanechnikov

kernel, plausibly lead to analogous results, as would the use of the local linear (or polynomial)

regression estimator. We provide extensive simulation evidence which demonstrates that the

particular kernel choice and the employed estimator have minor impact on the size and power of

the tests in various situations; see Section 4.

Remark 3 Note that ϑ0 = E (ϕt) =
´∞
−∞ ϕ

2 (x) dx = 1
2
√
π
. Using power series expansions one

may show that ϑ1 = 1
4
√
π
, but the higher-order expectations (for ϑk, k ≥ 2) do not seem to have

a closed-form expression. We simulate the expectations ϑk−1 = E(pk−1t ϕ(zt)) via Monte Carlo

simulation for k = 1, 2, 3, 4 with 1,000,000 observations and 10,000 replications; the resulting

values are as follows:

ϑ = (0.2820948, 0.1410473, 0.0857805, 0.0581472).

The simulated values for k = 1 and k = 2 match their theoretical counterpart to seven exact

digits. Therefore, we expect that the Monte Carlo simulation precision of the higher-order terms

(i.e. k ≥ 3) is high enough.

Feasible test statistics are based on p̂t. For a single moment restriction, say on the kth power of

pt, we therefore consider

t̂k =
√
T
m̂k − 1

k+1

ω̂k
(8)

and, for a portmanteau-type test considering several moments, we take

T̂K = T

(
m̂1 −

1

2
, . . . , m̂K −

1

K + 1

)
Ω̂
−1
(
m̂1 −

1

2
, . . . , m̂K −

1

K + 1

)′
(9)

with Ω̂ being a long-run variance estimator (see equation (5)) computed on the basis of p̂kt as

well.

By Lemma 1 we have that the K normalized partial sums 1√
T

∑[sT ]
t=1

(
p̂kt − 1

k+1

)
still converge

weakly to a K-dimensional Brownian motion, albeit with a di�erent long-run covariance matrix

than Ω, namely

Ψ = VΞV′ .

Here, Ξ is the long-run covariance matrix of
(
pt, . . . , p

K
t , zt, z

2
t − 1

)′
(such that Ω is just the

upper K ×K diagonal block of Ξ), and

V =
(

IK ; ΥK

)
with ΥK = −

(
ϑ0 · · · KϑK−1
1
2$0 · · · K

2 $K−1

)′
. (10)
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The coe�cients are given as ϑj = E
(
pjtϕ(zt)

)
and $j = E

(
pjtztϕ(zt)

)
. Since the �xed-b

asymptotics leads to partial-sums asymptotics for both m̂k and Ω̂, where the relevant long-run

(co)variance matrix Ψ simply cancels out in (11) and (12), Lemma 1 ultimately implies that

no explicit correction for the estimation error is required. This is formalized in the following

proposition.

Proposition 1 Under the Assumptions of Lemma 1 and the additional condition that Ξ is pos-

itive de�nite, it holds that

t̂k ⇒
W̃ (1)√
Qb,κ

and

T̂K ⇒ W̃
′
K(1)Q−1K,b,κW̃K(1),

where W̃K(s) represents a K-dimensional vector of independent standard Wiener processes.

Proof: See Appendix B.

Remark 4 Positive de�niteness of Ξ implies positive de�niteness of Ψ which is required for

the result (see the proof for details); one could directly require invertibility of Ψ, but this would

depend on the null of interest via V, while restricting Ξ to be of full rank does not.

Remark 5 It is questionable whether small-b asymptotics (e.g. Newey and West, 1987) are fea-

sible or even worth pursuing. Due to the local nature of the standardization, the convergence of p̂t

to pt is quite slow compared to the parametric case where typically p̂t− pt = Op(T
−1/2). Showing

that Ω̂ converges in probability for b → 0 is therefore more di�cult for local standardization.

Since such convergence is not required for the �xed-b approach, this actually delivers a further

argument in favor of resorting to �xed-b asymptotics.

Remark 6 As a comparison, Appendix C provides a discussion of parametric standardization.

Parametric approaches require models for the mean µt and the variance σ2t which are prone

to misspeci�cation. Moreover, there are essential di�erences between the implications of the two

approaches. While parametric adjustment typically leads to bridge-type processes (see Lemma A.2

in Appendix C for details), we obtain Brownian motions as limits in the case of local adjustment.

As a consequence, parametric standardization leads to the need of an explicit correction for the

estimation error; see Proposition A.1 in Appendix C. As argued there, a further disadvantage of

the parametric approach is that the required correction depends on the shape of the parametric

mean or variance component adjusted for.

3.2 Other null distributions and a �nite-sample correction

Our framework allows testing other null distributions in location-scale models, since PITs apply

to any continuous distribution. Concretely, compute p̂t = F0(ẑt) where F0 is the cumulative

distribution function of the standardized null distribution and ẑt is the locally standardized time

series.
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In particular, it is straightforward to show that Lemma 1 and Proposition 1 hold under mild

regularity conditions, yet with e.g. ϑk = E
(
pkt f0(zt)

)
where f0 is the density function of the

null distribution of zt. One further advantage of the local standardization approach is that the

expectations ϑk = E
(
pkt f0(zt)

)
and$k = E

(
pkt ztf0 (zt)

)
need not to be computed explicitly, such

that the test is immediately applicable for any continuous null shape in location-scale families.

There is a minor exception, namely the case k = 1 when testing the null of a uniform distribution;

this results in a linear F0, so p̂t is just a rescaled ẑt; it is argued in Appendix B (cf. the proof

of Proposition 2) that the normalized partial sums of ẑt converge to zero rather than Brownian

motion, so we cannot base inference on them. Still, all other powers of the feasible PITs are

available for testing: individual and joint statistics based on m̂k are computed the same way,

but excluding k = 1.

After having discussed the asymptotic properties, we now turn to a simple �nite-sample ad-

justment procedure. The reason such a correction may be necessary is that the asymptotic

approximation tends to have reduced quality in samples of smaller size. Intuitively, the problem

with local standardization is that, although the resulting ẑt are standardized in the limit, they

may in fact still exhibit a non-negligible deviation from zero regarding the sample mean and a

non-unit sample variance in small samples. In order to ensure a zero mean and a unit variance,

we propose a simple �nite-sample correction based on additional, �global� standardization of the

�ltered time series ẑt. I.e. a full-sample adjustment step is applied onto the locally standardized

series before applying the PIT. Thus, rather than m̂k, use

m̃k =
1

T

T∑
t=1

p̃kt with p̃t = Φ (z̃t) ,

where the doubly standardized z̃t are simply obtained as

z̃t =
ẑt − ¯̂z

σ̃ẑ
with ¯̂z =

1

T

T∑
t=1

ẑt and σ̃ẑ =

√√√√ 1

T

T∑
t=1

(
ẑt − ¯̂z

)2
.

When doubly standardizing, however, a correction may be required for the asymptotic pivotality

of the test statistics; cf. Bai and Ng (2005) and Appendix C. This leads to the use of a modi�ed

test statistic. In particular, we now build

t̃k =
√
T
m̃k − 1

k+1

ψ̂k
(11)

and, for the portmanteau-type test, take analogously

T̃K = T

(
m̃1 −

1

2
, . . . , m̃K −

1

K + 1

)
Ψ̂
−1
(
m̃1 −

1

2
, . . . , m̃K −

1

K + 1

)′
(12)

with Ψ̂ being a long-run variance estimator replacing Ω̂ in (12) by Ψ̂ = VΞ̂V′, where Ξ̂ is

computed analogously to Ω̂ but based on (p̃t, . . . , p̃
k
t , z̃t, z̃

2
t − 1)′. The matrix V depends on the

distribution under test; see (10). We provide values of V for selected distributions in Appendix

G.
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Proposition 2 Under the Assumptions of Proposition 1, we have that

t̃k ⇒
W̃ (1)√
Qb,κ

and

T̃K ⇒ W̃
′
K(1)Q−1K,b,κW̃K(1).

Proof: See Appendix B.

The proposed double standardization is just a �nite-sample correction not depending on the

actual shape of µ(·) and σ(·), as local standardization already removes the time-variation in

mean and variance, and the global standardization in the second step only removes some of the

�left-overs� from the �rst step. The performance is investigated in the following Monte Carlo

simulation study.

4 Simulation evidence

In our Monte Carlo simulation study we consider the case of testing for a Gaussian distribution

due to the wide practical interest. We compare the newly proposed test statistics t̃k and T̃K to

the procedure of Bai and Ng (2005).6 Regarding the alternative non-Gaussian distributions, we

consider the log-normal, χ2(3)- and t(3)-distribution. The general form of the data generating

process [DGP] for the time series of interest xt is given by

xt = µt + σtzt

µt = µ1 + (µ2 − µ1) · 1(t ≥ bTBc)

σt = σ1 + (σ2 − σ1) · 1(t ≥ bTBc)

zt = φzt−1 + εt − θεt−1
εt ∼ iid(0, 1) .

Here, the mean and variance functions may exhibit structural shifts from µ1 = 0 to µ2 = 3 and

from σ1 = 1 to σ2 = 3.7 We consider four di�erent possibilities: DGP I: no shifts; DGP II: mean

shift; DGP III: variance shift and DGP IV: mean and variance shift. Regarding autocorrelation,

we specify, besides an independent white noise [IID] series, a strongly autocorrelated, but sta-

tionary and invertible ARMA(1,1) process [ARMA] with AR and MA parameter φ = 0.85 and

6To keep the paper self-contained, details on the test proposed by Bai and Ng (2005) can be found in Appendix
D, where we also formally discuss the impact of time-varying mean and volatility.

7This setup is characterized by adverse conditions for the nonparametric estimators as the breaks are abrupt
and take place in a single time period. However, such a setup is realistic as there is ample evidence for time-
variation in the mean and the variance of U.S. real output growth series. Most strikingly is the impact of the
Great Moderation which manifested itself as a signi�cant reduction in macroeconomic volatility. In several related
studies (see e.g. Campbell, 2007), this feature is even modelled as a one-time structural change, and our simulation
setup examines the e�ect of such changes; the nonparametric estimators and related tests perform even better
under more rosy conditions, as is con�rmed in a number of additional unreported simulation results with smooth
shifts which are available upon request.

14



θ = −0.45, respectively. Since all procedures are scale-invariant, there is no need to normalize

the long-run variance of zt to unity. However, the short-run variance is normalized to unity to

make the mean and variance functions comparable for the cases of a white noise and an ARMA

process. We use sample sizes of T = {250, 1000} matching typical situations in macroeconomics

(e.g. data with a quarterly frequency) and a large-sample setup. The breakpoint is set in the

middle of the sample such that TB = T/2.

We consider the �rst four individual raw moments (k = 1, 2, 3, 4) and the expanding set of

multiple moments {1, 2}, {1, 2, 3} and {1, 2, 3, 4} for investigating (i) the relevance of single

moments to detect speci�c alternatives, and (ii) possible advantages of using multiple moments

jointly.

Regarding the heteroskedasticity and autocorrelation robust covariance matrix estimator, the

�xed-bandwidth parameter b is speci�ed as b = 0.1, as preliminary simulation experiments

showed that the size of the tests is quite stable for di�erent values of b, but that power is higher

for smaller values of b; see also Kiefer and Vogelsang (2005). Results are presented for the Bartlett

kernel with linearly decaying weights κ(j/B). The nominal signi�cance level equals 5% and the

number of Monte Carlo replications is set to 2000 for each single experiment. In what concerns

critical values for the test statistics based on �xed-b inference, we provide them on the basis of

the limiting results with 1000 observations and 50000 replications for K = {2, 3, 4}. For the case
of testing a single moment restriction (via the t-statistic), we employ critical values reported in

Kiefer and Vogelsang (2005). For k ≥ 2, estimated cubic response curves cv(b) are reported in

Table A.2 in Appendix F together with an R2 measure for the precision of approximation; as

can be seen from the least squares estimation results, the �t of the estimated response curves is

very well and comparable to Kiefer and Vogelsang (2005).

When computing µ̂t and σ̂t, the employed nonparametric estimator is either the local constant

Nadaraya-Watson [LC] or the local linear [LL] estimator. Possible kernel [K(·)] choices are Uni-
form [Unif], Epanechnikov [Epa] and Gaussian [Gauss]. The chosen bandwidth h (or equivalently

window width τ = hT ) takes into account the fact that the asymptotic results require under-

smoothing (i.e. estimation bias negligible w.r.t. estimation standard deviation). For simplicity,

we down-scale the cross-validated bandwidth h by a scaling factor λ ∈ (0, 1). In a number of

preliminary experiments, we found λ = 3/4 to provide a good balance for size and power of the

test statistics. All computations are carried out in R on the basis of the np, gplm and sandwich

packages.

