
Pipelined Parallel Sorting on the Intel SCC

Kenan Avdic
Linköping Universitet

Dept. of computer and Inf.
science

58183 Linköping, Sweden
kenav350@ida.liu.se

Nicolas Melot,
Christoph Kessler
Linköping Universitet

Dept. of computer and Inf.
science

58183 Linköping, Sweden
{melot.nicolas,

christoph.kessler}@liu.se

Jörg Keller
FernUniversität in Hagen

Fac. of Math. and Computer
Science

58084 Hagen, Germany
joerg.keller@FernUni-

Hagen.de

ABSTRACT
The Single-Chip Cloud Computer (SCC) is an experimental pro-
cessor created by Intel Labs. It comprises 48 Intel-IA32 cores
linked by an on-chip high performance mesh network, as well as
four DDR3 memory controllers to access an off-chip main memory.
We investigate the adaptation of sorting onto SCC as an algorithm
engineering problem. We argue that a combination of pipelined
mergesort and sample sort will fit best to SCC’s architecture. We
also provide a mapping based on integer linear programming to
address load balancing and latency considerations. We describe
a prototype implementation of our proposal together with prelim-
inary runtime measurements, that indicate the usefulness of this
approach. As mergesort can be considered as a representative of
the class of streaming applications, the techniques developed here
should also apply to the other problems in this class, such as many
applications for parallel embedded systems, i.e. MPSoC.

1. INTRODUCTION
The Single-Chip Cloud Computer (SCC) experimental processor [4]
is a 48-core “concept-vehicle” created by Intel Labs as a platform
for many-core software research. Its 48 cores communicate and
access main memory through a 2D mesh on-chip network attached
to four memory controllers (see Figure 1(a)). Implementing par-
allel algorithms on such an architecture involves many consider-
ations, e.g. load balancing, communication patterns, and memory
access patterns. Especially for algorithms that mainly transport and
modify large amounts of data, so-called streaming applications, ac-
cesses to main memory may represent a bottleneck [5], despite the
use of caches, because of the limited bandwidth to main memory.
Streaming applications are of interest because they comprise lots of
industry applications in embedded systems, e.g. processing of im-
age sequences. Because of throughput requirements, those appli-
cations regularly call for parallelization, e.g. with multiprocessor
systems-on-chip (MPSoC). The goal for bandwidth optimization,
combined with other design targets, leads to approaches such as on-
chip pipelining for multicore processors [5]. We consider sorting of
large data sets as a simple and well-researched model for streaming

MCC 2011, Linköping, Sweden

applications. We investigate implementation of sorting on the SCC
as an algorithm engineering problem, and devise a combination of
pipelined mergesort and sample sort as a good fit for that archi-
tecture. Preliminary performance measurements with a prototype
implementation indicates the validity of our hypotheses.

The remainder of this article is structured as follows. Section 2 in-
troduces the SCC. In Section 3 we present our arguments for the
choice of sorting algorithm used, together with an integer linear
programming (ILP) approach to load balancing and latency reduc-
tion in memory accesses. In Section 4 we present preliminary per-
formance results of a prototype implementation, and give an out-
look to future work in Section 5.

2. THE SINGLE CHIP CLOUD COMPUTER
The SCC provides 48 independent Intel-x86 cores, organized in 24
tiles. Figure 1(a) provides a global schematic view of the chip.
Tiles are linked together through a 6×4 mesh on-chip network. A
tile is represented in Fig.1(b). Each tile embeds two cores as well
as a common message passing buffer (MPB) of 16KiB (8KiB for
each core); the MPB supports direct core-to-core communication.

The cores are IA-32 x86 (P54C) cores which are provided with
individual L1 and L2 caches of size 32KiB (16KiB code + 16KiB
data) and 256KiB, respectively, but no SIMD instructions. Each
link of the mesh network is 16 bytes wide and exhibits a 4-cycle
crossing latency, including the routing activity.

