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Abstract

The viewing hemisphere of a 3-dimensional object can be partitioned into
areas of similar views, termed view bubbles. We compare two procedures
of generating view bubbles: fracking of object features, i.e., Gabor wavelet
responses, by utilizing the continuity of successive views and matching of
features in different views, which are assumed to be independent. Both pro-
cedures proved to be appropriate to detect canonical views. We found no
difference concerning the size of the view bubbles, but tracking provides
more precise correspondences than matching. Tracking is more appropri-
ate for recognizing changes of features, whereas matching is more suitable if
features of the same appearance are to be found.

1 Subject of Investigation

For pose-invariant object recognition and pose estimation of objects it is necessary to uti-
lize an appropriate object representation. A naive representation might consist of densly
spaced views of an object’s viewing sphere. Our aim is to reduce such a “full” represen-
tation to only some representative views and the relations between them. Such a sparse
representation belongs to the aspect graph approaches proposed by, e.g., [1], [S]. To
choose representative views (aspects) for a final representation our plan is first to deter-
mine for each view of a “full” representation a surrounding area of similar views, termed
view bubble (see figure 1). Later the aspects for the final representation of the object can
be derived from the overlaps of the view bubbles.

In this paper we describe the generation of the view bubbles. We restrict our investiga-
tion to the upper hemisphere of an object’s viewing sphere. We compare two procedures
of determining the similarity of two views: matching a representing graph of one view to
another view, and tracking object features, i.e., Gabor wavelet responses, from one view to
another view. During the matching procedure each view is treated independently, whereas
the tracking procedure utilizes the continuity of neighbouring views. Our investigations
were guided by the question which procedure - matching or tracking - is more appropriate
to find for each view of the hemisphere view bubbles of maximal size containing views of
maximal similarity?
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Figure 1: Viewing Hemisphere with Examples of View Bubbles. The representation of a
viewing hemisphere consists of 100 x 25 views. Each crossing of the grid stands for one view.
The angle between two neighbouring views is 3.6 degrees in either direction. The dot in front
marks view (0, 0). The depicted view bubbles have been determined with the tracking procedure
for object “Tom”. View (79, 14) provides a small view bubble. It includes views which cover a
range of 21.6 degrees in x-direction and 14.4 degrees in y-direction. View (6, 6) provides a larger
view bubble, which covers a range of 43.2 degrees and 28.8 degrees, respectively.

2 Description of the System

2.1 Preprocessing

For each recorded view of an object we first perform a segmentation based on gray levels
which separates the object from the background. Then we put a grid graph onto the
segment of the image which has been assigned to the object. At each vertex of the graph
we extract features which describe the surroundings of the vertex, i.e., local features of
the special view of the object. Thus we derive a representation for each view in form of
a model graph which provides the basis of both, the matching and the tracking procedure
(see figure 2).

Segmentation: The segmentation method is based on the system of [6]. An image is
divided into small patches. Each patch receives a label that encodes its membership of one
of several segments. We need two segments, because we want to separate one object from
the background. The aim is to find the label configuration which encodes the “correct”
segmentation of the given scene. Each label interacts with neighbouring labels via an
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Figure 2: Preprocessing. a) original image, b) gray level segmentation, c) centered segmentation,
after eliminating wrong segments, d) original image masked with result of centered segmentation,
e) grid graph on object segment, f) grid graph on original image.

interaction matrix. The interaction between two labels is computed from the difference
in mean intensity at the corresponding image regions. The desired segmentation results
from coarse-to-fine dynamics which relax to a local energy minimum. The segmentation
as described may also provide regions, which are regarded as belonging to the object due
to their gray levels, but in fact do not belong to it, like shadows or reflections. We get rid
of them by simply choosing that segment as object, which is closest to the center of the
image (see figure 2 c), centered segmentation).

Gabor Transform and Similarity Function: The original image is convolved with
a family of Gabor kernels, which differ in wavelength and orientation. We chose 4 wave-
lenghts and 8 orientations. The kernels take the form of a plane wave restricted by a
Gaussian envelope function. At each image coordinate we obtain filter responses for each
Gabor wavelet. Filter responses at one image coordinate form a jet J. We can express
the ith component of a jet in terms of amplitude a; and phase ¢;: J; = (a;, ¢;). Thus, a
similarity function S between two jets 7 and J’ can be defined as
NVANSEER (M + 1) . S is the similarity function we used for our
simulations, for the matching as well as for the tracking procedure.