Results are reported in Tables 1�5. Size results are provided in Tables 1 and 2 for T = 250

and T = 1000, respectively. In these cases, the distribution of εt is Gaussian. Power results

are reported in Tables 3 (log-normal distribution), 4 (Chi-squared distribution) and 5 (Student-

t distribution). For power, we consider weighted averages of a Gaussian and a non-Gaussian

random variable in the form of εt = (1− c) · ε1t + c · ε2t, where ε1t is standard Gaussian and ε2t
is standard non-Gaussian. When c = 0, full weight is put on the Gaussian distribution, while

the case of c = 1 re�ects a fully non-Gaussian situation. For intermediate values of c between

zero and unity, the distribution of εt is still non-Gaussian and the null hypothesis is false, where

the power of normality tests should increase with c with more weight given to the non-Gaussian

distribution. We consider the values c = {0, 1/3, 3/8, 5/12, 1/2, 1} in our simulations.
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Table 1: Size, T = 250

DGP µ̂(·), σ̂(·) zt K(·) t̃1 t̃2 t̃3 t̃4 T̃12 T̃123 T̃1234 BN

I LC IID Unif 0.050 0.050 0.044 0.045 0.055 0.048 0.044 0.105
Epa 0.047 0.046 0.051 0.047 0.047 0.051 0.039
Gauss 0.059 0.048 0.042 0.040 0.052 0.051 0.047

ARMA Unif 0.045 0.041 0.048 0.047 0.046 0.043 0.043 0.137
Epa 0.048 0.048 0.049 0.050 0.053 0.051 0.046
Gauss 0.046 0.047 0.051 0.059 0.053 0.051 0.047

LL IID Unif 0.045 0.041 0.048 0.047 0.046 0.043 0.043
Epa 0.048 0.048 0.049 0.050 0.053 0.051 0.046
Gauss 0.046 0.047 0.051 0.064 0.053 0.051 0.047

ARMA Unif 0.047 0.049 0.054 0.051 0.057 0.062 0.061
Epa 0.042 0.062 0.066 0.058 0.061 0.063 0.059
Gauss 0.049 0.060 0.064 0.068 0.065 0.065 0.061

II LC IID Unif 0.049 0.060 0.063 0.066 0.056 0.042 0.044 0.774
Epa 0.046 0.048 0.058 0.068 0.056 0.054 0.052
Gauss 0.052 0.047 0.058 0.078 0.058 0.043 0.044

ARMA Unif 0.049 0.060 0.063 0.066 0.056 0.042 0.044 0.671
Epa 0.039 0.047 0.064 0.074 0.059 0.049 0.046
Gauss 0.046 0.067 0.088 0.090 0.085 0.078 0.075

LL IID Unif 0.049 0.085 0.121 0.140 0.122 0.103 0.092
Epa 0.044 0.092 0.134 0.142 0.130 0.117 0.098
Gauss 0.054 0.085 0.129 0.138 0.124 0.107 0.101

ARMA Unif 0.042 0.098 0.121 0.127 0.127 0.111 0.113
Epa 0.046 0.092 0.114 0.122 0.119 0.108 0.102
Gauss 0.044 0.088 0.114 0.121 0.106 0.103 0.126

III LC IID Unif 0.042 0.054 0.049 0.048 0.052 0.049 0.047 0.998
Epa 0.043 0.048 0.054 0.050 0.050 0.049 0.043
Gauss 0.051 0.054 0.051 0.049 0.058 0.056 0.053

ARMA Unif 0.046 0.078 0.110 0.118 0.098 0.098 0.112 0.992
Epa 0.043 0.094 0.120 0.122 0.105 0.103 0.111
Gauss 0.044 0.088 0.114 0.121 0.106 0.103 0.126

LL IID Unif 0.051 0.051 0.057 0.056 0.052 0.049 0.049
Epa 0.049 0.054 0.062 0.051 0.048 0.049 0.048
Gauss 0.040 0.046 0.046 0.049 0.047 0.044 0.044

ARMA Unif 0.044 0.081 0.103 0.104 0.094 0.095 0.107
Epa 0.053 0.069 0.092 0.096 0.086 0.081 0.094
Gauss 0.044 0.087 0.101 0.100 0.099 0.105 0.110

IV LC IID Unif 0.056 0.053 0.064 0.069 0.063 0.054 0.044 0.995
Epa 0.059 0.061 0.074 0.072 0.067 0.050 0.047
Gauss 0.066 0.070 0.076 0.073 0.074 0.060 0.057

ARMA Unif 0.036 0.067 0.077 0.086 0.074 0.070 0.069 0.992
Epa 0.045 0.062 0.074 0.079 0.077 0.073 0.073
Gauss 0.052 0.072 0.091 0.091 0.085 0.078 0.086

LL IID Unif 0.058 0.115 0.137 0.136 0.127 0.102 0.092
Epa 0.054 0.111 0.131 0.135 0.131 0.118 0.104
Gauss 0.056 0.115 0.137 0.143 0.131 0.115 0.100

ARMA Unif 0.041 0.097 0.121 0.131 0.116 0.098 0.101
Epa 0.044 0.097 0.128 0.131 0.113 0.105 0.108
Gauss 0.054 0.096 0.127 0.135 0.115 0.104 0.112

16



Table 2: Size, T = 1000

DGP µ̂(·), σ̂(·) zt K(·) t̃1 t̃2 t̃3 t̃4 T̃12 T̃123 T̃1234 BN

I LC IID Unif 0.053 0.052 0.044 0.044 0.054 0.048 0.042 0.093
Epa 0.054 0.050 0.048 0.051 0.054 0.046 0.040
Gauss 0.055 0.049 0.044 0.041 0.052 0.046 0.042

ARMA Unif 0.049 0.054 0.055 0.056 0.053 0.047 0.045 0.090
Epa 0.052 0.045 0.046 0.042 0.047 0.042 0.037
Gauss 0.049 0.050 0.058 0.051 0.052 0.049 0.038

LL IID Unif 0.044 0.042 0.044 0.049 0.044 0.048 0.046
Epa 0.050 0.052 0.042 0.044 0.049 0.046 0.047
Gauss 0.059 0.052 0.045 0.045 0.054 0.048 0.046

ARMA Unif 0.052 0.041 0.054 0.052 0.050 0.040 0.036
Epa 0.050 0.051 0.051 0.049 0.053 0.052 0.047
Gauss 0.054 0.050 0.051 0.051 0.052 0.053 0.047

II LC IID Unif 0.048 0.054 0.066 0.077 0.062 0.055 0.037 1.000
Epa 0.038 0.049 0.060 0.069 0.052 0.050 0.041
Gauss 0.044 0.040 0.051 0.052 0.048 0.048 0.043

ARMA Unif 0.051 0.053 0.058 0.068 0.065 0.056 0.055 0.989
Epa 0.051 0.052 0.060 0.070 0.061 0.051 0.052
Gauss 0.049 0.063 0.059 0.054 0.060 0.048 0.048

LL IID Unif 0.055 0.064 0.072 0.079 0.070 0.056 0.042
Epa 0.047 0.049 0.061 0.066 0.064 0.053 0.052
Gauss 0.049 0.060 0.065 0.075 0.066 0.054 0.042

ARMA Unif 0.040 0.048 0.067 0.076 0.052 0.060 0.056
Epa 0.046 0.051 0.059 0.066 0.054 0.053 0.054
Gauss 0.050 0.062 0.067 0.070 0.064 0.063 0.053

III LC IID Unif 0.044 0.048 0.049 0.050 0.046 0.040 0.035 1.000
Epa 0.041 0.052 0.053 0.054 0.045 0.048 0.041
Gauss 0.060 0.066 0.072 0.078 0.072 0.053 0.042

ARMA Unif 0.041 0.050 0.046 0.045 0.054 0.049 0.043 1.000
Epa 0.051 0.053 0.064 0.065 0.061 0.054 0.045
Gauss 0.041 0.057 0.070 0.073 0.058 0.054 0.050

LL IID Unif 0.052 0.051 0.043 0.042 0.048 0.047 0.044
Epa 0.058 0.052 0.041 0.041 0.052 0.046 0.039
Gauss 0.048 0.046 0.049 0.052 0.050 0.038 0.040

ARMA Unif 0.047 0.059 0.063 0.059 0.057 0.055 0.052
Epa 0.037 0.042 0.049 0.062 0.048 0.050 0.047
Gauss 0.041 0.043 0.049 0.049 0.047 0.047 0.038

IV LC IID Unif 0.052 0.064 0.069 0.066 0.057 0.050 0.040 1.000
Epa 0.052 0.069 0.081 0.078 0.062 0.049 0.043
Gauss 0.054 0.062 0.072 0.075 0.069 0.054 0.045

ARMA Unif 0.052 0.060 0.073 0.072 0.066 0.054 0.057 1.000
Epa 0.046 0.055 0.058 0.061 0.057 0.049 0.045
Gauss 0.047 0.053 0.063 0.071 0.062 0.056 0.053

LL IID Unif 0.049 0.053 0.061 0.069 0.049 0.045 0.036
Epa 0.046 0.059 0.062 0.071 0.060 0.051 0.040
Gauss 0.040 0.048 0.062 0.062 0.056 0.048 0.038

ARMA Unif 0.050 0.057 0.068 0.068 0.061 0.058 0.051
Epa 0.057 0.059 0.060 0.059 0.062 0.055 0.056
Gauss 0.055 0.070 0.066 0.067 0.063 0.056 0.054
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Table 3: Power against a log-normal distribution

DGP µ̂(·), σ̂(·) T c t̃1 t̃2 t̃3 t̃4 T̃12 T̃123 T̃1234 BN

I LC 250 1/3 0.138 0.124 0.106 0.087 0.093 0.077 0.067 0.116
3/8 0.203 0.184 0.144 0.110 0.117 0.107 0.103 0.147
5/12 0.348 0.304 0.229 0.178 0.210 0.180 0.160 0.246
1/2 0.677 0.610 0.480 0.356 0.488 0.413 0.388 0.566
1 0.971 0.928 0.876 0.762 0.976 1.000 1.000 0.965

1000 1/3 0.538 0.552 0.502 0.414 0.401 0.320 0.265 0.462
3/8 0.787 0.784 0.723 0.629 0.642 0.529 0.445 0.728
5/12 0.941 0.906 0.861 0.783 0.852 0.755 0.702 0.923
1/2 0.998 0.976 0.955 0.928 0.997 0.987 0.973 0.994
1 0.999 0.995 0.988 0.967 0.999 1.000 1.000 0.995

II LC 250 1/3 0.122 0.113 0.103 0.086 0.084 0.078 0.073
3/8 0.175 0.162 0.133 0.106 0.120 0.106 0.084
5/12 0.278 0.259 0.218 0.170 0.177 0.145 0.124
1/2 0.612 0.636 0.563 0.464 0.447 0.408 0.406
1 0.961 0.925 0.870 0.772 0.948 1.000 1.000

1000 1/3 0.507 0.543 0.499 0.419 0.386 0.286 0.229
3/8 0.748 0.760 0.708 0.624 0.633 0.499 0.412
5/12 0.904 0.902 0.862 0.792 0.824 0.702 0.624
1/2 0.994 0.982 0.964 0.938 0.990 0.980 0.977
1 0.998 0.990 0.978 0.957 0.997 1.000 1.000

III LC 250 1/3 0.129 0.177 0.180 0.169 0.128 0.094 0.084
3/8 0.201 0.239 0.241 0.206 0.157 0.120 0.126
5/12 0.297 0.359 0.343 0.292 0.234 0.192 0.178
1/2 0.564 0.527 0.448 0.347 0.382 0.330 0.298
1 0.963 0.941 0.901 0.811 0.924 1.000 1.000

1000 1/3 0.488 0.641 0.653 0.583 0.458 0.341 0.276
3/8 0.749 0.840 0.822 0.752 0.693 0.564 0.484
5/12 0.924 0.934 0.907 0.864 0.872 0.769 0.721
1/2 0.994 0.976 0.959 0.927 0.989 0.970 0.955
1 0.997 0.992 0.984 0.966 0.998 1.000 1.000

IV LC 250 1/3 0.224 0.232 0.202 0.163 0.167 0.126 0.103
3/8 0.319 0.345 0.294 0.216 0.234 0.176 0.144
5/12 0.438 0.451 0.381 0.288 0.324 0.255 0.222
1/2 0.709 0.690 0.588 0.455 0.527 0.459 0.435
1 0.952 0.926 0.877 0.785 0.928 1.000 0.999

1000 1/3 0.619 0.698 0.661 0.568 0.521 0.381 0.301
3/8 0.833 0.871 0.825 0.750 0.750 0.598 0.520
5/12 0.957 0.948 0.918 0.860 0.884 0.794 0.730
1/2 0.993 0.982 0.964 0.944 0.991 0.985 0.973
1 0.997 0.987 0.981 0.968 0.997 1.000 1.000
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Table 4: Power against a χ2(3)-distribution

DGP µ̂(·), σ̂(·) T c t̃1 t̃2 t̃3 t̃4 T̃12 T̃123 T̃1234 BN

I LC 250 1/3 0.100 0.083 0.060 0.051 0.085 0.077 0.062 0.148
3/8 0.176 0.135 0.098 0.075 0.117 0.095 0.082 0.198
5/12 0.294 0.239 0.172 0.110 0.194 0.146 0.129 0.289
1/2 0.682 0.587 0.405 0.224 0.518 0.403 0.328 0.659
1 1.000 0.999 0.956 0.654 1.000 1.000 1.000 1.000

1000 1/3 0.300 0.290 0.205 0.124 0.215 0.169 0.132 0.277
3/8 0.561 0.533 0.411 0.271 0.420 0.352 0.276 0.538
5/12 0.846 0.822 0.693 0.489 0.741 0.646 0.543 0.838
1/2 0.998 0.997 0.984 0.886 0.993 0.983 0.959 1.000
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

II LC 250 1/3 0.089 0.078 0.071 0.069 0.079 0.074 0.068
3/8 0.156 0.131 0.102 0.071 0.113 0.093 0.068
5/12 0.236 0.206 0.151 0.103 0.162 0.137 0.105
1/2 0.608 0.627 0.525 0.361 0.464 0.344 0.289
1 0.998 0.996 0.953 0.719 1.000 1.000 0.998

1000 1/3 0.251 0.242 0.202 0.141 0.193 0.159 0.121
3/8 0.524 0.527 0.410 0.271 0.417 0.337 0.255
5/12 0.791 0.796 0.675 0.479 0.674 0.585 0.475
1/2 0.996 1.000 0.991 0.939 0.990 0.971 0.943
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