The overall system admits a maximum of 64GiB of main memory
accessible through 4 DDR3 memory (MICs) controllers evenly dis-
tributed around the mesh. Each core is attributed a private domain
in this main memory whose size depends on the total memory avail-
able (682 MiB in the system used here). Six tiles (12 cores) share
one of the four memory controllers to access their private mem-
ory. Furthermore, a part of the main memory is shared between all
cores; its size can vary up to several hundred megabytes. Note that
private memory is cached on cores’ L2 cache but caching for shared
memory is disabled by default in Intel’s framework RCCE. When
caching is activated, the SCC offers no coherency among cores’
caches to the programmer. This coherency must be implemented
through software methods, by flushing caches for instance.

The SCC can be programmed in two ways: a baremetal version
for OS development, and using Linux. In the latter setting, the
cores run an individual Linux kernel on top of which any Linux
program can be loaded. Also, Intel provides the RCCE library
which contains MPI-like routines to synchronize cores and allow

0
0

10
1

2
3

4
5

6
7

SCC die

D
IM

M

R

tiletile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

(a) A schematic view of the SCC die. Each box labeled DIMM represents
2 DIMMs.

L2

256 KiB

P54C
L1

16 KiB

MPB

16 KiB

P54C
L1

16 KiB

L2

256 KiB

traffic

gen

mesh

I/F R

(b) One of the 48 tiles of the SCC.

Figure 1: A schematic representation of the SCC die and the composition of its tiles.

them to communicate data to each other. RCCE also allows the
management of voltage and frequency scaling.

Some previous work assessing the SCC reveals a significant per-
formance penalty from the use of shared main memory, compared
to using private memory or the on-chip network [1]. It also indi-
cates that the distance to the memory controller has an influence on
round-trip time. Further tests indicate that there is sufficient read
bandwidth when accessing memory in a cache-friendly pattern, but
that write bandwidth suffers [6].

3. A HYBRID PARALLEL MERGESORT AL-
GORITHM

To choose the type of sorting algorithm to be implemented, we took
the architectural features of SCC into account. Techniques like
parallel quicksort rely on shared memory and thus have a penalty.
The restriction to accessing neighboring addresses in private fa-
vors merge sort, while the bandwidth restriction on writes favors
the implementation of an on-chip pipelined algorithm such as the
pipelined mergesort on the Cell [5].

On-chip pipelined mergesort consists in sorting a large sequence
of ordered elements thanks to the mergesort algorithm. Merge-
sort is illustrated in Fig.2; it recursively split an input data into 2
or more chunks, until they are enough small to be trivially sorted.
All chunks are then merged together into a larger, sorted sequence.
This phase involves a merge tree, where each the node represents
a merge task. The leaves take the chunks trivially sorted and push
them to the nodes in the lower level, and the root performs the fi-
nal merge. On-chip pipelined mergesort organizes this process in
a pipeline, across SCC’s 48 cores through its mesh network. The
leaf tasks start the computation and forward their intermediate re-
sult toward further tasks in the task graph. These tasks can then
start the same process, and so until all the tasks in the pipeline are
active. This restricts memory writes to the root node. As the merge
operation is done blockwise, follow-up tasks can start as soon as
leaf tasks have produced the first block of intermediate results.

As sending and receiving tasks can be mapped to different pro-
cessors, the sending task can restart with new input data while the
receiving one can process the data it has just received. Thus paral-
lelism is achieved through the overlapping executions of successive
tasks. As there can be many more tasks than processors, a processor
can handle several tasks. One difficulty of this technique consists
in keeping a balanced computational load among the cores, and the
necessity to keep the distance between sender and receiver small,

especially if the memory controller is involved, to restrict delays
in data transmission. In [5], an ILP-based model for multi-criterion
optimized mapping of tasks was presented. In this work, an adapted
model is described in subSection 3.2.

3.1 Parallel sort on the SCC
In its simplest form, each level of the merge tree would be merged
to one core, to achieve a balanced computational load. Thus, in [5],
an 8-level merge tree was mapped onto 8 SPEs. Yet, the high num-
ber of cores available on SCC (48) excludes this approach because
of the vast size of the tree involved. A 48-level tree contains 248−1
merging tasks to distribute among all 48 cores, or more than 243

tasks (more than 8 thousand billions) per core on average. Thus,
parallel sort as implemented in this work on the SCC consists of
three phases. In phase 0, all the leaf tasks of 8 merging trees
mapped to 8 disjoint sets of 6 cores, as described in subSection 3.2,
fetch input data from files and locally sort their input buffer using
qsort. Phase 1 runs 8 on-chip pipelined merge trees simultaneously
using the same 8 trees and mapping as Phase 0. This phase pro-
duces 8 sorted subsequences from 8 root nodes. Phase 2 merges
these 8 subsequences together, using a parallel sample sort with all
48 processors and working through shared main memory.