Grid Graphs: Given the result from the centered segmentation we mask the original
image of size 128 x 128 pixels with it. We cover the whole masked image with a grid
graph of 13 x 13 vertices. All vertices are deleted, which lie on the background or which
lie on the object but are too close to the background. The reason for this is to prevent
vertices from incorporating too much information of the background. Then each vertex is
labeled with the jet, which corresponds to the position of the vertex. For display purposes
the remaining vertices are connected by a minimal spanning tree (see figure 2 e) and f)).

495



BMVC99
2.2 Matching Object Features

Elastic Graph Matching is described in detail in [2]. Given a graph with vertices labeled
with jets, the aim of matching this graph to an image is to find new vertex positions which
optimize the similarity of the vertex labels to the features extracted at the new positions.
In a first stage (global move) the rigid graph is shifted across the image. For each position
we calculate the total similarity of the new positioned graph to the original graph. The
total similarity is just the average similarity taken for each vertex by using the similarity
function S. The position which provides the highest similarity is the starting position
for the second stage, which permits small graph distortions. The vertices are shifted in a
small surroundings of their starting position. After this local move the optimal position
of the graph is found at the position which provides the highest total similarity.

2.3 Tracking Object Features

The tracking procedure we use is described in [3]. Given a sequence of a moving object
and the pixel position of a landmark of the object for frame n, the aim is to find the
corresponding position of the landmark in frame n + 1. A similarity function S’ between
two jets J and J' is defined, which differs slightly from S:

9 (7.007) o= ool o)

OIS

two jets and Ei being the wave vectors of the Gabor filters. If 7 and J' are extracted
at same pixel positions in the frames n and n + 1, d (and thus the new position of the
landmark) can be found by maximizing S’ in its Taylor expansion. For each vertex of
the graph of frame n the displacements are calculated for frame n + 1. Then a graph is
created with its vertices at the new corresponding positions in frame n + 1, and the labels
of the new vertices are extracted from the new positions. To compensate for a subpixel
error Ad the phases of the Gabor filter responses are shifted according to A¢; = Ad - k;.

with d being the displacement vector of the

2.4 Generation of View Bubbles

For each view (4, j) of the hemisphere an affiliated view bubble is created, with the view
as its center. To determine the view bubble, we compare neighbouring views of (4, j) in
all directions (east, west, north, and south). We match (or track) the grid graph of view
(i,4) onto the neighbouring views. If the similarities to the graph of view (4, j) are still
sufficiently high we depart one step further from (4, j). We begin with the views (i — 1, 5)
and (¢ + 1,7) (taking the continuity from the views (0, j) to (99, j) into account). If both
views provide a sufficiently high similarity to the start graph we go on with the views
(i—2,7) and (i + 2, 7). We stop this procedure if one of both tested views becomes too
dissimilar. By doing the same for the vertical direction we obtain four views (i — n, j),
(i +n,j), (i,57 —m), and (4,5 + m), which define the view bubble for view (i, 7).
To depict it we draw an ellipse through these four views with view (4, j) as its center.
Figure 1 shows two ellipses projected onto the viewing hemisphere. For both procedures
we used the same similarity threshold 0.77. A difference between tracking and matching
concerning the similarity of views lies in the fact that during matching the similarity is
calculated always in reference to the starting view, whereas during tracking the similarity
refers to the preceding view.
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3 Methods of Comparision

We ran our simulations with two objects, a simple one (the “dwarf”’) and a more complex
one (the cat “Tom”) (see figure 1). “Simple”, in contrast to “complex”, means that the
views of the object do not change rapidly while the object rotates. The “dwarf” is a rela-
tively convex object with rather similar shape for all viewing directions, whereas “Tom”
is a more irregular object with faster changing views. We used two different methods to
compare the view bubbles generated by the matching (resp. tracking) procedure. With sta-
tistical analyses we made a quantitative comparison, and by judging the correspondences,
which were found by both procedures, we compared both procedures qualitatively.

For the quantitative statistics, we determined the area of each view bubble by calculat-
ing the area of the ellipse, described in section 2.4. (In [4] we also counted for each view,
in how many other view bubbles it is contained. The results for this condition, however,
resemble the results published here.) For both objects we carried out a t-test to proof
the hypothesis of different means of the areas of view bubbles for the tracked versus the
matched view bubble samples.

For the qualitative comparison we chose several sequences on the hemisphere (from a
starting view to a destination view) for both objects, and show the results for two of them
in section 4. For each sequence we performed the matching and the tracking procedure.
To assess the correspondences by visible inspection we displayed for each view of the
sequences the resulting matched and tracked graphs and plotted the calculated similarities
in diagrams. The sequences had an average size of about 8 frames which means a covered
rotation angle of 25,2 degrees.

