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Abstract. This paper presents an extension to the growing neural gas
(GNG) algorithm that allows to capture local characteristics of the input
space. Using these characteristics clustering schemes based on the GNG
network can be improved by discarding uncertain edges of the network and
identifying edges that span discontinuous regions of input space. We ap-
plied the described approach to different two-dimensional data sets found
in the literature and obtained comparable results.

1 Introduction

In recent years the ability to store and process vast amounts of data has increased
considerably. Omne approach to discover structure in such data is the use of
methods that employ forms of unsupervised competitive learning. The growing
neural gas (GNG) proposed by Fritzke [1] is such a method. It belongs to the
class of topology representing mnetworks [2]. In contrast to other methods of
unsupervised competitive learning, e.g., the self-organizing map (SOM) [3], the
GNG does not use a fixed network topology. Instead, the GNG uses a data-
driven growth process to approximate the topology of the input space in form
of an induced Delaunay triangulation. However, the individual GNG units can
only represent local regions of the input space as convex polyhedrons. Hence,
complex structures of the input space, e.g., non-convex clusters, can only be
approximated piecewise by a larger number of units.

This piecewise representation of input space structures makes it often diffi-
cult to recover the relationship between the network units and the corresponding
structures in input space. For instance, determining which set of units in the
GNG network corresponds to a single, coherent cluster in the input space can
be particularly difficult when several other clusters are very close. To support
the reconstruction of such relationships, this paper proposes an extension to the
original GNG algorithm by adding a local descriptor to each edge of the GNG
network that characterizes the input space structure spanned by the particular
edge. We show that this descriptor can be utilized in combination with com-
mon clustering techniques in order to identify sets of GNG network units that
correspond well to non-convex, difficult to separate clusters in the input space.

The paper is organized as follows: section 2 provides a brief overview of
related work that uses the GNG to identify structures in the input space. In
section 3 we introduce our new local descriptor and discuss in section 4 how
it can support network-based clustering techniques. We present experimental
results in section 5 and end with concluding remarks in section 6.
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2 Related Work

There exist several approaches to recover or improve the relationship between
the GNG network and the input space structure. One general idea is the use
of existing clustering methods to group the GNG network units. For example,
Mitsyn and Ososkov [4] examine hierarchical clustering of GNG units using single
linkage and Ward’s method as linkage criteria. Although their clustering results
look promising, their approach has the drawback that they have to manually
identify the “right” level in the cluster hierarchy to obtain an adequate clustering
of the input space.

Other approaches use the fact that the GNG has a tendency to generate
isolated sub-networks if the corresponding structures in the input space are suf-
ficiently distant from one another, e.g., Canales and Chacén [5] perform a post
pruning step after the GNG has approximated the input space to remove units
that lie in sparse regions in order to increase the chance of obtaining a number of
isolated sub-networks that correspond well to dense clusters in the input space.
Ocsa et al. [6] incorporate a similar idea directly into the growing process of the
GNG to the effect that sparse regions of the input space are virtually ignored
from the outset. A slightly different approach is made by Doherty et al. [7].
They use an unmodified GNG with a relatively large number of units to reduce
the necessary distance between clusters to form isolated sub-networks. During
the growth process they track the formation of isolated sub-networks within a
tree structure to preserve their neighborhood relations. However, the structure
of the resulting tree depends heavily on the (manually choosen) time interval in
which the tree is updated.

These and similar clustering approaches can be aided by the GNG extension
that is described in the following sections. Even in combination with a straight-
forward clustering scheme based on breadth-first search (section 4) the obtained
results are comparable to those of more sophisticated methods (section 5).

3 Local Input Space Histograms

The growing neural gas uses two mechanisms, edges and accumulated errors, to
track how well the network approximates a particular local region of the input
space. An edge between two units indicates that the input space between the two
units is not empty, and the accumulated error of a unit provides an indication of
the relative density of network units with respect to the density of the underlying
input space.

We propose to add a small histogram H = {hq,...,h}, e.g., with k = 32
bins, to each edge of the GNG network in order to capture more information
about the structure of the input space. Every time two nodes connected by an
edge are selected as the two units s; and s who are closest to an input &, the
corresponding histogram is updated with an input distance ratio r defined as:

_— 51 = &Il = lls2 = ¢ .

— 1.
51 — sa|
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Fig. 1: (a) The distance ratio r ranges from 0 to 1 and describes how close the
best matching unit s; is to the input £ in relation to the second best match-
ing unit s3. (b) Six of the eleven templates used to identify histograms that
represent forms of discontinuous (upper row) and continuous (lower row) input
space.