III LC 250 1/3 0.091 0.126 0.129 0.117 0.101 0.079 0.070
3/8 0.146 0.195 0.195 0.166 0.142 0.099 0.077
5/12 0.261 0.329 0.295 0.235 0.221 0.142 0.115
1/2 0.561 0.489 0.355 0.213 0.416 0.314 0.256
1 1.000 0.996 0.941 0.672 0.999 0.999 0.996

1000 1/3 0.289 0.396 0.363 0.267 0.276 0.189 0.141
3/8 0.502 0.623 0.576 0.446 0.459 0.355 0.282
5/12 0.815 0.881 0.806 0.667 0.750 0.636 0.532
1/2 0.997 0.999 0.981 0.874 0.992 0.971 0.926
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

IV LC 250 1/3 0.165 0.180 0.149 0.117 0.123 0.087 0.078
3/8 0.243 0.251 0.206 0.147 0.182 0.134 0.110
5/12 0.376 0.373 0.298 0.203 0.284 0.202 0.161
1/2 0.699 0.681 0.532 0.342 0.572 0.455 0.371
1 0.996 0.995 0.964 0.749 0.999 0.999 0.999

1000 1/3 0.395 0.435 0.381 0.277 0.312 0.246 0.193
3/8 0.647 0.671 0.590 0.449 0.533 0.425 0.331
5/12 0.877 0.892 0.802 0.639 0.798 0.690 0.592
1/2 0.999 0.997 0.989 0.943 0.997 0.985 0.959
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5: Power against a t(3)-distribution

DGP µ̂(·), σ̂(·) T c t̃1 t̃2 t̃3 t̃4 T̃12 T̃123 T̃1234 BN

I LC 250 1/3 0.050 0.057 0.051 0.048 0.056 0.046 0.040 0.073
3/8 0.051 0.044 0.053 0.063 0.058 0.049 0.041 0.058
5/12 0.053 0.063 0.080 0.083 0.063 0.060 0.046 0.043
1/2 0.055 0.077 0.121 0.162 0.103 0.101 0.086 0.049
1 0.064 0.451 0.739 0.775 0.719 0.695 0.775 0.201

1000 1/3 0.040 0.055 0.078 0.103 0.076 0.052 0.048 0.038
3/8 0.050 0.086 0.151 0.191 0.130 0.106 0.090 0.052
5/12 0.048 0.148 0.261 0.334 0.222 0.166 0.126 0.096
1/2 0.051 0.338 0.600 0.674 0.528 0.392 0.333 0.222
1 0.066 0.917 0.935 0.928 0.932 0.955 1.000 0.391

II LC 250 1/3 0.041 0.042 0.049 0.054 0.056 0.050 0.038
3/8 0.041 0.049 0.052 0.058 0.053 0.045 0.038
5/12 0.040 0.051 0.051 0.068 0.063 0.065 0.051
1/2 0.046 0.140 0.255 0.316 0.223 0.178 0.143
1 0.061 0.524 0.776 0.793 0.750 0.741 0.817

1000 1/3 0.040 0.068 0.094 0.118 0.084 0.064 0.053
3/8 0.051 0.093 0.156 0.189 0.136 0.102 0.087
5/12 0.049 0.139 0.259 0.318 0.215 0.167 0.128
1/2 0.051 0.466 0.706 0.768 0.661 0.534 0.433
1 0.076 0.934 0.946 0.944 0.949 0.969 1.000

III LC 250 1/3 0.048 0.053 0.088 0.106 0.073 0.056 0.056
3/8 0.055 0.064 0.104 0.129 0.089 0.078 0.058
5/12 0.048 0.087 0.148 0.177 0.127 0.101 0.084
1/2 0.044 0.070 0.119 0.150 0.112 0.092 0.083
1 0.041 0.326 0.640 0.710 0.664 0.590 0.629

1000 1/3 0.056 0.122 0.208 0.250 0.182 0.119 0.095
3/8 0.057 0.146 0.275 0.338 0.250 0.181 0.139
5/12 0.043 0.230 0.414 0.490 0.339 0.247 0.191
1/2 0.039 0.303 0.569 0.643 0.511 0.371 0.313
1 0.042 0.911 0.938 0.933 0.958 0.953 0.998

IV LC 250 1/3 0.049 0.075 0.099 0.102 0.075 0.066 0.053
3/8 0.050 0.097 0.123 0.138 0.102 0.077 0.061
5/12 0.051 0.116 0.164 0.161 0.125 0.102 0.090
1/2 0.049 0.145 0.227 0.261 0.179 0.125 0.121
1 0.053 0.507 0.763 0.786 0.724 0.678 0.731

1000 1/3 0.056 0.148 0.205 0.231 0.160 0.118 0.088
3/8 0.052 0.184 0.300 0.342 0.234 0.159 0.115
5/12 0.046 0.273 0.428 0.498 0.345 0.239 0.178
1/2 0.044 0.471 0.716 0.758 0.624 0.482 0.396
1 0.056 0.934 0.952 0.950 0.950 0.958 1.000
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For the size results in Tables 1 and 2, we see that the Bai and Ng (2005) [BN] test is generally

somewhat oversized for DGP I (excluding any shifts), while the raw moment-based tests are

closer to the nominal signi�cance level of 5%. In some cases we observe that they are marginally

over- or undersized, while, for the larger sample size of T = 1000 (including short-run dynamics),

most of them are quite close to the desired frequency of rejections. Overall, the employed �xed-

b approach accounts fairly well for the quite strong autocorrelation in the ARMA DGP. The

particular choice of the kernel function for the nonparametric estimator does not appear to

play an important role. Clearly, the BN test is massively oversized when there are mean and/or

volatility shifts (DGPs II, III and IV). Even for T = 250, we �nd rejection rates between 0.671 and

0.998. For T = 1000, these rejection rates approach unity. On the contrary, the newly proposed

statistics properly account for such shifts and deliver relatively accurate empirical sizes. Some

minor upward size distortions are observed for the smaller sample size and tests using the third

and fourth moment (including combination tests). The local constant estimator is performing

better than the local linear estimator in smaller samples. The distortions almost vanish for the

larger sample size, re�ecting the asymptotic validity of our nonparametric estimation approach.

For power simulations, we consider the IID case only to save space. Results for the case of ARMA

innovations are quite similar and therefore not reported. Moreover, given that the kernel choice

does not matter much, we focus on the commonly used Gaussian kernel in the following. Also, as

the results for the local linear and the local constant estimator are quite similar, we only report

power for the latter one. We distinguish DGP I (no shifts) from the remaining ones exhibiting

mean and/or variance shifts. The BN test performs reasonably only in the absence of mean and

variance shifts, as it was not intended to account for such structural change. For DGP I, we are

able to compare the power of the BN test to the newly proposed ones in a meaningful way, of

course while keeping in mind that the BN test may be somewhat over-sized under the null (see

Tables 1 and 2). Power results are reported in the top panel of Tables 3, 4 and 5.

As expected, power increases as more weight is given to the non-Gaussian distribution c and also

as T increases. For a given value of c and T , it is interesting to compare the empirical power of the

t̃- and T̃ -tests to the BN test. In DGP I, there are no shifts present, but the mean and variance

function are estimated nonparametrically anyway for the new tests. In twenty-seven out of

thirty cases (three non-Gaussian distributions, two sample sizes and �ve values of c each), either

t̃1 (for log-normal and χ2-distribution) or t̃4 (for Student-t-distribution) outperforms the BN

test even under stationarity.8 This �nding is remarkable since the mean and volatility functions

are constant over time and their nonparametric estimation is unnecessary. Moreover, it re�ects

the bene�ts of using raw moments and a �xed-b approach even in the absence of time-varying

location and scale. A combination of moments does not generally pay o� in terms of power.

Therefore, we recommend the use of the test statistics t̃1 (for log-normal and χ2-distribution)

and t̃4 (for Student-t-distribution).

For the remaining DGPs II, III and IV, a direct comparison of the BN test to the new proposed

test statistics is not meaningful due to the massive over-rejections of the BN test under the null.

These additional experiments allow us to compare the power across di�erent scenarios regarding

8We can see that the �rst moment cannot detect excess kurtosis given symmetry as in the t(3)-distribution,
but the second, third and fourth moment tests are successful and all deliver higher power than the BN test.
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the breaks in comparison to the benchmark case of no shifts. The results reveal that power is

somewhat lowered in the presence of mean shifts, but a bit higher when pure volatility shifts

are present. In case of a combination of both e�ects being present, power is almost similar to

the benchmark case in many cases. Overall, the results underline the robustness and empirical

usefulness of the newly suggested test statistics.

5 Testing normality of U.S. real output growth rates

When looking at the empirical distribution of real output growth series, it might seem at a

�rst sight that Gaussianity is a poor assumption, particularly in the tails of the distribution.

Sometimes, large economic movements due to booms and recessions are seen to occur more

frequently than the normal distribution would predict, while the center of the distribution is

typically well-captured by a Gaussian distribution. This observation motivates researchers to

provide explanations for the non-Gaussian tail behavior of real output growth, coined as macroe-

conomic tail risk (Acemoglu et al., 2017). Although most studies recognize the importance of

heteroskedasticity (especially in the context of the Great Moderation and the Great Recession),

the key feature of time-varying volatility is not seldom overlooked in practice; see e.g. Fagiolo

et al. (2008), Ascari et al. (2015), Acemoglu et al. (2017) and Kiss and Österholm (2020). While

e.g. standard GARCH and related models account for conditionally time-varying volatility, the

implied unconditional variance is still constant in such models. Inference regarding Gaussianity

as in the aforementioned studies may therefore be unreliable.

We reconsider the question whether U.S. real output growth is non-normally distributed. In

particular, we account for time-varying mean and variance by estimating these nonparametrically.

Indeed, we �nd that real output growth is rather marginally normally distributed and non-

normality as a popular stylized notion cannot be maintained after accounting for time-varying

�rst and second moments. As an important implication, this �nding challenges the empirical

relevance of macroeconomic tail risks which may have been overstated for the U.S..

Another implication of practical relevance of normality refers to the measurement of real output

growth. While real GDP growth is the obvious candidate to proxy real output growth, similar

measures exist: e.g. real gross domestic income [GDI] growth quanti�es (at least in theory) the

same variable. In practice, these measures rarely take the same value, and their spread is called

�statistical discrepancy�. Both variables are measures for real aggregate production, but they are

constructed in a quite distinct manner and rely on di�erent sources; see (Landefeld et al., 2008).

In light of the Great Recession, there is a renewed interest in the macroeconomic literature to

obtain an improved output measure by averaging these real GDP and real GDI growth in an

optimal way. Typically, this is done in a state-space framework due the latency of the �true

GDP�; see e.g. Aruoba et al. (2016). In this Kalman �lter-based framework, normality is a key

assumption; see e.g. Jacobs and Van Norden (2011) and more recently Almuzara et al. (2019)

and Jacobs et al. (2020).9

9In fact, our testing approach is related to the one in Almuzara et al. (2019) in the sense that both focus on
�ltered series; however, Almuzara et al. work in a parametric time-invariant unobserved components model and
derive analytic expressions for the autocovariances, while we explicitly allow for time-varying location and scale.

22



US real GDI growth

Time

1960 1980 2000 2020

−
5

0
5

10
15

Locally standardized series

Time

x.
m

at
[, 

1]

1960 1980 2000 2020

−
3

−
2

−
1

0
1

2

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●●●
●

●

●●

●

●
●●

●

●

●
●

●●

●●
●

●●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●

●

●●
●

●●

●
●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●●

●●

●

●
●

●

●

●

●
●●

●

−3 −2 −1 0 1 2 3

−
5

0
5

10
15

Normal Q−Q Plot

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Normal Q−Q Plot

S
am

pl
e 

Q
ua

nt
ile

s

Figure 2: U.S. real GDI growth rate (1947Q2-2019Q4). Top left: time series plot of the raw time
series xt; top right: nonparametric locally standardized time series (ẑt); bottom left: normal
QQ-plot for xt and bottom right: normal QQ-plot for ẑt.

We apply the newly proposed tests in comparison to the BN test to real GDP growth and

real GDI growth. The data is sampled quarterly from 1947Q2 to 2019Q4 yielding T = 291

observations and retrieved from the Federal Reserve Bank of Philadelphia.10 This sample size

matches our simulation setup. Accordingly, we apply the �nite-sample correction procedure as

outlined in Section 3.2.

In Figures 1 (c.f. the Introduction) and 2, we show in 2×2 plots the two time series under test

xt = 400∆ logGDPt and xt = 400∆ logGDIt (upper left), the locally standardized time series

ẑGDPt and ẑGDIt (upper right) together with their respective quantile-quantile (QQ) plots (lower

left for xt and lower right for ẑt). Indeed, the QQ-plots suggest the presence of deviations from

normality in the lower and upper tail for the raw series; this is however not the case for the

standardized series.

To assess the quality of the local standardization, we provide empirical variance pro�les of xt and

ẑt for both time series in Figure 3. The sample variance pro�le (see e.g. Cavaliere and Taylor,

2007) for xt is computed as

ηt =

∑t
j=1(xt − µ̂t)2∑T
j=1(xt − µ̂t)2

10See https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/gdpplus
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Figure 3: U.S. real GDP (top) and GDI (bottom) growth rate (1947Q2-2019Q4). Left: Vari-
ance pro�le for the raw time series xt; right: Variance pro�le for the nonparametric locally
standardized ẑt.

and relates the quadratic variation up to observation t to the total variation. By construction, it

takes values between 0 and 1 in relative time (which also ranges between 0 and 1) and is compared

to a 45◦-line. Time-variation in the variance would result in deviations from the 45◦-line. Clearly,

both growth rates exhibit heteroskedasticity, while it appears that U.S. real GDP growth has

some stronger volatility (reduction) in the mid-80s in comparison to U.S. real GDI growth. Their

locally standardized counterparts (with sample variance pro�le computed as
∑t

j=1 ẑ
2
t /
∑T

j=1 ẑ
2
t )

do not share this property. This indicates that the nonparametric estimator successfully captures

the time-varying volatility as their variance pro�les are tracking the 45◦-line very closely.11

Formal test results on the null of normality are provided in Table 6. First, we report the �rst four

estimated raw moments of the PIT. Under the null (of normality), they are equal to 1/2, 1/3, 1/4

and 1/5, respectively. As can be seen, the point estimates are quite close to the theoretical null

values. This holds for both measures. None of the individual raw moment-based test statistics

(t̃1, t̃2, t̃3, t̃4) and also none of the joint versions (T̃12, T̃123, T̃1234) lead to a rejection of normality

for GDP and GDI growth rates at the �ve percent level.12 This result clearly points towards

11The conclusions from this descriptive analysis are further supported by inference based on the Deng and Perron
(2008) test. The CUSUM of squares test rejects the null of constant variances against a one-time structural change
in the raw series, while it does not for the locally standardized series. This �nding holds for both, real GDP and
GDI growth rates.