3.2 Task mapping ILP model
For mapping the overall pipelined task graph to the SCC resources,
we have developed multiple integer linear programming (ILP) based
solutions that either optimize for the aggregated overall distance (in
hops) between communicating tasks, weighted by their inter-task
communication volumes, or for the aggregated overall distance of
tasks to their memory controller weighted by the tasks’ memory
access volumes, or a weighted linear combination of both goals. In
addition, the model balances the computational load per core.

The architecture model part of our ILP model can be configured
by the number of tiles per row and column and by the number and
distribution of memory controllers.

We split the mapping problem of a symmetric pipelined task graph
(here, eight parallel 64-to-1 pipelined merge trees) for SCC into
four symmetric subproblem instances. Each subproblem is mapped
to an SCC quadrant with its memory interface controller. Hence
only one instance, mapping two 64-to-1 merge trees (thus 128 tasks)
to one quadrant of 6 tiles, actually needs to be solved. This con-
siderably reduces the problem complexity. We further simplify the
problem by mapping tasks to tiles only, not to individual cores.

3.2.1 ILP Model Details
We model a pipelinedb-ary merge tree (usually,b = 2) with k
levels, which has thus(bk − 1)/(b − 1) merge tasks, withV =
{1, ...,(bk −1)/(b−1)}, where 1 denotes the root merger. Hence,
the inner nodes (tasks) areVinner = {1, ...,(bk−1−1)/(b−1) and
Vleaves = V −Vinner denotes thebk−1 leaves. For each leaf task
v, we add an artificialco-task v+ bk−1 that models read memory
accesses ofv. For the root 1, we add a co-task 0 that models its
write memory accesses. The overall set of nodes comprising tasks
and co-tasks is thusVext = {0..(2∗ (bk)− (bk−1)−1)/(b−1)}, the
co-task set isVext −V . A co-task is to be mapped on the memory
controller closest to its corresponding leaf or root task, i.e., on the
memory controller of the SCC quadrant where the corresponding
task is mapped, while the tasks inV are to be mapped to SCC tiles.
The (normalized) computational workloadwv of a merge taskv∈V
at depthd is 1/bd with d ∈ [0;k−1]. The memory access volume
of a co-taskv′ ∈ Vco is defined by the computational workload of
its corresponding task; a co-task has no computational workload.
The communication volume from a taskv to its successor⌊v/b⌋ is
given by the computational load ofv.

We model a generic SCC-like architecture as a 2D mesh of tiles
with arbitrary extent and arbitrary numbers and positions of mem-
ory controllers around the mesh. The SCC mesh is defined by ex-
tentsNRows andNCols, such thatRows = {1, ...,NRows} denotes
the tiles’ row indices andCols = {1, ...,NCols} denotes the tiles’
column indices. The MICs are modeled by artificial extra tiles that
are adjacent to specific boundary tiles, as specified by the (generic)
SCC architecture. The binary parametersecondMIC configures if
there are one or two MICs per (double) row, i.e., MICs on one or
both sides of the SCC.

The mapping to be computed for all tasks and co-tasks will be given
by the binary solution variablesxv,r,c = 1 iff nodev is placed on tile
(r,c), for v ∈Vext , r ∈ Rows andc ∈Cols.

In the mesh, we identify each horizontal edge with its left endpoint
(r,c) → (r,c+ 1) and each vertical edge with its lower endpoint
(r,c)→ (r+1,c).

In order to compute communication distances for tree edges, we
use auxiliary binary variablesyhv,r,r′ and yvv,c,c′ respectively, for
v ∈Vext , r,r′ ∈ Rows andc,c′ ∈Cols. Here,yhv,r,r′ = 1 iff task v is
placed in rowr and task parent(v) is placed in rowr′.

We also need to model to which quadrant (memory controller) a tile
belongs, which is captured by the auxiliary binary variablesquadv,q
with v ∈ V andq ∈ Rows and a binary variable denoting whether
MICs are attached on one or on both outer columns; the standard
setting of SCC is one quadrant per half double-row.