The ratio r is illustrated in figure la. It ranges from 0 to 1 and describes how
close unit s; is to the input £ relative to unit so. Since the histogram H is
bound to an edge, it is “used” by two units a and b. In case unit a is the
best matching unit the ratio r is inserted in the lower half of the histogram,
i.e., in bins hy to hy/p. Otherwise, the ratio r is inserted in the reversed upper
half of the histogram ranging from bin hy down to bin hy . The resulting
histogram captures the local characteristic of the input space that is spanned by
the corresponding edge. Figure 2 shows the local histograms of two edges. One
of the edges covers a gap in the input space. The other edge spans a region were
the inputs are more equally distributed.

4 Clustering

The additional information that is gathered by the local histograms can be used
to support the clustering of GNG network units. The basic algorithm uses a plain
breadth-first search to identify network units that are connected by at least one
path. Without any extensions, this breadth-first search identifies isolated sub-
networks as individual clusters. This straightforward clustering technique can
be extended by deciding for every edge, if the edge should actually be traversed.
We propose to use two measures to support this decision: Edges whose in-
formation about the input space is uncertain as well as edges that characterize
some form of “gap” in the input space should not be traversed. We define the
uncertainty u. of an edge ¢ as the average bin error of its histogram H:

uc.:@h;p .t k' :=|H'|, H := {hlh € HAh >0}
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Fig. 2: Clustering of an inhomogeneous input space (light gray) with a GNG
network of 250 units resulting in 23 clusters (marked with different shapes and
colors at the units’ positions). The histograms of two edges (marked by the
arrows) are shown on the right.

If the uncertainty u. of an edge is above a certain threshold, e.g., 10%, the edge
will not be traversed.

For the second measure we compare the shape of the edge’s histogram with
a set of 11 template histograms that represent forms of discontinuous (5) as well
as continuous (6) input space (see figure 1b). The templates were determined
empirically. If a histogram matches to one of the templates representing dis-
continuous input space the corresponding edge will not be traversed. In order
to calculate the similarity between an edge’s histogram and a template we em-
ploy the earth mover’s distance (EMD) [8]. Figuratively speaking, the EMD
calculates the minimum amount of “work” needed to transform one histogram
into another by moving the bin contents of the first histogram to match the bin
contents of the second one. Unfortunately the computation of the EMD has a
complexity of O (n3 log n) To avoid this unpleasant property of the EMD we
use an approximation of the EMD proposed by Shirdhonkar and Jacobs [9] that
is based on the wavelet transform and can be calculated in O (n).

5 Results

We implemented a GNG extended with the described local input space his-
tograms and applied it to different two-dimensional input spaces. Figure 2 shows
the clustering result of an input space with dense regions (light gray) that are
partially in close proximity and have non-convex shapes in some cases. In addi-
tion, the figure depicts the input space histograms of two edges (black arrows).
Although most regions of the input space are connected by edges in their corre-
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Fig. 3: Application of the described clustering approach to six datasets from
the literature. (a,b) are based on the R15 and D31 datasets in [10]. (c,d) are
based on the datasets presented in [11]. (e,f) are based on the datasets in [4].
Clusters are marked with different shapes and colors.

sponding network representation, the two measures derived from the local input
space histograms prevent a merging of the particular clusters.

In figure 3 we applied our clustering approach to datasets found in the lit-
erature and achieved comparable results (see figure 4). The input spaces in
figure 3a and 3b are based on the R15 and D31 datasets in [10], the input spaces
in figure 3¢ and 3d are based on datasets presented in [11] (figure 4a and 4b),
and the input spaces in figure 3e and 3f are based on the datasets shown in [4]
(figure 4c and 4d). As the datasets of [10] and [11] were given as a set of discrete
points, the input spaces were derived by plotting the points as small circles and
applying a gaussian filter. In all cases the threshold for the allowed uncertainty
of edges was set to 10% and the same set of 11 templates was used.

6 Conclusions

We presented an extension to the GNG algorithm that allows to capture the
local characteristics of the input space. We showed how this information can be
used to support clustering schemes based on the GNG network by excluding un-
certain edges and utilizing a template-based approach to identify discontinuous
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Fig. 4: Examples of clustering results presented in [11] (a,b) and [4] (c,d).

regions in input space. The described clustering scheme was applied to different
two-dimensional input spaces found in the literature and it yielded comparable
results. The current approach uses a small set of hand-crafted templates to iden-
tify characteristic regions of the input space. It appears promising to determine
if these templates can also be learned in an unsupervised way. Furthermore,
the presented idea is, in general, applicable to other prototype based clustering
methods, e.g., the standard, non-growing neural gas.
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