12We employ the Bartlett kernel with b = 0.1 and the nonparametric local linear estimator with λ = 3/4.
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Table 6: Normality testing results for U.S. real GDP and GDI growth rates (1947Q2-2019Q4).
m̃i denotes the estimated i-th raw moment and t̃i is the t-statistic for testing the individual
i-th moment restriction (i = 1, 2, 3, 4) based on the nonparametric local standardization. The
corresponding joint statistics T̃1...j test the �rst j moment restrictions (j = 2, 3, 4); BN labels the
Bai and Ng (2005) statistic. Critical values for the nominal signi�cance level of 5% are provided
in parentheses below the statistics.

GDP GDI

m̃1 m̃2 m̃3 m̃4 m̃1 m̃2 m̃3 m̃4

0.501 0.332 0.247 0.196 0.497 0.329 0.247 0.199

t̃1 t̃2 t̃3 t̃4 t̃1 t̃2 t̃3 t̃4
0.262 -0.368 -0.910 -1.263 -0.850 -1.600 -1.299 -0.537

(2.261) (2.261) (2.261) (2.261) (2.261) (2.261) (2.261) (2.261)

T̃12 T̃123 T̃1234 BN T̃12 T̃123 T̃1234 BN
1.775 1.770 4.140 8.972 2.961 5.880 8.751 9.892

(8.872) (13.200) (18.258) (5.991) (8.872) (13.200) (18.258) (5.991)

marginal normality of the two time series under test.

On the contrary, the Bai and Ng (2005) test rejects the null of normality. This result, in combina-

tion with the obvious time-heteroskedasticity and the non-rejections of our newly proposed tests,

is plausible and can be explained by our simulation evidence and also our theoretical �ndings.

To provide further insight, we repeat the tests for a sub-sample excluding the Great Moderation

period, i.e. we examine the sample starting in 1984Q3 instead. Thereby, we exclude the downward

volatility break in the mid-80s. As demonstrated in Figure A.3 (see Appendix E), the empirical

variance pro�les suggest only very little deviations from the 45◦-line and con�rm the absence of

large volatility changes in this sub-sample for both time series. This �nding is in line with those

obtained in Gadea et al. (2018).13 This is also visible from the plots in Figures A.1 and A.2 (see

Appendix E) which display the time series, the locally standardized version and their QQ-plots.

We re-run tests for normality and �nd none of the employed tests (t̃k, T̃K and BN) to reject the

null of normality; see Table A.1 (located in Appendix E as well). This con�rms the previous

�nding that neglected time-variation presumably led to a rejection of normality by the BN test,

while the newly proposed tests are robust. For this sub-sample, our results are in line with those

provided in Almuzara et al. (2019). But, due to the strong e�ects of heteroskedasticity, the test

decisions di�er for the full sample. While we �nd support for the normality hypothesis over the

whole post-war period, normality is rejected in Almuzara et al. (2019) in the full sample.

As a concluding robustness check, we follow a popular empirical modelling strategy (cf. e.g.

Fagiolo et al., 2008; Acemoglu et al., 2017) and �t an ARMA-GARCH-type model to the U.S. real

13Similar to our previous analysis, we test for structural changes in the variance in the subsample as well.
When excluding the Great Moderation, no such structural break is found in the raw series further supporting
our interpretation that the structural change due to the Great Moderation may be the main driver behind the
rejection of the Bai and Ng (2005) test.
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output growth series, and test the standardized residuals for normality. In particular, we �t an

autoregressive model including an intercept (for which the Schwarz information criterion indicates

a �rst-order lag structure) with GARCH(1,1) disturbances, and estimate the model by quasi

maximum likelihood. The resulting standardized output series are then tested for normality

by applying the Bai and Ng (2005) for illustrative purposes. This test is not designed for use

with such residuals; however, its outcomes can still be quite informative. For GDP, we still �nd

evidence of non-normality (BN= 6.917); regarding GDI, there is some evidence against normality

as well, albeit weaker than for GDP (BN= 4.731).14

The estimated persistence of the GARCH component (as quanti�ed by the sum of the ARCH

and the GARCH parameters) equals 1.003 (GDP) and 0.957 (GDI). Given the low frequency of

the quarterly recorded observations, such strong persistence is rather indicative of the typical

IGARCH e�ect occurring when deterministic changes in the unconditional variance are ignored;

see Lamoureux and Lastrapes (1990), Mikosch and St ric  (2004) and Hillebrand (2005) inter

alia. Therefore, the �tted AR-GARCH �lters presumably do not remove the unconditional

variation of the mean and variance satisfactorily � thus providing a plausible explanation of the

observed residual non-normality.

This is further substantiated by simple trend tests applied to detect remaining time-variation.15

We compare three sets of residuals. First, we examine the AR-GARCH standardized residu-

als. Second, we extend the standard GARCH component and �t a time-varying (TV-)GARCH

(Amado and Teräsvirta, 2013) variance equation to account for potential (smoothly) changing

unconditional variances. Third, we examine the locally standardized series ẑt. The t-statistics

(with HAC standard errors) for the absence of linear trends are used as a diagnostic tool to check

whether some time-variation is remaining. Overall, the results suggest that the time-variation

in the mean is not well captured by the AR-GARCH (with a t-statistic of -2.02 for GDP and

-1.82 for GDI) and AR-TV-GARCH (GDP: -2.44; GDI: -1.79) speci�cations, while nonparamet-

ric standardization is essentially more successful in this respect (GDP: 0.07; GDI: 0.24). To

check for remaining variance variation, we detrend and square the three sets of residuals, and

examine the squares by means of a subsequent trend test. The corresponding t-statistics for

AR-TV-GARCH models (GDP: -0.94; GDI: -1.06) are lower in absolute value than those for

standard AR-GARCH models (GDP: -1.62; GDI: -1.85) indicating that the former pick up more

time-variation in variance, but still less than for the nonparametrically standardized series (GDP:

-0.24; GDI: -0.02).

Summing up, evidence on non-normality of U.S. real output growth vanishes after accounting

for unconditional time-variation in mean and variance.
14When applying our PIT-based tests to these residuals (without local standardization), see (4) and (6), we

come to a similar conclusion.
15As shown in Gadea and Gonzalo (2020) such a least squares-based t-test is consistent and powerful for a wide

range of possible kinds of trends.

26



6 Concluding remarks

This work considers the long-standing issue of testing distributional assumptions for dependent

time series processes with structural instabilities in view. A case of leading interest is the one

of normality of U.S. output growth rates, whose time-varying mean and volatility are well-

documented.

We cope with time-varying unconditional means and variances by �exible nonparametric local

standardization. These types of structural shifts are omnipresent in many economic and �nancial

time series such as economic growth and stock market volatility. In a �rst step, the time series

under consideration is locally standardized. Second, the applied probability integral transfor-

mation produces a uniformly distributed random process under the null hypothesis of a certain

distribution to be tested for. The advantage of applying the PIT stems from the fact that a wide

range of distributions (besides the normal) can be taken as the null distribution. The newly

proposed tests are based on simple raw moment conditions which are very simple to obtain for

the uniform distribution. In addition, they can be estimated precisely even in small samples and

the usage of PITs leads to tests which are quite sensitive towards deviations from theoretical

values under the null restrictions.

The framework we provide makes use of the so-called �xed-bandwidth approach for the estima-

tion of long-run covariance matrices of di�erent raw moments in order to account for the serial

dependence in the time series. Importantly, when accounting for the estimation e�ect arising

from the nonparametric estimation of the �rst and second moment of the raw series, it turns

out that the estimation error is automatically taken into account in the �xed-b framework in the

limit. This is due to the involved �xed-bandwidth asymptotics in connection to the asymptotic

behaviour of partial sums on the PITs. Therefore, no explicit asymptotic correction for the

estimation error is needed. When turning to �nite-samples, we furthermore advocate a simple

adjustment consisting of a double standardization of the time series prior to computing the PITs

and adjusting the long-run variance estimator accordingly. As shown, the limiting behaviour is

una�ected by this correction.

We demonstrate in a simulation study that the suggested tests perform well in �nite samples.

The proposed tests outperform a benchmark test in the case of testing for normality against

several alternative distributions. While the choice of the kernel for the nonparametric estimator

of time-varying means and variances and the estimator itself only plays a subordinate role, the

window width needs to be chosen in a way that the theoretical requirement of undersmoothing is

re�ected in practice. To this end, we advise in favor of an easy-to-use downscaled cross-validation

rule and demonstrate its e�ectiveness in �nite samples.

In our analysis of U.S. output growth rates, we demonstrate the merits and limitations of the

robust raw moment-based statistics. The evidence provided here does not support the claim

that U.S. aggregated output growth rates follow a non-normal distribution. In particular, we

�nd U.S. output growth rates to be normally distributed after accounting for time-varying means

and variances in a nonparametric way. Ignoring such instabilities (e.g. the Great Moderation) or

improperly accounting for them, may lead to the biased conclusion that U.S. output growth rates

are in fact non-normally distributed. The property of normality has important consequences for
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the understanding of �macroeconomic tail risks� whose concept builds on non-normal sectoral

shocks leading to non-normal aggregate output growth as in e.g. Acemoglu et al. (2017). More-

over, our �nding has direct implications for the related literature on modelling and predicting

�Growth-at-Risk�; see e.g. Adrian et al. (2019) and Brownlees and Souza (2021).
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Appendix

To simplify notation in the proofs, we let w.l.o.g. τµ = τσ = τ . In terms of notation, C stands for

a generic constant whose value may change from one occurrence to another and the probabilistic

Landau symbols Op and op have their usual meaning.

A Preliminary results

Lemma A.1 Let g, h be two functions such that E (g (zt)) = E (h (zt)) = 0 and g (x) = h (x) =

O
(
x2
)
as x→ ±∞. Under the Assumptions of Lemma 1, we have that

1. supt=1,...,T

∣∣∣ 1
2τ+1

∑t+τ
j=t−τ wjg (zj)

∣∣∣ = Op
(
T−δ

)
for some 0 < δ < 1/8 and any bounded

sequence wj;

2. supt=1,...,T |µ̂t − µt| = Op
(
T−δ

)
and supt=1,...,T |σ̂t − σt| = Op

(
T−δ

)
for some 0 < δ < 1/8;

3. 1√
T

∑[sT ]
t=1 g (zt)

(
1

2τ+1

∑t+τ
j=t−τ h (zj)

)
= op (1);

4. 1√
T

∑[sT ]
t=1 g (zt)

(
σt
σ̂t
− 1
)

= op (1);

5. 1√
T

∑[sT ]
t=1 (ẑt − zt)2 = op (1);

6. 1√
T

∑[sT ]
t=1

(
ϕ (zt) (ẑt − zt) + ϕ′ (ξt) (ẑt − zt)2

)2
= op (1), where ξt lies between zt and ẑt for

any 1 ≤ t ≤ T ;

7. 1√
T

∑[sT ]
t=1 p

k−1
t ϕ (zt)

(
1

2τ+1

∑t+τ
j=t−τ

σj
σ̂t
zj

)
= E

(
pk−1t ϕ (zt)

)
1√
T

∑[sT ]
t=1 zt + op (1);

8. 1√
T

∑[sT ]
t=1 p

k−1
t ϕ (zt) zt

(
σt
σ̂t
− 1
)

= −1
2 E
(
pk−1t ztϕ (zt)

)
1√
T

∑[sT ]
t=1

(
z2t − 1

)
+ op (1),

where the op (1) terms are uniform in s ∈ [0, 1].

B Proofs

Proof of Lemma A.1

Lemma A.1 contains eight individual results and they are proven item by item in the following.

Proof of item 1

We �rst show that 1√
τ

∑t+τ
j=t−τ wjg (zj) is uniformly L4-bounded in t = 1, . . . , T . We have

∥∥∥∥∥∥ 1√
τ

t+τ∑
j=t−τ

wjg (zj)

∥∥∥∥∥∥
4

4

= E

 1√
τ

t+τ∑
j=t−τ

wjg (zj)

4
=

1

τ2

t+τ∑
j1=t−τ

t+τ∑
j2=t−τ

t+τ∑
j3=t−τ

t+τ∑
j4=t−τ

wj1wj2wj3wj4 E (g (zj1) g (zj2) g (zj3) g (zj4)) .
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Now, an upper bound is given by∥∥∥∥∥∥ 1√
τ

t+τ∑
j=t−τ

wjg (zj)

∥∥∥∥∥∥
4

4

≤ C

τ2

t+τ∑
j1=t−τ

t+τ∑
j2=t−τ

t+τ∑
j3=t−τ

t+τ∑
j4=t−τ

E
(
z2j1z

2
j2z

2
j3z

2
j4

)
<∞

where the �niteness of this upper bound follows with standard arguments from the absolute

summability of the 8th-order cumulants of zt.