Floating point solution variablessumDistComm, sumDistMem and
maxCompLoad are used to denote various optimization goals, namely
the weighted sum of communication distances, the weighted sum
of memory access distances and the maximum computational load
on any tile, respectively. Then, the objective function of our ILP
instance becomes

minimize

ε ·maxCompLoad

+(1− ε)(1−ζ) · sumDistComm

+(1− ε)ζ · sumDistMem;

By choosing the tuning parametersε andζ appropriately between 0
and 1, priority can be given to the various optimization sub-goals.

We have the following constraints.maxCompLoad is defined by
the sum of computational work of all tasks mapped to any tile:

∀r ∈ Rows,c ∈Cols : maxCompLoad ≥ ∑
v∈V

wv · xv,r,c

Each task node must be mapped to exactly one processor:

∀v ∈Vext : ∑
r∈Rows, c∈Cols

xv,row,col = 1

where the placement of the co-tasks is additionally constrained:
The root’s co-task 0 must be fixed to a memory controller in the
root’s quadrant:

∀r ∈ {1, ...,NRows/2} : ∑
c∈Cols

x0,2r,c ≤ 0

∀r ∈ {1, ...,NRows/2} : ∑
c∈{2,...,NCols−secondMIC}

x0,2r−1,c ≤ 0

Likewise, a leaf’s co-task must be fixed to the memory controller
of the quadrant where the leaf is mapped:

∀v ∈Vco, r ∈ {1, ...,NRows/2} : ∑
c∈Cols

xv,2r,c ≤ 0

∀v∈Vco, r ∈{1, ...,NRows/2} : ∑
c∈{2,...,NCols−secondMIC}

xv,2r−1,c ≤0

The auxiliary quadrant variables are defined as follows:

∀v ∈V, mcr ∈ {1, ...,NRows/2}, mcc ∈ {0,1} :

quad[v,2mcr−1+mcc]≤ ∑
r∈{2mcr−1,...,2mcr},

c∈{(mcc⌊NCols/2⌋+1,...,mcc⌊NCols/2⌋+NCols/2}

xv,r,c

∀v ∈V : ∑
mcr∈{1,...,NRows/2}, mcc∈{0,1}

quad[v,2mcr−1+mcc]≥ 1

Then, the following constraints force the co-tasks on the same quad-
rant as their corresponding tasks; for the leaves,

∀mcr ∈ {1, ...,NRows/2}, mcc ∈ {0,1}, v ∈Vleaves, i ∈ {1, ...,b} :

xv+bk−1,2mcr−1,mcc·(NCols−1)+1 ≤ quadv,2mcr−1+mcc

and for the root

∀mcr ∈ {1, ...,NRows/2}, mcc ∈ {0,1} :

x0,2mcr−1,mcc·(NCols−1)+1 ≤ quad1,2mcr−1+mcc

The communication load on each mesh edge is defined by con-
straints such as

∀u ∈Vinner, i ∈ {1, ...,b}, r1∈ Rows, r2∈ Rows :

yhu+b(u−1)+i+1,r1,r2 ≥ ∑
c∈Cols

xu+b(u−1)+i+1,r1,c + ∑
c∈Cols

xu,r2,c −1

∀u ∈Vinner, i ∈ {1, ...,b}, r1∈ Rows, r2∈ Rows :

yhu+b(u−1)+i+1,r1,r2 ≥ 0

for the row segments, and similarly for the column segments.

The weighted sum of communication distances is defined as fol-
lows:

sumDistComm= ∑
u∈Vinner , i∈{1,...,b},

r1∈Rows, r2∈Rows

yhu+b(u−1)+i+1,r1,r2 ·0.5‖r2−r1‖·wu

+sum u∈Vinner , i∈B,
c1∈Cols, c2∈Cols

yvu+b(u−1)+i+1,c1,c2 ·0.5· |c2−c1| ·wu

Finally, the weighted sum of memory access distances is defined
by

sumDistMem= ∑
v∈Vleaves ,

r∈Rows, c∈Cols

xv,r,c(r+c−2)wv+ ∑
r∈Rows,
c∈Cols

x1,r,c(r+c−2)

We also have an alternative ILP model that keeps track of the max-
imum communication load over any edge in the SCC mesh (and
also the overall traffic volume on the mesh) rather than latency;
unfortunately it is very lengthy and must be omitted due to space
limitations. Also, as we found that network and memory access
bandwidth is less critical than latency on SCC, we decided to focus
on latency optimization in the first hand.