4 Results

The diagrams in figures 3 and 4 show results from the quantitative comprisons. Figure 3
shows the distributions of areas of view bubbles for the object “Tom”, figure 4 for object
“dwarf™. For both figures the first diagram depicts the results from the tracking procedure,
the second the ones from the matching procedure. Lighter colors encode larger areas of
view bubbles. To compare the results for tracking and matching the third diagram shows
the difference between the first and second diagram.

From the diagrams we get following results. For both objects, “Tom” and “dwarf”,
the distribution of areas of view bubbles is qualitatively similar for the tracking procedure
and for the matching procedure. The back view seen from slightly above and the front
view provide the largest bubbles, and they can be regarded as canonical views.

These results hold for both objects, “Tom” and “dwarf”. But there is a difference be-
tween the objects. The tracking procedure provides larger view bubbles than the matching
procedure for the majority of views for the more complex object “Tom”, whereas for the
more simple object “dwarf” it is the other way around: here the matching procedure pro-
vides larger view bubbles than the tracking procedure for the majority of views. The
one-tailed ¢-test, with which we compared the mean values, was significant with o = 1%
for each case.

The figures 5 (object “Tom™) and 6 (object “dwarf”) show results for the qualitative
comparison, i.e., the assessing of the correspondences. The first part of both figures dis-
plays views with graphs resulting from tracking (first row) and matching (second row).
Both rows start with the starting view of the sequence. The next two images show the
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Figure 3: Distribution of View Similarities for Object “Tom”.

views where matching provided the last successfully matched and first mismatched graph
in the sequence. Arrows point to mismatched vertices. The last images of the rows show
the last views of the sequence where tracked graphs still keep the corresponding points,
whereas the matched graphs do not. In the headers of the images the indices of the views
are printed. (“Tr” means “tracked”, “Mt” means “matched”.) For each view of both se-
quences tracking provides the same or better correspondences than matching. The second
part of both figures shows a diagram where the similarities for each view of the sequence
to the starting view is plotted for tracking as well as matching. From the similarity dia-
grams of these and other analyzed sequences reported in [4] we get the following result.
At the beginning of a sequence the tracking procedure always provides higher similarities
than the matching procedure. This relationship is reversed at that point of the sequence
where the matching starts to provide poor correspondences, whereas tracking provides
good correspondences until the end of the sequence (see figure 7).
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Figure 4: Distribution of View Similarities for Object “Dwarf™.

5 Discussion and Conclusion

Both procedures, matching and tracking of object features, are suitable to generate a dis-
tribution of view similarities on the viewing hemisphere of a 3—dimensional object. On
the hemisphere areas of large and of small view bubbles arise. Centers of areas of large
view bubbles can be regarded as canonical views (see figure 8).

From both test objects no statement was possible about the superiority of one pro-
cedure in terms of size of view bubbles, because for the more complex object “Tom”
tracking provided larger view bubbles, whereas matching outperformed tracking for the
simpler object “dwarf”. A possible explanation for this result could be that the rapidly
changing views of object “Tom” cannot be matched over larger distances, because the
matching procedure is looking for the same appearance of the object features. We assume
that the tracking procedure leads to larger view bubbles for “complex” objects, whereas
matching is superior for “simple” objects. But this hypothesis has to be verified for more
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Figure 5: Correspondences for Object “Tom”.

examples.

A reason for the more precise correspondences found by tracking could be the fact
that an object feature changes its appearence while the object rotates. The feature in
the tracking procedure adapts to this change, whereas the matching procedure always
searches for the same starting feature. The more the rotation proceeds the more difficult
it is for the matching procedure to find the correct point, whereas the tracking utilizes
continuous information. Matching is the more appropriate method if the task is to find
features with the same appearance, tracking is the more appropriate method if changes
of the features should be followed. Even if it would turn out that matching is superior to
tracking for simple objects in terms of size of the view bubbles we suggest that precise
correspondences should take priority over larger view bubbles, particularly for further
processing. For a view interpolation, e.g., precise correspondences are necessary, and to
establish these correspondences, the continuity information of successive views has to be
utilized. Accordingly, our final conclusion is that tracking of object features is superior
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Figure 6: Correspondences for Object “Dwarf™.

to matching for estimating similar view areas of 3—dimensional objects, especially for
complex objects.
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Figure 7: Qualitative Similarity Diagram. “Good” and “poor” is meant in the sense of correct,
respectively incorrect, correspondences. See description in the text for details.
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Figure 8: Canonical and Non-Canonical Views for Object “Tom”. View (47, 6) is the view
with the largest area of its view bubble (generated by tracking). Compare with the first diagram of
figure 3.
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