Then, the maximum over T elements of a positive, uniformly L4-bounded sequence is known to

be Op
(
T 1/4

)
, so

sup
t=1,...,T

∣∣∣∣∣∣ 1

2τ + 1

t+τ∑
j=t−τ

wjg (zj)

∣∣∣∣∣∣ = Op

(
4
√
T√
τ

)
,

from which the desired result follows given the rate restrictions on τ .

Proof of item 2

Let us examine the properties of µ̂t �rst. We have that

µ̂t − µt =
1

2τ + 1

t+τ∑
j=t−τ

(xj − µt) =
1

2τ + 1

t+τ∑
j=t−τ

(µj − µt) +
1

2τ + 1

t+τ∑
j=t−τ

σjzj .

Thanks to the Lipschitz property of µ (·), the �rst summand on the r.h.s. is Op
(
τ
T

)
uniformly

in t = 1, . . . , T . Item 1 can be used to derive the uniform behavior of the second summand,

such that supt=1,...,T |µ̂t − µt| = Op
(
T−δ

)
for some 0 < δ < 1/8 as required. The local variance

estimator is given by

σ̂2t =
1

2τ + 1

t+τ∑
j=t−τ

(xj − µ̂j)2 =
1

2τ + 1

t+τ∑
j=t−τ

(σjzj − (µ̂j − µj))2

so

σ̂2t − σ2t =
1

2τ + 1

t+τ∑
j=t−τ

(
σ2j z

2
j − σ2t

)
− 2

2τ + 1

t+τ∑
j=t−τ

σjzj (µ̂j − µj) +
1

2τ + 1

t+τ∑
j=t−τ

(µ̂j − µj)2 .

Now,

sup
t=1,...,T

∣∣∣∣∣∣ 1

2τ + 1

t+τ∑
j=t−τ

σjzj (µ̂j − µj)

∣∣∣∣∣∣ ≤ sup
t=1,...,T

|µ̂j − µj | sup
t=1,...,T

1

2τ + 1

t+τ∑
j=t−τ

|σjzj |

where

0 ≤ sup
t=1,...,T

1

2τ + 1

t+τ∑
j=t−τ

|σjzj | ≤ E (|zt|) sup
t=1,...,T

σt+ sup
t=1,...,T

1

2τ + 1

t+τ∑
j=t−τ

σj (|zj | − E (|zj |)) = Op (1)
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with the same arguments used in the proof of item 1. Furthermore, for all 1 ≤ t ≤ T ,

1

2τ + 1

t+τ∑
j=t−τ

(µ̂j − µj)2 ≤

(
sup

t=1,...,T
|µ̂j − µj |

)2

= op (1)

so, after using item 1 again to conclude that supt=1,...,T
1

2τ+1

∑t+τ
j=t−τ σ

2
j

(
z2j − 1

)
= Op

(
T−δ

)
for

some 0 < δ < 1/8, we have that

1

2τ + 1

t+τ∑
j=t−τ

(
σ2j z

2
j − σ2t

)
=

1

2τ + 1

t+τ∑
j=t−τ

σ2j
(
z2j − 1

)
+

1

2τ + 1

t+τ∑
j=t−τ

(
σ2j − σ2t

)
= Op

(
T−δ

)
+O

( τ
T

)
uniformly in t = 1, . . . , T and thus supt=1,...,T

∣∣σ̂2t − σt∣∣ = Op
(
T−δ

)
as well.

Note that uniform consistency of σ̂t implies, thanks to the properties of σt, supt=1,...,T σ̂t = Op (1)

and supt=1,...,T σ̂
−1
t = Op (1).

Proof of item 3

Split the sample in B disjoint blocks of length M and assume that T = MB and [sT ] = M [sB]

for the sake of the exposition. Then

1√
T

[sT ]∑
t=1

g (zt)

 1

2τ + 1

t+τ∑
j=t−τ

h (zj)

 =

=
1√
T

[sB]∑
b=1

M∑
m=1

g
(
zM(b−1)+m

) 1

2τ + 1

 M(b−1)+m+τ∑
j=M(b−1)+m−τ

h (zj)−
M(b−1)+τ∑
j=M(b−1)−τ

h (zj)


+

1√
T

[sB]∑
b=1

M∑
m=1

g
(
zM(b−1)+m

) 1

2τ + 1

M(b−1)+τ∑
j=M(b−1)−τ

h (zj)

 .

The �rst summand on the r.h.s. is easily shown to be Op
(√

TM
τ supt∈1,...,T |g (zt)|

)
. Now, given

the �niteness of moments of any order of zt and thus of z2t and g (zt), we have supt |g (zt)| =

Op (T γ) = supt=1,...,T z
2
t for any γ > 0, such that the �rst term on the r.h.s. is Op

(
T 1+γ

τ
√
B

)
. For

the second, note that∣∣∣∣∣∣ 1√
T

[sB]∑
b=1

M∑
m=1

g
(
zM(b−1)+m

) 1

2τ + 1

M(b−1)+τ∑
j=M(b−1)−τ

h (zj)

∣∣∣∣∣∣
≤ 1√

T

B∑
b=1

∣∣∣∣∣∣
 1

2τ + 1

M(b−1)+τ∑
j=M(b−1)−τ

h (zj)

( M∑
m=1

g
(
zM(b−1)+m

))∣∣∣∣∣∣ .
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The expectation of the r.h.s. is given by

B∑
b=1

E

∣∣∣∣∣∣
 1

2τ + 1

M(b−1)+τ∑
j=M(b−1)−τ

h (zj)

( M∑
m=1

g
(
zM(b−1)+m

))∣∣∣∣∣∣


≤

√√√√√E

 1

2τ + 1

M(b−1)+τ∑
j=M(b−1)−τ

h (zj)

2E

( M∑
m=1

g
(
zM(b−1)+m

))2


where

E

 1

2τ + 1

M(b−1)+τ∑
j=M(b−1)−τ

h (zj)

2 = O

(
1

τ

)
and

E

( M∑
m=1

g
(
zM(b−1)+m

))2
 = O (M) .

Hence

1√
T

[sB]∑
b=1

M∑
m=1

g
(
zM(b−1)+m

) 1

2τ + 1

M(b−1)+τ∑
j=M(b−1)−τ

h (zj)

 = Op

(
B
√
M√
τT

)
= Op

(√
B

τ

)

and

1√
T

[sT ]∑
t=1

g (zt)

 1

2τ + 1

t+τ∑
j=t−τ

h (zj)

 = Op

(
max

{√
M

τ
T

1/2+γ ;

√
B

τ

})
;

since γ may be chosen arbitrarily small, picking B = T η such that 2/3 < η < ν1 leads to the

desired result.

Proof of item 4

Use a Taylor series expansion for x−1/2 about x0 = 1 with rest term in di�erential form to obtain

1√
T

[sT ]∑
t=1

g (zt)

(
σt
σ̂t
− 1

)
= −1

2

1√
T

[sT ]∑
t=1

g (zt)

(
σ̂2t
σ2t
− 1

)
+

3

8

1√
T

[sT ]∑
t=1

g (zt) ξ
−5/2
t

(
σ̂2t
σ2t
− 1

)2

= A1T +A2T
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with ξt between
σ̂2
t

σ2
t
and unity for all t = 1, . . . , T . Now, for A1T , write

1√
T

[sT ]∑
t=1

g (zt)

(
σ̂2t
σ2t
− 1

)
=

1√
T

[sT ]∑
t=1

g (zt)
1

2τ + 1

t+τ∑
j=t−τ

(
1

σ2t
(σjzj + (µj − µ̂j))2 − 1

)

=
1√
T

[sT ]∑
t=1

g (zt)

2τ + 1

t+τ∑
j=t−τ

σ2j z
2
j − σ2t
σ2t

+
1√
T

[sT ]∑
t=1

g (zt)

2τ + 1

t+τ∑
j=t−τ

(µ̂j − µj)2

σ2t

+
2√
T

[sT ]∑
t=1

g (zt)
1

σ2t

1

2τ + 1

t+τ∑
j=t−τ

σjzj (µj − µ̂j)

= B1T +B2T +B3T .

For B1T , we have

1√
T

[sT ]∑
t=1

g (zt)
1

2τ + 1

t+τ∑
j=t−τ

σ2j z
2
j − σ2t
σ2t

=
1√
T

[sT ]∑
t=1

g (zt)
1

2τ + 1

t+τ∑
j=t−τ

(
z2j − 1

)

+
1√
T

[sT ]∑
t=1

g (zt)
1

2τ + 1

t+τ∑
j=t−τ

(
σ2j − σ2t

)
σ2t

z2j ,

where the �rst summand on the r.h.s. vanishes thanks to item 3, while for the second we employ

a Taylor series approximation of σ2 (·) about t/T to obtain

1√
T

[sT ]∑
t=1

g (zt)

2τ + 1

t+τ∑
j=t−τ

(
σ2j − σ2t

)
z2j

σ2t
=

1√
T

[sT ]∑
t=1

g (zt)

2τ + 1

t+τ∑
j=t−τ

∂σ2

∂s

∣∣∣
s= t

T

j−t
T

(
z2j − 1

)
σ2t

+
1√
T

[sT ]∑
t=1

g (zt)

2τ + 1

t+τ∑
j=t−τ

∂σ2

∂s

∣∣∣
s= t

T

j−t
T

σ2t

+
1√
T

[sT ]∑
t=1

g (zt)

2τ + 1

t+τ∑
j=t−τ

∂2σ2

∂s2

∣∣∣
s=ξt,j

(j−t)2
T 2 z2j

σ2t

= C1T + C2T + C3T

for suitable ξt,j between t/T and j/T − t/T . Here, C1T vanishes along the lines of item 3 by noting

that deterministic weights do not a�ect the result, C2T = 0 and

|C3T | ≤
sCτ2

T
√
T

sup
t=1,...,T

|g (zt)| sup
t=1,...,T

z2t ;

this is seen to vanish too uniformly in s ∈ [0, 1] since, given the �niteness of moments of any

order of zt and thus of z2t and g (zt), we have supt |g (zt)| = Op (T γ) = supt=1,...,T z
2
t for any

γ > 0, and γ can then be chosen arbitrarily close to 0 to make the r.h.s. op (1).
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For B2T , we have∣∣∣∣∣∣ 1√
T

[sT ]∑
t=1

g (zt)
1

σ2t

1

2τ + 1

t+τ∑
j=t−τ

(µ̂j − µj)2
∣∣∣∣∣∣ ≤ C sup

t
|g (zt)|

1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

(µ̂j − µj)2

≤ C sup
t
|g (zt)|

1√
T

T∑
t=1

(µt − µ̂t)2 + op (1)

with |g (zt)| = Op (T γ) for any γ > 0. We show in the following that

1√
T

T∑
t=1

(µt − µ̂t)2 =
1√
T

T∑
t=1

 1

2τ + 1

t+τ∑
j=t−τ

((µt − µj)− σjzj)

2

= Op

(
T−δ

)
(13)

for some 0 < δ < min {ν1 − 1/2; 3/4− ν2}, and simply pick γ < δ for our purposes. With

the help of the Cauchy-Schwarz inequality, the term is easily seen to vanish when the terms
1√
T

∑T
t=1

(
1

2τ+1

∑t+τ
j=t−τ (µt − µj)

)2
and 1√

T

∑T
t=1

(
1

2τ+1

∑t+τ
j=t−τ σjzj

)2
both vanish themselves.

This is indeed the case under our rate restrictions considering that

1√
T

T∑
t=1

 1

2τ + 1

t+τ∑
j=t−τ

(µt − µj)

2

= Op

(√
T
τ2

T 2

)

and

E

 1√
T

T∑
t=1

 1

2τ + 1

t+τ∑
j=t−τ

σjzj

2 ≤ √T E

 1

2τ + 1

t+τ∑
j=t−τ

σjzj

2 = C

√
T

τ

thanks to the uniform L4-boundedness of normalized running averages of zt; see the proof of

item 1. Thus, B2T vanishes at the required rate.

Moving on, we have

B3T =
2√
T

[sT ]∑
t=1

g (zt)

σ2t

1

2τ + 1

t+τ∑
j=t−τ

σjzj

µj − 1

2τ + 1

j+τ∑
k=j−τ

σkzk −
1

2τ + 1

j+τ∑
k=j−τ

µk


= − 2√

T

[sT ]∑
t=1

g (zt)

σ2t

1

(2τ + 1)2

t+τ∑
j=t−τ

σjzj

j+τ∑
k=j−τ

(µk − µj)

− 2√
T

[sT ]∑
t=1

g (zt)

σ2t

1

(2τ + 1)2

 t+τ∑
j=t−τ

σjzj

j+τ∑
k=j−τ

σkzk

 ,

where the �rst summand on the r.h.s. is immediately shown to vanish thanks to item 3 after

noting that deterministic weights of uniform order O (τ/T) do not a�ect the arguments there.

A tedious, yet straightforward application of the blocking arguments from the proof of item 3

shows the second summand to vanish in probability as well.
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We have sups∈[0,1] |A1T |
p→ 0 and in addition we note that

0 ≤ sup
s∈[0,1]

|A2T | ≤ C sup
t=1,...,T

∣∣∣ξ−5/2
t

∣∣∣ sup
t=1,...,T

|g (zt)| sup
s∈[0,1]

1√
T

[sT ]∑
t=1

(
σ̂2t
σ2t
− 1

)2

,

where the r.h.s., and thus A2T , vanishes since supt=1,...,T

∣∣∣ξ−5/2
t

∣∣∣ = Op (1), supt=1,...,T |g (zt)| =

Op (T γ) for any positive γ and sups∈[0,1]
1√
T

∑[sT ]
t=1

(
σ̂2
t

σ2
t
− 1
)2

= 1√
T

∑T
t=1

(
σ̂2
t

σ2
t
− 1
)2

= Op
(
T−δ

)
,

analogously to Equation (13), so the desired result follows after choosing γ < δ.