Two parallelk-level trees are then easily modeled by a singlek+1
level tree where the now artificial root node 1 is assigned a zero
workload and the write co-tasks are connected to the root children
(2 etc.) instead.

3.2.2 Experimental results
Table 1 shows the runtime requirements of our ILP model for cases
with a single MIC, using CPLEX 10.2 as ILP solver. It turns out
that considering one quadrant can be solved to optimality within
at most 2 minutes in almost all cases, while considering the whole
SCC with 24 tiles leads to considerably higher complexity. How-
ever, using a newer ILP solver such as Gurobi might make even

3x2 Quadrant, 1 MIC
k #var ε = 0.5 ε = 0.1 ε = 0.9
4 374 0.5 0.1 1.0
5 774 1.8 5.5 0.2
6 1574 53.9 – 1:51.9

6x4 Quadrant, 1 MIC
4 1818 –
5 3786 1:33.6
6 7722 –

Table 1: ILP solver times for mapping 4, 5 and 6 level binary
merge trees to different SCC mesh sizes, using 1 MIC and ac-
counting for maximum communication loads across any mesh
edge, in seconds (CPLEX 10.2). A – means that no optimal
result was obtained after 10 minutes, but an approximation so-
lution is reported.

Figure 2: An example of mergesort sorting 8 numbers.

such configurations feasible. First tests with Gurobi (also running
on a faster machine with more memory) show that, for mapping
sufficiently large trees, significant improvements in optimization
time are possible, e.g. a 250x speed-up for mapping a 5-level bi-
nary tree to a 4x6 mesh, and a 6-level tree mapping which was not
feasible with CPLEX could be solved to optimality in 58 seconds
with Gurobi.

3.3 Phase 1: on-chip pipelined merge
The first phase of the on-chip pipelined mergesort implemented on
SCC is quite similar to the implementation on the Cell [5]. The
focus here is given to 6 cores of one of the SCC’s 4 quadrants. All
7 other sets of 6 cores execute in parallel the same actions.

All merging tasks of a 6-levels binary merging tree are allocated to
6 cores, according to an optimal task mapping from the ILP solver
(see Section 3.2). The cores who are attributed some of the merging
tree’s leaves locally sort each input buffers stored in their private
main memory. Once all leaves’ buffers are sorted, they are merged
together as part of the on-chip pipelined merge. To each merging
task, a buffer in the respective MPB is attributed to read data from
and a space in L2 cache to store the merge output before pushing it
toward the parent task, with the exception of leaf tasks which take
their input directly from the main memory, and the root task that
write output to main memory through the L2 cache. Every tasks in
the merging tree execute the following sequence:

1. Check and merge
Checks both input buffers of the task from the core’s MPB: if
both contain data and if the output buffer in L2 has some free
space, then the task merges as much pairs of elements as the
minimum between the smallest amount of element available
in both inputs buffer and the amount of elements the output
buffer can take at the moment.

2. Check and push
Checks the input buffer of the current task’s parent; if it can
be filled with the sorted data available, then the parent’s input
buffer is filled and what is written to the parent is removed
from the task memory. The root task writes directly to main
memory without any prior verification.

The checks are performed thanks to aheader preceding every buffer
in the MPB. It allows tasks to keep track of the amount of data al-
ready sent and received, the amount of data available in this buffer
or the amount of free space, as well as where to read input or write
output. From this information and the size of the buffer, a task can
calculate how much space is available to write, or how much data
is available in this buffer. The root task does not check its output
buffer for available space; instead it writes directly to main memory
the output of the merger. All tasks mapped to the same core run in
a round robin fashion, where the quantum is the necessary time to
perform either one or another of the two steps enumerated above.