Proof of item 5

We have that

1√
T

[sT ]∑
t=1

(
xt − µ̂t
σ̂t

− zt
)2

=
1√
T

[sT ]∑
t=1

(
zt

(
σt
σ̂t
− 1

)
+
µt − µ̂t
σ̂t

)2

=
1√
T

[sT ]∑
t=1

z2t

(
σt
σ̂t
− 1

)2

+
1√
T

[sT ]∑
t=1

1

σ̂2t
(µt − µ̂t)2

+
2√
T

[sT ]∑
t=1

zt

(
σt
σ̂t
− 1

)
1

σ̂t
(µt − µ̂t) .

Noting that supt=1,...,T σ̂t is bounded in probability, an application of the Cauchy-Schwarz in-

equality for the third summand on the r.h.s. shows that the result follows given that the two

terms sups∈[0,1]
1√
T

∑[sT ]
t=1 z

2
t

(
σt
σ̂t
− 1
)2

and sups∈[0,1]
1√
T

∑[sT ]
t=1

1
σ̂2
t

(µt − µ̂t)2 vanish in probability.

To show this, we have like in the proof of item 4 that∣∣∣∣∣∣ sup
s∈[0,1]

1√
T

[sT ]∑
t=1

z2t

(
σt
σ̂t
− 1

)2
∣∣∣∣∣∣ ≤ sup

t=1,...,T
z2t sup

s∈[0,1]

1√
T

[sT ]∑
t=1

(
σt
σ̂t
− 1

)2

= sup
t=1,...,T

z2t
1√
T

T∑
t=1

(
σt
σ̂t
− 1

)2

= op (1)

since supt=1,...,T z
2
t = Op (T γ) and 1√

T

∑T
t=1

(
σ̂t
σt
− 1
)2

= Op
(
T−δ

)
, where γ < δ may be picked,

and similarly

0 ≤ sup
s∈[0,1]

1√
T

[sT ]∑
t=1

1

σ̂2t
(µt − µ̂t)2 ≤ sup

t=1,...,T

1

σ̂2t

1√
T

T∑
t=1

(µt − µ̂t)2 = op (1) ,

since 1√
T

∑T
t=1 (µt − µ̂t)2 = op (1), again like in the proof of item 4.
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Proof of item 6

Note that rt =
(
xt−µ̂t
σ̂t
− zt

)(
ϕ (zt) + ϕ′ (ξt)

(
xt−µ̂t
σ̂t
− zt

))
where ϕ and ϕ′ are bounded. The

result follows with item 5 if supt

∣∣∣xt−µ̂tσ̂t
− zt

∣∣∣ = Op (1). This is indeed the case, since

xt − µ̂t
σ̂t

− zt =

(
σt
σ̂t
− 1

)
zt +

µt − µ̂t
σ̂t

where µ̂t and σ̂t converge uniformly at some rate Op
(
T δ
)
, see item 2, and supt |zt| = Op (T γ)

for any γ > 0 such that choosing γ < δ leads to the desired result.

Proof of item 7

Begin by writing

1√
T

[sT ]∑
t=1

pk−1t ϕ (zt)
1

2τ + 1

t+τ∑
j=t−τ

σj
σ̂t
zj =

1√
T

[sT ]∑
t=1

pk−1t ϕ (zt)
1

2τ + 1

t+τ∑
j=t−τ

(
σj
σ̂t
− 1

)
zj

+
1√
T

[sT ]∑
t=1

pk−1t ϕ (zt)
1

2τ + 1

t+τ∑
j=t−τ

zj

= A1T +A2T .

We now show the �rst summand (A1T ) to vanish and resort to this end to the Taylor series

approximation of x−1/2 employed in the proof of item 4 to obtain analogously

A1T = −1

2

1√
T

[sT ]∑
t=1

pk−1t ϕ (zt)
1

2τ + 1

t+τ∑
j=t−τ

(
σ̂2t
σ2j
− 1

)
zj

+
3

8

1√
T

[sT ]∑
t=1

pk−1t ϕ (zt)
1

2τ + 1

t+τ∑
j=t−τ

ξ
−5/2
t,j

(
σ̂2t
σ2j
− 1

)2

zj

where ξt,j lies between
σj
σ̂t

and unity for all t = 1, . . . , T , being hence uniformly bounded. The

�rst summand of A1T can be shown to be negligible by writing

1√
T

[sT ]∑
t=1

pk−1t ϕ (zt)
1

2τ + 1

t+τ∑
j=t−τ

(
σ̂2t
σ2j
− 1

)
zj

=
1√
T

[sT ]∑
t=1

(
pk−1t ϕ (zt)− E

(
pk−1t ϕ (zt)

)) 1

2τ + 1

t+τ∑
j=t−τ

(
σ̂2t
σ2j
− 1

)
zj

+ E
(
pk−1t ϕ (zt)

) 1√
T

[sT ]∑
t=1

(
σ̂2t
σ2j
− 1

)
1

2τ + 1

t+τ∑
j=t−τ

zj ;

and noting that arguments analog to those in the proof of item 3 apply.

40



For the second summand of A1T , with ϕ (·) being bounded on R, we have

0 ≤ sup
s∈[0,1]

∣∣∣∣∣∣ 1√
T

[sT ]∑
t=1

pk−1t ϕ (zt)
1

2τ + 1

t+τ∑
j=t−τ

ξ
−5/2
t,j

(
σ̂2t
σ2j
− 1

)2

zj

∣∣∣∣∣∣
≤ max

x∈R
ϕ (x) sup

t
|zt| sup

t,j

(
ξ
−5/2
t,j

) 1√
T

T∑
t=1

(
σ̂2t
σ2j
− 1

)2

,

with 1√
T

∑T
t=1

(
σ̂2
t

σ2
j
− 1

)2

vanishing like in the proof of item 4 and supt |zt| = Op (T γ) for positive

γ arbitrarily close to zero.

To complete the result, write

A2T =
1√
T

[sT ]∑
t=1

(
pk−1t ϕ (zt)− E

(
pk−1t ϕ (zt)

)) 1

2τ + 1

t+τ∑
j=t−τ

zj

+ E
(
pk−1t ϕ (zt)

) 1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

zj ,

where the �rst summand on the r.h.s. vanishes thanks to item 3, while the second delivers the

desired approximation upon re-arranging its sum elements.

Proof of item 8

Write

1√
T

[sT ]∑
t=1

pk−1t ϕ (zt) zt

(
σt
σ̂t
− 1

)
=

1√
T

[sT ]∑
t=1

(
pk−1t ϕ (zt) zt − E

(
pk−1t ϕ (zt) zt

))(σt
σ̂t
− 1

)

+ E
(
pk−1t ϕ (zt) zt

) 1√
T

[sT ]∑
t=1

(
σt
σ̂t
− 1

)
.

The �rst summand on the r.h.s. vanishes, see item 4, and, with the same Taylor series expansion

of x−1/2 employed there, we have for the second summand that

1√
T

[sT ]∑
t=1

(
σt
σ̂t
− 1

)
= −1

2

1√
T

[sT ]∑
t=1

(
σ̂2t
σ2t
− 1

)
+

3

8

1√
T

[sT ]∑
t=1

ξ
−5/2
t

(
σ̂2t
σ2t
− 1

)2

= A1T +A2T

with ξt lying between σ̂2
t

σ2
t
and unity for all t = 1, . . . , T . The arguments in the proof of item 4

apply directly, with the exception of the analogues of B1T and B3T . For the analogue of B1T

from the proof of item 4 we write

1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

σ2j z
2
j − σ2t
σ2t

=
1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

(
z2j − 1

)
+

1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

(
σ2j − σ2t

)
z2j

σ2t
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where the summands of the �rst term on the r.h.s. are re-arranged to give the desired approxi-

mation, and the second term is given, similarly to the proof of item 4, by

1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

(
σ2j − σ2t

)
z2j

σ2t
=

1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

∂σ2

∂s

∣∣∣
s= t

T

j−t
T

(
z2j − 1

)
σ2t

+
1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

∂σ2

∂s

∣∣∣
s= t

T

j−t
T

σ2t

+
1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

∂2σ2

∂s2

∣∣∣
s=ξt,j

(j−t)2
T 2 z2j

σ2t

= C1T + C2T + C3T

for suitable ξt,j between t/T and j/T − t/T . To analyze C1T , re-arrange sum terms to obtain

C1T =
C√
T

1

(2τ + 1)T

[sT ]∑
t=1

(
z2t − 1

)
τ(τ + 1) +Op

(
τ2
) = op (1)

uniformly in s ∈ [0, 1],

C2T = 0,

and, for all s ∈ [0, 1],

0 ≤ C3T ≤
Cτ2

T 2
√
T

[sT ]∑
t=1

z2t ≤
Cτ2

T 2
√
T

T∑
t=1

z2t = Op

(
τ2

T
√
T

)
= op (1) .

For the analog of B3T from the proof of item 4, we re-arrange sum terms to obtain

2√
T

[sT ]∑
t=1

1

σ2t

1

2τ + 1

t+τ∑
j=t−τ

σjzj (µj − µ̂j) =
2√
T

[sT ]∑
t=1

σtzt (µt − µ̂t)
1

2τ + 1

t+τ∑
j=t−τ

1

σ2j
+ op (1) .

To complete the result, write

1√
T

[sT ]∑
t=1

σtzt (µt − µ̂t) =
1√
T

[sT ]∑
t=1

σtzt

 1

2τ + 1

t+τ∑
j=t−τ

(µt − µj)

− 1√
T

[sT ]∑
t=1

σtzt

 1

2τ + 1

t+τ∑
j=t−τ

σjzj


where both summands on the r.h.s. can be shown to vanish uniformly in s using e.g. item 3.

Proof of Lemma 1

We let w.l.o.g. τµ = τσ = τ . Write with a Taylor expansion

p̂t = pt + ϕ (zt)

(
xt − µ̂t
σ̂t

− zt
)

+ ϕ′ (ξt)

(
xt − µ̂t
σ̂t

− zt
)2

= pt + rt,
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where ξt lies between
xt−µ
σt

= zt and
xt−µ̂t
σ̂t

= ẑt; note that ϕ′ (·) is bounded on R. Then,

1√
T

[sT ]∑
t=1

(
p̂kt −

1

k + 1

)
=

1√
T

[sT ]∑
t=1

(
pkt −

1

k + 1

)
+

k√
T

[sT ]∑
t=1

pk−1t rt +
k (k − 1)

2
√
T

[sT ]∑
t=1

p̃k−1t r2t

where p̃t lies between pt and p̂t. Since p̃t ∈ [0, 1] ∀t, like pt and p̂t, we have for the third term

0 ≤ 1√
T

[sT ]∑
t=1

p̃k−1t r2t ≤
1√
T

[sT ]∑
t=1

r2t
p→ 0

uniformly in s, thanks to Lemma A.1 item 6.

We may then focus on the second term and obtain

k√
T

[sT ]∑
t=1

pk−1t rt =
k√
T

[sT ]∑
t=1

pk−1t ϕ (zt)

(
xt − µ̂t
σ̂t

− zt
)

+
k√
T

[sT ]∑
t=1

pk−1t ϕ′ (ξt)

(
xt − µ̂t
σ̂t

− zt
)2

.

Here, the second summand vanishes uniformly in s since∣∣∣∣∣∣ k√T
[sT ]∑
t=1

pk−1t ϕ′ (ξt)

(
xt − µ̂t
σ̂t

− zt
)2
∣∣∣∣∣∣ ≤ C√

T

[sT ]∑
t=1

(ẑt − zt)2

due to the boundedness of ϕ′ and pt, and Lemma A.1 item 5 applies. Now,

ẑt − zt =
σtzt + µt − µ̂t

σ̂t
− zt = zt

(
σt
σ̂t
− 1

)
− 1

2τ + 1

t+τ∑
j=t−τ

σj
σ̂t
zj +

1

σ̂t

1

2τ + 1

t+τ∑
j=t−τ

(µt − µj) ,

such that the leading term of k√
T

∑[sT ]
t=1 p

k−1
t rt is given by

k√
T

[sT ]∑
t=1

pk−1t ϕ (zt) (ẑt − zt) =
k√
T

[sT ]∑
t=1

pk−1t ϕ (zt) zt

(
σt
σ̂t
− 1

)

− k√
T

[sT ]∑
t=1

pk−1t ϕ (zt)

 1

2τ + 1

t+τ∑
j=t−τ

σj
σ̂t
zj


+

k√
T

[sT ]∑
t=1

pk−1t ϕ (zt)

σ̂t

 1

2τ + 1

t+τ∑
j=t−τ

(µt − µj)


where∣∣∣∣∣∣ 1√
T

[sT ]∑
t=1

1

σ̂t
pk−1t ϕ (zt)

 1

2τ + 1

t+τ∑
j=t−τ

(µt − µj)

∣∣∣∣∣∣ ≤ 1√
T

[sT ]∑
t=1

1

σ̂t
pk−1t ϕ (zt)

 1

2τ + 1

t+τ∑
j=t−τ

|µt − µj |


= Op

(
τ√
T

)
with pt and φ (zt) being bounded and positive, and supt σ̂t bounded in probability and non-

negative.
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Using Lemma A.1 again, items 7 and 8, we obtain uniformly in s ∈ [0, 1] that

1√
T

[sT ]∑
t=1

(
p̂kt −

1

k + 1

)
=

1√
T

[sT ]∑
t=1

(
pkt −

1

k + 1

)
− kE

(
pk−1t ϕ (zt)

) 1√
T

[sT ]∑
t=1

zt

−k
2

E
(
pk−1t ztϕ (zt)

) 1√
T

[sT ]∑
t=1

(
z2t − 1

)
+ op (1)

as required for the result which follows with a multivariate invariance principle for strongly

mixing sequences (see e.g. Davidson, 1994, Chapter 29).

Proof of Proposition 1

To simplify notation we provide the arguments for t̂k only; the extension for K > 1 is trivial.

The arguments in the proof of Theorem 2 in Kiefer and Vogelsang (2005) indicate that

t̂k =

1√
T

∑T
t=1

(
p̂kt − 1

k+1

)
√
− 1
T 2

∑T−1
i=1

∑T−1
j=1

T 2

B2k′′
(
i−j
B

)
1√
T

∑i
t=1

(
p̂kt − p̂k

)
1√
T

∑j
t=1

(
p̂kt − p̂k

) + op (1)

for kernels with smooth derivatives, or

t̂k =

1√
T

∑T
t=1

(
p̂kt − 1

k+1

)
√

2
bT

∑T
i=1

(
1√
T

∑i
t=1

(
p̂kt − p̂k

))2
− 2

bT

∑[(1−b)T ]
i=1

(
1√
T

∑i
t=1

(
p̂kt − p̂k

))(
1√
T

∑i+[bT ]
t=1

(
p̂kt − p̂k

))+op (1)

for the Bartlett kernel. From Lemma 1, we know that

1√
T

[sT ]∑
t=1

(
p̂kt −

1

k + 1

)
⇒ Bk (s)− kϑk−1W1 (s)− k

2
$k−1W2 (s) ,

where the process on the r.h.s. is Brownian motion. The vector stacking the K individual

Brownian motions is itself a K-dimensional Brownian motion with covariance matrix VΞV′,

whose kth diagonal element, say ω̃2
k, is the variance of B̃k(s). Positive de�niteness of Ξ ensures

that ω̃2
k > 0 which then cancels out, so the continuous mapping theorem [CMT] then establishes

the desired limiting null distribution.

Proof of Proposition 2

We �rst have that

1√
T

[sT ]∑
t=1

ẑt =
1√
T

[sT ]∑
t=1

σtzt − µ̂t
σ̂t

=
1√
T

[sT ]∑
t=1

zt +
1√
T

[sT ]∑
t=1

zt

(
σt
σ̂t
− 1

)
− 1√

T

[sT ]∑
t=1

µ̂t
σ̂t
.
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Item 4 of Lemma A.1 shows the second term on the r.h.s. to vanish uniformly, while the arguments

in the proof of item 7 imply for the last term that

1√
T

[sT ]∑
t=1

µ̂t
σ̂t

=
1√
T

[sT ]∑
t=1

1

2τ + 1

t+τ∑
j=t−τ

σt
σ̂t
zt =

1√
T

[sT ]∑
t=1

zt + op(1)

uniformly in s, and therefore

1√
T

[sT ]∑
t=1

ẑt ⇒ 0.

Examine then

1√
T

[sT ]∑
t=1

(
ẑ2t − 1

)
=

1√
T

[sT ]∑
t=1

(
z2t − 1

)
+

2√
T

[sT ]∑
t=1

zt (ẑt − zt) +
1√
T

[sT ]∑
t=1

(ẑt − zt)2 ,

where item 5 of Lemma A.1 indicates the third term on the r.h.s. to vanish uniformly in s. For

analyzing the second term, write

1√
T

[sT ]∑
t=1

zt (ẑt − zt) =
1√
T

[sT ]∑
t=1

z2t

(
σt
σ̂t
− 1

)
− 1√

T

[sT ]∑
t=1

zt
µ̂t
σ̂t

where the �rst term on the r.h.s. is treated like in the proof of item 8 (using E
(
z2t
)

= 1) and the

second vanishes uniformly in s along the lines of item 7, such that

1√
T

[sT ]∑
t=1

zt (ẑt − zt) = −1

2

1√
T

[sT ]∑
t=1

(
z2t − 1

)
+ op(1)

uniformly in s. Summing up,

1√
T

[sT ]∑
t=1

(
ẑ2t − 1

)
⇒ 0.

This leads immediately to

√
T ¯̂z

p→ 0 and
√
T

(
1

σ̃ẑ
− 1

)
p→ 0

as well as

1√
T

[sT ]∑
t=1

z̃t =
1

σ̃ẑ

 1√
T

[sT ]∑
t=1

ẑt −
[sT ]

T

√
T ¯̂z

⇒ 0

and, analogously,

1√
T

[sT ]∑
t=1

(
z̃2t − 1

)
⇒ 0.

Use now the mean value theorem to conclude that, for suitable ζt between z̃t and ẑt,

Φk (z̃t) = Φk (ẑt) + kΦk−1 (ζt)ϕ (ζt) (z̃t − ẑt) ;
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therefore,

p̃kt = p̂kt −
1

σ̃ẑ

√
T ¯̂z

k√
T

Φk−1 (ζt)ϕ (ζt) +
√
T

(
1

σ̃ẑ
− 1

)
k√
T

Φk−1 (ζt)ϕ (ζt) ζt

+
√
T

(
1

σ̃ẑ
− 1

)
k√
T

Φk−1 (ζt)ϕ (ζt) (ẑt − ζt) .

Upon building partial sums of p̃kt , notice that
∑[sT ]

t=1

∣∣Φk−1 (ζt)ϕ (ζt)
∣∣ ≤ CT and

∑[sT ]
t=1

∣∣Φk−1 (ζt)ϕ (ζt) ζt
∣∣ ≤

CT for any s ∈ [0, 1]; also, it is easily seen that ẑt − ζt = op(1) uniformly in t, so, summing up,

1√
T

[sT ]∑
t=1

p̃kt =
1√
T

[sT ]∑
t=1

p̂kt + op(1)

uniformly in s. To derive the long-run behavior of the �xed-b variance estimator Ω̂, we �nally

note that

1√
T

[sT ]∑
t=1



p̃t − 1
2

...

p̃Kt − 1
K+1

z̃t

z̃2t − 1


⇒



B1 (s)− ϑ0W1 (s)− 1
2$1W2 (s)

...

BK (s)−KϑK−1W1 (s)− K
2 $K−1W2 (s)

0

0


and the result immediately follows along the lines of the proof of Proposition 1.
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C More on parametric mean adjustment

Since this Section only serves the purpose of illustrating the in�uence the speci�c choice of model

has on the feasible PITs p̂t, we treat σt as known and set it to unity; e�ects similar to those

highlighted here for the estimation of a parametric mean arise when σt is to be modeled as well.

Consider therefore a parametric model for the mean of the observed time series xt such that

xt = µ (t/T ,θ) + σtzt .

Note that normalizing the time is not restrictive, since one may e.g. rede�ne a classical linear

trend model µt = θ1 + θ2t as µt = θ1 + (Tθ2) t/T without loss of generality. We take the mean

component to satisfy the following requirements.

Assumption A.1 Let µ (s,θ) have uniformly continuous second-order partial derivatives. The

�rst and second order partial derivatives w.r.t. θ are weakly bounded uniformly in s, in the sense

that there exists a nondecreasing function f such that max
{∥∥∥∂µ(s,θ)∂θ

∥∥∥ ;
∥∥∥∂2µ(s,θ)∂θ∂θ′

∥∥∥} ≤ f (‖θ‖) for
all s ∈ [0, 1].

This Assumption allows for polynomial trend models, µ (s,θ) =
∑p+1

j=1 s
j−1θj , for breaks in the

mean, µ (s,θ) = θ1 + θ2I (s ≥ τ), for smooth mean changes, e.g. µ (s,θ) = 1
1+exp(θ3(s−θ4))θ1 +

exp(θ3(s−θ4))
1+exp(θ3(s−θ4))θ2, or for µ (s,θ) = θ1 +

∑p
j=1 (θ2j sin 2πjs+ θ2j+1 cos 2πjs) motivated by approx-

imations via Fourier sums.

Based on this model, one obtains

p̂
(θ)
t = Φ

(
ẑ
(θ)
t

)
= Φ

(
xt − µ

(
t/T , θ̂

))
by plugging in an estimator θ̂ which is taken to be

√
T -consistent. The straightforward choice

we employ in the following is the NLS estimator. Some of the requirements of Assumption A.1

help to establish the limiting behavior of the NLS estimator. Then,

p̂
(θ)
t = Φ

(
zt −

(
µ
(
t/T , θ̂

)
− µ (t/T ,θ)

))
(14)

to demonstrate the estimation e�ect. The following Lemma provides the precise result when xt
is adjusted for nonzero mean in a parametric way.

Lemma A.2 Under the additional Assumption A.1, it holds as T →∞ that

1√
T

[sT ]∑
t=1

((
p̂
(θ)
t

)k
− 1

k + 1

)
⇒ Bk (s)− kϑk−1δ′ (s,θ) Θ (1) (15)

where Θ (1) =
(´ 1

0
∂µ(s,θ)
∂θ

∂µ(s,θ)
∂θ

′
ds
)−1 ´ 1

0
∂µ(s,θ)
∂θ dW1 (s), δ (s,θ) =

´ s
0
∂µ(r,θ)
∂θ dr and ϑk = E

(
pktϕ (zt)

)
as before.
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Proof of Lemma A.2

We begin by discussing the limiting behavior of the NLS estimators θ̂. We have under Assump-

tions 1 and A.1 that

√
T
(
θ̂ − θ

)
⇒
(ˆ 1

0

∂µ (s,θ)

∂θ

∂µ (s,θ)

∂θ

′
ds

)−1 ˆ 1

0

∂µ (s,θ)

∂θ
dW1 (s) .

This is a standard application of extremum estimator theory and we omit the details.

With the application of the mean value theorem when k = 1 (or Taylor series expansion with

remainder term in di�erential form) we obtain

p̂
(θ)
t = pt + ϕ (zt)

(
µ (t/T ,θ)− µ

(
t/T , θ̂

))
+ ϕ′ (ξt)

(
µ (t/T ,θ)− µ

(
t/T , θ̂

))2
where ξt lies between zt and zt − µ

(
t/T , θ̂

)
+ µ (t/T ,θ) for all t. The exact values for ξt do not

matter since ϕ′ is bounded. A second expansion, here about θ, is required for the trend function

µ:

µ (t/T ,θ)− µ
(
t/T , θ̂

)
= −∂µ (t/T ,θ)

∂θ

′ (
θ̂ − θ

)
−
(
θ̂ − θ

)′ ∂2µ (t/T ,θ)

∂θ∂θ′

∣∣∣∣
θ=ϑt

(
θ̂ − θ

)
again with ϑt between θ and θ̂ (note that since t is an argument of µ, ϑ also depends on t �

hence the notation). Putting the two together we obtain

1√
T

[sT ]∑
t=1

(
p̂
(θ)
t −

1

2

)
=

1√
T

[sT ]∑
t=1

(
pt −

1

2

)
−

 1√
T

[sT ]∑
t=1

ϕ (zt)
∂µ (t/T ,θ)

∂θ

′ (θ̂ − θ)

−
(
θ̂ − θ

)′ 1√
T

[sT ]∑
t=1

ϕ (zt)
∂2µ (t/T ,θ)

∂θ∂θ′

∣∣∣∣
θ=ϑt

(θ̂ − θ)+Rs,T

where Rs,T is the normalized partial sum of ϕ′ (ξt)
(
µ (t/T ,θ)− µ

(
t/T , θ̂

))2
.

Examining the third summand on the r.h.s., we note that the boundedness of ϕ and the fact

that

∣∣∣∣ ∂2µ(t/T ,θ)∂θ∂θ′

∣∣∣
θ=ϑt

∣∣∣∣ ≤ f (‖ϑt‖) ≤ f
(

max
{
‖θ‖ ;

∥∥∥θ̂∥∥∥}) make the partial sums of order Op (T ),

but θ̂ − θ = Op

(
1/
√
T
)
and the normalization with

√
T lets the entire summand vanish.

For the fourth summand, Rs,T , we have with a �rst-order Taylor expansion, µ (t/T ,θ)−µ
(
t/T , θ̂

)
=

∂µ(t/T ,θ)
∂θ

∣∣∣′
θ=ϑt

(
θ̂ − θ

)
with ϑt between θ and θ̂ for each t, that

Rs,T =
(
θ̂ − θ

)′ 1√
T

[sT ]∑
t=1

ϕ′ (ξt)
∂µ (t/T ,θ)

∂θ

∣∣∣∣
θ=ϑt

∂µ (t/T ,θ)

∂θ

∣∣∣∣′
θ=ϑt

(θ̂ − θ) .
Similarly, ϕ′ is bounded and

∣∣∣∣ ∂µ(t/T ,θ)∂θ

∣∣∣
θ=ϑt

∣∣∣∣ ≤ f (‖ϑt‖) ≤ f
(

max
{
‖θ‖ ;

∥∥∥θ̂∥∥∥}) for all t, it

follows that supsRs,T = Op
(
T−1/2

)
.
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Summing up, we are left with the �rst two summands,

1√
T

[sT ]∑
t=1

(
p̂
(θ)
t −

1

2

)
=

1√
T

[sT ]∑
t=1

(
pt −

1

2

)
−

 1√
T

[sT ]∑
t=1

ϕ (zt)
∂µ (t/T ,θ)

∂θ

′ (θ̂ − θ)+ op (1) .

The same arguments show that analogous relations hold for
(
p̂
(θ)
t

)k
. With

√
T
(
θ̂ − θ

)
⇒ Θ (1)

and 1
T

∑[sT ]
t=1 p

k−1
t ϕ (zt)

∂µ(t/T ,θ)
∂θ ⇒ E

(
pk−1t ϕ (zt)

) ´ s
0
∂µ(r,θ)
∂θ dr = ϑk−1δ (s,θ), the desired result

follows.