3.4 Phase 2: parallel sample sort
The second phase consists in merging the 8 subsequences into one
final sorted sequence. To this extend a root master is arbitrarily
chosen among the 8 roots of the 8 merge trees from the first phase.
Each root computes 47 pivots from its sorted subsequence, which
divides it into 48 equal chunks. All the 8 roots send their 47 piv-
ots to the root master using the on-chip network. The root master
computes 47 global pivots, as the 47 means between all 7 pivots per
chunk received from other roots and its own 47 previously calcu-
lated pivots. The global pivots are then broadcast back to all roots,
and used to cut again the roots’ sorted subsequence into 47 chunks,
whose lengths are defined by the subsequence’s elements and the
global pivots received. This process, and the following are depicted
in Fig.3. The roots write their subsequence to a buffer in shared
main memory (see Fig. 4), at an offset they can calculate from the
length of the other chunks to be written. The roots can fetch the
length information they need on the root master’s MPB. At this
point, the buffer in shared main memory contains a sequence of
48 subsequences, where each element in one subsequence is lower
than or equals to any element in further subsequences. Every sub-
sequence consists of 8 sorted chunks which, once merged, form the
global sorted sequence. All 48 cores get the lengths of all chunks
from the main root, so they can calculate the offsets in shared mem-
ory from which the 8 chunks begin and finish. From these offsets,
sequential merge algorithms can read their input and write their
output data. Each of the 48 cores (cores 0 to 3 in Fig.4) runs one se-
quential merge algorithm simultaneously. After this step the global
sequence is sorted.

4. EXPERIMENTAL EVALUATION
We implemented a prototype of the hybrid sort algorithm for SCC
described in Section 3. We run it on the 48 cores, varying the to-
tal input size from 220 to 224 integers (32 bits each). As a previ-
ous work around on-chip pipelined mergesort on the Cell [5] ex-
hibits different performance with available buffer size per core,
the sorting algorithm for SCC is run with allocated space on the
MPB of 4096, 6144 and 8128 bytes. Each setting in{input_size×
bu f f er_size} is run a hundred times to lower side effects from the
underlying operating system, and using random data (uniformly
distributed unsigned ints) as input. A simple, layered task-to-processor
mapping is used, that is, all tasks of one level in the merge tree
are mapped to one core. This simple scheme allows the computa-
tion load to be balanced perfectly among the cores, but does not

Root0

(master root) Root 1 Root 2 Root 3all other cores

Calculate

local pivots
local pivots

local pivots

local pivots

Calculate

global pivots
global pivots

global pivots

global pivots

Calculate local

chunks lengths
local chunks lengths

local chunks lengths

local chunks lengths

all chunks length

all chunks length

all chunks length

all chunks length

Merge chunks

Write chunks

Figure 3: The roots and the master root collectively calculate
the chunks’ length.

Figure 4: Each root writes its sorted subsequence buffer to
shared main memory. For the sake of simplification, this
schema assumes a total of 4 cores, 2 of them being the root of a
2-level tree.

minimize data communication and the number of tasks mapped
to the same processor. The algorithm is monitored so that tim-
ings for the sequential sort (phase 0) and the parallel sort (phases
1 and 2) are available. Results on total times are depicted in Ta-
ble 2. The first measurements (see Table 2) were obtained using
the layer-wise mapping, which is bad for on-chip pipelining, be-
cause many producer-consumer tasks pairs need to share the same
MPB to forward data. We thus expect that optimized (including
ILP optimized) mappings will yield better results. Also, the differ-
ence in buffer size only has an influence for small data size, but is
negligible for large data sizes.

The runtime distribution between the phases shows a tendency of
phase 0 to grow faster than phase 1, whereas timings for phase 2
tend to decrease from 220 to 225 integers, respectively from 6%,
6% and 87% to 19%, 9% and 71%. This indicates that for bigger
amount of data to merge (from 223 integers in our measures), the

Data size 220 221 222 223 224

Sequential 10767 23083 49280 104110 220800
Pipelined (total) 1176 2067 4037 6185 10567

Phase 0 58 129 292 653 1481
Phase 1 57 114 226 451 902
Phase 2 781 1561 3120 4418 7036
Speedup 9.1 11.1 12.2 16.8 20.8

Table 2: Runtime in milliseconds for different data sizes with
maximum buffer size, using the sequential and pipelined (layer-
wise mapping) mergesort.

sample sort in phase 2 gets faster than an on-chip pipelined merge
sort, despite the disadvantage of using shared memory.