Remark A.1 Bai and Ng (2005) show in their Theorem 5 that regressing xt on a set of regressors

has no e�ect on the limiting distributions beyond that of the intercept. There is no contradiction

between their result and our Lemma A.2, since the result we give in (15) applies in the case where

the regressors are deterministic. For a comparison with Theorem 5 in Bai and Ng (2005), take

one stochastic regressor and a linear model xt = θwt such that ∂µ(t/T ,θ)
∂θ = wt. We obtain for

stationary regressors that 1
T

∑[sT ]
t=1 ϕ (zt)wt ⇒ s E (ϕ (zt)wt). Now, Bai and Ng (2005) assume

that an intercept is always present in the regression which is equivalent to setting E (wt) = 0; they

also assume the regressors to be independent of zt, hence E (ϕ (zt)wt) = 0 and correspondingly

µ (s) = 0. This is not the case when wt is deterministic, say an intercept or a trend, and the

limiting distribution of θ̂ needs to be taken into account.

Clearly, the estimation e�ect described by Equation (15) will a�ect the limiting distribution of

a �xed-b statistic based on a parametric estimated standardization. The e�ect is di�erent from

that derived in Lemma 1, since the presence of Θ (1) (as opposed to W1 (s)) indicates a bridge-

type behavior of the limit process of the relevant partial sums. Moreover, the components Θ and

δ depend on the speci�c model chosen for µ. The statistics can be made pivotal, see below, but

the limiting distributions di�er from those obtained commonly in the �xed-b framework, except

in the case of an intercept. The bottom line is that di�erent deterministic components will lead

to di�erent distributions (with the exception of the small-b case, where χ2 asymptotics may be

recovered for all consistent choices of HAC covariance matrix estimator). This implies the need

to simulate the distributions for each speci�c type of deterministic component accounted for in

the data (similar to typical unit root testing situation). While this can be done in advance for

some popular combinations (see below for the case of intercept and trend, where the generalized

Brownian bridge plays a role; cf. MacNeill, 1978), one solution for a generic mean function m is

to resort to some form of bootstrap. Since zt is strictly stationary and mixing, the residual-based

iid or wild bootstrap is likely valid, but we do not pursue the topic here.

We now highlight the concrete di�erence between nonparametric and parametric mean adjust-

ment for the cases of a constant and of a linear trend. Considering constant variance for sim-

plicity, we have the following procedure simpli�ed by the linearity of the mean function. De-

trend xt using OLS regression and standardize the detrended time series with σ to obtain ẑ(θ)t .

With

(
p̂
(θ)
t , . . . ,

(
p̂
(θ)
t

)K
, ẑ

(θ)
t

)′
, compute a �xed-b estimate of the long-run covariance matrix

of
(
pt, . . . , p

K
t , zt

)′
, say Λ̂, and, based on it, the scaling matrix Ψ̂

(θ)
= V(θ)Λ̂

(
V(θ)

)′
with V(θ)

constructed like in (10) but using just the �rst column of ΥK , and then T̂ from (12). Then,
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Proposition A.1 Under Assumptions 1 and 2, it holds as T →∞ that

T̂ (θ)
K ⇒ W̃

′
K(1)Q−1K,b,κW̃K(1).

with

QK,b,κ = −
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)
V (r)V ′(s) drds

for smooth kernels and

QK,b,κ =
2

b

ˆ 1

0
V (r)V ′(r)dr − 1

b

ˆ 1−b

0
V (r + b)V ′(r) dr − 1

b

ˆ 1−b

0
V (r)V ′(r + b) dr

for the Bartlett kernel, where V (s) is, for demeaning, the �rst-order Brownian bridge

V (s) = W̃K(s)− sW̃K(1)

with W̃ a vector of independent standard Wiener processes; for detrending, V (s) is the second-

level Brownian bridge

V (s) = W̃K(s) + (2s− 3s2)W̃K(1)− 6s(1− s)
ˆ 1

0
W̃K(s)ds.

Proof of Proposition A.1

To deal with demeaning, let µ = θ1 in Lemma A.2 to obtain

1√
T

[sT ]∑
t=1

((
p̂
(θ)
t

)k
− 1

k + 1

)
⇒ Bk (s)− kϑk−1W1 (1) .

We then need to examine the limiting behavior of the suitably normalized partial sums of ẑ(θ)t .

Then (having assumed for simplicity σt to be known)

1√
T

[sT ]∑
t=1

ẑt =
1√
T

[sT ]∑
t=1

(zt − z̄)⇒W1 (s)− sW1 (1) .

Let

B̄ (s) = (B1 (s) , . . . , BK (s) ,W1 (s))′

and

B̃ =



B1 (s)− s ϑ0W1 (1)
...

BK (s)− sKϑK−1W1 (1)

W1 (s)− sW1 (1)

W2 (s)− sW2 (1)


;
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using the arguments of the proof of Theorem 2 in Kiefer and Vogelsang (2005) together with the

Lemma A.2, we obtain e.g. for smooth kernels

T̂ (θ)
K ⇒

(
V(θ)B̄(1)

)′
×(

V(θ)

(
−
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)(
B̃(r)− rB̃(1)

)(
B̃(s)− sB̃(1)

)′
drds

)(
V(θ)

)′)−1
V(θ)B̄(1).

Note further that

V(θ)
(
B̃(s)− sB̃(1)

)
= V(θ)

(
B̄(s)− sB̄(1)

)
,

and let Y = V(θ)B̄ such that

T̂K ⇒ Y ′(1)

(
−
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)
(Y (r)− rY (1)) (Y (s)− sY (1))′ drds

)−1
Y (1)

where Y is a multivariate Brownian motion with covariance matrix Ψ(θ) = V(θ)Λ
(
V(θ)

)′
. To

obtain the required distribution, let W̃ = Ψ(θ)−1/2Y (s), and note that Ψ(θ) cancels out and the

desired result follows. The result for the Bartlett kernel follows analogously.

To deal with detrending, let µ = θ1 + θ2s in Lemma A.2 to obtain

1√
T

[sT ]∑
t=1

((
p̂
(θ)
t

)k
− 1

k + 1

)
⇒ Bk (s)−kϑk−1

(
4sW1 (1)− 3s2W1 (1)− 6s(1− s)

ˆ 1

0
sdW1(s)

)
.

Note that
´ 1
0 sdW1(s) = W1(1)−

´ 1
0 W1(s)ds; use then the same steps as for demeaning to arrive

at the desired result.

51



D The Bai and Ng (2005) test procedure

The test statistic suggested by Bai and Ng (2005) is given by

µ̂34 = Y ′T (γ̂Φ̂γ̂′)−1YT

where

YT =

[
1√
T

∑T
t=1(xt − x̄)3

1√
T

∑T
t=1[(xt − x̄)4 − 3σ̂4]

]
and

γ̂ =

[
−3σ̂2 0 1 0

0 −6σ̂2 0 1

]

x̄, σ̂2 and Φ̂ are consistent estimators under constant mean and variance. Denoting Z ′t =[
xt − µ, (xt − µ)2 − σ2, (xt − µ)3, (xt − µ)4 − 3σ4

]
with Z̄ being the sample mean of Zt,

the long-run covariance matrix Φ is given by Φ = limT→∞ T E(Z̄Z̄ ′). The limiting distribu-

tion of µ̂34 is χ2(2). This result is motivated by the fact that under normality, one obtains

YT = γ 1√
T

∑T
t=1 Zt + op(1) with 1√

T

∑T
t=1 Zt ⇒ N(0,Φ). We follow Bai and Ng (2005) and

consider the Newey and West (1987) estimator.

Under our Assumptions, however, it is a standard exercise to show that

x̄ :=
1

T

T∑
t=1

xt
p→
ˆ 1

0
µ(s)ds =: µ̄,

1

T

T∑
t=1

(xt − x̄)2
p→
ˆ 1

0
σ2(s)ds+

ˆ 1

0
(µ(s)− µ̄)2 ds,

1

T

T∑
t=1

(xt − x̄)3
p→ 3

ˆ 1

0
σ2(s) (µ(s)− µ̄) ds+

ˆ 1

0
(µ(s)− µ̄)3 ds

and

1

T

T∑
t=1

(xt − x̄)4
p→ 3

ˆ 1

0
σ4(s)ds+ 6

ˆ 1

0
σ2(s) (µ(s)− µ̄)2 ds+

ˆ 1

0
(µ(s)− µ̄)4 ds.

We note that the sample skewness converges to 0 if the mean function is constant, but not in

general � as would have been expected for a normal population. Furthermore, the sample excess

kurtosis may have a limit di�erent from 3 (corresponding to the standard normal distribution)

even under a constant mean, as long as the variance function changes over sets of nonzero

Lebesgue measure.
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E Additional empirical results and graphs
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Figure A.1: U.S. real GDP growth rate (1984Q3-2019Q4). Top left: time series plot of the raw
time series xt; top right: nonparametric locally standardized time series (ẑt); bottom left: normal
QQ-plot for xt and bottom right: normal QQ-plot for ẑt.
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Figure A.2: U.S. real GDI growth rate (1984Q3-2019Q4). Top left: time series plot of the raw
time series xt; top right: nonparametric locally standardized time series (ẑt); bottom left: normal
QQ-plot for xt and bottom right: normal QQ-plot for ẑt.

Table A.1: Normality testing results for U.S. real GDP and GDI growth rates (1984Q3-2019Q4).
m̃i denotes the estimated i-th raw moment and t̃i is the t-statistic for testing the individual
i-th moment restriction (i = 1, 2, 3, 4) based on the nonparametric local standardization. The
corresponding joint statistics T̃1...j test the �rst j moment restrictions (j = 2, 3, 4); BN labels the
Bai and Ng (2005) statistic. Critical values for the nominal signi�cance level of 5% are provided
in parentheses below the statistics.

GDP GDI

m̃1 m̃2 m̃3 m̃4 m̃1 m̃2 m̃3 m̃4

0.503 0.332 0.246 0.195 0.498 0.329 0.246 0.197

t̃1 t̃2 t̃3 t̃4 t̃1 t̃2 t̃3 t̃4
0.481 -0.303 -0.844 -0.998 -0.426 -0.953 -1.098 -0.854

(2.261) (2.261) (2.261) (2.261) (2.261) (2.261) (2.261) (2.261)

T̃12 T̃123 T̃1234 BN T̃12 T̃123 T̃1234 BN
1.581 2.045 2.280 1.880 1.528 2.162 3.571 1.633

(8.872) (13.200) (18.258) (5.991) (8.872) (13.200) (18.258) (5.991)
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Figure A.3: U.S. real GDP (top) and GDI (bottom) growth rate (1984Q3-2019Q4). Left: Vari-
ance pro�le for the raw time series xt; right: Variance pro�le for the nonparametric locally
standardized ẑt.
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F Critical values

Table A.2: Critical values (cv) and �tted least squares response curves for the limiting distri-
bution of the TK statistic for K = {2, 3, 4} when the Bartlett kernel is entertained. The least
squares regression is given by cv(b) = a0 + a1b+ a2b

2 + a3b
3 + error, estimated parameters are

provided together with the corresponding R2 (last column) is given in the last column. Nominal
signi�cance levels are 0.9, 0.95, 0.975 and 0.99. For the case of a single moment restriction, we
reproduce the estimated response curves provided in Table 1 from Kiefer and Vogelsang (2005)
for the t-statistic.

a0 a1 a2 a3 R2

t
0.9 1.2816 1.3040 0.5135 -0.2286 0.9995
0.95 1.6449 2.1859 0.3142 -0.3427 0.9991
0.975 1.9600 2.9694 0.4160 -0.5324 0.9980
0.99 2.3263 4.1618 0.5368 -0.9060 0.9957

K = 2
0.9 4.6052 15.5300 33.0455 -18.0050 0.9998
0.95 5.9915 24.2350 48.4528 -27.7431 0.9998
0.975 7.3778 35.6889 62.8696 -36.8917 0.9997
0.99 9.2103 53.2832 88.7896 -55.9722 0.9996

K = 3
0.9 6.2514 30.2793 67.5629 -42.2680 0.9998
0.95 7.8147 45.5956 88.1783 -56.1070 0.9997
0.975 9.3484 63.5918 109.2760 -70.7583 0.9997
0.99 11.3449 94.2752 127.9765 -84.0108 0.9996

K = 4
0.9 7.7794 54.1072 94.7069 -61.0147 0.9997
0.95 9.4877 76.3485 121.5104 -79.8180 0.9997
0.975 11.1433 102.1803 145.6040 -97.0618 0.9997
0.99 13.2767 142.5323 169.0490 -113.2457 0.9997
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G Details on V matrices for di�erent distributions

In this appendix, we report simulated entries for the matrix ΥK (see equation (10)) as in

V =
(

IK ; ΥK

)
with ΥK = −

(
ϑ0 · · · KϑK−1
1
2$0 · · · K

2 $K−1

)′
.

The coe�cients are given as ϑj = E
(
pjtf0(zt)

)
and $j = E

(
pjtztf0(zt)

)
, where f0 denotes the

density function of the standardized null distribution, zt ∼ f0.

Table A.3: Simulated matrix entries for ΥK are reported for four di�erent standardized distri-
butions: Normal, Log-normal, Exponential and Uniform.

Normal Log-normal
-0.2822 -0.2821 -0.2573 -0.2326 -0.7834 -0.5341 -0.3833 -0.2920
0.0000 -0.0459 -0.0689 -0.0800 0.1579 0.0629 0.0177 -0.0048

Exponential Uniform
-0.4998 -0.3333 -0.2501 -0.2001 -0.2887 -0.2887 -0.2887 -0.2887
0.1249 0.0277 -0.0105 -0.0284 0.0000 -0.0833 -0.1250 -0.1500
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