We have also implemented a sequential mergesort to illustrate the
speedup of on-chip pipelined mergesort, compared to its the se-
quential version. The sequential mergesort recursively splits the ar-
ray of integers given as input, into smaller chunks that can fit in one
third of the cores’ L2 cache (256 KiB). Then a sequential quicksort
sorts these chunks, and the chunks are merged together again in
the merging phase of mergesort. The execution time is measured
from the moment when the necessary memory is allocated and in-
put data is fully loaded from files, to when the sorting algorithm
finishes, before the sorted array is checked and written to an output
file. The performance of this implementation of reference is also
depicted in Table 2. Compared to the timing observed with the on-
chip pipelined mergesort, we observe a relative speedup growing
from 9 with 1 million integers to 20 with 16 millions.

We are not aware of performance results for other sorting algo-
rithms on the SCC. Thus we compare with sorting algorithms im-
plemented on the Cell processor [2]. The Cell processor, usually
employed in pairs, provides 8 processors called SPEs running at 3.2
GHz, where the processors can issue up to 2 instructions per cycle,
and the instructions work on 128-bit data (or four 32-bit ints). Cell-
Sort [3], which uses a local sort (corresponds to our phase 0) fol-
lowed by a bitonic sort (corresponds to our phases 1 and 2), needs
565 ms to sort 32M integers with 16 SPEs, where the time for phase
0 is omitted. While we need about 15,800 ms for the same data
size, we have to note that SCC employs cores that run at a lower
frequency (factor 4) and with less powerful instructions (about fac-
tor 8), so that we achieve a somewhat similar performance with 3
times more cores. Here, we must note however that CellSort is a
highly developed code while we provide a prototype.

5. CONCLUSION AND FUTURE WORK
We presented the mapping of a sorting algorithm on the SCC pro-
cessor as an algorithm engineering study, where we had to com-
bine different algorithmic techniques, knowledge about the proces-
sor’s memory bandwidth and an elaborate ILP-based load balanc-
ing scheme to derive an efficient implementation. Preliminary ex-
perimental results indicate that the resulting code is competitive
with parallel mergesort investigated in [1] and a relative speedup
growing with the input set and up to 20 in our measurements; fur-
ther work includes the use of an optimal mapping obtained through
the load-balancing scheme we describe. The algorithm should be
portable to other upcoming manycore architectures, if they have
a somehow similar structure, such as e.g. Tilera processors (see
www.tilera.com).

In future work, we plan to extend this study to further algorithms,
and to include energy-efficiency aspects into the mapping algo-
rithm.

Acknowledgments
The authors are thankful to Intel for providing the opportunity to
experiment with the “concept-vehicle” many-core processor “Single-
Chip Cloud Computer”.

This research is partly funded by the Swedish Research Council
(Vetenskapsrådet), projectIntegrated Software Pipelining.

6. REFERENCES
[1] K. Avdic, N. Melot, J. Keller, and C. Kessler. Parallel sorting

on Intel Single-Chip Cloud Computer. InProc. A4MMC
workshop on applications for multi- and many-core
processors at ISCA-2011, 2011.

[2] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell
broadband engine architecture and its first implementation - a
performance view.IBM Journal of Research and
Development, 51(5):559–572, Sept 2007.

[3] B. Gedik, R. Bordawekar, and P. Yu. Cellsort: high
performance sorting on the Cell processor. InVLDB ’07
Proceedings of the 33rd international conference on Very
large data bases, pages 1286–1207, 2007.

[4] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, and R. Van
Der Wijngaart. A 48-Core IA-32 message-passing processor
in 45nm CMOS using on-die message passing and DVFS for
performance and power scaling.IEEE J. of Solid-State
Circuits, 46(1):173–183, Jan. 2011.

[5] R. Hultén, J. Keller, and C. Kessler. Optimized
on-chip-pipelined mergesort on the Cell/B.E. InProceedings
of Euro-Par 2010, volume 6272, pages 187–198, 2010.

[6] N. Melot, K. Avdic, C. Kessler, and J. Keller. Investigation of
main memory bandwidth on Intel Single-Chip Cloud
Computer. Intel MARC3 Symposium 2011, Ettlingen, 2011.

